JP2012204469A - Contactless current feeding coil device - Google Patents

Contactless current feeding coil device Download PDF

Info

Publication number
JP2012204469A
JP2012204469A JP2011065899A JP2011065899A JP2012204469A JP 2012204469 A JP2012204469 A JP 2012204469A JP 2011065899 A JP2011065899 A JP 2011065899A JP 2011065899 A JP2011065899 A JP 2011065899A JP 2012204469 A JP2012204469 A JP 2012204469A
Authority
JP
Japan
Prior art keywords
coil
case
hole
coil device
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011065899A
Other languages
Japanese (ja)
Other versions
JP5813973B2 (en
Inventor
Tomio Yasuda
富夫 保田
Hiroyuki Kishi
洋之 岸
Shigeru Abe
茂 阿部
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Technova Inc
Saitama University NUC
Original Assignee
Aisin AW Co Ltd
Technova Inc
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011065899A priority Critical patent/JP5813973B2/en
Application filed by Aisin AW Co Ltd, Technova Inc, Saitama University NUC filed Critical Aisin AW Co Ltd
Priority to EP17155941.2A priority patent/EP3185263A1/en
Priority to PCT/JP2012/050969 priority patent/WO2012099170A1/en
Priority to EP12736387.7A priority patent/EP2667390B1/en
Priority to EP17155943.8A priority patent/EP3196903B1/en
Priority to CN201280005516.4A priority patent/CN103339698B/en
Priority to US13/979,820 priority patent/US9312729B2/en
Publication of JP2012204469A publication Critical patent/JP2012204469A/en
Application granted granted Critical
Publication of JP5813973B2 publication Critical patent/JP5813973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02T10/7005
    • Y02T10/7077

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contactless current feeding coil device in which a lead out distance of a lead wire of a coil winding can be shortened without impairing magnetic shielding effect of a magnetic shielding plate.SOLUTION: The contactless current feeding coil device includes a coil body having an H-shaped core 301, a resin case body 101 for accommodating the coil body, and a non-magnetic conductive plate 200 for magnetic shielding and to which the case body is fixed. The case body 101 has a case through hole 103 arranged adjacent to a central line bisecting a gap between parallel magnetic pole sections 302 and 303 of the coil body. The non-magnetic conductive plate 200 has a communication through hole 201 overlapping the case through hole 103. A lead wire of wiring wound around the coil body is lead out while being inserted and passed through the case through hole 103 and communication through hole 201. Leakage magnetic flux distribution of the coil having the H-shaped core is lower at an intermediate portion between both the magnetic poles. Consequently, even though through holes for passing the lead wire are formed in this intermediate portion, the magnetic shielding property of the non-magnetic conductive plate is not impaired.

Description

本発明は、電気自動車などの移動体に非接触で給電する非接触給電用コイル装置に関する。   The present invention relates to a non-contact power supply coil device that supplies power to a moving body such as an electric vehicle in a non-contact manner.

非接触給電装置は、送電コイル(一次コイル)と受電コイル(二次コイル)との間の電磁誘導を利用して送電コイルから受電コイルに電力を供給する。この非接触給電装置は、電気自動車やプラグインハイブリッド車に搭載された二次電池を充電するための給電装置として、利用の拡大が見込まれている。
図18は、非接触給電装置を用いたプラグインハイブリッド車の給電システムを示している。エンジン54とモータ53とを駆動源として搭載する車両は、モータ53用の電源である二次電池51と、二次電池51の直流を交流に変換してモータ53に供給するインバータ52と、非接触給電トランス30を通じて給電された交流を整流して二次電池51に供給する整流器40と、非接触給電トランス30を構成する受電コイル33及び二次側コンデンサ(受電コイル33と並列接続する共振コンデンサ)34とを備えており、受電コイル33は、車体の床面の外側に設置される。
一方、給電ステーション側(地上側)は、商用周波数の交流を直流に変換する整流器10と、直流から高周波交流を生成するインバータ20と、非接触給電トランス30を構成する送電コイル31及び一次側コンデンサ32とを備えており、運転者は、受電コイル33が送電コイル31の真上に来るように車両を停止させて、二次電池51への給電を開始する。
The non-contact power supply device supplies power from the power transmission coil to the power receiving coil by using electromagnetic induction between the power transmission coil (primary coil) and the power receiving coil (secondary coil). This non-contact power supply device is expected to expand its use as a power supply device for charging a secondary battery mounted on an electric vehicle or a plug-in hybrid vehicle.
FIG. 18 shows a power feeding system for a plug-in hybrid vehicle using a non-contact power feeding device. A vehicle equipped with the engine 54 and the motor 53 as drive sources includes a secondary battery 51 that is a power source for the motor 53, an inverter 52 that converts the direct current of the secondary battery 51 into alternating current, and supplies the alternating current to the motor 53, A rectifier 40 that rectifies the alternating current fed through the contact power supply transformer 30 and supplies it to the secondary battery 51, a power receiving coil 33 and a secondary side capacitor (a resonant capacitor connected in parallel with the power receiving coil 33) constituting the non-contact power supply transformer 30. 34), and the power receiving coil 33 is installed outside the floor of the vehicle body.
On the other hand, on the power supply station side (ground side), a rectifier 10 that converts commercial frequency alternating current into direct current, an inverter 20 that generates high frequency alternating current from direct current, a power transmission coil 31 and a primary side capacitor that constitute a non-contact power supply transformer 30. 32, the driver stops the vehicle so that the power receiving coil 33 is directly above the power transmitting coil 31, and starts power feeding to the secondary battery 51.

この非接触給電装置では、送電コイル31に対して受電コイル33の位置が前後・左右にずれると、受電効率が低下する。しかし、受電コイル33が送電コイル31に正対するように車両を停めるには相当の運転技術が要求される。そのため、実際のシステムでは、送電コイル31及び受電コイル33の面積を拡げて給電位置の許容範囲を設定し、その許容範囲内に車を停めれば、受電コイル33と送電コイル31との間に所要の対向面積が確保でき、受電効率を落とさずに給電できるように構成されている。
しかしながら、車両にとって、大きくて重い受電コイル33を搭載することは、負担になる。
In this non-contact power feeding device, when the position of the power receiving coil 33 is shifted back and forth and right and left with respect to the power transmitting coil 31, the power receiving efficiency is lowered. However, considerable driving skill is required to stop the vehicle so that the power reception coil 33 faces the power transmission coil 31. Therefore, in an actual system, if the area of the power transmission coil 31 and the power reception coil 33 is expanded to set a permissible range of the power feeding position, and the vehicle is stopped within the permissible range, a gap between the power reception coil 33 and the power transmission coil 31 is established. A required facing area can be secured, and power can be supplied without reducing power reception efficiency.
However, it is a burden for the vehicle to mount the large and heavy power receiving coil 33.

車両用の非接触給電装置のコイルには、下記特許文献1に記載された、フラットなフェライトコアの片面に渦巻き状に電線を巻いて配置したコイル(片側巻コイル)と、下記特許文献2に記載された、コアの回りに電線を巻回したコイル(両側巻コイル)とが知られているが、コイル間の位置ずれに対しては、両側巻コイルの方が、小さな形状で対応できる利点があり、受電コイルの小型化が両側巻コイルによって可能になる。   The coil of the non-contact power feeding device for the vehicle includes a coil (one-side coil) arranged in a spiral shape on one side of a flat ferrite core described in Patent Document 1 below, and Patent Document 2 below. The described coil with a wire wound around the core (both-side wound coil) is known, but the advantage of the double-sided coil can be dealt with in a smaller shape for misalignment between the coils. Therefore, the receiving coil can be downsized by the double-sided coil.

