JP2005108890A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor Download PDF

Info

Publication number
JP2005108890A
JP2005108890A JP2003336278A JP2003336278A JP2005108890A JP 2005108890 A JP2005108890 A JP 2005108890A JP 2003336278 A JP2003336278 A JP 2003336278A JP 2003336278 A JP2003336278 A JP 2003336278A JP 2005108890 A JP2005108890 A JP 2005108890A
Authority
JP
Japan
Prior art keywords
internal electrode
electrode layer
layer
layers
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336278A
Other languages
Japanese (ja)
Inventor
Yasuhisa Tawara
靖久 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003336278A priority Critical patent/JP2005108890A/en
Publication of JP2005108890A publication Critical patent/JP2005108890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated ceramic capacitor which is made uniform enough in inner density and capable of effectively restraining voids from occurring at thermocompression bonding or delamination from occurring after a baking process is carried out. <P>SOLUTION: The laminated ceramic capacitor 10 has a configuration wherein a dielectric layer is located between a first internal electrode layer 2 and a second internal electrode layer 3, and buffer conductor layers 4 and 5 which are held coming into no contact with at least either of the internal electrode layers are provided closer to the external electrodes 8 and 9 than the opposed regions each located between the internal electrodes 2 and 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は積層セラミックコンデンサに関するものである。   The present invention relates to a multilayer ceramic capacitor.

従来の積層セラミックコンデンサ10は図3に示すように、導電性の内部電極層2、3を被着形成した矩形状誘電体層を内部電極層2、3取出し部が相対向するよう複数枚交互に積層して一体化した積層セラミック素子に、相対向する内部電極層2、3取出面に外部電極端子8、9を設けた構造を有している。   As shown in FIG. 3, a conventional multilayer ceramic capacitor 10 has a plurality of rectangular dielectric layers on which conductive internal electrode layers 2 and 3 are formed so that the internal electrode layers 2 and 3 take out portions are opposed to each other. The internal electrode layers 2 and 3 facing each other are provided with external electrode terminals 8 and 9 on the laminated ceramic element laminated and integrated with each other.

しかしながら、この従来の積層セラミックコンデンサ10は、熱圧着前の積層方向の厚さにおいて内部電極層2、3が全ての層にわたって対向する領域と、対向領域から外部電極端子8、9までの領域とは、存在する内部電極層2、3の数が異なるため、積層体を熱圧着する時に積層方向に密度むらが生じ、また、焼成後にデラミネーションが生じるのを回避することが困難であった。   However, this conventional multilayer ceramic capacitor 10 includes a region in which the internal electrode layers 2 and 3 face each other over all layers in a thickness in the lamination direction before thermocompression bonding, and a region from the facing region to the external electrode terminals 8 and 9. Since the number of existing internal electrode layers 2 and 3 is different, it is difficult to avoid density unevenness in the stacking direction when the laminated body is thermocompression-bonded, and to prevent delamination after firing.

これに関しては、導電性の内部電極層2、3を被着形成した矩形状誘電体層を内部電極層2、3取出し部が相対向するよう複数枚交互に積層してなる容量形成部12に対し、さらにその両主面に何も被着形成をされていない矩形状誘電体層をマージン部11、13として積層して一体化した積層セラミックコンデンサ10において、マージン部11、13を構成する誘電体層間に、前記外部電極端子8、9が形成された端部から中央部に延びる緩衝導体層4、5を配置することにより、コンデンサ内部の密度を全体として概ね均一にする技術が開示されている。(特許文献1参照)
特開平5−234805号公報
In this regard, a rectangular dielectric layer having conductive internal electrode layers 2 and 3 formed thereon is formed on a capacitor forming portion 12 formed by alternately laminating a plurality of internal electrode layers 2 and 3 so that the extraction portions face each other. On the other hand, in a multilayer ceramic capacitor 10 in which rectangular dielectric layers having nothing deposited on both main surfaces thereof are laminated and integrated as margin portions 11 and 13, dielectrics constituting the margin portions 11 and 13 are integrated. Disclosed is a technique for disposing the buffer conductor layers 4 and 5 extending from the end portion where the external electrode terminals 8 and 9 are formed between the body layers to the central portion so that the density inside the capacitor is substantially uniform as a whole. Yes. (See Patent Document 1)
JP-A-5-234805

しかしながら、特許文献1に記載の積層セラミックコンデンサ10では、コンデンサ全体として内部密度を概ね均一にすることができるものの、容量を形成する一対の内部電極層2、3の単位においては依然として密度むらが発生しており、また、容量形成部12の上下両主面に積層緩衝材4、5が配設されたマージン部11、13を積層した後、熱圧着する際に両者の間に空孔が生じることから、積層体を焼成した後に依然としてデラミネーションやクラックが生じるという問題点があった。   However, in the multilayer ceramic capacitor 10 described in Patent Document 1, although the internal density can be made substantially uniform as a whole capacitor, the density unevenness still occurs in the unit of the pair of internal electrode layers 2 and 3 forming the capacitance. In addition, after the margin portions 11 and 13 having the laminated cushioning materials 4 and 5 disposed on the upper and lower main surfaces of the capacity forming portion 12 are stacked, holes are formed between the two when thermocompression bonding is performed. Therefore, there has been a problem that delamination and cracks still occur after the laminate is fired.

