JP2015115580A - Power transmission system - Google Patents

Power transmission system Download PDF

Info

Publication number
JP2015115580A
JP2015115580A JP2013259042A JP2013259042A JP2015115580A JP 2015115580 A JP2015115580 A JP 2015115580A JP 2013259042 A JP2013259042 A JP 2013259042A JP 2013259042 A JP2013259042 A JP 2013259042A JP 2015115580 A JP2015115580 A JP 2015115580A
Authority
JP
Japan
Prior art keywords
power
power transmission
coil
unit
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013259042A
Other languages
Japanese (ja)
Inventor
浩章 湯浅
Hiroaki Yuasa
浩章 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013259042A priority Critical patent/JP2015115580A/en
Publication of JP2015115580A publication Critical patent/JP2015115580A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power transmission system including a configuration capable of minimizing decrease in power transmission efficiency.SOLUTION: In a power transmission system having a power reception unit 210 for receiving power, in non contact, from a power transmission unit 410 while facing thereto, the power transmission unit 410 includes a power transmission coil 450, the power reception unit 210 includes a power reception coil 250, and the solenoid length L1 of the power transmission coil 450 is longer than the solenoid length L2 of the power reception coil 250.

Description

本発明は、非接触で電力を送電装置から受電する受電装置を備える電力伝送システムに関する。   The present invention relates to a power transmission system including a power receiving device that receives power from a power transmitting device in a contactless manner.

特許文献1〜7に開示されているように、非接触で電力を送受電する送電装置および受電装置を用いる電力伝送システムが知られている。このような電力伝送システムにおいては、送電装置に用いられる送電コイルのソレノイド長さと、受電装置に用いられる受電コイルのソレノイド長さとは、実質的に一致するように形成されている。   As disclosed in Patent Documents 1 to 7, a power transmission device that transmits and receives power without contact and a power transmission system that uses the power reception device are known. In such a power transmission system, the solenoid length of the power transmission coil used in the power transmission device and the solenoid length of the power reception coil used in the power reception device are substantially matched.

特開2013−154815号公報JP2013-154815A 特開2013−146154号公報JP2013-146154A 特開2013−146148号公報JP2013-146148A 特開2013−110822号公報JP 2013-110822 A 特開2013−126327号公報JP 2013-126327 A 特開2012−204469号公報JP 2012-204469 A 特開2012−175793号公報JP 2012-175793 A

上述したように、送電コイルのソレノイド長さと受電コイルのソレノイド長さとを実質的に一致させることで、送電装置および受電装置のL値を一致させ易く、各コイルに接続するコンデンサの容量が一致したコンデンサを接続することで、各共振周波数を容易に一致させることができる。   As described above, by substantially matching the solenoid length of the power transmission coil and the solenoid length of the power reception coil, the L values of the power transmission device and the power reception device can be easily matched, and the capacitances of the capacitors connected to the coils are matched. By connecting a capacitor, each resonance frequency can be easily matched.

しかし、上記電力伝送システムにおいては、送電コイルと受電コイルとが位置ずれすると、位置ずれ量によっては、送電コイルと受電コイルとの間の磁気経路が変化し、大きく電力伝送効率が大きく低下するおそれがある。   However, in the above power transmission system, if the power transmission coil and the power reception coil are misaligned, the magnetic path between the power transmission coil and the power reception coil may change depending on the amount of misalignment, and the power transmission efficiency may be greatly reduced. There is.

本発明は、上記課題に鑑みてなされたものであり、電力送電効率の低下を抑制することが可能な構成を備える電力伝送システムを提供することを目的とする。   This invention is made | formed in view of the said subject, and aims at providing a power transmission system provided with the structure which can suppress the fall of electric power transmission efficiency.

この電力伝送システムにおいては、送電部に対向した状態で上記送電部から非接触で電力を受電する受電部を有する電力伝送システムであって、送電部は、送電コイルを含み、上記受電部は、受電コイルを含み、上記送電コイルのソレノイド長さは、上記受電コイルのソレノイド長さよりも長い。   In this power transmission system, the power transmission system includes a power receiving unit that receives power from the power transmission unit in a non-contact manner in a state of facing the power transmission unit, the power transmission unit includes a power transmission coil, and the power reception unit includes: Including a power receiving coil, the solenoid length of the power transmitting coil is longer than the solenoid length of the power receiving coil.