本発明者等は、先に、図19に示すように、小型化できるとともに、コア材量を減らして軽量化できるH字形状のコア80(H型コア)を提案している(特願2009−199425)。このH型コアの場合、Hの字の横棒部分83に電線(複数の絶縁被覆した細線を撚り合わせた高周波用のリッツ線)50が巻回され、平行する縦棒部分81、82が、磁束の出入する磁極部となる。
送電コイル31及び受電コイル33がH型コアにリッツ線を巻回した両側巻コイルから成る非接触給電トランスでは、図20に示すように、主磁束35が、送電コイル31のH型コアの磁極部3181から受電コイル33のH型コアの磁極部3381に進入し、リッツ線50が巻回されたコア中を通り、他方の磁極部3382から送電コイル31のH型コアの磁極部3182に進入し、リッツ線50が巻回されたコア中を通って磁極部3181に達するように巡回する。そして、次の瞬間には逆ルートで巡回し、これを交互に繰り返す。
As shown in FIG. 19, the present inventors have previously proposed an H-shaped core 80 (H-shaped core) that can be reduced in size and reduced in weight by reducing the amount of core material (Japanese Patent Application 2009). -199425). In the case of this H-shaped core, an electric wire (a high-frequency litz wire obtained by twisting a plurality of thin insulated wires) is wound around an H-shaped horizontal bar portion 83, and parallel vertical bar portions 81 and 82 are It becomes a magnetic pole part where magnetic flux enters and exits.
In the non-contact power supply transformer in which the power transmission coil 31 and the power reception coil 33 are formed by double-sided coils in which a litz wire is wound around an H-shaped core, the main magnetic flux 35 is a magnetic pole of the H-shaped core of the power transmission coil 31 as shown in FIG. Part 3181 enters the magnetic pole part 3381 of the H-type core of the power receiving coil 33, passes through the core around which the litz wire 50 is wound, and enters the magnetic pole part 3182 of the H-type core of the power transmission coil 31 from the other magnetic pole part 3382. And it circulates so that it may reach the magnetic pole part 3181 through the core in which the litz wire 50 is wound. Then, at the next moment, the circuit travels in the reverse route, and this is repeated alternately.

この両側巻コイルを用いる非接触給電トランスでは、片側巻コイルのようにコイルの非対向面側を覆うコア部材が無いため、コイルの非対向面側に迂回する漏洩磁束36、37が生じる。この漏洩磁束36が車体の床の鉄板に侵入すると、誘導電流が流れて鉄板が加熱され、給電効率が大幅に低下する。そのため、両側巻コイルを用いる非接触給電トランスでは、コイルの背面にアルミ板65、66等の非磁性の良導電体を配置して、漏洩磁束36を磁気遮蔽する必要がある。
受電コイル33の背面に設けるアルミ板66の面積は、受電コイル33が位置ずれの許容範囲内のどこに位置しても、送電コイル31の略全域がアルミ板66の下方に位置する大きさに設定することが望ましい。そのため、アルミ板66の面積は、受電コイル33の平面形状の面積に比べて可なり大きくなる。
In the non-contact power supply transformer using the both-side winding coil, there is no core member that covers the non-opposing surface side of the coil unlike the single-side winding coil, so that leakage magnetic fluxes 36 and 37 that bypass the non-facing surface side of the coil are generated. When the leakage magnetic flux 36 enters the iron plate on the floor of the vehicle body, an induced current flows, the iron plate is heated, and the power supply efficiency is greatly reduced. For this reason, in the non-contact power supply transformer using the double-sided coil, it is necessary to shield the leakage magnetic flux 36 by disposing a non-magnetic good conductor such as the aluminum plates 65 and 66 on the back surface of the coil.
The area of the aluminum plate 66 provided on the back surface of the power receiving coil 33 is set to a size such that substantially the entire area of the power transmitting coil 31 is located below the aluminum plate 66 no matter where the power receiving coil 33 is located within the allowable range of displacement. It is desirable to do. Therefore, the area of the aluminum plate 66 is considerably larger than the area of the planar shape of the power receiving coil 33.

特開2008−87733号公報JP 2008-87733 A 特開2010−172084号公報JP 2010-172084 A

この非接触給電装置では、車体床面の外側に設置した受電コイル33の巻線のリード線(高周波用のリッツ線)を車内に引き込んで、二次側並列共振コンデンサ34や整流器40と電気的に接続する必要があるが、リード線を車内に引き込む際に、受電コイル33の背面側(床面側)に置かれた磁気遮蔽板(アルミ板)66が邪魔になる。
受電コイルのリード線をアルミ板の端まで延ばし、アルミ板を迂回してリード線を車内に引き込む場合は、高価なリッツ線の全長が長くなり、重量やコストが増加し、固有抵抗による熱損失が増大する。また、受電コイル33で受電する交流は数十kHzの高周波であるため、高周波ノイズの発生などの問題が生じる。
そうかと言って、コイル巻線のリード線の引出し距離を短縮するためにアルミ板に孔を開けてリード線を通した場合は、その孔から漏れた漏洩磁束が車体の床鉄板に侵入し、床鉄板の加熱や給電効率の低下等が生じる虞がある。
また、車内に配置する二次側並列共振コンデンサ34や整流器40が分散している場合も、それらを接続する配線の全長が長くなり、そのため、車内に占める非接触給電装置の体積や重量が増大し、高周波ノイズの発生やコストの上昇などが問題になる。
In this non-contact power feeding device, the lead wire (the litz wire for high frequency) of the winding of the power receiving coil 33 installed outside the floor surface of the vehicle body is drawn into the vehicle and electrically connected to the secondary parallel resonant capacitor 34 and the rectifier 40. However, when the lead wire is drawn into the vehicle, the magnetic shielding plate (aluminum plate) 66 placed on the back side (floor side) of the power receiving coil 33 becomes an obstacle.
When the lead wire of the power receiving coil is extended to the end of the aluminum plate, and the lead wire is drawn into the car by bypassing the aluminum plate, the total length of the expensive litz wire becomes longer, the weight and cost increase, and heat loss due to specific resistance Will increase. Moreover, since the alternating current received by the receiving coil 33 has a high frequency of several tens of kHz, problems such as generation of high frequency noise occur.
That being said, when opening a hole in the aluminum plate to reduce the lead wire lead-out distance of the coil winding and passing the lead wire, the leakage magnetic flux leaking from the hole penetrates into the floor iron plate of the car body, There is a risk that the floor iron plate may be heated or the power supply efficiency may be reduced.
Also, when the secondary side parallel resonant capacitors 34 and the rectifiers 40 arranged in the vehicle are dispersed, the total length of the wirings connecting them becomes long, so that the volume and weight of the non-contact power feeding device occupying in the vehicle increase. However, the occurrence of high-frequency noise and an increase in cost are problems.

本発明は、こうした事情を考慮して創案したものであり、配線の距離を短縮して、コンパクトに構成できる非接触給電用コイル装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-contact power supply coil device that can be configured compactly by reducing the distance of wiring.