本発明は以上のような課題に鑑みて案出されたものであり、その目的は、コンデンサ内部の密度を十分均一にし、熱圧着時の空孔の発生や焼成後のデラミネーションの発生を有効に抑制できる積層セラミックコンデンサを提供することにある。   The present invention has been devised in view of the problems as described above, and its purpose is to make the internal density of the capacitor sufficiently uniform and to effectively generate voids during thermocompression bonding and delamination after firing. It is an object of the present invention to provide a monolithic ceramic capacitor that can be suppressed.

本発明の積層セラミックコンデンサは、矩形状をなす多数の誘電体層を積層して積層体を形成し、該積層体の内部で上下に隣り合う誘電体層間に、第1内部電極層と第2内部電極層とを両内部電極層が一部対向するようにして前記誘電体層の積層方向に交互に配設するとともに、前記積層体の一端面に前記第1内部電極層に接続される第1外部電極端子を、前記積層体の他端面に前記第2内部電極層に接続される第2外部電極端子を形成してなるとともに、前記第1内部電極層と第2内部電極層との間に位置する前記誘電体層の内部で、
両内部電極層の対向領域よりも外部電極端子側に、少なくとも一方の内部電極層と非接触に保持された緩衝導体層を配設したことを特徴とするものである。
The multilayer ceramic capacitor of the present invention is formed by laminating a large number of rectangular dielectric layers to form a multilayer body, and between the first and second internal electrode layers and the second dielectric layer adjacent to each other vertically inside the multilayer body. The internal electrode layers are alternately arranged in the laminating direction of the dielectric layers so that both internal electrode layers are partially opposed to each other, and one end surface of the laminated body is connected to the first internal electrode layer. A first external electrode terminal is formed on the other end surface of the laminate, and a second external electrode terminal connected to the second internal electrode layer is formed, and between the first internal electrode layer and the second internal electrode layer Inside the dielectric layer located at
A buffer conductor layer held in a non-contact manner with at least one of the internal electrode layers is disposed closer to the external electrode terminal than the opposing region of both internal electrode layers.

また本発明の積層セラミックコンデンサは、前記対向領域と第2外部電極端子の間の領域に配される緩衝導体層は第1内部電極層と非接触に、前記対向領域と第1外部電極端子の間の領域に配される緩衝導体層は第2内部電極層と非接触に保たれていることを特徴とするものである。   In the multilayer ceramic capacitor of the present invention, the buffer conductor layer disposed in the region between the facing region and the second external electrode terminal is not in contact with the first internal electrode layer, and the facing region and the first external electrode terminal are not in contact with each other. The buffer conductor layer disposed in the region between the two is maintained in a non-contact manner with the second internal electrode layer.

更に本発明の積層セラミックコンデンサは、前記緩衝導体層の厚みが、前記内部電極層と略同一の厚みであることを特徴とするものである。   Furthermore, the multilayer ceramic capacitor of the present invention is characterized in that the thickness of the buffer conductor layer is substantially the same as that of the internal electrode layer.

本発明によれば、矩形状をなす多数の誘電体層を積層して積層体を形成し、該積層体の内部で上下に隣り合う誘電体層間に、第1内部電極層と第2内部電極層とを両内部電極層が一部対向するようにして前記誘電体層の積層方向に交互に配設するとともに、前記積層体の一端面に前記第1内部電極層に接続される第1外部電極端子を、前記積層体の他端面に前記第2内部電極層に接続される第2外部電極端子を形成してなるとともに、前記第1内部電極層と第2内部電極層との間に位置する前記誘電体層の内部で、両内部電極層の対向領域よりも外部電極端子側に、少なくとも一方の内部電極層と非接触に保持された緩衝導体層を配設して積層セラミックコンデンサを構成したことから、積層セラミックコンデンサ全体としてのみならず容量を形成する一対の内部電極層の単位においても密度むらの発生を抑制できることから、熱圧着時に各誘電体層間に空孔が生じるのを防止し、焼成後にデラミネーションが発生するのを減少させることが可能となる。   According to the present invention, a multilayer body is formed by laminating a large number of rectangular dielectric layers, and the first internal electrode layer and the second internal electrode are disposed between the dielectric layers adjacent to each other vertically in the multilayer body. The first external electrode connected to the first internal electrode layer on one end surface of the multilayer body, and alternately arranged in the stacking direction of the dielectric layers so that both internal electrode layers are partially opposed to each other The electrode terminal is formed between the first internal electrode layer and the second internal electrode layer, and the second external electrode terminal connected to the second internal electrode layer is formed on the other end surface of the laminate. A multilayer ceramic capacitor is configured by disposing a buffer conductor layer held in non-contact with at least one of the internal electrode layers inside the dielectric layer, on the external electrode terminal side of the opposing region of both internal electrode layers As a result, the capacitance is not limited to the entire multilayer ceramic capacitor. Since it is possible to suppress the occurrence of density unevenness even in the unit of the pair of internal electrode layers to be formed, it is possible to prevent the generation of vacancies between the dielectric layers during thermocompression bonding and reduce the occurrence of delamination after firing. It becomes possible.