この構成によれば、送電コイルと受電コイルとが位置ずれした場合でも、送電コイルのソレノイド長さは、受電コイルのソレノイド長さよりも長いことから、送電コイルと受電コイルとの間の磁気経路を維持させることができる。   According to this configuration, even when the power transmission coil and the power reception coil are misaligned, the solenoid length of the power transmission coil is longer than the solenoid length of the power reception coil, so that the magnetic path between the power transmission coil and the power reception coil is reduced. Can be maintained.

この電力伝送システムによれば、電力送電効率の低下を抑制することが可能な構成を備える電力伝送システムを提供する。   According to this electric power transmission system, an electric power transmission system provided with the structure which can suppress the fall of electric power transmission efficiency is provided.

実施の形態の電力伝送システムを模式的に示す図である。It is a figure showing typically the electric power transmission system of an embodiment. 実施の形態の受電部の構造を示す斜視図である。It is a perspective view which shows the structure of the power receiving part of embodiment. 実施の形態の送電部の構造を示す斜視図である。It is a perspective view which shows the structure of the power transmission part of embodiment. 背景技術における送電部と受電部とに位置ずれが生じた場合の図である。It is a figure in case position shift arises in the power transmission part and power receiving part in background art. 背景技術における送電部と受電部とに位置ずれが生じた場合の図である。It is a figure in case position shift arises in the power transmission part and power receiving part in background art. 実施の形態の送電部と受電部とに位置ずれが生じた場合を示す図である。It is a figure which shows the case where position shift has arisen in the power transmission part and power receiving part of embodiment. 送電コイル(一次コイル)のソレノイド長さと、k値との関係を示す図である。It is a figure which shows the relationship between the solenoid length of a power transmission coil (primary coil), and k value.

本発明に基づいた実施の形態について、以下、図面を参照しながら説明する。実施の形態の説明において、個数および量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数およびその量などに限定されない。実施の形態の説明において、同一の部品および相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。   Embodiments based on the present invention will be described below with reference to the drawings. In the description of the embodiments, when the number and amount are referred to, the scope of the present invention is not necessarily limited to the number and amount unless otherwise specified. In the description of the embodiments, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.

図1を参照して、実施の形態1における電力伝送システム1000について説明する。図1は、電力伝送システム1000の全体構成を模式的に示す図である。電力伝送システム1000は、電動車両100(車両)および外部給電装置300を備える。   With reference to FIG. 1, the power transmission system 1000 in Embodiment 1 is demonstrated. FIG. 1 is a diagram schematically illustrating the overall configuration of the power transmission system 1000. The power transmission system 1000 includes an electric vehicle 100 (vehicle) and an external power feeding device 300.

(電動車両100)
図1を参照して、電動車両100は、車両本体110および受電装置200を備える。車両本体110には、車両ECU120(制御部)、整流器130、DC/DCコンバータ(以下、単に「コンバータ」と称する。)140、バッテリ150、パワーコントロールユニット(以下、単に「PCU」と称する。)160、モータユニット170、および通信部180などが設けられる。受電装置200は、受電コイル250を有し、車両本体110の底面に配置される。
(Electric vehicle 100)
Referring to FIG. 1, electrically powered vehicle 100 includes a vehicle main body 110 and a power receiving device 200. The vehicle main body 110 includes a vehicle ECU 120 (control unit), a rectifier 130, a DC / DC converter (hereinafter simply referred to as “converter”) 140, a battery 150, and a power control unit (hereinafter simply referred to as “PCU”). 160, a motor unit 170, a communication unit 180, and the like. The power receiving device 200 has a power receiving coil 250 and is disposed on the bottom surface of the vehicle main body 110.

外部給電装置300は送電装置400を含み、送電装置400は送電コイル450を有している。受電装置200の受電コイル250が送電装置400の送電コイル450に対向した状態で、受電装置200は送電装置400から電力を非接触で受電する。受電装置200は、受電部210と、受電部210に接続されたコンデンサ220と、後述のシールドとを有する。受電部210は、ソレノイド型のコアユニット260と受電コイル250とを有する。   The external power supply apparatus 300 includes a power transmission apparatus 400, and the power transmission apparatus 400 includes a power transmission coil 450. In a state where the power receiving coil 250 of the power receiving device 200 faces the power transmitting coil 450 of the power transmitting device 400, the power receiving device 200 receives power from the power transmitting device 400 in a contactless manner. The power receiving device 200 includes a power receiving unit 210, a capacitor 220 connected to the power receiving unit 210, and a shield described later. The power receiving unit 210 includes a solenoid type core unit 260 and a power receiving coil 250.