本発明は、H字状のコアを有し、このコアの平行するコア部分が磁極部を構成し、各磁極部の中間部位を接続するコア部分に電線が巻回されたコイル本体と、コイル本体を収容する樹脂製のケース本体と、ケース本体が固定された磁気遮蔽用の非磁性導電体板と、を備える非接触給電用コイル装置であって、ケース本体が固定された非磁性導電体板の面の反対側の面に、コイル本体のコイルに並列接続する共振コンデンサ及び整流回路が収容された筐体を配置したことを特徴とする。
この非接触給電用コイル装置では、磁気遮蔽用の非磁性導電体板を挟んで、コイル本体と、並列共振コンデンサ及び整流回路とが一体化して配置されており、短い配線でコンパクトに構成することができる。
The present invention has a coil body having an H-shaped core, a parallel core portion of the core constitutes a magnetic pole portion, and an electric wire wound around the core portion connecting intermediate portions of the magnetic pole portions, and a coil A non-contact power supply coil device comprising a resin case main body for housing a main body and a magnetic shielding nonmagnetic conductor plate to which the case main body is fixed, wherein the case main body is fixed to the nonmagnetic conductor A housing containing a resonant capacitor and a rectifier circuit connected in parallel to the coil of the coil body is disposed on the surface opposite to the surface of the plate.
In this non-contact power supply coil device, the coil body, the parallel resonant capacitor, and the rectifier circuit are integrally arranged with a non-magnetic conductive plate for magnetic shielding interposed therebetween, and the compact configuration is made with short wiring. Can do.

また、本発明の非接触給電用コイル装置では、非磁性導電体板の一方の面に並列共振コンデンサ及び整流回路と共に充電回路を一体化配置しても良い。   In the non-contact power supply coil device of the present invention, a charging circuit may be integrated with a parallel resonant capacitor and a rectifier circuit on one surface of the nonmagnetic conductor plate.

また、本発明の非接触給電用コイル装置では、コイル本体を収容したケース本体が、コイル本体の平行な磁極部の間隔を二等分する中央線に近接して配置されたケース貫通孔を有し、非磁性導電体板が、ケース貫通孔に重なる連通貫通孔を有し、コイル本体に巻回された電線のリード線が、ケース貫通孔及び連通貫通孔に挿通されて筐体内に導出され、共振コンデンサ及び整流回路に電気接続されることを特徴とする。
H型コアを備えるコイルの漏洩磁束分布は、磁極と磁極との中間部分において少ないため、この部分にリード線を通すための貫通孔を設けても、非磁性導電体板の磁気遮蔽効果は損なわれない。
In the non-contact power supply coil device of the present invention, the case main body that houses the coil main body has a case through hole that is disposed close to the center line that bisects the interval between the parallel magnetic pole portions of the coil main body. The nonmagnetic conductor plate has a communication through hole overlapping the case through hole, and the lead wire of the wire wound around the coil body is inserted into the case through communication hole and the communication through hole and led out into the housing. And electrically connected to the resonant capacitor and the rectifier circuit.
Since the magnetic flux leakage distribution of the coil including the H-shaped core is small in the intermediate portion between the magnetic poles, even if a through hole for passing the lead wire is provided in this portion, the magnetic shielding effect of the nonmagnetic conductor plate is impaired. I can't.

また、本発明の非接触給電用コイル装置では、ケース本体のケース貫通孔を、中央線を間に挟んで対を成すように配置し、コイル本体に巻回された電線の一端に接続するリード線とこの電線の他端に接続するリード線とを、対を成すケース貫通孔のそれぞれに挿通する。
ケース貫通孔を中央線の両側に配置することで、コイル本体から最外側のケース貫通孔までの距離を短くでき、ケース本体をコンパクト化できる。
Further, in the non-contact power supply coil device of the present invention, the case through holes of the case main body are arranged so as to form a pair with the center line interposed therebetween, and the lead connected to one end of the electric wire wound around the coil main body The wire and the lead wire connected to the other end of the electric wire are inserted into each of the pair of case through holes.
By disposing the case through holes on both sides of the center line, the distance from the coil body to the outermost case through hole can be shortened, and the case body can be made compact.

また、本発明の非接触給電用コイル装置では、ケース貫通孔に重なる非磁性導電体板の対を成す連通貫通孔を、スリットで繋ぐことが望ましい。
連通貫通孔の対を繋ぐスリットは、非磁性導電体板に発生する渦電流を遮断する。
In the non-contact power supply coil device of the present invention, it is desirable to connect the communication through holes forming a pair of nonmagnetic conductor plates overlapping the case through holes with a slit.
The slit connecting the pair of communication through holes blocks eddy current generated in the nonmagnetic conductor plate.

また、本発明の非接触給電用コイル装置では、コイル本体に複数の本数の電線を並列に巻回する場合に、ケース本体の中央線を間に挟んで配置するケース貫通孔の対の数を、電線の本数に対応させる。   Further, in the non-contact power supply coil device of the present invention, when a plurality of wires are wound in parallel around the coil body, the number of pairs of case through holes arranged with the center line of the case body in between is arranged. Correspond to the number of wires.

また、本発明の非接触給電用コイル装置では、この場合に、ケース本体の中央線を間に挟んで配置する複数対のケース貫通孔を、中央線の両側に複数列配置するようにしても良い。
こうすることで、複数対のケース貫通孔をケース本体に設ける場合でも、コイル本体から最外側のケース貫通孔までの距離を短くでき、ケース本体をコンパクト化できる。
In the non-contact power supply coil device according to the present invention, in this case, a plurality of pairs of case through holes arranged with the center line of the case body interposed therebetween may be arranged in a plurality of rows on both sides of the center line. good.
Thus, even when a plurality of pairs of case through holes are provided in the case body, the distance from the coil body to the outermost case through hole can be shortened, and the case body can be made compact.

また、本発明の非接触給電用コイル装置では、非磁性導電体板の面積を、ケース本体の非磁性導電体板への接触面積よりも大きくし、ケース本体は、収容したコイル本体の中心位置が非磁性導電体板の中心位置と一致するように、非磁性導電体板に固定する。
受電コイルが位置ずれの許容範囲内のどこに位置しても、送電コイルの略全域が非磁性導電体板の下方に位置するように、非磁性導電体板の面積を広く設定し、その非磁性導電体板の中央に受電コイルを固定する。
Further, in the non-contact power supply coil device of the present invention, the area of the non-magnetic conductor plate is made larger than the contact area of the case body to the non-magnetic conductor plate, and the case body is located at the center position of the accommodated coil body. Is fixed to the non-magnetic conductive plate so that it coincides with the center position of the non-magnetic conductive plate.
Regardless of where the receiving coil is located within the allowable range of displacement, the nonmagnetic conductive plate is set to a large area so that the entire area of the transmitting coil is located below the nonmagnetic conductive plate. A receiving coil is fixed to the center of the conductor plate.

本発明の非接触給電用コイル装置は、短い配線でコンパクトに構成することができ、高周波ノイズの低減や、高周波用リッツ線の短縮による重量やコストの削減などを図ることができる。
また、磁気遮蔽板の磁気遮蔽効果を損なわずに、コイル巻線のリード線の引出し距離を短縮できるため、コイル装置の小型化・軽量化が可能になり、給電効率の低下が抑えられる。
The non-contact power supply coil device of the present invention can be configured compactly with short wiring, and can reduce high-frequency noise and weight and cost by shortening the high-frequency litz wire.
In addition, since the lead-out distance of the coil winding lead wire can be shortened without impairing the magnetic shielding effect of the magnetic shielding plate, the coil device can be reduced in size and weight, and the reduction in power supply efficiency can be suppressed.