また本発明によれば、前記対向領域と第2外部電極端子の間の領域に配される緩衝導体層は第1内部電極層と非接触に、前記対向領域と第1外部電極端子の間の領域に配される緩衝導体層は第2内部電極層と非接触に保たれるように構成したことから、内部電極層と緩衝導体層が短絡することがなく、積層セラミックコンデンサの容量を安定に保つことができ、上記の効果をより効果的に奏することができる。   According to the invention, the buffer conductor layer disposed in the region between the counter region and the second external electrode terminal is in non-contact with the first internal electrode layer, and between the counter region and the first external electrode terminal. Since the buffer conductor layer disposed in the region is configured to be kept out of contact with the second internal electrode layer, the internal electrode layer and the buffer conductor layer are not short-circuited, and the capacitance of the multilayer ceramic capacitor can be stabilized. It is possible to maintain the above-mentioned effects more effectively.

さらに本発明によれば、前記緩衝導体層の厚みを前記内部電極層と略同一の厚みで構成したことから、コンデンサ内部の密度が概ね均一となることから、熱圧着時に各誘電体層間に空孔が発生することを防止し、焼成後にデラミネーションが発生するのをより有効に防止することが可能となる。   Furthermore, according to the present invention, since the buffer conductor layer is configured to have substantially the same thickness as the internal electrode layer, the density inside the capacitor is substantially uniform. It is possible to prevent the generation of pores and more effectively prevent the occurrence of delamination after firing.

以下、本発明の積層セラミックコンデンサを図面に基づいて詳説する。   Hereinafter, the multilayer ceramic capacitor of the present invention will be described in detail with reference to the drawings.

図1は、本発明の積層セラミックコンデンサの断面図であり、図2は、本発明の積層セラミックコンデンサのコンデンサ本体の分解斜視図である。尚、従来技術と同一部分は同一符号を付して説明する。   FIG. 1 is a cross-sectional view of the multilayer ceramic capacitor of the present invention, and FIG. 2 is an exploded perspective view of the capacitor body of the multilayer ceramic capacitor of the present invention. In addition, the same part as a prior art attaches | subjects and demonstrates the same code | symbol.

図1に示すように、本発明の積層セラミックコンデンサ10は、コンデンサ本体1の長手方向の両端部に第1外部電極端子8、第2外部電極端子9が形成されて構成されている。   As shown in FIG. 1, the multilayer ceramic capacitor 10 of the present invention is configured by forming a first external electrode terminal 8 and a second external electrode terminal 9 at both ends in the longitudinal direction of the capacitor body 1.

コンデンサ本体1は、上側マージン部11、容量形成部12、下側マージン部13から構成され、上側マージン部11は、誘電体層11a〜11nから構成されており、下側マージン部13は、誘電体層13a〜13nから構成されている。   The capacitor body 1 includes an upper margin portion 11, a capacitance forming portion 12, and a lower margin portion 13. The upper margin portion 11 includes dielectric layers 11a to 11n, and the lower margin portion 13 includes dielectric layers. It is comprised from the body layers 13a-13n.

ここで、各誘電体層は、焼結挙動が同一になるように、同一誘電体材料を用いることが望ましく、例えば、チタン酸バリウム、チタン酸ストロンチウム、鉛系を含有するペロブスカイト結晶構造を有する誘電体材料から構成されている。   Here, it is desirable to use the same dielectric material for each dielectric layer so that the sintering behavior is the same, for example, a dielectric having a perovskite crystal structure containing barium titanate, strontium titanate, and lead. Consists of body materials.