受電コイル250は、浮遊容量を有し、整流器130に接続されている。受電コイル250の誘導係数と、受電コイル250の浮遊容量およびコンデンサ220の電気容量とによって、電気回路が形成される。コンデンサ220および受電コイル250は、直列に接続されるが、これらは並列に接続されていてもよい。   The power receiving coil 250 has a stray capacitance and is connected to the rectifier 130. An electric circuit is formed by the induction coefficient of the power receiving coil 250, the stray capacitance of the power receiving coil 250, and the electric capacity of the capacitor 220. The capacitor 220 and the power receiving coil 250 are connected in series, but they may be connected in parallel.

電力伝送システム1000において、車両本体110が停止しているときに給電ボタンがオン状態に設定されたことを車両ECU120が検出した場合、車両の動作モードは充電モードに切り替えられる。車両ECU120は、通信部180を介して、外部給電装置300によるバッテリ150の充電制御の実行を指示する。   In the power transmission system 1000, when the vehicle ECU 120 detects that the power supply button is set to the on state when the vehicle main body 110 is stopped, the operation mode of the vehicle is switched to the charging mode. Vehicle ECU 120 instructs execution of charging control of battery 150 by external power supply device 300 via communication unit 180.

(外部給電装置300)
外部給電装置300は、送電装置400、高周波電力装置310、送電ECU320、および通信部322を含む。高周波電力装置310は、交流電源330に接続される。交流電源330は、商用電源または独立電源装置等である。送電装置400は、駐車スペース内に設けられ、高周波電力装置310に接続される。送電ECU320は、高周波電力装置310などの駆動を制御する。
(External power supply device 300)
External power supply device 300 includes a power transmission device 400, a high frequency power device 310, a power transmission ECU 320, and a communication unit 322. The high frequency power device 310 is connected to the AC power source 330. The AC power supply 330 is a commercial power supply or an independent power supply device. The power transmission device 400 is provided in the parking space and connected to the high frequency power device 310. The power transmission ECU 320 controls driving of the high-frequency power device 310 and the like.

通信部322は、外部給電装置300と電動車両100との間で無線通信を行なうための通信インターフェースである。通信部322は、電動車両100の通信部180から送信されるバッテリ情報、送電の開始、継続、および停止を指示する信号、ならびに、送電電力の増加若しくは減少を指示する信号などを受信し、これらの情報を送電ECU320へ出力する。   Communication unit 322 is a communication interface for performing wireless communication between external power supply apparatus 300 and electric vehicle 100. The communication unit 322 receives battery information transmitted from the communication unit 180 of the electric vehicle 100, a signal instructing start, continuation, and stop of power transmission, a signal instructing increase or decrease in transmitted power, and the like. Is output to the power transmission ECU 320.

送電装置400は、送電部410と、送電部410に接続されたコンデンサ420と、後述のシールドとを有する。送電部410は、ソレノイド型のコアユニット440と送電コイル450とを有する。送電コイル450は、浮遊容量を有し、高周波電力装置310に接続されている。送電コイル450の誘導係数と、送電コイル450の浮遊容量およびコンデンサ420の電気容量とによって、電気回路が形成される。コンデンサ420および送電コイル450は、直列に接続されるが、これらは並列に接続されていてもよい。   The power transmission device 400 includes a power transmission unit 410, a capacitor 420 connected to the power transmission unit 410, and a shield described later. The power transmission unit 410 includes a solenoid type core unit 440 and a power transmission coil 450. The power transmission coil 450 has a stray capacitance and is connected to the high frequency power device 310. An electric circuit is formed by the induction coefficient of power transmission coil 450, the stray capacitance of power transmission coil 450, and the electric capacity of capacitor 420. The capacitor 420 and the power transmission coil 450 are connected in series, but they may be connected in parallel.

高周波電力装置310は、交流電源330から受ける電力を高周波の電力に変換し、変換した高周波電力を送電コイル450へ供給する。送電コイル450は、受電部210の受電コイル250へ、電磁誘導により非接触で電力を送電する。   The high frequency power device 310 converts the power received from the AC power source 330 into high frequency power, and supplies the converted high frequency power to the power transmission coil 450. The power transmission coil 450 transmits power to the power reception coil 250 of the power reception unit 210 in a non-contact manner by electromagnetic induction.