H型コアから発生する磁束の遮蔽板での損失を示す図The figure which shows the loss in the shielding plate of the magnetic flux generated from an H type core 本発明の第1の実施形態に係る非接触給電用コイル装置を示す図The figure which shows the coil apparatus for non-contact electric power feeding which concerns on the 1st Embodiment of this invention 図2のコイル装置の分解斜視図2 is an exploded perspective view of the coil device of FIG. 図2のコイル装置のケース本体に収容されたH型コアを示す図The figure which shows the H-type core accommodated in the case main body of the coil apparatus of FIG. 図2のコイル装置の非磁性導体板を示す図The figure which shows the nonmagnetic conductor board of the coil apparatus of FIG. 図2のコイル装置での巻線のリード線導出形態を説明する図The figure explaining the lead wire derivation | leading-out form of the coil | winding in the coil apparatus of FIG. 図2のコイル装置を、透明と仮定した非磁性導体板の側から見た図FIG. 2 is a view of the coil device of FIG. 2 as viewed from the side of a non-magnetic conductor plate assumed to be transparent. 本発明の第2の実施形態に係るコイル装置のケース本体を示す図The figure which shows the case main body of the coil apparatus which concerns on the 2nd Embodiment of this invention. 図8のケース本体に収容されたH型コアを示す図The figure which shows the H-shaped core accommodated in the case main body of FIG. 図8のケース本体と組み合わされるケース蓋体を示す図The figure which shows the case cover body combined with the case main body of FIG. 図8のケース本体が固定される非磁性導体板を示す図The figure which shows the nonmagnetic conductor board to which the case main body of FIG. 8 is fixed 本発明の第2の実施形態に係るコイル装置を、透明と仮定した非磁性導体板の側から見た図The figure which looked at the coil apparatus which concerns on the 2nd Embodiment of this invention from the nonmagnetic conductor board side assumed to be transparent 非磁性導体板の連通貫通孔をスリットで繋いだ状態を示す図The figure which shows the state which connected the communicating through-hole of the nonmagnetic conductor plate with the slit 本発明の第3の実施形態に係るコイル装置の平面図(a)及び側面図(b)(c)The top view (a) and side view (b) (c) of the coil apparatus which concerns on the 3rd Embodiment of this invention. 図14のコイル装置を、非磁性導体板を透明と仮定して示した図FIG. 14 shows the coil device of FIG. 14 on the assumption that the nonmagnetic conductor plate is transparent. 図15のコイル装置のケース蓋体を取り除いた図The figure which removed the case cover body of the coil apparatus of FIG. 本発明のコイル装置を用いて二次電池を充電する給電システムの回路構成を示す図The figure which shows the circuit structure of the electric power feeding system which charges a secondary battery using the coil apparatus of this invention. プラグインハイブリッド車の給電システムを示す図Diagram showing power supply system for plug-in hybrid vehicle H型コアを有するコイルを示す図The figure which shows the coil which has an H-shaped core 図19のコイルを対向させた非接触給電トランスでの磁束の流れを説明する図The figure explaining the flow of the magnetic flux in the non-contact electric power transformer which made the coil of FIG. 19 oppose

図17は、本発明のコイル装置を用いて二次電池を充電する給電システムの回路構成を示している。
この回路は、商用電源の交流を直流に変換する整流器、及び、その直流から高周波交流を生成するインバータから成る高周波電源41と、送電コイル31及びそれに直列接続された直列コンデンサ32、並びに、受電コイル33及びそれに並列接続された並列共振コンデンサ34から成る給電トランス30と、給電された交流を整流する倍電圧整流回路42と、整流された直流電圧を所定レベルの直流電圧に変換して二次電池51に供給する充電回路44とを備えている。
倍電圧整流回路42は、電流の流れているダイオードが常に1個であるため、ダイオード順方向の電圧降下による損失分が少なく、フルブリッジ整流回路(常に二つのダイオードに電流が流れる。)に比べて効率が良い。しかし、整流回路には、フルブリッジ整流回路を用いても良い。
また、送電コイル31及び受電コイル33は、H型コアにリッツ線を巻回した両側巻コイルから成る。
FIG. 17 shows a circuit configuration of a power feeding system that charges a secondary battery using the coil device of the present invention.
This circuit includes a rectifier that converts alternating current of a commercial power source into direct current, a high frequency power source 41 that includes an inverter that generates high frequency alternating current from the direct current, a power transmission coil 31, a series capacitor 32 connected in series thereto, and a power receiving coil. 33 and a power supply transformer 30 comprising a parallel resonant capacitor 34 connected in parallel thereto, a voltage doubler rectifier circuit 42 that rectifies the supplied AC, and a rectified DC voltage converted into a DC voltage of a predetermined level to obtain a secondary battery. And a charging circuit 44 to be supplied to 51.
Since the voltage doubler rectifier circuit 42 always has one diode through which current flows, there is little loss due to a voltage drop in the forward direction of the diode, compared to a full-bridge rectifier circuit (current always flows through two diodes). And efficient. However, a full bridge rectifier circuit may be used as the rectifier circuit.
Moreover, the power transmission coil 31 and the power reception coil 33 are formed of double-sided coils in which litz wires are wound around an H-shaped core.

図1は、H型コアに巻線50を施したコイル80を磁気遮蔽板66上に置き、このコイル80から発生する磁束が磁気遮蔽板66によって受ける損失を解析した結果について示している。
図1から、H型コアの平行な磁極部81、82の中間部(特に、平行な磁極部81、82の間隔を二等分する(仮想)中央線83の巻線50から距離を置いた箇所)では、漏洩磁束分布が極めて少ないことが分かる。磁極部81、82の中間部で漏洩磁束分布が少ないことは、実験でも確かめられている。
本発明では、この事実を利用しており、磁気遮蔽板(アルミ板)に設ける巻線50のリード導出孔を、中央線83付近に配置して、アルミ板による磁気遮蔽効果を損なわずにリード線が導出できるようにしている。
FIG. 1 shows a result of analyzing a loss received by the magnetic shielding plate 66 by a magnetic flux generated from the coil 80 by placing a coil 80 having a winding 50 on an H-shaped core on the magnetic shielding plate 66.
From FIG. 1, the intermediate part of the parallel magnetic pole parts 81 and 82 of the H-shaped core (particularly, the distance between the parallel magnetic pole parts 81 and 82 is equally divided into two (virtual) center line 83. It can be seen that the distribution of leakage magnetic flux is extremely small. It has been confirmed by experiments that the leakage magnetic flux distribution is small at the intermediate part between the magnetic pole parts 81 and 82.
In the present invention, this fact is utilized, and the lead lead-out hole of the winding 50 provided in the magnetic shielding plate (aluminum plate) is disposed in the vicinity of the center line 83 so that the magnetic shielding effect by the aluminum plate is not impaired. A line can be derived.

(第1の実施形態)
本発明の第1の実施形態に係る受電コイル装置の外形を図2(下方から見た図)に示し、その分解斜視図を模式的に図3に示している。
この装置は、コイル本体を収容したケース100と、ケース100が固定される磁気遮蔽用のアルミ板200とを備えている。
ケース100は、樹脂製のケース本体101及びケース蓋体102で構成され、ケース本体101にコイル本体(図3では、そのH型コア301のみを示し、巻線を省略している。)が収納され、そのケース本体101にケース蓋体102が重ねられて、両者が結合される。
ケース本体101には、H型コア301に巻回された電線のリード線(リッツ線)を導出するケース貫通孔103が設けられている。このH型コア301には6本の電線を並列に巻回するようにしているため(6並列6ターン)、ケース本体101には、各電線の一端のリード線と他端のリード線とを挿通するための合計6対のケース貫通孔103が形成されている。
(First embodiment)
The outer shape of the power receiving coil device according to the first embodiment of the present invention is shown in FIG. 2 (viewed from below), and an exploded perspective view is schematically shown in FIG.
This apparatus includes a case 100 that houses a coil body, and a magnetic shielding aluminum plate 200 to which the case 100 is fixed.
The case 100 is composed of a resin case main body 101 and a case lid 102, and the case main body 101 stores a coil main body (in FIG. 3, only the H-shaped core 301 is shown and windings are omitted). Then, the case lid 102 is overlapped on the case body 101, and both are coupled.
The case main body 101 is provided with a case through hole 103 through which a lead wire (Litz wire) of an electric wire wound around the H-shaped core 301 is led out. Since six wires are wound in parallel on the H-shaped core 301 (six parallel six turns), the lead wire at one end of each wire and the lead wire at the other end are connected to the case body 101. A total of six pairs of case through holes 103 for insertion are formed.