また、容量形成部12を構成する誘電体層11n、12a、12b・・・12n間に第1内部電極層2及び第2内部電極層3が交互に配置されている。例えば、矩形状誘電体層12b、12d・・・上に矩形状の第1内部電極層2が配置され、矩形状誘電体層12a、12c・・・上に第2内部電極層3が配置されている。誘電体層12b上には、第1内部電極層2の先端部側に、コンデンサ本体1の一端面までの領域として、第1エンドマージン部2Eが形成され、同様に、誘電体層12a上には、第2内部電極層3の先端部側に、コンデンサ本体1の他端面までの領域として、第2エンドマージン部3Eが形成されている。ここで、第1内部電極層2、第2内部電極層3は、例えば、Pd、Cu、Niなどを主成分とする金属導体膜とから構成されている。   Further, the first internal electrode layers 2 and the second internal electrode layers 3 are alternately arranged between the dielectric layers 11n, 12a, 12b,. For example, the rectangular first internal electrode layer 2 is disposed on the rectangular dielectric layers 12b, 12d..., And the second internal electrode layer 3 is disposed on the rectangular dielectric layers 12a, 12c. ing. On the dielectric layer 12b, a first end margin portion 2E is formed as a region up to one end face of the capacitor body 1 on the tip end side of the first internal electrode layer 2, and similarly, on the dielectric layer 12a. A second end margin portion 3E is formed on the tip end side of the second internal electrode layer 3 as a region up to the other end surface of the capacitor body 1. Here, the 1st internal electrode layer 2 and the 2nd internal electrode layer 3 are comprised from the metal conductor film which has Pd, Cu, Ni etc. as a main component, for example.

容量形成部12には、隣接する一対の第1内部電極層2及び第2内部電極層3の間に、さらに誘電体層14a、14b、・・・14nが配置され、それらの誘電体層14a〜14n間の各素子領域の両端部には第1エンドマージン部2E、第2エンドマージン部3Eに相当する位置に、緩衝導体層4、5がそれぞれ第1内部電極層2及び第2内部電極層3と非接触の状態で形成されている。これにより、積層セラミックコンデンサ10全体としてのみならず容量を形成する一対の内部電極層の単位においても密度むらの発生を減少することができることから、熱圧着時に各誘電体層間に空孔が生じるのを防止し、焼成後にデラミネーションが発生するのを減少させることが可能となる。   In the capacitance forming portion 12, dielectric layers 14a, 14b,... 14n are further arranged between a pair of adjacent first internal electrode layers 2 and second internal electrode layers 3, and these dielectric layers 14a. Buffer conductor layers 4 and 5 are disposed at positions corresponding to the first end margin portion 2E and the second end margin portion 3E at both ends of each element region between ˜14n, respectively. It is formed in a non-contact state with the layer 3. As a result, the occurrence of density unevenness can be reduced not only in the multilayer ceramic capacitor 10 as a whole but also in the unit of the pair of internal electrode layers forming the capacitance, so that voids are generated between the dielectric layers during thermocompression bonding. And the occurrence of delamination after firing can be reduced.

緩衝導体層4、5の材料としては、導電性のものであれば良く、コンデンサの内部密度を均一にする観点から、上述の内部電極層2、3と同一材料を用いることが好ましい。   The material of the buffer conductor layers 4 and 5 may be any material as long as it is conductive. From the viewpoint of making the internal density of the capacitor uniform, it is preferable to use the same material as that of the internal electrode layers 2 and 3 described above.

また緩衝導体層4、5の厚みは、内部電極層2、3と略同一の厚み、具体的には、内部電極層2、3の厚みに対し、±15%の範囲内とすることが好ましい。これにより、積層セラミックコンデンサ10内部の密度が概ね均一となることから、熱圧着時に各誘電体層間に空孔が発生することを防止し、焼成後にデラミネーションが発生するのをより有効に防止することが可能となる。   The thickness of the buffer conductor layers 4 and 5 is preferably substantially the same as that of the internal electrode layers 2 and 3, specifically within a range of ± 15% with respect to the thickness of the internal electrode layers 2 and 3. . As a result, the density inside the multilayer ceramic capacitor 10 becomes substantially uniform, so that voids are prevented from being generated between the dielectric layers during thermocompression bonding, and delamination is more effectively prevented after firing. It becomes possible.

そして、このようなコンデンサ本体1の長手方向の一対の端部には、第1外部電極端子8、第2外部電極端子9が被着・形成されている。第1外部電極端子8、第2外部電極端子9は、AgやCuを主成分とする金属を含む厚膜下地導体、Niメッキ層や半田メッキ層などの表面メッキ層から構成され、コンデンサ本体1の両端部、即ち、その端部の端面、上下面、両側面に渡って形成されている。   A first external electrode terminal 8 and a second external electrode terminal 9 are attached and formed on a pair of end portions in the longitudinal direction of the capacitor body 1. The first external electrode terminal 8 and the second external electrode terminal 9 are composed of a thick film base conductor containing a metal mainly composed of Ag or Cu, and a surface plating layer such as a Ni plating layer or a solder plating layer. Are formed over both end portions, that is, the end surface of the end portion, the upper and lower surfaces, and both side surfaces.