このように送電装置400において、高周波電力装置310は、交流電源330から受ける電力を高周波の電力に変換し、変換した高周波電力を送電コイル450へ供給する。送電部410および受電部210の各々は、コイル(450,250)とコンデンサ(420,220)とを含み、伝送周波数において共振するように設計されている。送電部410および受電部210の共振強度を示すQ値は、100以上であることが好ましい。   Thus, in power transmission device 400, high frequency power device 310 converts the power received from AC power supply 330 into high frequency power, and supplies the converted high frequency power to power transmission coil 450. Each of power transmission unit 410 and power reception unit 210 includes coils (450, 250) and capacitors (420, 220), and is designed to resonate at a transmission frequency. The Q value indicating the resonance intensity of the power transmission unit 410 and the power reception unit 210 is preferably 100 or more.

(受電部210の構造)
図2を参照して、受電部210の構造について説明する。図2は、受電部210の構造を示す斜視図である。受電部210は、受電コイル250、およびコアユニット260を含む。コアユニット260には、コイル巻回軸O2を中心として、コアユニット260の上面および下面を含む周囲において螺旋状に受電コイル250が巻回されている。
(Structure of power receiving unit 210)
With reference to FIG. 2, the structure of power reception unit 210 will be described. FIG. 2 is a perspective view illustrating the structure of the power receiving unit 210. The power receiving unit 210 includes a power receiving coil 250 and a core unit 260. The power receiving coil 250 is spirally wound around the core unit 260 around the coil winding axis O2 around the core unit 260 including the upper surface and the lower surface.

コアユニット260は、上面260A、下面260B、側面260C〜260Fを有する全体として板状の形状を有する。コアユニット260は、複数の分割コアが組み合わされ、この分割コアが絶縁紙により包囲されている。分割コアにはいずれもフェライトが用いられる。   The core unit 260 has a plate-like shape as a whole having an upper surface 260A, a lower surface 260B, and side surfaces 260C to 260F. In the core unit 260, a plurality of divided cores are combined, and the divided cores are surrounded by insulating paper. Ferrite is used for each of the split cores.

受電コイル250は、コイル巻回軸O2の軸方向(コイルの磁束方向)において、所定長さのソレノイド長さ(L2)を有している。ここで、ソレノイド長さとは、コアユニット260に巻回された受電コイル250のコイル巻回軸O2方向の長さにおいて、受電コイル250として磁界形成に寄与する長さをいう。また、このソレノイド長さ(L2)の中心をCL2とする。   The power receiving coil 250 has a solenoid length (L2) of a predetermined length in the axial direction of the coil winding axis O2 (the magnetic flux direction of the coil). Here, the solenoid length refers to the length of the power receiving coil 250 wound around the core unit 260 in the coil winding axis O2 direction that contributes to magnetic field formation as the power receiving coil 250. The center of the solenoid length (L2) is CL2.

(送電部410の構造)
図3を参照して、送電部410の構造について説明する。図3は、送電部410の構造を示す斜視図である。送電部410は、送電コイル450、およびコアユニット460を含む。コアユニット460には、コイル巻回軸O2を中心として、コアユニット460の上面および下面を含む周囲において螺旋状に送電コイル450が巻回されている。コイル巻回軸O2は、車両の前後方向に沿って配置されてもよいし、車両の左右方向方向に沿って配置されてもよい。
(Structure of power transmission unit 410)
With reference to FIG. 3, the structure of power transmission unit 410 will be described. FIG. 3 is a perspective view showing the structure of the power transmission unit 410. The power transmission unit 410 includes a power transmission coil 450 and a core unit 460. A power transmission coil 450 is spirally wound around the core unit 460 around the coil winding axis O2 and including the upper surface and the lower surface of the core unit 460. The coil winding axis O2 may be disposed along the front-rear direction of the vehicle, or may be disposed along the left-right direction of the vehicle.

コアユニット460は、上面460A、下面460B、側面460C〜460Fを有する全体として板状の形状を有する。コアユニット460は、複数の分割コアが組み合わされ、この分割コアが絶縁紙により包囲されている。分割コアにはいずれもフェライトが用いられる。   The core unit 460 has a plate shape as a whole having an upper surface 460A, a lower surface 460B, and side surfaces 460C to 460F. In the core unit 460, a plurality of divided cores are combined, and the divided cores are surrounded by insulating paper. Ferrite is used for each of the split cores.

送電コイル450は、コイル巻回軸O2の軸方向(コイルの磁束方向)において、所定長さのソレノイド長さ(L1)を有している。ここで、ソレノイド長さとは、コアユニット460に巻回された送電コイル450のコイル巻回軸O2方向の長さにおいて、送電コイル450として磁界形成に寄与する長さをいう。また、このソレノイド長さ(L1)の中心をCL1とする。   The power transmission coil 450 has a solenoid length (L1) of a predetermined length in the axial direction of the coil winding axis O2 (the magnetic flux direction of the coil). Here, the solenoid length refers to the length of the power transmission coil 450 wound around the core unit 460 in the coil winding axis O2 direction that contributes to magnetic field formation as the power transmission coil 450. The center of the solenoid length (L1) is CL1.

(電力送電効率)
次に、図4から図7を参照して、上記送電部410を有する送電装置400、および上記受電部210を有する受電装置200を用いた電力伝送システムの電力送電効率について説明する。図4および図5は、背景技術における送電部と受電部とに位置ずれが生じた場合の第1および第2の図、図6は、実施の形態の送電部と受電部とに位置ずれが生じた場合を示す図、図7は、送電コイル(一次コイル)のソレノイド長さと、k値との関係を示す図である。
(Electric power transmission efficiency)
Next, with reference to FIG. 4 to FIG. 7, the power transmission efficiency of the power transmission system using the power transmission device 400 having the power transmission unit 410 and the power reception device 200 having the power reception unit 210 will be described. FIGS. 4 and 5 are first and second diagrams in the case where a positional deviation occurs between the power transmitting unit and the power receiving unit in the background art, and FIG. 6 is a positional deviation between the power transmitting unit and the power receiving unit according to the embodiment. FIG. 7 is a diagram showing a relationship between the solenoid length of the power transmission coil (primary coil) and the k value.

図4は、送電コイル450のソレノイド長さ(L1)と、受電コイル250のソレノイド長さ(L2)とが同じ長さの場合に、コイル間に位置ずれが生じた場合を示している。ここで、位置ずれとは、コイル巻回軸O2の方向に沿って、受電コイル250の中心CL2と、送電コイル450の中心CL1とがずれる場合を意味する。図4では、受電コイル250の中心CL2と送電コイル450の中心CL1とが、距離Z1ずれている。   FIG. 4 shows a case where a positional deviation occurs between the coils when the solenoid length (L1) of the power transmission coil 450 and the solenoid length (L2) of the power reception coil 250 are the same length. Here, the positional deviation means a case where the center CL2 of the power receiving coil 250 and the center CL1 of the power transmitting coil 450 are displaced along the direction of the coil winding axis O2. In FIG. 4, the center CL2 of the power receiving coil 250 and the center CL1 of the power transmitting coil 450 are shifted by a distance Z1.

距離Z1の位置ずれ量が小さい場合には、送電コイル450と受電コイル250との間に形成される磁界の経路は、図4に示すように、位置ずれがあっても、理想的な磁気経路Mを形成する。   When the displacement amount of the distance Z1 is small, the path of the magnetic field formed between the power transmission coil 450 and the power reception coil 250 is an ideal magnetic path even if there is a displacement as shown in FIG. M is formed.

しかし、図5に示すように、位置ずれ量が距離Z2(>Z1)と大きくなった場合には、理想的な磁気経路Mが形成されなくなり、磁気経路が短絡したような状態になる。図5に示すような磁気経路M2が形成された場合には、送電コイル450と受電コイル250との間の結合系数kが著しく悪化する。その結果、この電力伝送システムの電力送電効率の低下を招くことになる。   However, as shown in FIG. 5, when the amount of misalignment increases to a distance Z2 (> Z1), the ideal magnetic path M is not formed, and the magnetic path is short-circuited. When the magnetic path M2 as shown in FIG. 5 is formed, the coupling system number k between the power transmission coil 450 and the power reception coil 250 is significantly deteriorated. As a result, the power transmission efficiency of this power transmission system is reduced.

