JP5467569B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP5467569B2
JP5467569B2 JP2009010997A JP2009010997A JP5467569B2 JP 5467569 B2 JP5467569 B2 JP 5467569B2 JP 2009010997 A JP2009010997 A JP 2009010997A JP 2009010997 A JP2009010997 A JP 2009010997A JP 5467569 B2 JP5467569 B2 JP 5467569B2
Authority
JP
Japan
Prior art keywords
coil
core
primary
plate
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009010997A
Other languages
Japanese (ja)
Other versions
JP2010172084A (en
Inventor
茂 阿部
裕良 金子
富夫 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Saitama University NUC
Original Assignee
Technova Inc
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc, Saitama University NUC filed Critical Technova Inc
Priority to JP2009010997A priority Critical patent/JP5467569B2/en
Publication of JP2010172084A publication Critical patent/JP2010172084A/en
Priority to JP2013265510A priority patent/JP5751647B2/en
Application granted granted Critical
Publication of JP5467569B2 publication Critical patent/JP5467569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/34Plug-like or socket-like devices specially adapted for contactless inductive charging of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、電気自動車などの移動体に非接触で給電を行う非接触給電装置に関する。   The present invention relates to a non-contact power supply apparatus that supplies power to a moving body such as an electric vehicle in a non-contact manner.

非接触給電装置は、1次コイルと2次コイルとの間の電磁誘導を利用して1次コイルから2次コイルに電力を供給する。非接触給電装置は、電気自動車やプラグインハイブリッド車に搭載された二次電池を充電するための給電装置として、利用の拡大が見込まれている。
図13は、非接触給電装置を用いたプラグインハイブリッド車の給電システムを示している。
エンジン107とともにモータ106を駆動源として搭載する車両100は、モータ106用の電源である二次電池104と、二次電池104の直流を交流に変換してモータ106に供給するインバータ105と、二次電池104の充電回路103と、非接触給電装置の2次コイル102とを備えており、2次コイル102は、車体の床面の外側に設置されている。
一方、給電ステーション側は、商用周波数の交流電源200と、この交流を直流に変換し、さらに高周波交流を生成するインバータ201と、非接触給電装置の1次コイル202とを備えており、1次コイル202は地上に設置されている。
運転者は、2次コイル102が1次コイル202の真上に来るように車両100を停止させて、二次電池104への給電を開始する。
The non-contact power feeding device supplies electric power from the primary coil to the secondary coil using electromagnetic induction between the primary coil and the secondary coil. The non-contact power supply device is expected to expand its use as a power supply device for charging a secondary battery mounted on an electric vehicle or a plug-in hybrid vehicle.
FIG. 13 shows a power supply system for a plug-in hybrid vehicle using a non-contact power supply device.
A vehicle 100 equipped with a motor 106 as a drive source together with an engine 107 includes a secondary battery 104 that is a power source for the motor 106, an inverter 105 that converts the direct current of the secondary battery 104 into alternating current, The charging circuit 103 of the secondary battery 104 and the secondary coil 102 of the non-contact power feeding device are provided, and the secondary coil 102 is installed outside the floor surface of the vehicle body.
On the other hand, the power supply station side includes an AC power supply 200 having a commercial frequency, an inverter 201 that converts the AC to DC and generates high-frequency AC, and a primary coil 202 of a non-contact power supply apparatus. The coil 202 is installed on the ground.
The driver stops the vehicle 100 so that the secondary coil 102 is directly above the primary coil 202, and starts supplying power to the secondary battery 104.

しかし、停車時の1次コイル202と2次コイル102との位置ずれは避けられないため、車両用の非接触給電装置には、位置ずれに対して強いことが求められる。
また、車体の床面は、走行に支障が出ないように、ある程度地面から離す必要があるため、車両用の非接触給電装置には、1次コイル202と2次コイル102とのギャップ長が大きくても十分給電できる能力が求められる。
また、車両100に搭載する2次コイル102には、小型・軽量化が求められる。
これまで、こうした要請に応える非接触給電装置の開発が鋭意進められている。
However, since the positional deviation between the primary coil 202 and the secondary coil 102 when the vehicle is stopped is unavoidable, the vehicle non-contact power feeding device is required to be resistant to the positional deviation.
In addition, since the floor of the vehicle body needs to be separated from the ground to some extent so as not to hinder travel, the non-contact power feeding device for vehicles has a gap length between the primary coil 202 and the secondary coil 102. The ability to supply enough power is required even if it is large.
Further, the secondary coil 102 mounted on the vehicle 100 is required to be small and light.
Up to now, the development of contactless power supply devices that meet these requirements has been intensively advanced.

図14は、下記特許文献1に開示された非接触給電装置の断面形状(a)及び平面形状(b)を概略的に示している。この装置の1次側は、フラットなフェライト円板から成る磁心コア21と、磁心コア21の片面に渦巻き状に巻回された1次コイル22とを備えている。2次側も1次側と同一形状であり、フェライト円板の磁心コア31と、磁心コア31の片面に配置された渦巻き状2次コイル32とを備え、1次コイル22と2次コイル32とが、ギャップgを介して対向している。
この装置は、1次コイル22及び2次コイル32の背面に磁心コア21及び磁心コア31を有しており、磁束が磁心コア21、31の裏側にまで漏洩しないため、1次コイル22及び2次コイル32間の結合係数が大きく、強力な電磁結合が得られる。この場合の磁束を図14(a)に点線Dで示している。
しかし、1次コイル22と2次コイル32との位置がずれると、結合係数は急激に低下する。これを避けるためには、磁心コア21及び磁心コア31の面積を大きくし、1次コイル22と2次コイル32との位置ずれが発生しても磁束Dを維持できるように設計する必要がある。
FIG. 14 schematically shows a cross-sectional shape (a) and a planar shape (b) of the non-contact power feeding device disclosed in Patent Document 1 below. The primary side of the apparatus includes a magnetic core 21 made of a flat ferrite disk and a primary coil 22 wound around one side of the magnetic core 21 in a spiral shape. The secondary side has the same shape as the primary side, and includes a magnetic core 31 made of a ferrite disk and a spiral secondary coil 32 disposed on one side of the magnetic core 31, and the primary coil 22 and the secondary coil 32. Are opposed via a gap g.
This apparatus has a magnetic core 21 and a magnetic core 31 on the back surface of the primary coil 22 and the secondary coil 32, and the magnetic flux does not leak to the back side of the magnetic cores 21, 31. The coupling coefficient between the secondary coils 32 is large, and strong electromagnetic coupling can be obtained. The magnetic flux in this case is indicated by a dotted line D in FIG.
However, when the positions of the primary coil 22 and the secondary coil 32 are shifted, the coupling coefficient rapidly decreases. In order to avoid this, it is necessary to increase the area of the magnetic core 21 and the magnetic core 31 so that the magnetic flux D can be maintained even if the primary coil 22 and the secondary coil 32 are displaced. .