上述の第1内部電極層2は、誘電体層12a、12c・・・の長手方向の一方方向(図では左側)の端面に延在し、これにより、第1外部電極端子8に接続されている。また、第2内部電極層3は、誘電体層12b、12d・・・の長手方向の他方方向(図では右側)の端面に延在し、これにより、第2外部電極端子9に接続されている。従って、誘電体層12a上には、第1内部電極層2の先端部側に、第2外部電極端子9に短絡しないように第1のエンドマージン部2Eが形成され、同様に、誘電体層12b上には、第2内部電極層3の先端部側に、第1外部電極端子8に短絡しないように第2のエンドマージン部3Eが形成されている。   The first internal electrode layer 2 described above extends to one end face (left side in the drawing) in the longitudinal direction of the dielectric layers 12 a, 12 c..., Thereby being connected to the first external electrode terminal 8. Yes. In addition, the second internal electrode layer 3 extends to the end face in the other longitudinal direction (right side in the drawing) of the dielectric layers 12b, 12d, etc., and is thereby connected to the second external electrode terminal 9. Yes. Therefore, on the dielectric layer 12a, the first end margin portion 2E is formed on the tip end side of the first internal electrode layer 2 so as not to be short-circuited to the second external electrode terminal 9, and similarly, the dielectric layer A second end margin portion 3E is formed on the front end portion of the second internal electrode layer 3 so as not to be short-circuited to the first external electrode terminal 8 on 12b.

次に、本発明の積層セラミックコンデンサの製造方法を説明する。尚、緩衝導体層4、5として、内部電極層2、3と同一材料で形成した、図1に示す積層セラミックコンデンサ10を用いて説明する。   Next, a method for manufacturing the multilayer ceramic capacitor of the present invention will be described. The buffer conductor layers 4 and 5 will be described using a multilayer ceramic capacitor 10 shown in FIG. 1 formed of the same material as the internal electrode layers 2 and 3.

まず、複数の素子が抽出できる誘電体層11a〜14nとなる誘電体グリーンシートを作成する。   First, the dielectric green sheet used as the dielectric layers 11a-14n which can extract a some element is produced.

次に、各素子の上側マージン部11は、誘電体層11a〜11nとなる内部電極層を形成していない複数の誘電体グリーンシートにより形成される。   Next, the upper margin portion 11 of each element is formed by a plurality of dielectric green sheets that do not form internal electrode layers that become the dielectric layers 11a to 11n.

また、各素子の容量形成部12を構成する誘電体グリーンシートのうち、誘電体層12a、12c・・・となる誘電体グリーンシートの各素子領域の一方端部寄りに、第1内部電極層2となる導体膜をPd系(Pd単体またはAg−PdなどのPd合金)またはNi系導電性ペーストの印刷により形成する。同様に、誘電体層12b、12d・・・12nとなる誘電体グリーンシートの各素子領域の他方端部寄りに、第2内部電極層3となる導体膜を導電性ペーストの印刷により形成する。   Further, among the dielectric green sheets constituting the capacitance forming portion 12 of each element, the first internal electrode layer is located near one end of each element region of the dielectric green sheet to be the dielectric layers 12a, 12c. 2 is formed by printing Pd-based (Pd alone or Pd alloy such as Ag—Pd) or Ni-based conductive paste. Similarly, a conductor film to be the second internal electrode layer 3 is formed near the other end of each element region of the dielectric green sheet to be the dielectric layers 12b, 12d.

そして、容量形成部12を構成する誘電体層14a、14c・・・となる誘電体グリーンシートの各素子領域の両端部には、第1エンドマージン部2E、第2エンドマージン部3Eに相当する位置に、緩衝導体層4、5となる導体膜をPd系(Pd単体またはAg−PdなどのPd合金)またはNi系導電性ペーストの印刷により形成する。   .. Corresponding to the first end margin portion 2E and the second end margin portion 3E at both end portions of each element region of the dielectric green sheet constituting the dielectric layers 14a, 14c... Constituting the capacitance forming portion 12. At the position, a conductor film to be the buffer conductor layers 4 and 5 is formed by printing Pd-based (Pd alone or Pd alloy such as Ag—Pd) or Ni-based conductive paste.

次に、各素子の下側マージン部13は、誘電体層13a〜13nとなる内部電極層を形成していない複数の誘電体グリーンシートからなる。   Next, the lower margin portion 13 of each element is composed of a plurality of dielectric green sheets that do not form internal electrode layers that become the dielectric layers 13a to 13n.

その後、誘電体層11a〜14nとなる上述の誘電体グリーンシートを順次積層し、所定圧力を与えて熱圧着を行う。この積層された誘電体グリーンシートを、各素子の形状に応じて裁断し、所定雰囲気で焼成する。これにより、上側マージン部11、容量形成部12および下側マージン部13から成るコンデンサ本体1が形成されることになる。   Thereafter, the above-mentioned dielectric green sheets to be the dielectric layers 11a to 14n are sequentially laminated, and thermocompression bonding is performed by applying a predetermined pressure. The laminated dielectric green sheets are cut according to the shape of each element and fired in a predetermined atmosphere. As a result, the capacitor body 1 including the upper margin portion 11, the capacitance forming portion 12, and the lower margin portion 13 is formed.