図4は、ケース本体101内に位置決めされて収容されたH型コア301を示している。このH型コア301は、6本の電線が並列に巻回されるコイル巻枠304を備えており、コイル巻枠304には、電線(リッツ線)を巻き易くするためのガイドが設けられている(コイルは省略)。平行な磁極部302、303は、複数の矩形のフェライトコアを配列して構成している。平行な磁極部302、303の中間部位を接続するコア部分は、コイル巻枠304の中に配置されている。
ケース本体101のケース貫通孔103は、磁極部302、303の間隔を二等分する中央凸条(中央線)104を間に挟んで、その両側に対を成して形成されている。
アルミ板200は、その中心位置とケース本体101に収納されたH型コア301の中心位置とが重なるように、ケース本体101と固定される。
FIG. 4 shows the H-shaped core 301 positioned and accommodated in the case main body 101. This H-shaped core 301 is provided with a coil winding frame 304 around which six electric wires are wound in parallel. The coil winding frame 304 is provided with a guide for facilitating winding of the electric wire (Litz wire). (The coil is omitted). The parallel magnetic pole portions 302 and 303 are configured by arranging a plurality of rectangular ferrite cores. A core portion connecting intermediate portions of the parallel magnetic pole portions 302 and 303 is disposed in the coil winding frame 304.
The case through hole 103 of the case main body 101 is formed in pairs on both sides of a central protrusion (center line) 104 that bisects the interval between the magnetic pole portions 302 and 303.
The aluminum plate 200 is fixed to the case body 101 so that the center position of the aluminum plate 200 and the center position of the H-shaped core 301 accommodated in the case body 101 overlap.

また、アルミ板200には、ケース本体101のケース貫通孔103と連通する位置に連通貫通孔201が設けられている(図3)。図5には、連通貫通孔201を有するアルミ板200を単独で示している。
アルミ板200の面積は、H型コア301が位置ずれの許容範囲のどこに位置した場合でも、送電コイルの略全域がアルミ板200の下方に入る広さを有している。
図6に示すように、コイル巻枠304に巻回された電線のリード線(リッツ線)305、306は、ケース本体101のケース貫通孔103及びアルミ板200の連通貫通孔201を通って車内に導出される。
図7は、アルミ板200に固定されたケース100を、アルミ板200が透明であると仮定して、アルミ板200の側から示している。
The aluminum plate 200 is provided with a communication through hole 201 at a position where it communicates with the case through hole 103 of the case main body 101 (FIG. 3). In FIG. 5, the aluminum plate 200 having the communication through hole 201 is shown alone.
The area of the aluminum plate 200 is large enough that almost the entire area of the power transmission coil falls below the aluminum plate 200, regardless of where the H-shaped core 301 is located within the allowable range of displacement.
As shown in FIG. 6, the lead wires (Litz wires) 305 and 306 of the electric wire wound around the coil winding frame 304 pass through the case through hole 103 of the case main body 101 and the communication through hole 201 of the aluminum plate 200. To be derived.
FIG. 7 shows the case 100 fixed to the aluminum plate 200 from the side of the aluminum plate 200, assuming that the aluminum plate 200 is transparent.

この受電コイルでは、H型コア301に巻回した巻線のリード線305、306を、アルミ板200に設けた孔(連通貫通孔201)から導出しているため、アルミ板200を迂回する場合に比べて、リード線の長さを短くできる。
また、アルミ板200に連通貫通孔201を開けた箇所は、H型コア301の磁極部302、303間の中間位置に当たり、漏洩磁束分布が少ない箇所であるため、連通貫通孔201から漏洩磁束が漏れる虞もない。
そのため、アルミ板200の磁気遮蔽効果を損なわずに、リード線(リッツ線)を短縮化することができる。
In this power receiving coil, since the lead wires 305 and 306 of the winding wound around the H-shaped core 301 are led out from the holes (communication through holes 201) provided in the aluminum plate 200, the aluminum plate 200 is bypassed. Compared to, lead wire length can be shortened.
Further, the location where the communication through hole 201 is opened in the aluminum plate 200 corresponds to an intermediate position between the magnetic pole portions 302 and 303 of the H-shaped core 301 and is a location where the leakage magnetic flux distribution is small. There is no risk of leakage.
Therefore, the lead wire (Litz wire) can be shortened without impairing the magnetic shielding effect of the aluminum plate 200.

なお、ここでは、ケース本体101に6対のケース貫通孔103を設けているが、磁極部302、303の間隔を二等分する中央線上に12個のケース貫通孔を形成し、これらの孔から6本の並行巻線のリード線を導出するようにしても良い。ただ、この場合、H型コア301と、それから最も離れたケース貫通孔との間の距離が長くなり、ケース100が大型化する。そのため、ケース100の小型化を図る上では、ケース貫通孔103を対で設ける方が望ましい。   Here, six pairs of case through-holes 103 are provided in the case body 101, but 12 case through-holes are formed on the center line that bisects the interval between the magnetic pole portions 302 and 303, and these holes are formed. From the above, six parallel winding lead wires may be derived. However, in this case, the distance between the H-shaped core 301 and the case through hole farthest from the H-type core 301 becomes long, and the case 100 is enlarged. Therefore, in order to reduce the size of the case 100, it is desirable to provide the case through holes 103 in pairs.

(第2の実施形態)
第2の実施形態では、ケースの更なる小型化を可能にする受電コイル装置について説明する。
この装置は、図8に示すように、ケース本体111が、中央凸条(中央線)114の両側に二列のケース貫通孔113を有している。
図9は、このケース本体111内に位置決めされて収容されたH型コア301を示している。このH型コア301のコイル巻枠304には、第1の実施形態と同様に、6本の電線が並列に巻回されるが、各電線の一端のリード線を挿通する6個のケース貫通孔113が中央凸条114の右側に二列に配置され、また、各電線の他端のリード線を挿通する6個のケース貫通孔113が中央凸条114の左側に二列に配置されている。そのため、H型コア301と、それから最も離れたケース貫通孔113との間の距離が、第1の実施形態より短くなり、その分、ケース本体111が小型化できる。
(Second Embodiment)
In the second embodiment, a power receiving coil device that enables further miniaturization of the case will be described.
In this apparatus, as shown in FIG. 8, the case main body 111 has two rows of case through holes 113 on both sides of a central protrusion (center line) 114.
FIG. 9 shows the H-shaped core 301 positioned and accommodated in the case main body 111. As in the first embodiment, six electric wires are wound in parallel on the coil winding frame 304 of the H-shaped core 301, but six case penetrations through which lead wires at one end of each electric wire are inserted. The holes 113 are arranged in two rows on the right side of the central ridge 114, and the six case through holes 113 for inserting the lead wires at the other end of each electric wire are arranged in two rows on the left side of the central ridge 114. Yes. Therefore, the distance between the H-shaped core 301 and the case through hole 113 farthest from the H-type core 301 is shorter than that of the first embodiment, and the case body 111 can be reduced in size accordingly.