ただ、径の大きなフェライトの一枚板は、製造が難しく、コストが高く付く。
そのため、下記特許文献2には、コア部材の低コストを図るための非接触給電装置が記載されている。
この装置は、図15(a)、図15(b)に示すように、フェライトからなる長方形の板状ブロック212を多数組み合わせて板状コア213を形成し、この板状コア213の片面に扁平に巻いたコイル222を配置している。図15(a)、図15(b)では、板状コア213のコイル222の外側に位置する部分、及び、コイル222の内側に位置する部分に板状ブロック212を二枚重ね、コイル222が位置する部分の板状ブロック212を1枚とすることにより、大型のE型コアを構成している。
また、特許文献2では、図16に示すように、板状コア213の板状ブロック212の配列を1列ごとに間引いて、板状コア213の軽量化を図ることも提案されている。
However, a single ferrite plate with a large diameter is difficult to manufacture and is expensive.
Therefore, the following Patent Document 2 describes a non-contact power feeding device for reducing the cost of the core member.
As shown in FIGS. 15A and 15B, this apparatus forms a plate core 213 by combining a large number of rectangular plate blocks 212 made of ferrite, and is flattened on one side of the plate core 213. A coil 222 wound around is disposed. In FIG. 15A and FIG. 15B, two plate-like blocks 212 are overlapped on the portion of the plate-like core 213 located outside the coil 222 and the portion located inside the coil 222, and the coil 222 is located. A large E-shaped core is formed by using one plate-like block 212 as one piece.
Further, in Patent Document 2, as shown in FIG. 16, it is also proposed to reduce the weight of the plate-like core 213 by thinning out the arrangement of the plate-like blocks 212 of the plate-like core 213 for each row.

特開2008−87733号公報JP 2008-87733 A 特開2008−120239号公報JP 2008-120239 A

しかし、特許文献1及び特許文献2に記載された非接触給電装置は、いずれも磁心コアの片側に扁平なリング状のコイルを配置する構造であるため、図14(a)に示すように、コイル22、32の幅をWとすると、磁心コア21、31の長さは、少なくとも2Wより大きくなければならない。
このコイル幅Wは、1次コイル22及び2次コイル32の間の電磁結合を十分に得るために、ギャップ長g以上に設定する必要がある。
また、1次コイル22と2次コイル32との位置ずれが発生した場合でも、必要な電力の伝送を可能にするためには、1次側磁心コア21及び2次側磁心コア31の磁極部分が上下に重なる面積を十分確保する必要がある。
そのため、磁心コアの片側にリング状の扁平コイルを配置する方式では、装置の形状、特に幅方向の形状が大きくならざるを得ない。
また、この方式において、磁心コアの軽量化を図るために磁心コアの一部を間引いた場合は、特許文献2に記載されているように、給電可能な電力が低下する。
However, since the non-contact electric power feeders described in Patent Document 1 and Patent Document 2 both have a structure in which a flat ring-shaped coil is arranged on one side of the magnetic core, as shown in FIG. When the width of the coils 22 and 32 is W, the length of the magnetic cores 21 and 31 must be at least greater than 2W.
This coil width W needs to be set to be equal to or greater than the gap length g in order to obtain sufficient electromagnetic coupling between the primary coil 22 and the secondary coil 32.
Further, in order to enable transmission of necessary power even when the positional deviation between the primary coil 22 and the secondary coil 32 occurs, the magnetic pole portions of the primary side core core 21 and the secondary side core core 31 are used. It is necessary to secure a sufficient area where the top and bottom overlap.
Therefore, in the system in which the ring-shaped flat coil is arranged on one side of the magnetic core, the shape of the device, particularly the shape in the width direction, must be increased.
In this method, when a part of the magnetic core is thinned out in order to reduce the weight of the magnetic core, as described in Patent Document 2, the power that can be supplied decreases.

本発明は、こうした事情を考慮して創案したものであり、大きなギャップ長に対応することができ、位置ずれに対して強く、且つ、小形軽量化が可能な非接触給電装置を提供することを目的としている。   The present invention was devised in view of such circumstances, and provides a non-contact power feeding device that can cope with a large gap length, is strong against displacement, and can be reduced in size and weight. It is aimed.

本発明の非接触給電装置は、1次側コアの周りに巻回された1次側コイルと、2次側コアの周りに巻回された2次側コイルと、を備え、前記1次側コイルと前記2次側コイルとが対向するように配置された非接触給電装置であって、前記1次側コイルまたは2次側コイルは複数個のコアに巻回され、前記1次側コイルまたは2次側コイルに巻回された前記複数個のコアのそれぞれが、同一形状をした棒状または板状の直方体から成り、前記複数個のコアは、前記直方体の長辺同士が間隔を保って対向するように平面上に並行に配列され、前記1次側コイルまたは2次側コイルが、配列された複数の前記直方体を取り囲むように、前記長辺と直交する方向に巻回されていることを特徴とする。
このように、コアの周りにコイルを巻回する構造では、図3に示すように、コイルの占める幅がWであり、コイルの占める幅が2Wである従来の方式(図14(a)に示す磁心コアの片側にリング状の扁平コイルを配置する方式)に比べて、極めて小型化できる。また、そのコアの製作は容易であり、低コストで製造できる。
またコイルにより巻回された複数個のコアからは、コア間の間隙を埋める磁力線が出力されるため、1次側コア及び2次側コアは、コア間の間隙を寸法に含めた、拡大された大きさのコアとして作用する。従って、コア間に間隙を設けることで、実質的なコア面積が、並行する複数の直方体の外縁で囲まれた面積にまで拡大する。そのため、位置ずれに対して強くなる。
The contactless power supply device of the present invention includes a primary coil wound around a primary core and a secondary coil wound around a secondary core, and the primary side A non-contact power feeding device arranged so that a coil and the secondary side coil face each other, wherein the primary side coil or the secondary side coil is wound around a plurality of cores, and the primary side coil or Each of the plurality of cores wound around the secondary coil is composed of a rod-shaped or plate-shaped cuboid having the same shape, and the plurality of cores are opposed to each other with long sides of the cuboid being spaced apart from each other. So that the primary side coil or the secondary side coil is wound in a direction orthogonal to the long side so as to surround the plurality of arranged rectangular parallelepipeds. Features.
In this way, in the structure in which the coil is wound around the core, as shown in FIG. 3, the width occupied by the coil is W and the width occupied by the coil is 2 W (see FIG. 14A). Compared with a method in which a ring-shaped flat coil is disposed on one side of the magnetic core shown in the figure, the size can be extremely reduced. The core is easy to manufacture and can be manufactured at low cost.
In addition , since the magnetic lines of force that fill the gap between the cores are output from the plurality of cores wound by the coil, the primary side core and the secondary side core are expanded with the gap between the cores included in the dimensions. Acts as a core of specified size. Therefore, by providing a gap between the cores, the substantial core area is expanded to an area surrounded by the outer edges of a plurality of parallelepipeds in parallel. For this reason, it is strong against misalignment.

また、本発明の非接触給電装置では、前記1次側コイルの前記2次側コイルに対向する側の反対側、及び、前記2次側コイルの前記1次側コイルに対向する側の反対側のそれぞれに、外部への磁界の漏洩を防止する導電板を配置することが好ましい。
導電板は、車体の鉄板などに磁束が漏洩して、鉄板が加熱されるのを防止する。また、導電板は、1次側コイル及び2次側コイル間の結合係数を高める効果もある。
Moreover, in the non-contact electric power feeder of this invention, the opposite side of the side facing the said secondary side coil of the said primary side coil, and the opposite side of the side facing the said primary side coil of the said secondary side coil It is preferable to arrange a conductive plate for preventing leakage of the magnetic field to the outside.
The conductive plate prevents magnetic flux from leaking to the iron plate or the like of the vehicle body and heating the iron plate. The conductive plate also has an effect of increasing the coupling coefficient between the primary side coil and the secondary side coil.