以上のようにして形成された本発明のコンデンサ本体1について特性を調べたところ、各材料・厚み・総数などの構成を同一とし、緩衝導体層4、5の配設位置を図4に示すように変更してなるコンデンサにおいて、熱圧着時に20%の確率で生じていた空孔や、焼結後の0.4%発生した各層間のデラミネーションが、本発明のコンデンサ本体1においては全く生じないことが分かった。また、本発明のコンデンサ本体1では、コンデンサ本体1全体としてのみならず容量を形成する一対の内部電極層2、3の単位においても密度むらの発生を抑制できることから、熱圧着時に誘電体層が伸びて局所的に薄くなることでショート不良が生じるということが全くなかった。   When the characteristics of the capacitor body 1 of the present invention formed as described above were examined, the configuration of each material, thickness, total number, and the like was the same, and the arrangement positions of the buffer conductor layers 4 and 5 are as shown in FIG. In the capacitor made by changing to the capacitor body 1 of the present invention, the voids generated at a probability of 20% at the time of thermocompression bonding and the delamination between the respective layers generated by 0.4% after the sintering are completely generated. I found that there was no. In addition, in the capacitor body 1 of the present invention, the occurrence of density unevenness can be suppressed not only in the capacitor body 1 as a whole but also in the units of the pair of internal electrode layers 2 and 3 that form a capacitance. There was no short circuit failure caused by stretching and thinning locally.

次に、焼成されたコンデンサ本体1の一対の長手方向の端面を含む端部を、Ag、Cuを含む金属、ガラスフリットを固形成分とするペーストやAg、Cuを含む金属、樹脂成分を含む樹脂ペーストに浸漬し、付着した導体膜を焼き付けまたは熱硬化して、厚膜下地導体膜を形成する。そして、この厚膜下地導体膜上に、Niメッキやハンダメッキなどの表面メッキ層形成する。   Next, the end including the pair of longitudinal end faces of the sintered capacitor body 1 is made of a metal containing Ag and Cu, a paste containing glass frit as a solid component, a metal containing Ag and Cu, and a resin containing a resin component. The thick conductor film is formed by dipping in the paste and baking or thermosetting the attached conductor film. Then, a surface plating layer such as Ni plating or solder plating is formed on the thick base conductor film.

上述の積層セラミックコンデンサ10において、図2に示すように、容量形成部12の誘電体層14a〜14nには他方端部側の第1エンドマージン部2Eに相当する位置に緩衝導体層4が存在し、一方端部側の第2エンドマージン部3Eに相当する位置に緩衝導体層5が存在する。   In the above-described multilayer ceramic capacitor 10, as shown in FIG. 2, the dielectric layers 14a to 14n of the capacitance forming portion 12 have the buffer conductor layer 4 at a position corresponding to the first end margin portion 2E on the other end side. The buffer conductor layer 5 is present at a position corresponding to the second end margin portion 3E on the one end side.

従って、上述の誘電体グリーンシートを熱圧着する工程において、コンデンサ本体1の全体に均一な圧力が与えられることになり、コンデンサ本体1の密度のむらを有効に防止できる。これによって、裁断時または焼成時において、誘電体層11a〜14n間で剥離などが発生しにくくなる。   Accordingly, in the step of thermocompression bonding the dielectric green sheet, a uniform pressure is applied to the entire capacitor body 1, and uneven density of the capacitor body 1 can be effectively prevented. Thereby, peeling or the like hardly occurs between the dielectric layers 11a to 14n at the time of cutting or firing.

ここで、誘電体層14a〜14nの他方端部に配置された緩衝導体層4の配置数を、実質的に第1内部電極層2の第1エンドマージン部2Eの数に、一方端部に配置された緩衝導体層5の配置数を、実質的に第2内部電極層3の第2エンドマージン部3Eの数に合わせることにより、積層工程における密度分布を一定にすることができる。   Here, the number of the buffer conductor layers 4 disposed at the other end of the dielectric layers 14a to 14n is substantially equal to the number of the first end margin portions 2E of the first internal electrode layer 2 and at one end. The density distribution in the laminating process can be made constant by matching the number of arranged buffer conductor layers 5 to the number of second end margin portions 3E of the second internal electrode layer 3 substantially.