図10は、このケース本体111と結合されるケース蓋体112を示している。
また、図11は、ケース本体111が固定されるアルミ板210を示しており、アルミ板210には、ケース本体111のケース貫通孔113に連通する4列の連通貫通孔211が形成されている。
図12は、アルミ板210に固定されたケース110を、アルミ板210が透明であると仮定して、アルミ板210の側から示している。
アルミ板210に連通貫通孔211を開けた箇所は、H型コア301の磁極部302、303間の中間位置に当たり、漏洩磁束分布が少ない箇所であるため、連通貫通孔211から漏洩磁束が漏れる虞はない。
そのため、アルミ板210の磁気遮蔽効果を損なわずに、リード線を短縮化することができ、且つ、ケース110を小型化することができる。
FIG. 10 shows a case lid 112 coupled to the case main body 111.
FIG. 11 shows an aluminum plate 210 to which the case main body 111 is fixed. The aluminum plate 210 has four rows of communication through holes 211 communicating with the case through holes 113 of the case main body 111. .
FIG. 12 shows the case 110 fixed to the aluminum plate 210 from the side of the aluminum plate 210, assuming that the aluminum plate 210 is transparent.
The location where the communication through-hole 211 is opened in the aluminum plate 210 is an intermediate position between the magnetic pole portions 302 and 303 of the H-shaped core 301 and is a location where the leakage magnetic flux distribution is small, so that the leakage magnetic flux may leak from the communication through-hole 211. There is no.
Therefore, the lead wire can be shortened without reducing the magnetic shielding effect of the aluminum plate 210, and the case 110 can be downsized.

また、図13(a)、(b)に示すように、アルミ板200、210に形成した連通貫通孔201及び連通貫通孔211は、他の連通貫通孔との間にスリット203を設けるようにしても良い。
このスリット203は、リード線に高周波電流が流れるためにアルミ板200、210の連通貫通孔201、211の回りに誘起される渦電流を遮断する。そのため、渦電流によるアルミ板200、210の加熱が抑えられる。
Further, as shown in FIGS. 13A and 13B, the communication through-hole 201 and the communication through-hole 211 formed in the aluminum plates 200 and 210 are provided with a slit 203 between the other communication through-holes. May be.
The slit 203 blocks an eddy current induced around the communication through holes 201 and 211 of the aluminum plates 200 and 210 because a high-frequency current flows through the lead wires. Therefore, heating of the aluminum plates 200 and 210 due to eddy current is suppressed.

(第3の実施形態)
第3の実施形態では、磁気遮蔽用のアルミ板を挟んで、コイル本体と、並列共振コンデンサ及び整流回路とを一体化したコイル装置について説明する。
図14は、このコイル装置の平面図(a)及び側面図(b)(c)を示している。
磁気遮蔽用アルミ板200の一面には、H型コアを収容したケース100が固定され、アルミ板200の反対面の対応する位置には、並列共振コンデンサ34及び整流回路42(図17)を収容した筐体400が固定されている。
筐体400は、アルミ製であり、発熱部を有する整流回路42を内蔵するため、冷却用のフィン401を備えている。
(Third embodiment)
In the third embodiment, a coil device in which a coil body, a parallel resonant capacitor, and a rectifier circuit are integrated with an aluminum plate for magnetic shielding interposed therebetween will be described.
FIG. 14 shows a plan view (a) and side views (b) and (c) of this coil device.
A case 100 containing an H-shaped core is fixed to one surface of the magnetic shielding aluminum plate 200, and a parallel resonant capacitor 34 and a rectifier circuit 42 (FIG. 17) are accommodated at corresponding positions on the opposite surface of the aluminum plate 200. The case 400 is fixed.
The casing 400 is made of aluminum and includes cooling fins 401 in order to incorporate the rectifier circuit 42 having a heat generating portion.

図15は、アルミ板200の一面に固定されたケース100とアルミ板200の反対面に固定された筐体400とを、アルミ板200が透明であると仮定して、ケース100の側から示している。
また、図16は、図15のケース100のケース本体101内が見えるように、ケース蓋体102を取り除いた状態を示している。ケース本体101に形成されたケース貫通孔103、及び、このケース貫通孔103に連通するようにアルミ板200に開けられた連通貫通孔201は、筐体400が配置された位置に設けられており、コイル巻枠304に巻回されたコイル(図16では省略)のリード線は、ケース貫通孔103及び連通貫通孔201を通って筐体400内に導出され、筐体400内の並列共振コンデンサ34に電気接続される。
FIG. 15 shows the case 100 fixed to one surface of the aluminum plate 200 and the housing 400 fixed to the opposite surface of the aluminum plate 200 from the case 100 side, assuming that the aluminum plate 200 is transparent. ing.
FIG. 16 shows a state where the case lid 102 is removed so that the inside of the case main body 101 of the case 100 of FIG. 15 can be seen. The case through-hole 103 formed in the case main body 101 and the communication through-hole 201 opened in the aluminum plate 200 so as to communicate with the case through-hole 103 are provided at a position where the housing 400 is disposed. The lead wire of the coil (not shown in FIG. 16) wound around the coil winding frame 304 is led out into the housing 400 through the case through hole 103 and the communication through hole 201, and the parallel resonant capacitor in the housing 400. 34 is electrically connected.

この構成では、アルミ板200を挟んで、コイル本体と、並列共振コンデンサ及び整流回路とを一体化しているため、コイルのリード線(リッツ線)を短くでき、また、筐体400に内蔵された並列共振コンデンサ34と整流回路42との配線を短縮できる。
給電トランスの二次側で受電する交流は数十kHzの高周波であるため、受電コイル33と並列共振コンデンサ34との間、及び、並列共振コンデンサ34と整流回路42との間を出来る限り短距離で接続することが実用的に重要であり、そうすることで、高周波ノイズの抑制、熱損失の低減、高価なリッツ線の短縮などを図ることができ、コイル装置の小型・軽量化、低コストが実現できる。
なお、ここでは、筐体400内に並列共振コンデンサ34と整流回路42とを収容する場合について説明したが、さらに、筐体400内に充電回路44を収容しても良い。充電回路44も、整流回路42と同様に、発熱部を有しているが、筐体400が熱伝導率の高いアルミで構成され、且つ、放熱フィン401を有しているため、充電回路44の温度上昇が回避できる。
In this configuration, since the coil body, the parallel resonant capacitor, and the rectifier circuit are integrated with the aluminum plate 200 interposed therebetween, the lead wire (Litz wire) of the coil can be shortened, and it is built in the housing 400. Wiring between the parallel resonant capacitor 34 and the rectifier circuit 42 can be shortened.
Since the alternating current received on the secondary side of the power supply transformer has a high frequency of several tens of kHz, the shortest possible distance is between the power receiving coil 33 and the parallel resonant capacitor 34 and between the parallel resonant capacitor 34 and the rectifier circuit 42. It is practically important to connect with a coil. By doing so, it is possible to suppress high-frequency noise, reduce heat loss, shorten expensive litz wires, etc. Can be realized.
Although the case where the parallel resonant capacitor 34 and the rectifier circuit 42 are accommodated in the housing 400 has been described here, the charging circuit 44 may be further accommodated in the housing 400. Similarly to the rectifier circuit 42, the charging circuit 44 also has a heat generating portion, but since the housing 400 is made of aluminum having high thermal conductivity and has the heat radiation fins 401, the charging circuit 44. Temperature rise can be avoided.

また、ここでは、磁気遮蔽用にアルミ板を使用したが、アルミ以外の非磁性導電体を用いても良い。
また、ここでは、H型コアに複数本の電線を並列に巻回する場合について説明したが、巻回する電線は1本でも良い。
Here, an aluminum plate is used for magnetic shielding, but a nonmagnetic conductor other than aluminum may be used.
Although the case where a plurality of electric wires are wound in parallel on the H-shaped core has been described here, only one electric wire may be wound.

本発明によるコイル装置は、小型・軽量化が可能であり、自動車や搬送車や移動ロボットなど、多くの移動体に広く利用することができる。   The coil device according to the present invention can be reduced in size and weight, and can be widely used for many moving bodies such as automobiles, transport vehicles, and mobile robots.