また、本発明の非接触給電装置では、前記導電板を、前記1次側コア及び2次側コアの対向する磁極面の反対側の磁極面に密着して配置し、前記反対側の磁極面からの磁界の漏洩を防ぐように構成しても良い。
コアの外部に面する磁極面を導電板で覆うことにより、外部への磁界の漏洩を効果的に防止することができる。
また、本発明の非接触給電装置では、前記導電板を、アルミニュームの板等を用いて構成する。
Further, in the non-contact power feeding device according to the present invention, the conductive plate is disposed in close contact with a magnetic pole surface on the opposite side of the opposing magnetic pole surfaces of the primary side core and the secondary side core, and the opposite magnetic pole surface is provided. You may comprise so that the leakage of the magnetic field from may be prevented.
By covering the magnetic pole surface facing the outside of the core with a conductive plate, leakage of the magnetic field to the outside can be effectively prevented.
In the contactless power supply device of the present invention, the conductive plate is formed using an aluminum plate or the like.

また、本発明の非接触給電装置は、前記1次側コイルで巻回された複数個の前記1次側コアの外形を繋いだ外形面積が、前記2次側コイルで巻回された複数個の前記2次側コアの外形を繋いだ外形面積よりも大きくなるようにしても良い。
こうすることで、車両などに搭載する2次側コイルの小型軽量化を図りながら、位置ずれに強くすることができる。
In the non-contact power feeding device according to the present invention, the outer area connecting the outer shapes of the plurality of primary cores wound by the primary coil is a plurality of windings wound by the secondary coil. It may be made larger than the outer area connecting the outer shapes of the secondary cores.
By doing so, it is possible to make the secondary side coil mounted on a vehicle or the like more resistant to misalignment while reducing the size and weight.

また、本発明の非接触給電装置は、前記コアをフェライトで構成し、前記1次側コイル及び2次側コイルを、リッツ線を巻回して構成することができる。   Moreover, the non-contact electric power feeder of this invention can comprise the said core with a ferrite, and can comprise the said primary side coil and the secondary side coil by winding a litz wire.

また、本発明の非接触給電装置は、前記一次側コイルを地上の給電ステーションに設置し、前記二次側コイルを、前記給電ステーションから給電を受ける移動体に設置することができる。
また、本発明の非接触給電装置は、車両の給電に対して好適である。
Moreover, the non-contact electric power feeder of this invention can install the said primary side coil in the ground electric power feeding station, and can install the said secondary side coil in the mobile body which receives electric power feeding from the said electric power feeding station.
Moreover, the non-contact power feeding device of the present invention is suitable for power feeding of vehicles.

また、本発明の非接触給電装置では、並行に配列された前記1次側コア及び2次側コアの長手方向が前記移動体の進行方向と一致するように設定することが好ましい。
移動体が位置ずれを起こす方向にコアを配列すれば、位置ずれが生じた場合でも、1次側コアと2次側コアとの間に対向するコアが存在し、給電が可能になる。車両などの進行方向は、縁石などで位置ずれが生じないように設定できるが、横方向は、ずれが発生し易い。そのため、コアの長手方向を進行方向と一致させて、横方向にコアが配列されるようにすることで、車両の横方向の位置ずれに対処できる。
Moreover, in the non-contact electric power feeder of this invention, it is preferable to set so that the longitudinal direction of the said primary side core and secondary side core arranged in parallel may correspond with the advancing direction of the said mobile body.
If the cores are arranged in a direction in which the moving body causes a positional shift, even when a positional shift occurs, there is an opposing core between the primary side core and the secondary side core, and power feeding becomes possible. The traveling direction of the vehicle or the like can be set so that the positional deviation does not occur due to a curbstone or the like, but the lateral direction is likely to be displaced. Therefore, by aligning the longitudinal direction of the core with the traveling direction so that the cores are arranged in the lateral direction, it is possible to cope with the lateral displacement of the vehicle.

本発明の非接触給電装置は、複数のコア間の間隙を寸法に加えた、実質的に拡大された大きさのコアを備えているため、1次側コイルと2次側コイルとの位置ずれに十分対応できる。
また、複数のコアの間に間隙を設けることで、少ない量のコア材により広いコア面積を確保できるため、装置の軽量化を図ることができる。
また、コアの製造は容易であり、製造コストの低減を図ることができる。
また、コアにコイルを巻回する方式を採っているため、装置の小型化を図ることができる。
Since the non-contact power feeding device of the present invention includes a core having a substantially enlarged size in which gaps between a plurality of cores are added to the dimensions, the positional deviation between the primary side coil and the secondary side coil It can cope with enough.
Further, by providing a gap between the plurality of cores, a large core area can be secured with a small amount of the core material, so that the weight of the apparatus can be reduced.
Further, the core can be easily manufactured, and the manufacturing cost can be reduced.
In addition, since the coil is wound around the core, the apparatus can be downsized.

本発明の第1の実施形態に係る非接触給電装置で用いるコイル(a−1、a−2)と、比較例(b−1、b−2)とを示す図The figure which shows the coil (a-1, a-2) used with the non-contact electric power feeder which concerns on the 1st Embodiment of this invention, and a comparative example (b-1, b-2). 図1のコイルのコアを示す図The figure which shows the core of the coil of FIG. 本発明の第1の実施形態に係る非接触給電装置の1次側コイル及び2次側コイルの配置を示す図The figure which shows arrangement | positioning of the primary side coil and secondary side coil of the non-contact electric power feeder which concerns on the 1st Embodiment of this invention. 1次側コイル及び2次側コイルに配置する導電板の変形例を示す図The figure which shows the modification of the electrically conductive board arrange | positioned at a primary side coil and a secondary side coil 図1のコイルの磁力線を示す図The figure which shows the magnetic force line of the coil of FIG. 間隔を空けてコアを配置したコイルと比較例との特性比較を示す図The figure which shows the characteristic comparison of the coil which arranges the core in the interval and the comparative example 本発明の第1の実施形態に係る非接触給電装置の1次側コイル及び2次側コイルの変形例を示す図The figure which shows the modification of the primary side coil of the non-contact electric power feeder which concerns on the 1st Embodiment of this invention, and a secondary side coil 2次側コイルを車両に搭載した状態を示す図The figure which shows the state which mounted the secondary side coil in the vehicle 本発明の第2の実施形態に係る非接触給電装置で用いるコイルを示す図The figure which shows the coil used with the non-contact electric power feeder which concerns on the 2nd Embodiment of this invention. 図9のコイルの磁力線を示す図The figure which shows the magnetic force line of the coil of FIG. 本発明の第2の実施形態に係る非接触給電装置の1次側コイル及び2次側コイルの変形例を示す図The figure which shows the modification of the primary side coil and secondary side coil of the non-contact electric power feeder which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る非接触給電装置で用いる放射状に配置したコイルを示す図The figure which shows the coil arrange | positioned radially used with the non-contact electric power feeder which concerns on the 2nd Embodiment of this invention プラグインハイブリッド車の給電システムを示す図Diagram showing power supply system for plug-in hybrid vehicle 従来の非接触給電装置のコイルを示す図The figure which shows the coil of the conventional non-contact electric power feeder 従来の非接触給電装置の他のコイルを示す図The figure which shows the other coil of the conventional non-contact electric power feeder コア部分を間引いた従来のコイルを示す図The figure which shows the conventional coil which thins out the core part