そこで、発明者らは、図6に示すように、送電コイル(一次コイル)450のソレノイド長さ(L1)は、受電コイル250のソレノイド長さ(L2)よりも長くなる構成を採用した。この構成で、コイル巻回軸O2方向に沿って、送電コイル450と受電コイル250との間に、位置ずれ(本実施の形態では、Z=100mm)を生じさせた状態で、送電コイル450のソレノイド長(L1)を変化させ、送電コイル450と受電コイル250との間の結合系数kの値を測定した。受電コイル(二次コイル)250のソレノイド長さ(L2)は、150mmと一定の長さとした。   Therefore, the inventors have adopted a configuration in which the solenoid length (L1) of the power transmission coil (primary coil) 450 is longer than the solenoid length (L2) of the power reception coil 250, as shown in FIG. With this configuration, in a state where a positional deviation (Z = 100 mm in the present embodiment) is generated between the power transmission coil 450 and the power reception coil 250 along the coil winding axis O2 direction, The solenoid length (L1) was changed, and the value of the coupling system number k between the power transmission coil 450 and the power reception coil 250 was measured. The solenoid length (L2) of the power receiving coil (secondary coil) 250 was a constant length of 150 mm.

その結果、図7に示すように、受電コイル250のソレノイド長さ(L2)が、150mmと一定の場合に、送電コイル450のソレノイド長さ(L1)を大きくしていくと、k値が増加し、送電コイル450のソレノイド長さ(L1)が、位置ずれ(Z=100mm)の約3倍の値以上で、結合系数kは、飽和することが分かった。   As a result, as shown in FIG. 7, when the solenoid length (L2) of the power receiving coil 250 is constant at 150 mm, the k value increases as the solenoid length (L1) of the power transmitting coil 450 is increased. In addition, it was found that the coupling system number k is saturated when the solenoid length (L1) of the power transmission coil 450 is not less than about three times the displacement (Z = 100 mm).

したがって、送電コイル450のソレノイド長さ(L2)は、受電コイル250のソレノイド長さ(L1)よりも長い構成を採用することで、電力送電効率の低下を抑制することが可能となる。   Therefore, by adopting a configuration in which the solenoid length (L2) of the power transmission coil 450 is longer than the solenoid length (L1) of the power reception coil 250, it is possible to suppress a decrease in power transmission efficiency.

以上、各実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments have been described above, the embodiments disclosed herein are illustrative and non-restrictive in every respect. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100 電動車両、110 車両本体、120 車両ECU、130 整流器、140 DC/DCコンバータ、150 バッテリ、160 パワーコントロールユニット(PCU)、170 モータユニット、180,322 通信部、200 受電装置、210 受電部、220,420 コンデンサ、260,460 コアユニット、260A 上面、260B 下面、260C,260D,260E,260F 側面、250 受電コイル、300 外部給電装置、310 高周波電力装置、320 送電ECU、330 交流電源、400 送電装置、450 送電コイル、1000 電力伝送システム、O2 コイル巻回軸、P1 中心位置。   DESCRIPTION OF SYMBOLS 100 Electric vehicle, 110 Vehicle main body, 120 Vehicle ECU, 130 Rectifier, 140 DC / DC converter, 150 Battery, 160 Power control unit (PCU), 170 Motor unit, 180,322 Communication part, 200 Power receiving apparatus, 210 Power receiving part, 220, 420 capacitor, 260, 460 core unit, 260A upper surface, 260B lower surface, 260C, 260D, 260E, 260F side surface, 250 power receiving coil, 300 external power supply device, 310 high frequency power device, 320 power transmission ECU, 330 AC power source, 400 power transmission Device, 450 power transmission coil, 1000 power transmission system, O2 coil winding axis, P1 center position.

Claims (1)

送電部に対向した状態で前記送電部から非接触で電力を受電する受電部を有する電力伝送システムであって、
前記送電部は、送電コイルを含み、
前記受電部は、受電コイルを含み、
前記送電コイルのソレノイド長さは、前記受電コイルのソレノイド長さよりも長い、電力伝送システム。
A power transmission system having a power receiving unit that receives power in a non-contact manner from the power transmitting unit in a state of facing the power transmitting unit,
The power transmission unit includes a power transmission coil,
The power receiving unit includes a power receiving coil,
The power transmission system, wherein a solenoid length of the power transmission coil is longer than a solenoid length of the power reception coil.
JP2013259042A 2013-12-16 2013-12-16 Power transmission system Pending JP2015115580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013259042A JP2015115580A (en) 2013-12-16 2013-12-16 Power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013259042A JP2015115580A (en) 2013-12-16 2013-12-16 Power transmission system

Publications (1)

Publication Number Publication Date
JP2015115580A true JP2015115580A (en) 2015-06-22

Family

ID=53529083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013259042A Pending JP2015115580A (en) 2013-12-16 2013-12-16 Power transmission system

Country Status (1)

Country Link
JP (1) JP2015115580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074855A (en) * 2016-11-02 2018-05-10 日本無線株式会社 Non-contact power transmission device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505681A (en) * 1996-12-02 2000-05-16 ライト、サイエンシーズ、リミテッド、パートナーシップ Electromagnetic coil shape for power supply through tissue
JP2001025104A (en) * 1999-07-07 2001-01-26 Meidensha Corp Electric vehicle and running system thereof
JP2010172084A (en) * 2009-01-21 2010-08-05 Saitama Univ Non-contact power feeding device
JP2011050127A (en) * 2009-08-25 2011-03-10 Saitama Univ Non-contact power feeder
JP2012170195A (en) * 2011-02-10 2012-09-06 Saitama Univ Non-contact power supply device
JP2012204469A (en) * 2011-03-24 2012-10-22 Technova:Kk Contactless current feeding coil device
JP2013027171A (en) * 2011-07-21 2013-02-04 Sony Corp Detection device, electricity receiver, electricity transmitter, contactless power transmission system, and detection method
WO2013118482A1 (en) * 2012-02-10 2013-08-15 パナソニック株式会社 Power transmission coil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505681A (en) * 1996-12-02 2000-05-16 ライト、サイエンシーズ、リミテッド、パートナーシップ Electromagnetic coil shape for power supply through tissue
JP2001025104A (en) * 1999-07-07 2001-01-26 Meidensha Corp Electric vehicle and running system thereof
JP2010172084A (en) * 2009-01-21 2010-08-05 Saitama Univ Non-contact power feeding device
JP2011050127A (en) * 2009-08-25 2011-03-10 Saitama Univ Non-contact power feeder
JP2012170195A (en) * 2011-02-10 2012-09-06 Saitama Univ Non-contact power supply device
JP2012204469A (en) * 2011-03-24 2012-10-22 Technova:Kk Contactless current feeding coil device
JP2013027171A (en) * 2011-07-21 2013-02-04 Sony Corp Detection device, electricity receiver, electricity transmitter, contactless power transmission system, and detection method
WO2013118482A1 (en) * 2012-02-10 2013-08-15 パナソニック株式会社 Power transmission coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074855A (en) * 2016-11-02 2018-05-10 日本無線株式会社 Non-contact power transmission device

Similar Documents

Publication Publication Date Title
JP5537981B2 (en) Mobile power feeder
WO2011122249A1 (en) Contactless power feeding apparatus and contactless power feeding method
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
WO2013061441A1 (en) Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
JP2012023913A (en) Non-contact power feeding device
WO2013002240A1 (en) Power feeding system design method and power feeding system
EP2812206A2 (en) Power transmitting device, power receiving device and power transfer system
KR20150113981A (en) Power transmission device, power receiving device, vehicle, and contactless power supply system
JPWO2014147819A1 (en) Vehicle and contactless power supply system
US20150213950A1 (en) Power receiving device and power transmitting device
WO2015072574A1 (en) Power-receiving device and power-transmitting device
US10673276B2 (en) Coil device, wireless power transfer system, and auxiliary magnetic member
JP6164490B2 (en) Non-contact power feeding device
JP2014023262A (en) Noncontact power supply unit
JP2015115580A (en) Power transmission system
JP2016086592A (en) Power transmission system, power transmission apparatus, and power reception apparatus
JP6217435B2 (en) Power receiving device
JP6215969B2 (en) Wireless power transmission system and power transmission device and power reception device thereof
JP2015115579A (en) Power transmission system
JP6241659B2 (en) Contactless power supply
JP2015156780A (en) power transmission system
JP6394123B2 (en) Coil unit
JP6040510B2 (en) Power transmission system
JP6138504B2 (en) Power transmission device and power reception device
JP2016018802A (en) Coil unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205