10 整流器
20 インバータ
30 非接触給電トランス
31 送電コイル
32 一次側コンデンサ
33 受電コイル
34 二次側コンデンサ
35 主磁束
36 漏洩磁束
37 漏洩磁束
40 整流器
41 高周波電源
42 倍電圧整流回路
44 充電回路
50 電線(リッツ線)
51 二次電池
52 インバータ
53 モータ
54 エンジン
65 アルミ板(磁気遮蔽板)
66 アルミ板(磁気遮蔽板)
80 H型コア
81 磁極部
82 磁極部
83 中央線
100 ケース
101 ケース本体
102 ケース蓋体
103 ケース貫通孔
104 中央凸条
111 ケース本体
112 ケース蓋体
113 ケース貫通孔
114 中央凸条
200 アルミ板(磁気遮蔽板)
201 連通貫通孔
203 スリット
210 アルミ板(磁気遮蔽板)
211 連通貫通孔
301 H型コア
302 磁極部
303 磁極部
304 コイル巻枠
305 リード線(リッツ線)
306 リード線(リッツ線)
400 筐体
401 冷却フィン
3181 磁極部
3182 磁極部
3381 磁極部
3382 磁極部
DESCRIPTION OF SYMBOLS 10 Rectifier 20 Inverter 30 Non-contact power supply transformer 31 Power transmission coil 32 Primary side capacitor 33 Power reception coil 34 Secondary side capacitor 35 Main magnetic flux 36 Leakage magnetic flux 37 Leakage magnetic flux 40 Rectifier 41 High frequency power supply 42 Voltage doubler rectification circuit 44 Charging circuit 50 Electric wire (Litz line)
51 Secondary battery 52 Inverter 53 Motor 54 Engine 65 Aluminum plate (magnetic shielding plate)
66 Aluminum plate (magnetic shielding plate)
80 H-type core 81 Magnetic pole portion 82 Magnetic pole portion 83 Center line 100 Case 101 Case body 102 Case lid body 103 Case through-hole 104 Central protrusion 111 Case body 112 Case lid body 113 Case through hole 114 Central protrusion 200 Aluminum plate (magnetic) Shield)
201 Communication through hole 203 Slit 210 Aluminum plate (magnetic shielding plate)
211 Communication through hole 301 H-type core 302 Magnetic pole part 303 Magnetic pole part 304 Coil winding frame 305 Lead wire (Litz wire)
306 Lead wire (Litz wire)
400 Housing 401 Cooling fin 3181 Magnetic pole part 3182 Magnetic pole part 3381 Magnetic pole part 3382 Magnetic pole part

Claims (8)

H字状のコアを有し、該コアの平行するコア部分が磁極部を構成し、各磁極部の中間部位を接続するコア部分に電線が巻回されたコイル本体と、該コイル本体を収容する樹脂製のケース本体と、該ケース本体が固定された磁気遮蔽用の非磁性導電体板と、を備える非接触給電用コイル装置であって、
前記ケース本体が固定された前記非磁性導電体板の面の反対側の面に、前記コイル本体のコイルに並列接続する共振コンデンサ及び整流回路が収容された筐体を配置したことを特徴とする非接触給電用コイル装置。
A coil body having an H-shaped core, in which the parallel core portions of the core constitute a magnetic pole portion, and an electric wire is wound around the core portion connecting the intermediate portion of each magnetic pole portion, and the coil main body is accommodated A non-contact power supply coil device comprising: a resin case main body; and a magnetic shielding nonmagnetic conductor plate to which the case main body is fixed,
A housing containing a resonance capacitor and a rectifier circuit connected in parallel to the coil of the coil body is disposed on a surface opposite to the surface of the nonmagnetic conductor plate to which the case body is fixed. Non-contact power supply coil device.
請求項1に記載の非接触給電用コイル装置であって、前記筐体に、さらに、充電回路が収容されていることを特徴とする非接触給電用コイル装置。   The coil device for non-contact power feeding according to claim 1, wherein a charging circuit is further accommodated in the casing. 請求項1または2に記載の非接触給電用コイル装置であって、
前記コイル本体を収容した前記ケース本体は、前記コイル本体の平行な前記磁極部の間隔を二等分する中央線に近接して配置されたケース貫通孔を有し、
前記非磁性導電体板は、前記ケース貫通孔に重なる連通貫通孔を有し、
前記コイル本体に巻回された前記電線のリード線が、前記ケース貫通孔及び連通貫通孔に挿通されて前記筐体内に導出され、前記共振コンデンサ及び整流回路に電気接続されることを特徴とする非接触給電用コイル装置。
The coil device for non-contact power feeding according to claim 1 or 2,
The case main body that houses the coil main body has a case through-hole disposed close to a center line that bisects the interval between the parallel magnetic pole portions of the coil main body,
The nonmagnetic conductor plate has a communication through hole that overlaps the case through hole,
The lead wire of the wire wound around the coil body is inserted into the case through hole and the communication through hole, led out into the housing, and electrically connected to the resonant capacitor and the rectifier circuit. Non-contact power supply coil device.
請求項3に記載のコイル装置であって、前記ケース本体の前記ケース貫通孔が、前記中央線を間に挟んで対を成して配置され、前記コイル本体に巻回された前記電線の一端に接続するリード線と該電線の他端に接続するリード線とが、対を成す前記ケース貫通孔のそれぞれに挿通されることを特徴とする非接触給電用コイル装置。   4. The coil device according to claim 3, wherein the case through-holes of the case body are arranged in pairs with the center line interposed therebetween, and one end of the electric wire wound around the coil body. A lead wire connected to the lead wire and a lead wire connected to the other end of the electric wire are inserted through each of the pair of case through holes. 請求項4に記載のコイル装置であって、前記ケース貫通孔に重なる前記非磁性導電体板の対を成す前記連通貫通孔が、スリットで繋がれていることを特徴とする非接触給電用コイル装置。   The coil device according to claim 4, wherein the communication through-holes forming a pair of the non-magnetic conductor plates overlapping the case through-holes are connected by a slit. apparatus. 請求項4に記載のコイル装置であって、前記コイル本体に複数の本数の前記電線が並列に巻回され、前記ケース本体の前記中央線を間に挟んで配置されている前記ケース貫通孔の対の数が、前記本数に対応していることを特徴とする非接触給電用コイル装置。   5. The coil device according to claim 4, wherein a plurality of the electric wires are wound in parallel around the coil body, and the case through-hole is disposed with the center line of the case body interposed therebetween. A non-contact power feeding coil device, wherein the number of pairs corresponds to the number. 請求項6に記載のコイル装置であって、前記ケース本体の前記中央線を間に挟んで配置されている複数対の前記ケース貫通孔が、前記中央線の両側に複数列配置されていることを特徴とする非接触給電用コイル装置。   7. The coil device according to claim 6, wherein a plurality of pairs of the case through holes arranged with the central line of the case main body interposed therebetween are arranged in a plurality of rows on both sides of the central line. A coil device for non-contact power feeding characterized by the above. 請求項1から7のいずれかに記載のコイル装置であって、前記非磁性導電体板の面積は、前記ケース本体の前記非磁性導電体板への接触面積よりも大きく、前記ケース本体は、収容した前記コイル本体の中心位置が前記非磁性導電体板の中心位置と一致するように、該非磁性導電体板に固定されることを特徴とする非接触給電用コイル装置。   The coil device according to any one of claims 1 to 7, wherein an area of the nonmagnetic conductor plate is larger than a contact area of the case body to the nonmagnetic conductor plate, A coil device for non-contact power feeding, wherein the coil body is fixed to the nonmagnetic conductor plate so that the center position of the accommodated coil body coincides with the center position of the nonmagnetic conductor plate.
JP2011065899A 2011-01-19 2011-03-24 Non-contact power supply coil device Expired - Fee Related JP5813973B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011065899A JP5813973B2 (en) 2011-03-24 2011-03-24 Non-contact power supply coil device
PCT/JP2012/050969 WO2012099170A1 (en) 2011-01-19 2012-01-18 Contactless power transfer system
EP12736387.7A EP2667390B1 (en) 2011-01-19 2012-01-18 Contactless power transfer system
EP17155943.8A EP3196903B1 (en) 2011-01-19 2012-01-18 Contactless power transfer apparatus
EP17155941.2A EP3185263A1 (en) 2011-01-19 2012-01-18 Contactless power transfer apparatus
CN201280005516.4A CN103339698B (en) 2011-01-19 2012-01-18 Contactless power supply device
US13/979,820 US9312729B2 (en) 2011-01-19 2012-01-18 Contactless power transfer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065899A JP5813973B2 (en) 2011-03-24 2011-03-24 Non-contact power supply coil device