(第1の実施形態)
本発明の第1の実施形態に係る非接触給電装置は、1次側コイル及び2次側コイルが、共に、図1(a−1)の平面図、図1(a−2)の側面図に示すように、フェライトで成形された直方体形状の複数(4枚)の板状コア41と、4枚の板状コア41を取り囲むようにリッツ線を巻いて構成された巻回コイル42とを備えている。4枚の板状コア41は、1平面上に等しい間隔を空けて並列されており、巻回コイル42は、各板状コア41の両端が露出するように、板状コア41の長手方向と直交する方向に巻回されている。
図1(b−1)、図1(b−2)は、比較のために記載したコイルであり、このコイルは、フェライトの一枚板からなる平板コア43と、巻回コイル44とを備えている。平板コア43は、4枚の板状コア41を合わせた面積を有しており、それを示すために、平板コア43中に板状コア41の大きさを点線で表示している。
図2は、巻回コイル42、44を取り除いた板状コア41及び平板コア43を示している。
(First embodiment)
In the non-contact power feeding device according to the first embodiment of the present invention, the primary side coil and the secondary side coil are both a plan view of FIG. 1 (a-1) and a side view of FIG. 1 (a-2). As shown in FIG. 3, a plurality of (four) rectangular parallelepiped plate-like cores 41 formed of ferrite and a winding coil 42 formed by winding litz wires so as to surround the four plate-like cores 41 are provided. I have. The four plate cores 41 are arranged in parallel at equal intervals on one plane, and the winding coil 42 is arranged in the longitudinal direction of the plate core 41 so that both ends of each plate core 41 are exposed. It is wound in an orthogonal direction.
1 (b-1) and 1 (b-2) are coils described for comparison. The coil includes a flat core 43 made of a single ferrite plate and a winding coil 44. FIG. ing. The flat core 43 has an area where the four plate cores 41 are combined, and the size of the plate core 41 is indicated by a dotted line in the flat core 43 in order to show the area.
FIG. 2 shows the plate core 41 and the flat core 43 from which the winding coils 42 and 44 are removed.

また、図3は、この非接触給電装置の1次側コイル40の巻回コイル42と、2次側コイル50の巻回コイル52とが、ギャップgを介して対向して配置された状態を示す断面図である。1次側コイル40及び2次側コイル50の背面には、後述する磁界漏洩防止のためのアルミニューム板60が配置されている。
巻回コイル42、52は、板状コア41、51に巻回されているため、板状コア41、51に占める巻回コイル42、52の幅はWとなる。このコイル幅Wは、1次側コイル40及び2次側コイル50の間の電磁結合を十分に得るために、ギャップ長g以上に設定する必要があるが、従来の磁心コアの片側にリング状の扁平コイルを配置する方式(図14(a))に比べて、コイル幅の占める面積が小さくて済み、小型化する上で有利である。
FIG. 3 shows a state in which the winding coil 42 of the primary side coil 40 and the winding coil 52 of the secondary side coil 50 of the non-contact power feeding device are arranged to face each other with a gap g interposed therebetween. It is sectional drawing shown. On the back surface of the primary side coil 40 and the secondary side coil 50, an aluminum plate 60 for preventing magnetic field leakage described later is disposed.
Since the winding coils 42 and 52 are wound around the plate cores 41 and 51, the width of the winding coils 42 and 52 occupying the plate cores 41 and 51 is W. This coil width W needs to be set to a gap length g or more in order to sufficiently obtain the electromagnetic coupling between the primary side coil 40 and the secondary side coil 50. However, a ring shape is formed on one side of the conventional magnetic core. Compared with the method of arranging flat coils (FIG. 14A), the area occupied by the coil width is small, which is advantageous for downsizing.

1次側コイル40の巻回コイル42に高周波電流を通電すると、巻回コイル42の内部に磁場が発生し、その磁束が板状コア41から2次側コイル50の板状コア51に流入して、巻回コイル52に誘導電流が流れ、そのために磁場が発生して、その磁束が板状コア51から1次側コイル40の板状コア41に流入する。
このとき、板状コア41及び板状コア51から放出された磁束の一部は、外部にも漏れ出る。この漏洩磁束が車の床面などを構成する鉄板を通過すると、鉄板が熱を帯びる。アルミニューム板60は、こうした事態を防ぐために配置されている。この非接触給電装置における磁束の流れを、図3に点線で示している。
また、アルミニューム板60が外部に向かう磁束を抑制するため、1次側コイル40と2次側コイル50との間を循環する磁束が増加し、結合係数が高まる。
When a high frequency current is applied to the winding coil 42 of the primary side coil 40, a magnetic field is generated inside the winding coil 42, and the magnetic flux flows from the plate core 41 into the plate core 51 of the secondary coil 50. Thus, an induced current flows through the winding coil 52, so that a magnetic field is generated, and the magnetic flux flows from the plate core 51 into the plate core 41 of the primary coil 40.
At this time, a part of the magnetic flux emitted from the plate-like core 41 and the plate-like core 51 leaks to the outside. When this leakage magnetic flux passes through an iron plate that constitutes the floor surface of the car, the iron plate is heated. The aluminum plate 60 is arranged to prevent such a situation. The flow of magnetic flux in this non-contact power feeding device is shown by a dotted line in FIG.
Moreover, in order for the aluminum plate 60 to suppress the magnetic flux which goes outside, the magnetic flux which circulates between the primary side coil 40 and the secondary side coil 50 increases, and a coupling coefficient increases.

なお、図4に示すように、1次側コイル40及び2次側コイル50の背面に配置するアルミニューム板62を、1次側の板状コア41と2次側の板状コア51との対向する磁極面の反対側の磁極面に密着させて、板状コア41、51の外部に面する磁極面をアルミニューム板62で覆うようにすれば、外部への磁界の漏洩をさらに効果的に防止することができる。   In addition, as shown in FIG. 4, the aluminum plate 62 arrange | positioned at the back surface of the primary side coil 40 and the secondary side coil 50 is made into the plate-shaped core 41 of the primary side, and the plate-shaped core 51 of the secondary side. If the magnetic pole surface facing the outside of the plate-like cores 41 and 51 is covered with the aluminum plate 62 while being in close contact with the magnetic pole surface on the opposite side of the opposing magnetic pole surface, the leakage of the magnetic field to the outside is more effective. Can be prevented.

図5(a)は、図1(a−2)の方向から見たときの板状コア41から発する磁力線を模式的に示している。板状コア51についても同様である。また、図5(b)は、比較のために、一枚の平板コア43から発する磁力線を模式的に示している。
複数の板状コア41の各々は、それぞれの周囲から磁力線を発するため、板状コア41の間に間隙があっても、それによって磁力線の発生分布は途切れない。この複数の板状コア41による磁力線の発生分布は、平板コア43から発せられる磁力線の分布と略同等である。そのため、間隔を空けて並列した複数の板状コア41は、面積が拡大した平板コア43と見ることができる。
即ち、図2に示すように、面積が(a×b)の平板コア43と同じ量のコア素材を使用して、コア面積を(A×b)に拡大することができる。
また、一枚板の平板コア43を作成するのに比べて、板状コア41の作成は極めて容易であり、製造コストを大幅に削減することができる。
Fig.5 (a) has shown typically the magnetic force line emitted from the plate-shaped core 41 when it sees from the direction of Fig.1 (a-2). The same applies to the plate-like core 51. FIG. 5B schematically shows lines of magnetic force generated from one flat core 43 for comparison.
Since each of the plurality of plate-like cores 41 generates magnetic lines of force from the periphery thereof, even if there is a gap between the plate-like cores 41, the generation distribution of the lines of magnetic force is not interrupted thereby. The distribution of the lines of magnetic force generated by the plurality of plate-like cores 41 is substantially equal to the distribution of the lines of magnetic force emitted from the flat plate core 43. Therefore, the plurality of plate-like cores 41 arranged in parallel at intervals can be regarded as a flat plate core 43 having an enlarged area.
That is, as shown in FIG. 2, the core area can be expanded to (A × b) by using the same amount of core material as the flat core 43 having an area of (a × b).
Moreover, compared with the production of the flat plate core 43 of a single plate, the production of the plate core 41 is extremely easy, and the manufacturing cost can be greatly reduced.

こうしたコア面積の実質的な拡大は、1次側コイル40と2次側コイル50との位置ずれによる給電能力の低下を抑えることを可能にし、位置ずれへの耐性が増強される。
換言すれば、位置ずれへの耐性を備えたコア面積を、少ない量のコア素材で構成することができるため、装置の軽量化が可能になる。
Such substantial enlargement of the core area makes it possible to suppress a decrease in power supply capability due to the positional deviation between the primary side coil 40 and the secondary side coil 50, and the resistance to the positional deviation is enhanced.
In other words, since the core area having resistance to misalignment can be configured with a small amount of core material, the weight of the apparatus can be reduced.

図6は、隙間を空けて複数の板状コアを並列させたコイル(図6(a))と、隙間を持たないコアを有するコイル(図6(b))との特性について測定した結果を示している。ここでは、図6(a)の板状コアを、図6(b)のコアの3/5の量で、同じ面積(240mm×250mm)を占めるように配列している。
測定は、1次側コイル及び2次側コイルを図6(a)または図6(b)の形状に設定し、1次側コイルと2次側コイルとをx方向にずらし、ずれた距離x(mm)と、交流電源電圧(VAC)、給電電力(POUT)及び給電効率ηCの関係を測っている。
図6(c)は、測定結果を示しており、横軸にずれた距離x(mm)を表し、縦軸に交流電源電圧(VAC)、給電電力(POUT)及び給電効率ηCの各値を表している。図中、図6(a)のコイルの特性を実線で示し、図6(b)のコイルの特性を点線で示している。
図6(c)から、図6(a)のコイルは、コア材の量を3/5に減らしているにも関わらず、給電特性や位置ずれ特性が、図6(b)のコイルと殆ど変わらないことが分かる。そのため、図6(a)のように板状コア間に隙間を設ける構成は、コイルの軽量化及び低コスト化を図る上で有利である。
FIG. 6 shows the results of measuring the characteristics of a coil (FIG. 6A) in which a plurality of plate-shaped cores are arranged in parallel with a gap and a coil having a core without a gap (FIG. 6B). Show. Here, the plate-like cores in FIG. 6A are arranged in an amount 3/5 that of the core in FIG. 6B so as to occupy the same area (240 mm × 250 mm).
In the measurement, the primary side coil and the secondary side coil are set in the shape of FIG. 6A or FIG. 6B, the primary side coil and the secondary side coil are shifted in the x direction, and the shifted distance x (Mm), AC power supply voltage (V AC ), feeding power (P OUT ), and feeding efficiency η C are measured.
FIG. 6 (c) shows the measurement result. The horizontal axis represents the distance x (mm) shifted, and the vertical axis represents the AC power supply voltage (V AC ), the feed power (P OUT ), and the feed efficiency η C. Represents each value. In the figure, the characteristics of the coil of FIG. 6A are indicated by solid lines, and the characteristics of the coil of FIG. 6B are indicated by dotted lines.
From FIG. 6 (c), the coil of FIG. 6 (a) has almost the same feeding characteristics and misalignment characteristics as the coil of FIG. 6 (b) although the amount of the core material is reduced to 3/5. You can see that it does n’t change. Therefore, the configuration in which the gap is provided between the plate-like cores as shown in FIG. 6A is advantageous in reducing the weight and cost of the coil.

また、図7に示すように、1次側コイル40の巻回コイル42で取り囲む板状コア41の本数を増やし、複数の板状コア41の外形を繋いだ外形面積(図2(a−1)の(A×b))が、2次側コイル50の複数の板状コア51による外形面積よりも大きくなるように設定すれば、2次側コイル50の1次側コイル40に対する位置ずれを、さらに許容できる。電気自動車などの給電システムでは、1次側コイル40が給電ステーションに設置され、2次側コイル50が車両に搭載されるから、この構成により、車両への搭載重量を増やさずに、位置ずれの耐性を高めることができる。   Further, as shown in FIG. 7, the number of plate cores 41 surrounded by the winding coil 42 of the primary coil 40 is increased, and the outer area connecting the outer shapes of the plurality of plate cores 41 (FIG. 2 (a-1 ) (A × b)) is set to be larger than the outer area of the plurality of plate-like cores 51 of the secondary coil 50, the positional deviation of the secondary coil 50 with respect to the primary coil 40 is shifted. More acceptable. In a power feeding system such as an electric vehicle, the primary side coil 40 is installed in the power feeding station, and the secondary side coil 50 is mounted on the vehicle. With this configuration, the position shift can be prevented without increasing the mounting weight on the vehicle. Resistance can be increased.

また、図8に示すように、車両61の進行方向(前後方向)と、板状コア51の長手方向とが一致するように2次側コイル50を車両61に搭載し、1次側コイル40を同じ方向に給電ステーションに設置すれば、車両61の横方向(進行方向と直角な方向)への位置ずれに対して、耐性が向上する。車両61の前後方向の停止位置は、縁石などを用いて位置ずれが生じないように設定できるが、横方向は、ずれが発生し易い。しかし、図8の向きに1次側コイル、2次側コイルを設置すれば、車両61の停止位置が横方向にずれた場合でも、対向する板状コア41、51が確保できるので、横方向の位置ずれに対して強くなる。   Further, as shown in FIG. 8, the secondary coil 50 is mounted on the vehicle 61 so that the traveling direction (front-rear direction) of the vehicle 61 coincides with the longitudinal direction of the plate-like core 51, and the primary coil 40. Are installed in the power supply station in the same direction, the tolerance is improved against the positional deviation of the vehicle 61 in the lateral direction (direction perpendicular to the traveling direction). The stop position in the front-rear direction of the vehicle 61 can be set using a curbstone or the like so as not to be displaced, but the lateral direction is likely to be displaced. However, if the primary side coil and the secondary side coil are installed in the direction of FIG. 8, even if the stop position of the vehicle 61 is shifted in the horizontal direction, the opposing plate cores 41 and 51 can be secured. It becomes strong against the position shift.

なお、ここでは、板状コアを巻回コイルで巻回する例を説明したが、板状コアに代えて棒状の直方体、断面が円形の棒状体などを用いても良い。
また、コア素材は、フェライト以外の磁性体材料、例えば、ダストコアや珪素鋼板など交流損失の少ない強磁性体を用いて形成しても良く、巻回コイルは、リッツ線以外の線で構成しても良い。また、磁界漏洩防止用には、アルミニューム板以外の導電板を用いても良い。
また、ここで示した板状コアの数は、例示であり、任意に設定することができる。
また、板状コア相互の間隔は0より大きく設定することが好ましいが、この間隔を0にしても良い。
また、ここでは、電気自動車への給電について説明したが、本発明は、工場内搬送車や移動ロボットなどの移動体に対する給電にも利用できる。
In addition, although the example which winds a plate-shaped core with a winding coil was demonstrated here, it may replace with a plate-shaped core and a rod-shaped rectangular parallelepiped, a rod-shaped body with a circular cross section, etc. may be used.
The core material may be formed using a magnetic material other than ferrite, for example, a ferromagnetic material with low AC loss, such as a dust core or a silicon steel plate, and the wound coil is made of a wire other than a litz wire. Also good. For preventing magnetic field leakage, a conductive plate other than an aluminum plate may be used.
Moreover, the number of the plate-like cores shown here is an example, and can be set arbitrarily.
Moreover, although it is preferable to set the space | interval between plate-shaped cores larger than 0, you may make this space | interval 0.
In addition, here, power supply to an electric vehicle has been described. However, the present invention can also be used for power supply to a moving object such as a factory transport vehicle or a mobile robot.

(第2の実施形態)
本発明の第2の実施形態に係る非接触給電装置は、1次側コイル及び2次側コイルを、図9(a)の平面図、図9(b)の側面図に示すように、各板状コア71のそれぞれの周りに個別に巻回した巻回コイル72で構成し、巻回コイル72を巻回した各板状コア71を平面上に等しい間隔を空けて配列している。
(Second Embodiment)
As shown in the plan view of FIG. 9A and the side view of FIG. 9B, the non-contact power feeding device according to the second embodiment of the present invention includes a primary side coil and a secondary side coil. Each of the plate-like cores 71 is constituted by winding coils 72 wound individually around each of the plate-like cores 71, and the plate-like cores 71 around which the winding coils 72 are wound are arranged at equal intervals on a plane.

図10は、図9(b)の方向から見たときの板状コア71から発する磁力線を模式的に示している。この場合も、図5(a)と同様に、一枚の平板コアから発せられる磁力線の分布と略同等の分布が得られる。そのため、複数の板状コア72を、間隔を空けて配列することにより、コア面積を実質的に拡大することができ、位置ずれに対する耐性を高めることができる。   FIG. 10 schematically shows lines of magnetic force generated from the plate-like core 71 when viewed from the direction of FIG. 9B. In this case as well, a distribution substantially equivalent to the distribution of the lines of magnetic force emitted from one flat core can be obtained as in FIG. Therefore, by arranging the plurality of plate-like cores 72 at intervals, the core area can be substantially enlarged, and resistance to displacement can be increased.

また、図11の斜視図(a)及び側面図(b)に示すように、1次側コイル70の巻回コイル72で巻回された板状コア71の数を、2次側コイル80の巻回コイル82で巻回された板状コア81の数よりも多くすることにより、図7の場合と同様に、移動体に搭載する2次側コイルの小型軽量化を図りながら、位置ずれの耐性を高めることができる。
また、この場合、1次側コイル70の巻回コイル72の内、2次側コイル80の巻回コイル82に対向する巻回コイル72だけに対して選択的に通電するようにすれば、非接触給電装置の消費電力を節約でき、稼動の効率化を図ることができる。
Further, as shown in the perspective view (a) and the side view (b) of FIG. 11, the number of the plate-like cores 71 wound around the winding coil 72 of the primary coil 70 is determined by the number of the secondary coils 80. By increasing the number of the plate-like cores 81 wound by the winding coil 82, as in the case of FIG. 7, it is possible to reduce the size and weight of the secondary coil mounted on the moving body, while reducing the position shift. Resistance can be increased.
Further, in this case, if only the winding coil 72 facing the winding coil 82 of the secondary side coil 80 among the winding coils 72 of the primary side coil 70 is selectively energized, The power consumption of the contact power supply device can be saved and the operation efficiency can be improved.

また、巻回コイル72を個別に巻回した複数の板状コア71は、図12に示すように、放射状に配置することも可能である。
また、第1の実施形態では、複数個の板状コアを巻回コイルで取り囲むように巻回する場合を示し、第2の実施形態では、複数個の板状コアのそれぞれを個別に巻回コイルで巻回する場合を示したが、1次側コイル及び2次側コイルの一方を第1の実施形態の方式で構成し、他方を第2の実施形態の方式で構成することも可能である。
Further, the plurality of plate-like cores 71 in which the winding coils 72 are individually wound can be arranged radially as shown in FIG.
In the first embodiment, a case where a plurality of plate cores are wound so as to be surrounded by a winding coil is shown, and in the second embodiment, each of the plurality of plate cores is wound individually. Although the case where it winds with a coil was shown, it is also possible to comprise one side of a primary side coil and a secondary side coil by the system of a 1st embodiment, and the other by the system of a 2nd embodiment. is there.

本発明の非接触給電装置は、位置ずれに強く、また、小型軽量化及び低コスト化が可能であり、電気自動車、プラグインハイブリッド車、工場内搬送車、移動ロボットなど、各種の移動体の非接触給電に利用することができる。   The non-contact power feeding device of the present invention is resistant to misalignment, and can be reduced in size, weight, and cost, and can be used for various types of mobile objects such as electric vehicles, plug-in hybrid vehicles, factory transport vehicles, and mobile robots. It can be used for non-contact power feeding.

40 1次側コイル
41 板状コア
42 巻回コイル
43 平板コア
50 2次側コイル
51 板状コア
52 巻回コイル
60 導電板
61 車両
62 導電板
70 1次側コイル
71 板状コア
72 巻回コイル
80 2次側コイル
81 板状コア
82 巻回コイル
40 Primary side coil 41 Plate-like core 42 Winding coil 43 Flat core 50 Secondary side coil 51 Plate-like core 52 Winding coil 60 Conductive plate 61 Vehicle 62 Conductive plate 70 Primary side coil 71 Plate-like core 72 Winding coil 80 Secondary coil 81 Plate core 82 Winding coil

Claims (9)

1次側コアの周りに巻回された1次側コイルと、2次側コアの周りに巻回された2次側コイルと、を備え、前記1次側コイルと前記2次側コイルとが対向するように配置された非接触給電装置であって、
前記1次側コイルまたは2次側コイルは複数個のコアに巻回され、前記1次側コイルまたは2次側コイルに巻回された前記複数個のコアのそれぞれが、同一形状をした棒状または板状の直方体から成り、前記複数個のコアは、前記直方体の長辺同士が間隔を保って対向するように平面上に並行に配列され、
前記1次側コイルまたは2次側コイルが、配列された複数の前記直方体を取り囲むように、前記長辺と直交する方向に巻回されていることを特徴とする非接触給電装置。
A primary coil wound around a primary core and a secondary coil wound around the secondary core, wherein the primary coil and the secondary coil are A non-contact power feeding device arranged to face each other,
The primary side coil or the secondary side coil is wound around a plurality of cores, and each of the plurality of cores wound around the primary side coil or the secondary side coil has the same shape as a rod or It consists of a plate-shaped rectangular parallelepiped, and the plurality of cores are arranged in parallel on a plane so that the long sides of the rectangular parallelepiped face each other with a gap between them,
The non-contact power feeding device, wherein the primary side coil or the secondary side coil is wound in a direction orthogonal to the long side so as to surround the plurality of arranged rectangular parallelepipeds.
請求項に記載の非接触給電装置であって、前記1次側コイルの前記2次側コイルに対向する側の反対側、及び、前記2次側コイルの前記1次側コイルに対向する側の反対側のそれぞれに、外部への磁界の漏洩を防止する導電板が配置されていることを特徴とする非接触給電装置。 2. The non-contact power feeding device according to claim 1 , wherein the side of the primary coil opposite to the side facing the secondary coil and the side of the secondary coil facing the primary side coil are set. The non-contact electric power feeder characterized by arrange | positioning the electrically conductive board which prevents the leakage of the magnetic field to the exterior on each of the other side. 請求項に記載の非接触給電装置であって、前記導電板が、前記1次側コア及び2次側コアの対向する磁極面の反対側の磁極面に密着して配置され、前記反対側の磁極面からの磁界の漏洩を防いでいることを特徴とする非接触給電装置。 3. The non-contact power feeding apparatus according to claim 2 , wherein the conductive plate is disposed in close contact with a magnetic pole surface on the opposite side of the opposing magnetic pole faces of the primary side core and the secondary side core. The non-contact electric power feeder characterized by preventing the leakage of the magnetic field from the magnetic pole surface. 請求項またはに記載の非接触給電装置であって、前記導電板がアルミニュームの板から成ることを特徴とする非接触給電装置。 A non-contact power feeding device according to claim 2 or 3, non-contact power feeding device, wherein the conductive plate is characterized in that a plate of aluminum. 請求項に記載の非接触給電装置であって、前記1次側コイルで巻回された複数個の前記1次側コアの外形を繋いだ外形面積が、前記2次側コイルで巻回された複数個の前記2次側コアの外形を繋いだ外形面積よりも大きいことを特徴とする非接触給電装置。 2. The contactless power supply device according to claim 1 , wherein an outer area connecting the outer shapes of the plurality of primary cores wound around the primary coil is wound around the secondary coil. A non-contact power feeding apparatus, wherein the outer area is larger than an outer area connecting the outer shapes of the plurality of secondary cores. 請求項1からのいずれかに記載の非接触給電装置であって、前記コアがフェライトまたはダストコアから成り、前記1次側コイル及び2次側コイルがリッツ線を巻回して成ることを特徴とする非接触給電装置。 The contactless power supply device according to any one of claims 1 to 5 , wherein the core is made of a ferrite or a dust core, and the primary side coil and the secondary side coil are formed by winding a litz wire. A non-contact power feeding device. 請求項1からのいずれかに記載の非接触給電装置であって、前記一次側コイルが地上の給電ステーションに設置され、前記二次側コイルが、前記給電ステーションから給電を受ける移動体に設置されていることを特徴とする非接触給電装置。 A non-contact power feeding device according to any one of claims 1 to 6, wherein the primary coil is installed on the ground of the power supply station, the secondary coil, installed in the moving body receives power from the power supply station The non-contact electric power feeder characterized by the above-mentioned. 請求項に記載の非接触給電装置であって、前記移動体が車両であることを特徴とする非接触給電装置。 The contactless power supply device according to claim 7 , wherein the moving body is a vehicle. 請求項またはに記載の非接触給電装置であって、並行に配列された前記1次側コア及び2次側コアの長手方向が前記移動体の進行方向と一致することを特徴とする非接触給電装置。 A non-contact power feeding device according to claim 7 or 8, non, wherein the longitudinal direction of the primary core and the secondary core are arranged in parallel matches the traveling direction of the moving body Contact power supply device.
JP2009010997A 2009-01-21 2009-01-21 Non-contact power feeding device Active JP5467569B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009010997A JP5467569B2 (en) 2009-01-21 2009-01-21 Non-contact power feeding device
JP2013265510A JP5751647B2 (en) 2009-01-21 2013-12-24 Non-contact power feeding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009010997A JP5467569B2 (en) 2009-01-21 2009-01-21 Non-contact power feeding device
JP2013265510A JP5751647B2 (en) 2009-01-21 2013-12-24 Non-contact power feeding device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013265510A Division JP5751647B2 (en) 2009-01-21 2013-12-24 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2010172084A JP2010172084A (en) 2010-08-05
JP5467569B2 true JP5467569B2 (en) 2014-04-09

Family

ID=54477765

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009010997A Active JP5467569B2 (en) 2009-01-21 2009-01-21 Non-contact power feeding device
JP2013265510A Active JP5751647B2 (en) 2009-01-21 2013-12-24 Non-contact power feeding device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013265510A Active JP5751647B2 (en) 2009-01-21 2013-12-24 Non-contact power feeding device

Country Status (1)

Country Link
JP (2) JP5467569B2 (en)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641891B2 (en) * 2009-11-13 2014-12-17 パナソニック株式会社 Charging and feeding system for vehicles
EP2667390B1 (en) 2011-01-19 2018-10-31 Technova Inc. Contactless power transfer system
JP5970158B2 (en) * 2011-02-10 2016-08-17 国立大学法人埼玉大学 Contactless power supply
JP5658592B2 (en) * 2011-02-21 2015-01-28 国立大学法人埼玉大学 Non-contact power feeding device for moving objects
KR101182376B1 (en) * 2011-04-26 2012-09-12 한국과학기술원 Magnetic Inductive Apparatus for Power Transmission, Power Collection and Power Transmission Considering Horizontal Deviation
JP5605297B2 (en) * 2011-04-26 2014-10-15 株式会社デンソー Non-contact power feeding device
WO2013038617A1 (en) 2011-09-15 2013-03-21 三菱電機株式会社 Contactless power supply device
JP5738744B2 (en) * 2011-11-15 2015-06-24 株式会社東芝 Resonator and wireless power transmission device
ES2731701T3 (en) 2012-02-22 2019-11-18 Toyota Motor Co Ltd Contactless power transfer device and contactless power receiving device
US9160205B2 (en) 2012-03-20 2015-10-13 Qualcomm Incorporated Magnetically permeable structures
US9653206B2 (en) 2012-03-20 2017-05-16 Qualcomm Incorporated Wireless power charging pad and method of construction
JP5903990B2 (en) 2012-03-30 2016-04-13 株式会社デンソー Contactless power supply
EP2849314A4 (en) * 2012-05-09 2015-12-16 Toyota Motor Co Ltd Vehicle capable of contact-free power reception
CN104884295B (en) 2012-05-09 2018-01-12 丰田自动车株式会社 Vehicle
US20150091511A1 (en) 2012-05-09 2015-04-02 Toyota Jidosha Kabushiki Kaisha Vehicle
EP2848454A4 (en) 2012-05-09 2015-12-09 Toyota Motor Co Ltd Vehicle
EP2854145B1 (en) 2012-05-21 2018-03-28 Technova Inc. Contactless electrical-power-supplying transformer for moving body
WO2013183665A1 (en) 2012-06-05 2013-12-12 国立大学法人 埼玉大学 Contactless feeding transformer
JP5253607B1 (en) * 2012-07-13 2013-07-31 株式会社日立パワーソリューションズ Wireless power supply apparatus and wireless power supply system
JP6086189B2 (en) * 2012-09-05 2017-03-01 Tdk株式会社 Coil device
JP2014060862A (en) * 2012-09-18 2014-04-03 Toyota Industries Corp Non-contact power transmission device
JP2014096435A (en) * 2012-11-08 2014-05-22 Toshiba Corp Resonator and wireless power transmission device
JP6063719B2 (en) * 2012-11-19 2017-01-18 株式会社東芝 Wireless power transmission device
JP5716725B2 (en) 2012-11-21 2015-05-13 トヨタ自動車株式会社 Power transmission device and power transmission system
JP5286445B1 (en) * 2012-12-28 2013-09-11 株式会社日立パワーソリューションズ Wireless power feeder for electric mobile body
JP5613268B2 (en) * 2013-01-10 2014-10-22 昭和電線デバイステクノロジー株式会社 Contactless power supply system
EP2953145A4 (en) 2013-01-30 2016-04-06 Panasonic Ip Man Co Ltd Contactless power transmission device
JP6300107B2 (en) 2013-01-30 2018-03-28 パナソニックIpマネジメント株式会社 Non-contact power transmission device
JP6001471B2 (en) * 2013-02-05 2016-10-05 トヨタ自動車株式会社 Power transmission device and power reception device
JP6138504B2 (en) * 2013-02-05 2017-05-31 国立大学法人埼玉大学 Power transmission device and power reception device
JP6309197B2 (en) 2013-03-05 2018-04-11 矢崎総業株式会社 Coil unit and power supply system
JP6071654B2 (en) * 2013-03-06 2017-02-01 株式会社東芝 Coil, power receiving device, and power transmitting device
JP5374657B1 (en) 2013-03-21 2013-12-25 東亜道路工業株式会社 Pavement structure and construction method of pavement structure
JP5374658B1 (en) 2013-03-21 2013-12-25 東亜道路工業株式会社 Trough, pavement structure, and pavement structure construction method
JP5857999B2 (en) * 2013-04-26 2016-02-10 トヨタ自動車株式会社 Power receiving device, parking assist device, and power transmission system
JP6152307B2 (en) * 2013-06-19 2017-06-21 パイオニア株式会社 Coil unit
JP6140005B2 (en) 2013-06-27 2017-05-31 株式会社東芝 Power transmission device, power reception device, and wireless power transmission system
JP6132024B2 (en) * 2013-09-27 2017-05-24 日産自動車株式会社 In-vehicle structure of non-contact power receiving device
JP6423142B2 (en) 2013-10-01 2018-11-14 トヨタ自動車株式会社 Power receiving device, power transmitting device and vehicle
JP6291208B2 (en) * 2013-10-10 2018-03-14 株式会社東芝 Mobile object, wireless power transmission system, and wireless power transmission method
JP2015084366A (en) * 2013-10-25 2015-04-30 トヨタ自動車株式会社 Power-receiving apparatus
JP6302212B2 (en) * 2013-10-31 2018-03-28 株式会社東芝 Inductors for power transmission
JP6262500B2 (en) 2013-11-18 2018-01-17 トヨタ自動車株式会社 Power receiving device
JP6179375B2 (en) 2013-11-28 2017-08-16 Tdk株式会社 Coil unit
JP6432251B2 (en) 2013-11-28 2018-12-05 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP2015106581A (en) 2013-11-28 2015-06-08 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP5839020B2 (en) 2013-11-28 2016-01-06 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP6164421B2 (en) 2013-11-28 2017-07-19 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP2015115580A (en) * 2013-12-16 2015-06-22 トヨタ自動車株式会社 Power transmission system
JP6226500B2 (en) * 2014-01-21 2017-11-08 株式会社テクノバ Contactless power supply system
CN106061789A (en) * 2014-03-04 2016-10-26 株式会社泰库诺瓦 System for wirelessly supplying power during moving
JP6303684B2 (en) 2014-03-25 2018-04-04 Tdk株式会社 Coil unit and wireless power transmission device
JP6299320B2 (en) * 2014-03-25 2018-03-28 Tdk株式会社 Coil unit and wireless power transmission device
JP6040510B2 (en) * 2014-03-31 2016-12-07 株式会社エクォス・リサーチ Power transmission system
KR101789002B1 (en) * 2014-04-08 2017-10-20 닛산 지도우샤 가부시키가이샤 Wireless power supply coil
WO2015155834A1 (en) * 2014-04-08 2015-10-15 日産自動車株式会社 Non-contact power supply coil
WO2015155836A1 (en) * 2014-04-08 2015-10-15 日産自動車株式会社 Non-contact power supply coil
WO2015189977A1 (en) 2014-06-13 2015-12-17 株式会社 東芝 Inductor for wireless power transmission
JP6476721B2 (en) 2014-10-10 2019-03-06 株式会社Ihi Power receiving coil device and non-contact power feeding system
JP6625320B2 (en) 2014-11-07 2019-12-25 株式会社Ihi Coil device, non-contact power supply system and auxiliary magnetic member
JP6358098B2 (en) * 2015-01-08 2018-07-18 Tdk株式会社 Power feeding device and non-contact power transmission device
US10027147B2 (en) * 2015-01-23 2018-07-17 Qualcomm Incorporated Methods and apparatus for a modular coil holder for an extended wireless charging roadway assembly
WO2016135949A1 (en) * 2015-02-27 2016-09-01 株式会社 東芝 Inductor and wireless power transmission device
JP6541425B2 (en) * 2015-05-18 2019-07-10 株式会社テクノバ Wireless power supply system
JP6596942B2 (en) 2015-06-04 2019-10-30 株式会社Ihi Coil device
US10692640B2 (en) * 2015-09-24 2020-06-23 Fuji Corporation Non-contact power feeding coil and non-contact power feeding system
JP6284055B2 (en) 2016-03-30 2018-02-28 Tdk株式会社 Power transmission equipment
JP6866324B2 (en) 2018-03-01 2021-04-28 株式会社東芝 Inductor unit, contactless power supply system and electric vehicle
WO2020003713A1 (en) * 2018-06-26 2020-01-02 株式会社デンソー In-motion contactless power supply system and contactless power supply device
CN112164856B (en) * 2020-08-13 2024-05-28 中国石油天然气集团有限公司 Directional antenna skeleton structure and three-degree-of-freedom frame type winding tool

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426774B2 (en) * 1995-03-03 2003-07-14 日立マクセル株式会社 Electromagnetic coupling connector and method of manufacturing the same
JPH0965502A (en) * 1995-08-23 1997-03-07 Sumitomo Electric Ind Ltd Induction type power feeding-collecting equipment
JP3482772B2 (en) * 1996-07-03 2004-01-06 株式会社豊田自動織機 Pickup coil unit for non-contact power supply
JP4681742B2 (en) * 2001-02-14 2011-05-11 Fdk株式会社 Non-contact coupler
GB0210886D0 (en) * 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
JP2004356468A (en) * 2003-05-30 2004-12-16 Mitsui Chemicals Inc Laminated magnetic core and magnetic component
GB0320960D0 (en) * 2003-09-08 2003-10-08 Splashpower Ltd Improvements relating to improving flux patterns of inductive charging pads
JP4036813B2 (en) * 2003-09-30 2008-01-23 シャープ株式会社 Non-contact power supply system
JP4209437B2 (en) * 2006-11-10 2009-01-14 三菱重工業株式会社 Non-contact power feeding device for mobile body and protection device therefor
AU2008251143B2 (en) * 2007-05-10 2011-12-22 Auckland Uniservices Limited Multi power sourced electric vehicle
US8749334B2 (en) * 2007-05-10 2014-06-10 Auckland Uniservices Ltd. Multi power sourced electric vehicle

Also Published As

Publication number Publication date
JP5751647B2 (en) 2015-07-22
JP2014096982A (en) 2014-05-22
JP2010172084A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5467569B2 (en) Non-contact power feeding device
JP6300106B2 (en) Non-contact power transmission device
JP5354539B2 (en) Non-contact power feeding device
JP4209437B2 (en) Non-contact power feeding device for mobile body and protection device therefor
JP5240786B2 (en) Non-contact power feeding device
US10843579B2 (en) Charging configuration for the inductive wireless emission of energy
JP5286445B1 (en) Wireless power feeder for electric mobile body
US10250071B2 (en) Wireless power supply coil
US20150091518A1 (en) Charging configuration for the inductive wireless emission of energy
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
EP2927917B1 (en) Power receiving device and power transmission device
JP6300107B2 (en) Non-contact power transmission device
JP6164853B2 (en) Non-contact power supply system while traveling
JP2010173503A (en) Non-contact power supply device
WO2013099221A1 (en) Non-contact charging device
WO2015072574A1 (en) Power-receiving device and power-transmitting device
US10014106B2 (en) Coil for non-contact power transmission system and non-contact power transmission system
US10673276B2 (en) Coil device, wireless power transfer system, and auxiliary magnetic member
JP6476721B2 (en) Power receiving coil device and non-contact power feeding system
JP2014023262A (en) Noncontact power supply unit
JP2014063768A (en) Coil unit used for non-contact power supply system
JP5962605B2 (en) Non-contact charging system for reach electric forklift
JP2017212302A (en) Coil device, non-contact power supply device and non-contact power reception device
WO2024090013A1 (en) Power transmission device
JP2024081965A (en) Power receiving device and non-contact power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5467569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250