尚、本発明は上述した実施形態に限定されるものではなく、例えば、上述の実施形態では、隣接する一対の第1内部電極層2及び第2内部電極層3の間に、さらに誘電体層14a〜14nを配置し、それらの誘電体層14a〜14n間の各素子領域の両端部に、緩衝導体層4、5を形成したが、これに代えて、誘電体層14a〜14nを配置することなく、矩形状誘電体層12b、12d・・・上に配置した矩形状の第1内部電極層2の第2エンドマージン部3Eに相当する位置に直接緩衝導体層5を積層し、且つ、矩形状誘電体層12a、12c・・・上の第1エンドマージン部2Eに相当する位置に緩衝導体層4を形成した上で、緩衝導体層4の上に直接第2内部電極層3を形成する構成としても良い。この場合においても、上述の実施形態と全く同様の効果が得られると同時に、誘電体層14a〜14nを設けない構成としたことから、コンデンサ1を比較的薄く形成することができる。   The present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, a dielectric layer is further provided between a pair of adjacent first internal electrode layer 2 and second internal electrode layer 3. 14a to 14n are arranged, and buffer conductor layers 4 and 5 are formed at both ends of each element region between the dielectric layers 14a to 14n. Instead, the dielectric layers 14a to 14n are arranged. Without directly stacking the buffer conductor layer 5 at a position corresponding to the second end margin portion 3E of the rectangular first internal electrode layer 2 disposed on the rectangular dielectric layers 12b, 12d. The buffer conductor layer 4 is formed at a position corresponding to the first end margin portion 2E on the rectangular dielectric layers 12a, 12c... And the second internal electrode layer 3 is formed directly on the buffer conductor layer 4. It is good also as composition to do. Even in this case, the same effect as that of the above-described embodiment can be obtained, and at the same time, since the dielectric layers 14a to 14n are not provided, the capacitor 1 can be formed relatively thin.

本発明の積層セラミックコンデンサの断面図である。It is sectional drawing of the multilayer ceramic capacitor of this invention. 本発明の積層セラミックコンデンサのコンデンサ本体の分解斜視図である。It is a disassembled perspective view of the capacitor | condenser main body of the multilayer ceramic capacitor of this invention. 従来の積層セラミックコンデンサの断面図である。It is sectional drawing of the conventional multilayer ceramic capacitor. 従来の積層セラミックコンデンサの断面図である。It is sectional drawing of the conventional multilayer ceramic capacitor.

符号の説明Explanation of symbols

1 …コンデンサ本体
2 …第1内部電極層
3 …第2内部電極層
2E…第1エンドマージン部
3E…第2エンドマージン部
4、5…緩衝導体層
10 …積層セラミックコンデンサ
11 …上側マージン部
12 …容量形成部
13 …下側マージン部
DESCRIPTION OF SYMBOLS 1 ... Capacitor body 2 ... 1st internal electrode layer 3 ... 2nd internal electrode layer 2E ... 1st end margin part 3E ... 2nd end margin part 4, 5 ... Buffer conductor layer 10 ... Multilayer ceramic capacitor 11 ... Upper margin part 12 ... Capacitance forming part 13 ... Lower margin part

Claims (3)

矩形状をなす多数の誘電体層を積層して積層体を形成し、該積層体の内部で上下に隣り合う誘電体層間に、第1内部電極層と第2内部電極層とを両内部電極層が一部対向するようにして前記誘電体層の積層方向に交互に配設するとともに、前記積層体の一端面に前記第1内部電極層に接続される第1外部電極端子を、前記積層体の他端面に前記第2内部電極層に接続される第2外部電極端子を形成してなる積層セラミックコンデンサにおいて、
前記第1内部電極層と第2内部電極層との間に位置する前記誘電体層の内部で、両内部電極層の対向領域よりも外部電極端子側に、少なくとも一方の内部電極層と非接触に保持された緩衝導体層を配設したことを特徴とする積層セラミックコンデンサ。
A large number of rectangular dielectric layers are stacked to form a stacked body, and the first internal electrode layer and the second internal electrode layer are connected to the internal electrodes between the adjacent dielectric layers inside the stacked body. The first external electrode terminals connected to the first internal electrode layer on one end face of the multilayer body are alternately arranged in the stacking direction of the dielectric layers so that the layers partially face each other. In a multilayer ceramic capacitor formed by forming a second external electrode terminal connected to the second internal electrode layer on the other end surface of the body,
In the dielectric layer located between the first internal electrode layer and the second internal electrode layer, at least one internal electrode layer is not in contact with the external electrode terminal side of the opposing region of the internal electrode layers A multilayer ceramic capacitor, characterized in that a buffer conductor layer held on the substrate is disposed.
前記対向領域と第2外部電極端子の間の領域に配される緩衝導体層は第1内部電極層と非接触に、前記対向領域と第1外部電極端子の間の領域に配される緩衝導体層は第2内部電極層と非接触に保たれていることを特徴とする請求項1に記載の積層セラミックコンデンサ。 The buffer conductor layer disposed in the region between the opposing region and the second external electrode terminal is in contact with the first internal electrode layer, and the buffer conductor disposed in the region between the counter region and the first external electrode terminal. The multilayer ceramic capacitor according to claim 1, wherein the layer is kept out of contact with the second internal electrode layer. 前記緩衝導体層の厚みが、前記内部電極層と略同一の厚みであることを特徴とする請求項1または請求項2に記載の積層セラミックコンデンサ。 3. The multilayer ceramic capacitor according to claim 1, wherein a thickness of the buffer conductor layer is substantially the same as that of the internal electrode layer. 4.
JP2003336278A 2003-09-26 2003-09-26 Laminated ceramic capacitor Pending JP2005108890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336278A JP2005108890A (en) 2003-09-26 2003-09-26 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336278A JP2005108890A (en) 2003-09-26 2003-09-26 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2005108890A true JP2005108890A (en) 2005-04-21

Family

ID=34532461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336278A Pending JP2005108890A (en) 2003-09-26 2003-09-26 Laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2005108890A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846079B1 (en) 2005-08-05 2008-07-14 티디케이가부시기가이샤 Method of manufacturing multilayer capacitor and multilayer capacitor
US7688567B2 (en) 2005-08-05 2010-03-30 Tdk Corporation Method of manufacturing multilayer capacitor and multilayer capacitor
KR101069989B1 (en) * 2009-09-10 2011-10-04 삼성전기주식회사 Multilayer Chip Capacitor and Circuit Board Device
JP2012222276A (en) * 2011-04-13 2012-11-12 Taiyo Yuden Co Ltd Laminated capacitor
JP2013150015A (en) * 2013-05-07 2013-08-01 Taiyo Yuden Co Ltd Laminated capacitor
CN106935402A (en) * 2015-12-29 2017-07-07 三星电机株式会社 Monolithic electronic component and its manufacture method
CN108597868A (en) * 2013-02-20 2018-09-28 三星电机株式会社 The method for preparing laminated ceramic electronic component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688567B2 (en) 2005-08-05 2010-03-30 Tdk Corporation Method of manufacturing multilayer capacitor and multilayer capacitor
US7828033B2 (en) 2005-08-05 2010-11-09 Tdk Corporation Method of manufacturing multilayer capacitor and multilayer capacitor
KR100846079B1 (en) 2005-08-05 2008-07-14 티디케이가부시기가이샤 Method of manufacturing multilayer capacitor and multilayer capacitor
KR101069989B1 (en) * 2009-09-10 2011-10-04 삼성전기주식회사 Multilayer Chip Capacitor and Circuit Board Device
US8054607B2 (en) 2009-09-10 2011-11-08 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor and circuit board device
JP2012222276A (en) * 2011-04-13 2012-11-12 Taiyo Yuden Co Ltd Laminated capacitor
US8564930B2 (en) 2011-04-13 2013-10-22 Taiyo Yuden Co., Ltd. Laminated capacitor
US8810993B2 (en) 2011-04-13 2014-08-19 Taiyo Yuden Co., Ltd. Laminated capacitor
CN108597868A (en) * 2013-02-20 2018-09-28 三星电机株式会社 The method for preparing laminated ceramic electronic component
JP2013150015A (en) * 2013-05-07 2013-08-01 Taiyo Yuden Co Ltd Laminated capacitor
CN106935402A (en) * 2015-12-29 2017-07-07 三星电机株式会社 Monolithic electronic component and its manufacture method
US10090107B2 (en) 2015-12-29 2018-10-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component having first internal electrode base patterns exposed to an end and opposing side surfaces of a body, and method of manufacturing the same
US10249437B2 (en) 2015-12-29 2019-04-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component with side parts on external surfaces, and method of manufacturing the same
US10340087B2 (en) 2015-12-29 2019-07-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component having first internal electrode base patterns exposed to an end and opposing side surfaces of a body, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP7315138B2 (en) Multilayer ceramic capacitor
JP6852253B2 (en) Multilayer ceramic electronic components and their manufacturing methods
JP5332475B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP5632046B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR102067173B1 (en) Multi-layered ceramic capacitor and manufacturing method of the same
JP5420619B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP6834091B2 (en) Multilayer ceramic electronic components and their manufacturing methods
KR102380837B1 (en) Multilayer ceramic capacitor and method for fabricating the same
JP6309991B2 (en) Multilayer ceramic capacitor
JP5590055B2 (en) Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
KR102018306B1 (en) Multi-layered ceramic capacitor and board for mounting the same
JP2015029123A (en) Multilayer ceramic capacitor and method of manufacturing the same
KR20140121726A (en) A multilayer ceramic capacitor and a method for manufactuaring the same
JP2012191159A (en) Multilayer ceramic capacitor and manufacturing method for the same
JP2018098346A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2014022713A (en) Multilayer ceramic electronic component and method of manufacturing the same
JP2022116342A (en) Multilayer capacitor and method for manufacturing the same
JP2020027931A (en) Multilayer ceramic capacitor and method of manufacturing the same
KR102061502B1 (en) Laminated ceramic electronic parts and manufacturing method thereof
JP2005108890A (en) Laminated ceramic capacitor
JP2000340448A (en) Laminated ceramic capacitor
JP2021086972A (en) Multilayer ceramic capacitor
KR102198537B1 (en) Capacitor and manufacturing method of the same
CN107578921B (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2000106320A (en) Laminated ceramic capacitor