Publications (2)

Publication Number Publication Date
JP2012204469A true JP2012204469A (en) 2012-10-22
JP5813973B2 JP5813973B2 (en) 2015-11-17

Family

ID=47185159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065899A Expired - Fee Related JP5813973B2 (en) 2011-01-19 2011-03-24 Non-contact power supply coil device

Country Status (1)

Country Link
JP (1) JP5813973B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132115A2 (en) 2013-02-26 2014-09-04 Toyota Jidosha Kabushiki Kaisha Power transmitter, power receiver, and power transfer system
KR101477429B1 (en) * 2013-12-20 2014-12-29 삼성전기주식회사 Coil apparatus, wireless power transmitter having thereof and wireless power receiver having thereof
CN104426249A (en) * 2013-09-11 2015-03-18 丰田自动车株式会社 Power receiving device, power transmitting device, and vehicle
JP2015084366A (en) * 2013-10-25 2015-04-30 トヨタ自動車株式会社 Power-receiving apparatus
JP2015115580A (en) * 2013-12-16 2015-06-22 トヨタ自動車株式会社 Power transmission system
JP2015195676A (en) * 2014-03-31 2015-11-05 株式会社エクォス・リサーチ power transmission system
JP2015204731A (en) * 2014-04-16 2015-11-16 トヨタ自動車株式会社 Vehicle and non-contact power transmission system
JP2016010173A (en) * 2014-06-20 2016-01-18 矢崎総業株式会社 Non-contact power supply coil device
JP2016082618A (en) * 2014-10-10 2016-05-16 株式会社Ihi Power receiving coil device and non-contact power supply system
JP2017168522A (en) * 2016-03-14 2017-09-21 株式会社Ihi Coil device
WO2018092192A1 (en) * 2016-11-15 2018-05-24 富士機械製造株式会社 Non-contact power supply connection unit, non-contact power supply device, and operating machine
US10672551B2 (en) 2015-09-24 2020-06-02 Fuji Corporation Non-contact power feeding coil and non-contact power feeding system
US10725515B2 (en) 2017-09-29 2020-07-28 Apple Inc. Inductive interconnection system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166070A (en) * 2013-02-26 2014-09-08 Toyota Motor Corp Power transmission device, power reception device, and power transmission system
WO2014132115A2 (en) 2013-02-26 2014-09-04 Toyota Jidosha Kabushiki Kaisha Power transmitter, power receiver, and power transfer system
US10029576B2 (en) 2013-09-11 2018-07-24 Toyota Jidosha Kabushiki Kaisha Power receiving device, power transmitting device, and vehicle
CN104426249A (en) * 2013-09-11 2015-03-18 丰田自动车株式会社 Power receiving device, power transmitting device, and vehicle
JP2015056950A (en) * 2013-09-11 2015-03-23 トヨタ自動車株式会社 Power reception apparatus, power transmission apparatus, and vehicle
JP2015084366A (en) * 2013-10-25 2015-04-30 トヨタ自動車株式会社 Power-receiving apparatus
JP2015115580A (en) * 2013-12-16 2015-06-22 トヨタ自動車株式会社 Power transmission system
KR101477429B1 (en) * 2013-12-20 2014-12-29 삼성전기주식회사 Coil apparatus, wireless power transmitter having thereof and wireless power receiver having thereof
JP2015195676A (en) * 2014-03-31 2015-11-05 株式会社エクォス・リサーチ power transmission system
JP2015204731A (en) * 2014-04-16 2015-11-16 トヨタ自動車株式会社 Vehicle and non-contact power transmission system
US10367377B2 (en) 2014-04-16 2019-07-30 Toyota Jidosha Kabushiki Kaisha Vehicle and contactless power transfer system
JP2016010173A (en) * 2014-06-20 2016-01-18 矢崎総業株式会社 Non-contact power supply coil device
JP2016082618A (en) * 2014-10-10 2016-05-16 株式会社Ihi Power receiving coil device and non-contact power supply system
US10315527B2 (en) 2014-10-10 2019-06-11 Ihi Corporation Power reception coil device and wireless power transfer system
US10672551B2 (en) 2015-09-24 2020-06-02 Fuji Corporation Non-contact power feeding coil and non-contact power feeding system
JP2017168522A (en) * 2016-03-14 2017-09-21 株式会社Ihi Coil device
US11264834B2 (en) 2016-03-14 2022-03-01 Ihi Corporation Coil apparatus
WO2018092192A1 (en) * 2016-11-15 2018-05-24 富士機械製造株式会社 Non-contact power supply connection unit, non-contact power supply device, and operating machine
CN109952624A (en) * 2016-11-15 2019-06-28 株式会社富士 Non-contact power coupling part, contactless power supply device and working rig
JPWO2018092192A1 (en) * 2016-11-15 2019-08-08 株式会社Fuji Non-contact power supply coupling unit, non-contact power supply device, and work machine
CN109952624B (en) * 2016-11-15 2022-05-27 株式会社富士 Non-contact power supply device and working machine
US10725515B2 (en) 2017-09-29 2020-07-28 Apple Inc. Inductive interconnection system
US11031164B2 (en) 2017-09-29 2021-06-08 Apple Inc. Attachment devices for inductive interconnection systems

Also Published As

Publication number Publication date
JP5813973B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5813973B2 (en) Non-contact power supply coil device
JP5293851B2 (en) Coil unit and non-contact power supply system
JP6400663B2 (en) Contactless power transformer
US11264834B2 (en) Coil apparatus
CN108091474B (en) Coil unit
WO2012099170A1 (en) Contactless power transfer system
US10381148B2 (en) Transformer and power converter using the same
JP2018196322A (en) Non-contact power supply device
CN210111625U (en) Wireless charging panel and wireless charging device
JP6003565B2 (en) Non-contact power feeding device
JP2015106581A (en) Power transmission coil unit and wireless power transmission device
JP5384195B2 (en) Non-contact power supply device
JP5904228B2 (en) Power supply
JP2014023262A (en) Noncontact power supply unit
JP2021077826A (en) Coil unit, power transmitting device, power receiving device and power transmission system
JP2017212302A (en) Coil device, non-contact power supply device and non-contact power reception device
JP2017183476A (en) Coil unit, wireless power supply device, wireless power reception device, and wireless power transmission device
CN112189293B (en) Wireless charging plate and wireless charging device
JP6579009B2 (en) Wireless power transmission system
US10084351B2 (en) Power feeding device
WO2021199405A1 (en) In-vehicle charger
WO2021199404A1 (en) Vehicle-mounted charger
JP6587895B2 (en) Contactless power supply system
JP6383086B2 (en) Inductor unit and electric vehicle
JP2016192481A (en) Coil for non-contact power transmission and non-contact power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150917

R150 Certificate of patent or registration of utility model

Ref document number: 5813973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees