JP2011167036A - Electric power feed device for vehicle, and electric power reception device - Google Patents

Electric power feed device for vehicle, and electric power reception device Download PDF

Info

Publication number
JP2011167036A
JP2011167036A JP2010029991A JP2010029991A JP2011167036A JP 2011167036 A JP2011167036 A JP 2011167036A JP 2010029991 A JP2010029991 A JP 2010029991A JP 2010029991 A JP2010029991 A JP 2010029991A JP 2011167036 A JP2011167036 A JP 2011167036A
Authority
JP
Japan
Prior art keywords
power
electromagnetic induction
coil
vehicle
induction coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010029991A
Other languages
Japanese (ja)
Inventor
Yukihiro Yamamoto
幸宏 山本
Shinpei Sakota
慎平 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2010029991A priority Critical patent/JP2011167036A/en
Priority to PCT/JP2010/007215 priority patent/WO2011099106A1/en
Publication of JP2011167036A publication Critical patent/JP2011167036A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric power feed device for vehicles that is simple in configuration and can enhance the efficiency of electric power transmission by a resonance method. <P>SOLUTION: A plurality of electromagnetic induction coils 130 are each so configured as to supply high-frequency electric power output from a high-frequency power supply device 110 to a resonant coil 150 by electromagnetic induction. The resonant coil 150 is an LC resonance coil and is so configured as to transmit electric power contactlessly to a resonant coil 210 mounted on a vehicle 200 by resonance with the resonant coil 210 via an electromagnetic field. A switching device 140 is provided between the plurality of electromagnetic induction coils 130 and the high-frequency power supply device 110 and is so configured as to switch the electromagnetic induction coils 130 to be electrically connected to the high-frequency power supply device 110. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、車両用給電装置および受電装置に関し、特に、車両外部の給電装置に設けられた送電用コイルと車両に搭載された受電用コイルとが電磁場を介して共鳴することにより、車両へ非接触で給電する車両用給電装置およびその給電装置から非接触で受電する受電装置に関する。   The present invention relates to a vehicle power supply device and a power reception device, and more particularly, a power transmission coil provided in a power supply device outside the vehicle and a power reception coil mounted on the vehicle resonate via an electromagnetic field, thereby preventing the vehicle from receiving power. The present invention relates to a vehicle power supply device that supplies power by contact and a power reception device that receives power from the power supply device in a contactless manner.

環境に配慮した車両として、電気自動車やハイブリッド自動車などの電動車両が大きく注目されている。これらの車両は、走行駆動力を発生する電動機と、その電動機に供給される電力を蓄える再充電可能な蓄電装置とを搭載する。なお、ハイブリッド自動車は、電動機とともに内燃機関をさらに動力源として搭載した自動車や、車両駆動用の直流電源として蓄電装置とともに燃料電池をさらに搭載した自動車等である。   Electric vehicles such as electric vehicles and hybrid vehicles have attracted a great deal of attention as environmentally friendly vehicles. These vehicles are equipped with an electric motor that generates driving force and a rechargeable power storage device that stores electric power supplied to the electric motor. Note that the hybrid vehicle is a vehicle in which an internal combustion engine is further mounted as a power source together with an electric motor, a vehicle in which a fuel cell is further mounted in addition to a power storage device as a DC power source for driving the vehicle.

ハイブリッド自動車においても、電気自動車と同様に、車両外部の電源から車載の蓄電装置を充電可能な車両が知られている。たとえば、家屋に設けられた電源コンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置を充電可能ないわゆる「プラグイン・ハイブリッド自動車」が知られている。   In hybrid vehicles, as in the case of electric vehicles, vehicles that can charge an in-vehicle power storage device from a power source outside the vehicle are known. For example, a so-called “plug-in hybrid vehicle” is known that can charge a power storage device from a general household power source by connecting a power outlet provided in a house to a charging port provided in the vehicle with a charging cable. Yes.

一方、送電方法として、電源コードや送電ケーブルを用いないワイヤレス送電が近年注目されている。このワイヤレス送電技術としては、有力なものとして、電磁誘導を用いた送電、マイクロ波を用いた送電、および共鳴法による送電の3つの技術が知られている。   On the other hand, as a power transmission method, wireless power transmission that does not use a power cord or a power transmission cable has recently attracted attention. As this wireless power transmission technology, three technologies known as power transmission using electromagnetic induction, power transmission using microwaves, and power transmission using a resonance method are known.

このうち、共鳴法は、一対の共鳴器(たとえば一対の自己共振コイル)を電磁場(近接場)において共鳴させ、電磁場を介して送電する非接触の送電技術であり、数kWの大電力を比較的長距離(たとえば数m)送電することも可能である。   Among them, the resonance method is a non-contact power transmission technique in which a pair of resonators (for example, a pair of self-resonant coils) are resonated in an electromagnetic field (near field) and transmitted through the electromagnetic field. It is also possible to transmit power over a long distance (for example, several meters).

この共鳴法を用いた車両用給電装置および受電装置として、たとえば、特開2009−106136号公報に開示された電動車両および車両用給電装置が知られている(特許文献1参照)。   As a vehicle power supply device and a power reception device using this resonance method, for example, an electric vehicle and a vehicle power supply device disclosed in Japanese Unexamined Patent Application Publication No. 2009-106136 are known (see Patent Document 1).

特開2009−106136号公報JP 2009-106136 A 特表2009−501510号公報Special table 2009-501510 特開2004−166384号公報JP 2004-166384 A 国際公開第98/34319号パンフレットInternational Publication No. 98/34319 Pamphlet

給電装置の送電用コイルと車両に搭載された受電用コイルとの位置関係が変化すると、送電用コイルから受電用コイルへの送電効率が変化する。車両においては、停車位置や積載物による車高の変化等により、送電用コイルと受電用コイルとの位置関係が給電の機会毎に変化するので、このような状況変化を考慮した上で送電効率を高めることが課題である。また、そのために取り得る手段については、できるだけ簡易な構成で実現することも必要である。上記の特開2009−106136号公報に開示された電動車両および車両用給電装置では、このような課題については特に検討されていない。   When the positional relationship between the power transmission coil of the power supply apparatus and the power reception coil mounted on the vehicle changes, the power transmission efficiency from the power transmission coil to the power reception coil changes. In vehicles, the positional relationship between the coil for power transmission and the coil for power reception changes at every power supply opportunity due to changes in the vehicle height depending on the stopping position and the load, etc. It is a problem to raise. In addition, it is necessary to realize the means that can be used for this purpose with the simplest possible configuration. In the electric vehicle and the vehicle power supply device disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2009-106136, such a problem is not particularly studied.

それゆえに、この発明の目的は、簡易な構成で共鳴法による送電の効率を高めることができる車両用給電装置および受電装置を提供することである。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a vehicle power supply device and a power receiving device that can increase the efficiency of power transmission by the resonance method with a simple configuration.

この発明によれば、車両用給電装置は、送電用コイルと、電源装置と、複数の電磁誘導コイルと、切替装置とを備える。送電用コイルは、車両に搭載された受電用コイルと電磁場を介して共鳴することにより受電用コイルへ非接触で送電するように構成される。電源装置は、所定の周波数を有する電力を発生する。複数の電磁誘導コイルは、電源装置から出力される電力を送電用コイルへ電磁誘導により供給するように各々が構成される。切替装置は、複数の電磁誘導コイルと電源装置との間に設けられ、電源装置に電気的に接続される電磁誘導コイルを切替可能に構成される。   According to this invention, the vehicle power supply device includes a power transmission coil, a power supply device, a plurality of electromagnetic induction coils, and a switching device. The power transmission coil is configured to transmit power to the power reception coil in a non-contact manner by resonating with a power reception coil mounted on the vehicle via an electromagnetic field. The power supply device generates power having a predetermined frequency. Each of the plurality of electromagnetic induction coils is configured to supply electric power output from the power supply device to the power transmission coil by electromagnetic induction. The switching device is provided between the plurality of electromagnetic induction coils and the power supply device, and is configured to be able to switch the electromagnetic induction coil electrically connected to the power supply device.

この発明においては、電源装置から出力される電力を送電用コイルへ電磁誘導により供給するように構成された電磁誘導コイルが複数設けられ、電源装置に電気的に接続される電磁誘導コイルを切替装置によって切替可能である。ここで、車両の停車位置や積載物による車高の変化等により、送電用コイルと受電用コイルとの位置関係が給電の機会毎に変化し、それに応じて給電装置から車両への送電の効率も変化するところ、この発明においては、送電効率が相対的に高くなる電磁誘導コイルを給電の機会毎に切替装置によって容易に選択することができる。   In the present invention, a plurality of electromagnetic induction coils configured to supply electric power output from the power supply device to the power transmission coil by electromagnetic induction are provided, and the electromagnetic induction coil electrically connected to the power supply device is switched. Can be switched. Here, the positional relationship between the coil for power transmission and the coil for power reception changes at every power supply opportunity due to changes in the vehicle stop position and vehicle height due to the load, and the efficiency of power transmission from the power supply device to the vehicle accordingly. However, in the present invention, the electromagnetic induction coil whose power transmission efficiency is relatively high can be easily selected by the switching device at every power feeding opportunity.

好ましくは、切替装置は、複数のリレーを含む。複数のリレーは、複数の電磁誘導コイルにそれぞれ対応して設けられ、各リレーは、対応の電磁誘導コイルと電源装置との間に接続される。   Preferably, the switching device includes a plurality of relays. The plurality of relays are provided corresponding to the plurality of electromagnetic induction coils, respectively, and each relay is connected between the corresponding electromagnetic induction coil and the power supply device.

好ましくは、各電磁誘導コイルのコイル径は、互いに異なる。
さらに好ましくは、各電磁誘導コイルは、同一平面内に配設される。
Preferably, the coil diameters of the electromagnetic induction coils are different from each other.
More preferably, each electromagnetic induction coil is disposed in the same plane.

また、この発明によれば、受電装置は、車両に搭載され、受電用コイルと、複数の電磁誘導コイルと、切替装置とを備える。受電用コイルは、車両外部の給電装置に含まれる送電用コイルと電磁場を介して共鳴することにより送電用コイルから非接触で受電するように構成される。複数の電磁誘導コイルは、受電用コイルにより受電された電力を電磁誘導により取出すように各々が構成される。切替装置は、複数の電磁誘導コイルと車両電気システムとの間に設けられ、車両電気システムに電気的に接続される電磁誘導コイルを切替可能に構成される。   According to the present invention, the power receiving device is mounted on a vehicle and includes a power receiving coil, a plurality of electromagnetic induction coils, and a switching device. The power reception coil is configured to receive power from the power transmission coil in a non-contact manner by resonating with a power transmission coil included in a power supply device outside the vehicle via an electromagnetic field. Each of the plurality of electromagnetic induction coils is configured to take out the electric power received by the power receiving coil by electromagnetic induction. The switching device is provided between the plurality of electromagnetic induction coils and the vehicle electrical system, and is configured to be able to switch the electromagnetic induction coil electrically connected to the vehicle electrical system.

この発明においては、受電用コイルにより受電された電力を電磁誘導により取出すように構成された電磁誘導コイルが複数設けられ、車両電気システムに電気的に接続される電磁誘導コイルを切替装置によって切替可能である。ここで、車両の停車位置や積載物による車高の変化等により、送電用コイルと受電用コイルとの位置関係が給電の機会毎に変化し、それに応じて給電装置から車両への送電の効率も変化するところ、この発明においては、受電電力が相対的に最大となる電磁誘導コイルを受電の機会毎に切替装置によって容易に選択することができる。   In the present invention, a plurality of electromagnetic induction coils configured to take out the electric power received by the power receiving coil by electromagnetic induction are provided, and the electromagnetic induction coil electrically connected to the vehicle electrical system can be switched by the switching device. It is. Here, the positional relationship between the coil for power transmission and the coil for power reception changes at every power supply opportunity due to changes in the vehicle stop position and vehicle height due to the load, and the efficiency of power transmission from the power supply device to the vehicle accordingly. However, in the present invention, the electromagnetic induction coil having the maximum received power can be easily selected by the switching device at every power reception opportunity.

好ましくは、切替装置は、複数のリレーを含む。複数のリレーは、複数の電磁誘導コイルにそれぞれ対応して設けられ、各リレーは、対応の電磁誘導コイルと車両電気システムとの間に接続される。   Preferably, the switching device includes a plurality of relays. The plurality of relays are provided corresponding to the plurality of electromagnetic induction coils, respectively, and each relay is connected between the corresponding electromagnetic induction coil and the vehicle electrical system.

好ましくは、各電磁誘導コイルのコイル径は、互いに異なる。
さらに好ましくは、各電磁誘導コイルは、同一平面内に配設される。
Preferably, the coil diameters of the electromagnetic induction coils are different from each other.
More preferably, each electromagnetic induction coil is disposed in the same plane.

この発明によれば、簡易な構成で共鳴法による送電の効率を高めることが可能な車両用給電装置および受電装置を実現することができる。   According to the present invention, it is possible to realize a vehicle power feeding device and a power receiving device that can increase the efficiency of power transmission by the resonance method with a simple configuration.

この発明の実施の形態1による車両給電システムの全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the vehicle electric power feeding system by Embodiment 1 of this invention. 共鳴法による送電の原理を説明するための図である。It is a figure for demonstrating the principle of the power transmission by the resonance method. 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity | strength of an electromagnetic field. 図1に示す切替装置を操作したときの給電装置から車両への送電効率の変化を示した図である。It is the figure which showed the change of the power transmission efficiency from an electric power feeder to a vehicle when the switching apparatus shown in FIG. 1 is operated. 実施の形態2による車両給電システムの全体構成を示す機能ブロック図である。FIG. 6 is a functional block diagram showing an overall configuration of a vehicle power feeding system according to a second embodiment.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

[実施の形態1]
図1は、この発明の実施の形態1による車両給電システムの全体構成を示す機能ブロック図である。図1を参照して、この車両給電システムは、給電装置100と、車両200とを備える。
[Embodiment 1]
1 is a functional block diagram showing an overall configuration of a vehicle power feeding system according to Embodiment 1 of the present invention. Referring to FIG. 1, this vehicle power supply system includes a power supply apparatus 100 and a vehicle 200.

給電装置100は、高周波電源装置110と、同軸ケーブル120と、複数の電磁誘導コイル130と、切替装置140と、共鳴コイル150とを含む。また、給電装置100は、通信アンテナ160と、通信装置170と、ECU(Electronic Control Unit)180とをさらに含む。   The power feeding device 100 includes a high frequency power supply device 110, a coaxial cable 120, a plurality of electromagnetic induction coils 130, a switching device 140, and a resonance coil 150. Power feeding device 100 further includes a communication antenna 160, a communication device 170, and an ECU (Electronic Control Unit) 180.

高周波電源装置110は、たとえば系統電源に接続された電源プラグ350から受ける系統電力を所定の高周波電力に変換し、その高周波電力を同軸ケーブル120へ出力する。なお、高周波電源装置110によって生成される高周波電力の周波数は、たとえば1M〜10数MHzの範囲の所定値に設定される。   The high frequency power supply device 110 converts, for example, system power received from the power plug 350 connected to the system power supply into predetermined high frequency power, and outputs the high frequency power to the coaxial cable 120. In addition, the frequency of the high frequency electric power produced | generated by the high frequency power supply device 110 is set to the predetermined value of the range of 1M-10 dozen MHz, for example.

複数の電磁誘導コイル130は、共鳴コイル150と所定の間隔をおいて共鳴コイル150と略同軸上に配設される。各電磁誘導コイル130は、電磁誘導により共鳴コイル150と磁気的に結合可能であり、高周波電源装置110から供給される高周波電力を電磁誘導により共鳴コイル150へ給電するように構成される。   The plurality of electromagnetic induction coils 130 are disposed substantially coaxially with the resonance coil 150 at a predetermined interval from the resonance coil 150. Each electromagnetic induction coil 130 can be magnetically coupled to the resonance coil 150 by electromagnetic induction, and is configured to supply high frequency power supplied from the high frequency power supply device 110 to the resonance coil 150 by electromagnetic induction.

切替装置140は、複数の電磁誘導コイル130と同軸ケーブル120との間に設けられ、複数の電磁誘導コイル130に対応して設けられる複数のリレーを含む。そして、ECU180からの制御信号に応じて複数のリレーのいずれかが適宜オンされ、切替装置140は、ECU180からの制御信号に応じて、同軸ケーブル120に電気的に接続される電磁誘導コイルを切替える。   The switching device 140 includes a plurality of relays provided between the plurality of electromagnetic induction coils 130 and the coaxial cable 120 and provided corresponding to the plurality of electromagnetic induction coils 130. Then, any one of the plurality of relays is appropriately turned on according to the control signal from ECU 180, and switching device 140 switches the electromagnetic induction coil electrically connected to coaxial cable 120 according to the control signal from ECU 180. .

共鳴コイル150は、LC共振コイルであり、切替装置140によって同軸ケーブル120に電気的に接続された電磁誘導コイルから電磁誘導により電力の供給を受ける。そして、共鳴コイル150は、車両200に搭載された受電用の共鳴コイル210と電磁場を介して共鳴することにより車両200へ非接触で電力を送電するように構成される。なお、共鳴コイル150は、車両200の共鳴コイル210との距離や共鳴周波数等に基づいて、Q値(たとえば、Q>100)および結合度κ等が大きくなるようにコイル径や巻数が適宜設定される。   The resonance coil 150 is an LC resonance coil, and is supplied with electric power by electromagnetic induction from an electromagnetic induction coil electrically connected to the coaxial cable 120 by the switching device 140. The resonance coil 150 is configured to transmit power to the vehicle 200 in a non-contact manner by resonating with the resonance coil 210 for receiving power mounted on the vehicle 200 via an electromagnetic field. The resonance coil 150 is appropriately set in coil diameter and number of turns so that the Q value (for example, Q> 100) and the degree of coupling κ are increased based on the distance from the resonance coil 210 of the vehicle 200, the resonance frequency, and the like. Is done.

通信アンテナ160は、通信装置170に接続される。通信装置170は、車両200の通信装置300と通信を行なうための通信インターフェースであり、車両200の通信装置300から送信された情報を受信してECU180へ出力する。なお、車両200の通信装置300から通信装置170へ送信される情報には、たとえば、送電要求指令や車両200の受電電力等の情報が含まれる。   Communication antenna 160 is connected to communication device 170. Communication device 170 is a communication interface for communicating with communication device 300 of vehicle 200, receives information transmitted from communication device 300 of vehicle 200, and outputs the information to ECU 180. Information transmitted from communication device 300 of vehicle 200 to communication device 170 includes, for example, information such as a power transmission request command and received power of vehicle 200.

ECU180は、高周波電源装置110および切替装置140の動作を制御する。具体的には、通信装置170によって送電要求指令が受信されると、ECU180は、所定の高周波電力を生成するように高周波電源装置110を制御する。また、ECU180は、給電装置100から車両200への給電中に車両200の受電電力の検出値を通信装置170から受け、複数の電磁誘導コイル130のうち送電効率が最も高くなる電磁誘導コイル130を同軸ケーブル120に電気的に接続するように切替装置140を制御する。   ECU 180 controls operations of high-frequency power supply device 110 and switching device 140. Specifically, when a power transmission request command is received by communication device 170, ECU 180 controls high frequency power supply device 110 so as to generate predetermined high frequency power. Further, ECU 180 receives the detected value of the received power of vehicle 200 from power supply device 100 during power feeding from power supply device 100 to communication device 170, and has electromagnetic induction coil 130 having the highest power transmission efficiency among a plurality of electromagnetic induction coils 130. The switching device 140 is controlled so as to be electrically connected to the coaxial cable 120.

一方、車両200は、共鳴コイル210と、複数の電磁誘導コイル220と、切替装置230と、整流回路240と、充電器250と、蓄電装置260と、動力出力装置270とを含む。また、車両200は、電力センサ280と、ECU290と、通信装置300と、通信アンテナ310とをさらに含む。   On the other hand, vehicle 200 includes a resonance coil 210, a plurality of electromagnetic induction coils 220, a switching device 230, a rectifier circuit 240, a charger 250, a power storage device 260, and a power output device 270. Vehicle 200 further includes a power sensor 280, an ECU 290, a communication device 300, and a communication antenna 310.

共鳴コイル210は、LC共振コイルであり、給電装置100に含まれる送電用の共鳴コイル150と電磁場を介して共鳴することにより給電装置100から非接触で電力を受電するように構成される。なお、この共鳴コイル210も、給電装置100の共鳴コイル150との距離や共鳴周波数等に基づいて、Q値(たとえば、Q>100)および結合度κ等が大きくなるようにコイル径や巻数が適宜設定される。   The resonance coil 210 is an LC resonance coil, and is configured to receive power from the power supply apparatus 100 in a non-contact manner by resonating with a power transmission resonance coil 150 included in the power supply apparatus 100 via an electromagnetic field. The resonance coil 210 also has a coil diameter and a number of turns so that the Q value (for example, Q> 100) and the degree of coupling κ are increased based on the distance from the resonance coil 150 of the power supply apparatus 100, the resonance frequency, and the like. Set as appropriate.

複数の電磁誘導コイル220は、共鳴コイル210と所定の間隔をおいて共鳴コイル210と略同軸上に配設される。各電磁誘導コイル220は、電磁誘導により共鳴コイル210と磁気的に結合可能であり、共鳴コイル210によって受電された電力を電磁誘導により取出して整流回路240へ出力するように構成される。   The plurality of electromagnetic induction coils 220 are disposed substantially coaxially with the resonance coil 210 at a predetermined interval from the resonance coil 210. Each electromagnetic induction coil 220 can be magnetically coupled to the resonance coil 210 by electromagnetic induction, and is configured to extract the electric power received by the resonance coil 210 by electromagnetic induction and output it to the rectifier circuit 240.

切替装置230は、複数の電磁誘導コイル220と整流回路240との間に設けられ、複数の電磁誘導コイル220に対応して設けられる複数のリレーを含む。そして、ECU290からの制御信号に応じて複数のリレーのいずれかが適宜オンされ、切替装置230は、ECU290からの制御信号に応じて、整流回路240に電気的に接続される電磁誘導コイルを切替える。   The switching device 230 includes a plurality of relays provided between the plurality of electromagnetic induction coils 220 and the rectifier circuit 240 and provided corresponding to the plurality of electromagnetic induction coils 220. Then, one of the plurality of relays is appropriately turned on according to the control signal from ECU 290, and switching device 230 switches the electromagnetic induction coil electrically connected to rectifier circuit 240 according to the control signal from ECU 290. .

整流回路240は、切替装置230によって電気的に接続された電磁誘導コイル220を用いて共鳴コイル210から取出された電力(交流)を整流して充電器250へ出力する。充電器250は、ECU290からの制御信号に基づいて、整流回路240によって整流された電力を蓄電装置260の電圧レベルに変換して蓄電装置260へ出力する。   The rectifier circuit 240 rectifies the electric power (alternating current) extracted from the resonance coil 210 using the electromagnetic induction coil 220 electrically connected by the switching device 230 and outputs the rectified power to the charger 250. Based on the control signal from ECU 290, charger 250 converts the power rectified by rectifier circuit 240 into a voltage level of power storage device 260 and outputs the voltage level to power storage device 260.

蓄電装置260は、再充電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池から成る。蓄電装置260は、充電器250から供給される電力を蓄えるほか、動力出力装置270によって発電される回生電力も蓄える。そして、蓄電装置260は、その蓄えた電力を動力出力装置270へ供給する。なお、蓄電装置260として大容量のキャパシタも採用可能であり、給電装置100から供給される電力や動力出力装置270からの回生電力を一時的に蓄え、その蓄えた電力を動力出力装置270へ供給可能な電力バッファであれば如何なるものでもよい。   Power storage device 260 is a rechargeable DC power source, and is formed of a secondary battery such as lithium ion or nickel metal hydride. Power storage device 260 stores electric power supplied from charger 250 and also stores regenerative power generated by power output device 270. Then, power storage device 260 supplies the stored power to power output device 270. Note that a large-capacity capacitor can also be used as the power storage device 260, and temporarily stores the power supplied from the power supply device 100 and the regenerative power from the power output device 270, and supplies the stored power to the power output device 270. Any possible power buffer may be used.

動力出力装置270は、蓄電装置260に蓄えられる電力を用いて車両200の走行駆動力を発生するように構成される。特に図示しないが、動力出力装置270は、たとえば、蓄電装置260から出力される電力を受けるインバータ、インバータによって駆動されるモータ、モータから駆動力を受ける駆動輪等を含む。なお、動力出力装置270は、蓄電装置260を充電するための発電機を駆動可能なエンジンを含んでもよい。   Power output device 270 is configured to generate the driving force for driving vehicle 200 using the electric power stored in power storage device 260. Although not particularly shown, power output device 270 includes, for example, an inverter that receives electric power output from power storage device 260, a motor driven by the inverter, a drive wheel that receives a driving force from the motor, and the like. Power output device 270 may include an engine capable of driving a generator for charging power storage device 260.

電力センサ280は、たとえば充電器250の入力電力を検出することにより車両200の受電電力を検出し、その検出値をECU290へ出力する。なお、電力センサ280の設置場所は、充電器250の入力側に限定されるものではなく、充電器250の出力側やその他の場所であってもよい。また、電力センサ280に代えて電圧センサおよび電流センサを設け、各センサの検出値から受電電力を算出してもよい。   For example, power sensor 280 detects the received power of vehicle 200 by detecting the input power of charger 250 and outputs the detected value to ECU 290. The installation location of the power sensor 280 is not limited to the input side of the charger 250, but may be the output side of the charger 250 or other locations. Further, a voltage sensor and a current sensor may be provided instead of the power sensor 280, and the received power may be calculated from the detection value of each sensor.

ECU290は、給電装置100から車両200への送電を要求する送電要求指令を通信装置300へ出力する。そして、給電装置100から車両200への給電時、ECU290は、充電器250および切替装置230の動作を制御する。具体的には、ECU290は、整流回路240から出力される電力を蓄電装置260の電圧レベルに変換するように充電器250を制御する。また、ECU290は、車両200の受電電力の検出値を電力センサ280から受け、複数の電磁誘導コイル220のうち受電電力が最大となる電磁誘導コイル220を整流回路240に電気的に接続するように切替装置230を制御する。さらに、ECU290は、電力センサ280から受ける受電電力の検出値を通信装置300へ出力する。   ECU 290 outputs a power transmission request command for requesting power transmission from power supply apparatus 100 to vehicle 200 to communication apparatus 300. ECU 290 controls the operation of charger 250 and switching device 230 when power is supplied from power supply device 100 to vehicle 200. Specifically, ECU 290 controls charger 250 so as to convert electric power output from rectifier circuit 240 into a voltage level of power storage device 260. ECU 290 receives the detected value of the received power of vehicle 200 from power sensor 280 and electrically connects electromagnetic induction coil 220 having the maximum received power among a plurality of electromagnetic induction coils 220 to rectifier circuit 240. The switching device 230 is controlled. Further, ECU 290 outputs the detected value of received power received from power sensor 280 to communication device 300.

通信装置300は、給電装置100の通信装置170と通信を行なうための通信インターフェースであり、ECU290から受ける送電要求指令や受電電力の検出値等の情報を給電装置100の通信装置170へ送信する。通信アンテナ310は、通信装置300に接続される。   Communication device 300 is a communication interface for communicating with communication device 170 of power supply device 100, and transmits information such as a power transmission request command received from ECU 290 and a detected value of received power to communication device 170 of power supply device 100. Communication antenna 310 is connected to communication device 300.

この車両給電システムにおいては、所定の周波数を有する高周波電力が高周波電源装置110によって生成される。そして、切替装置140によって同軸ケーブル120に電気的に接続された電磁誘導コイル130へ高周波電源装置110から高周波電力が供給され、その電磁誘導コイル130から共鳴コイル150へ電磁誘導により電力が供給される。   In this vehicle power supply system, high frequency power having a predetermined frequency is generated by the high frequency power supply device 110. Then, high-frequency power is supplied from the high-frequency power supply device 110 to the electromagnetic induction coil 130 electrically connected to the coaxial cable 120 by the switching device 140, and power is supplied from the electromagnetic induction coil 130 to the resonance coil 150 by electromagnetic induction. .

そうすると、給電装置100の共鳴コイル150と車両200の共鳴コイル210とが電磁場を介して共鳴し、共鳴コイル150から共鳴コイル210へエネルギーが伝送される。車両200において共鳴コイル210により受電された電力は、切替装置230によって整流回路240に電気的に接続された電磁誘導コイル220によって共鳴コイル210から取出され、整流回路240および充電器250を介して蓄電装置260へ供給される。   Then, resonance coil 150 of power supply apparatus 100 and resonance coil 210 of vehicle 200 resonate via an electromagnetic field, and energy is transmitted from resonance coil 150 to resonance coil 210. The electric power received by the resonance coil 210 in the vehicle 200 is taken out from the resonance coil 210 by the electromagnetic induction coil 220 electrically connected to the rectification circuit 240 by the switching device 230 and is stored via the rectification circuit 240 and the charger 250. Supplied to device 260.

ここで、この車両給電システムにおいては、給電装置100において電磁誘導コイル130が複数設けられる。そして、複数の電磁誘導コイル130のうち送電効率が最も高くなる電磁誘導コイル130が適宜選択され、その選択された電磁誘導コイル130が切替装置140によって同軸ケーブル120に電気的に接続される。   Here, in this vehicle power supply system, a plurality of electromagnetic induction coils 130 are provided in the power supply apparatus 100. Then, the electromagnetic induction coil 130 having the highest power transmission efficiency among the plurality of electromagnetic induction coils 130 is appropriately selected, and the selected electromagnetic induction coil 130 is electrically connected to the coaxial cable 120 by the switching device 140.

同様に、受電側の車両200においても電磁誘導コイル220が複数設けられる。そして、複数の電磁誘導コイル220のうち受電電力が最大となる電磁誘導コイル220が適宜選択され、その選択された電磁誘導コイル220が切替装置230によって整流回路240に電気的に接続される。   Similarly, a plurality of electromagnetic induction coils 220 are provided in the vehicle 200 on the power receiving side. Then, the electromagnetic induction coil 220 having the maximum received power among the plurality of electromagnetic induction coils 220 is appropriately selected, and the selected electromagnetic induction coil 220 is electrically connected to the rectifier circuit 240 by the switching device 230.

このように、この車両給電システムにおいては、給電装置100および車両200において電磁誘導コイルが複数設けられ、給電装置100から車両200への送電効率(受電電力)が最も高くなる電磁誘導コイルが適宜選択される。   Thus, in this vehicle power supply system, a plurality of electromagnetic induction coils are provided in the power supply apparatus 100 and the vehicle 200, and an electromagnetic induction coil that maximizes the power transmission efficiency (received power) from the power supply apparatus 100 to the vehicle 200 is appropriately selected. Is done.

図2は、共鳴法による送電の原理を説明するための図である。図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、2つのLC共振コイル(共鳴コイル)が電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。   FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method. Referring to FIG. 2, in this resonance method, two LC resonance coils (resonance coils) resonate in an electromagnetic field (near field) in the same manner as two tuning forks resonate. Electric power is transmitted to the coil via an electromagnetic field.

具体的には、高周波電源装置110に電磁誘導コイル130を接続し、電磁誘導により電磁誘導コイル130と磁気的に結合される共鳴コイル150へ電磁誘導コイル130から高周波電力を給電する。共鳴コイル150は、LC共振コイルであり、車両200の共鳴コイル210と電磁場(近接場)を介して共鳴する。そうすると、共鳴コイル150から共鳴コイル210へ電磁場を介してエネルギー(電力)が移動する。共鳴コイル210へ移動したエネルギー(電力)は、電磁誘導により共鳴コイル210と磁気的に結合される電磁誘導コイル220によって共鳴コイル210から取出され、負荷320(整流回路240以降の電気システム全般を示す。)へ供給される。   Specifically, the electromagnetic induction coil 130 is connected to the high frequency power supply device 110, and high frequency power is supplied from the electromagnetic induction coil 130 to the resonance coil 150 that is magnetically coupled to the electromagnetic induction coil 130 by electromagnetic induction. The resonance coil 150 is an LC resonance coil and resonates with the resonance coil 210 of the vehicle 200 via an electromagnetic field (near field). Then, energy (electric power) moves from the resonance coil 150 to the resonance coil 210 via the electromagnetic field. The energy (electric power) transferred to the resonance coil 210 is taken out from the resonance coil 210 by the electromagnetic induction coil 220 magnetically coupled to the resonance coil 210 by electromagnetic induction, and indicates the load 320 (the electric system in general after the rectifier circuit 240). )).

図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。   FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the intensity of the electromagnetic field. Referring to FIG. 3, the electromagnetic field includes three components. The curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”. A curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”. The curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.

この中でも波源からの距離とともに急激に電磁波の強度が減少する領域があるが、共鳴法では、この近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、近接場を利用して、一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(給電装置100の共鳴コイル150)から他方の共鳴器(車両200の共鳴コイル210)へエネルギー(電力)を伝送する。この近接場は遠方にエネルギー(電力)を伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。   Among these, there is a region where the intensity of the electromagnetic wave rapidly decreases with the distance from the wave source. In the resonance method, energy (electric power) is transmitted using this near field (evanescent field). That is, by using a near field to resonate a pair of resonators (for example, a pair of LC resonance coils), one resonator (resonance coil 150 of the power supply apparatus 100) to the other resonator (resonance of the vehicle 200). Energy (electric power) is transmitted to the coil 210). Since this near field does not propagate energy (electric power) far away, the resonance method transmits power with less energy loss than electromagnetic waves that transmit energy (electric power) by "radiation electromagnetic field" that propagates energy far away. be able to.

図4は、図1に示した切替装置140を操作したときの給電装置100から車両200への送電効率の変化を示した図である。図4を参照して、縦軸は送電効率を示し、横軸は送電される電力の周波数を示す。f0は共振周波数であり、送電される電力の周波数が共振周波数と一致するときに送電効率は最大となる。言い換えると、共振周波数f0は共鳴コイルのインダクタンスLとキャパシタンスCとによって決まるので、送電される電力の周波数に共振周波数が一致するように共鳴コイルのインダクタンスLおよびキャパシタンスCが設計される。   FIG. 4 is a diagram illustrating a change in power transmission efficiency from the power supply apparatus 100 to the vehicle 200 when the switching apparatus 140 illustrated in FIG. 1 is operated. Referring to FIG. 4, the vertical axis indicates power transmission efficiency, and the horizontal axis indicates the frequency of transmitted power. f0 is a resonance frequency, and the transmission efficiency is maximized when the frequency of the transmitted power matches the resonance frequency. In other words, since the resonance frequency f0 is determined by the inductance L and the capacitance C of the resonance coil, the inductance L and the capacitance C of the resonance coil are designed so that the resonance frequency matches the frequency of the transmitted power.

そして、図4において、実線は、複数の電磁誘導コイル130のうち送電効率が最も高くなる電磁誘導コイル130が選択されたときの送電効率を示し、他の点線は、その他の電磁誘導コイル130が選択されたときの送電効率を示す。   In FIG. 4, the solid line indicates the power transmission efficiency when the electromagnetic induction coil 130 having the highest power transmission efficiency is selected from among the plurality of electromagnetic induction coils 130, and the other dotted lines indicate the other electromagnetic induction coils 130. Shows the transmission efficiency when selected.

なお、共鳴コイル150,210によって形成される共鳴系の入力インピーダンスが変化すると送電効率が変化する。ここで、図1に示したように、複数の電磁誘導コイル130は、共鳴コイル150と所定の間隔をおいて共鳴コイル150と略同軸上に配設されているところ、同軸ケーブル120に電気的に接続される電磁誘導コイル130と共鳴コイル150との距離に応じて電磁誘導コイル130と共鳴コイル150との結合度(κs)が変化する。したがって、切替装置140により電磁誘導コイル130を切替えることは、共鳴コイル150の入力インピーダンスを変化させることに相当する。そして、この実施の形態1は、共鳴コイル150との距離が異なる複数の電磁誘導コイル130と、複数の電磁誘導コイル130を選択的に高周波電源装置110に接続する切替装置140とを設けることによって、入力インピーダンスを簡易な構成で調整可能としたものである。   The transmission efficiency changes when the input impedance of the resonance system formed by the resonance coils 150 and 210 changes. Here, as shown in FIG. 1, the plurality of electromagnetic induction coils 130 are arranged substantially coaxially with the resonance coil 150 at a predetermined interval from the resonance coil 150, and are electrically connected to the coaxial cable 120. The degree of coupling (κs) between the electromagnetic induction coil 130 and the resonance coil 150 changes according to the distance between the electromagnetic induction coil 130 and the resonance coil 150 connected to the. Therefore, switching the electromagnetic induction coil 130 by the switching device 140 corresponds to changing the input impedance of the resonance coil 150. In the first embodiment, a plurality of electromagnetic induction coils 130 having different distances from the resonance coil 150 and a switching device 140 that selectively connects the plurality of electromagnetic induction coils 130 to the high frequency power supply device 110 are provided. The input impedance can be adjusted with a simple configuration.

なお、特に図示しないが、図1に示した車両200の切替装置230を操作したときの送電効率の変化も図4のように表わされ、複数の電磁誘導コイル220のうち送電効率(受電電力)が最も高くなる電磁誘導コイル220が切替装置230によって選択される。   Although not shown in particular, the change in power transmission efficiency when the switching device 230 of the vehicle 200 shown in FIG. 1 is operated is also expressed as shown in FIG. ) Is selected by the switching device 230.

以上のように、この実施の形態1によれば、給電装置100において複数の電磁誘導コイル130および切替装置140を設けたので、簡易な構成で給電装置100から車両200への送電の効率を高めることができる。   As described above, according to the first embodiment, since the plurality of electromagnetic induction coils 130 and the switching device 140 are provided in the power feeding device 100, the efficiency of power transmission from the power feeding device 100 to the vehicle 200 is increased with a simple configuration. be able to.

また、この実施の形態1によれば、受電側の車両200において複数の電磁誘導コイル220および切替装置230を設けたので、簡易な構成で給電装置100から車両200への送電の効率を高めることができる。   Further, according to the first embodiment, since the plurality of electromagnetic induction coils 220 and the switching device 230 are provided in the vehicle 200 on the power receiving side, the efficiency of power transmission from the power feeding device 100 to the vehicle 200 can be improved with a simple configuration. Can do.

[実施の形態2]
図5は、実施の形態2による車両給電システムの全体構成を示す機能ブロック図である。図5を参照して、この実施の形態2では、給電装置100は、図1に示した実施の形態1による給電装置の構成において、複数の電磁誘導コイル130に代えて複数の電磁誘導コイル130Aを含む。また、この実施の形態2では、車両200は、図1に示した実施の形態1による車両の構成において、複数の電磁誘導コイル220に代えて複数の電磁誘導コイル220Aを含む。
[Embodiment 2]
FIG. 5 is a functional block diagram showing the overall configuration of the vehicle power supply system according to the second embodiment. Referring to FIG. 5, in the second embodiment, power feeding device 100 is configured with a plurality of electromagnetic induction coils 130 </ b> A instead of a plurality of electromagnetic induction coils 130 in the configuration of the power feeding device according to the first embodiment shown in FIG. 1. including. In the second embodiment, vehicle 200 includes a plurality of electromagnetic induction coils 220A in place of the plurality of electromagnetic induction coils 220 in the configuration of the vehicle according to the first embodiment shown in FIG.

複数の電磁誘導コイル130Aは、互いにコイル径が異なり、たとえば、略同一平面内に略同心円状に配設される。なお、複数の電磁誘導コイル130Aは略同一平面内になくてもよいが、略同一平面内に配設することで複数の電磁誘導コイル130Aの配置スペースを小さくすることが可能である。   The plurality of electromagnetic induction coils 130 </ b> A have different coil diameters, and are, for example, arranged substantially concentrically in substantially the same plane. The plurality of electromagnetic induction coils 130A do not have to be in substantially the same plane, but the arrangement space of the plurality of electromagnetic induction coils 130A can be reduced by disposing them in substantially the same plane.

コイル径の異なる電磁誘導コイル130Aを切替装置140により切替えることで、電磁誘導コイル130Aと共鳴コイル150との間の結合度が変化し、共鳴コイル150の入力インピーダンスが変化する。そこで、この実施の形態2では、コイル径の異なる複数の電磁誘導コイル130Aが予め用意され、送電効率が最も高くなる電磁誘導コイルを切替装置140により選択することによって送電効率を高めることができる。   By switching the electromagnetic induction coil 130A having a different coil diameter by the switching device 140, the degree of coupling between the electromagnetic induction coil 130A and the resonance coil 150 changes, and the input impedance of the resonance coil 150 changes. Therefore, in the second embodiment, a plurality of electromagnetic induction coils 130A having different coil diameters are prepared in advance, and the power transmission efficiency can be increased by selecting the electromagnetic induction coil having the highest power transmission efficiency by the switching device 140.

また、車両200において、複数の電磁誘導コイル220Aも、互いにコイル径が異なり、たとえば、略同一平面内に略同心円状に配設される。なお、複数の電磁誘導コイル220Aも略同一平面内になくてもよいが、略同一平面内に配設することで複数の電磁誘導コイル220Aの配置スペースを小さくすることが可能である。   Further, in the vehicle 200, the plurality of electromagnetic induction coils 220A also have different coil diameters, and are arranged, for example, in a substantially concentric manner in a substantially same plane. The plurality of electromagnetic induction coils 220A may not be in substantially the same plane, but the arrangement space of the plurality of electromagnetic induction coils 220A can be reduced by disposing them in substantially the same plane.

そして、コイル径の異なる電磁誘導コイル220Aを切替装置230により切替えることで、電磁誘導コイル220Aと共鳴コイル210との間の結合度が変化し、インピーダンスが変化する。そこで、この実施の形態2では、コイル径の異なる複数の電磁誘導コイル220Aが予め用意され、送電効率(受電電力)が最も高くなる電磁誘導コイルを切替装置230により選択することによって送電効率を高めることができる。   Then, by switching the electromagnetic induction coil 220A having a different coil diameter by the switching device 230, the degree of coupling between the electromagnetic induction coil 220A and the resonance coil 210 changes, and the impedance changes. Therefore, in the second embodiment, a plurality of electromagnetic induction coils 220A having different coil diameters are prepared in advance, and the electromagnetic induction coil having the highest power transmission efficiency (received power) is selected by the switching device 230 to increase the power transmission efficiency. be able to.

以上のように、この実施の形態2によれば、実施の形態1と同様の効果が得られるとともに、給電装置100における複数の電磁誘導コイル130Aの配置スペース、および車両200における複数の電磁誘導コイル220Aの配置スペースを小さくすることができる。   As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained, the arrangement space of the plurality of electromagnetic induction coils 130A in the power supply apparatus 100, and the plurality of electromagnetic induction coils in the vehicle 200 The arrangement space for 220A can be reduced.

なお、上記の各実施の形態においては、給電装置100および車両200の各々において複数の電磁誘導コイルおよび切替装置を設けるものとしたが、給電装置100および車両200のいずれかにおいて複数の電磁誘導コイルおよび切替装置を設ける構成であってもよい。このような構成であっても、図4に示したように送電効率の向上効果を得ることができる。   In each of the embodiments described above, a plurality of electromagnetic induction coils and a switching device are provided in each of power feeding device 100 and vehicle 200. However, a plurality of electromagnetic induction coils is provided in any of power feeding device 100 and vehicle 200. Further, a configuration in which a switching device is provided may be used. Even with such a configuration, it is possible to obtain the effect of improving the power transmission efficiency as shown in FIG.

なお、上記において、共鳴コイル150は、この発明における「送電用コイル」の一実施例に対応し、共鳴コイル210は、この発明における「受電用コイル」の一実施例に対応する。   In the above description, resonance coil 150 corresponds to an example of “power transmission coil” in the present invention, and resonance coil 210 corresponds to an example of “power reception coil” in the present invention.

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.

100 給電装置、110 高周波電源装置、120 同軸ケーブル、130,220,130A,220A 電磁誘導コイル、140,230 切替装置、150,210 共鳴コイル、160,310 通信アンテナ、170,300 通信装置、180,290 ECU、200 車両、240 整流回路、250 充電器、260 蓄電装置、270 動力出力装置、280 電力センサ、320 負荷、350 電源プラグ。   DESCRIPTION OF SYMBOLS 100 Power supply device, 110 High frequency power supply device, 120 Coaxial cable, 130, 220, 130A, 220A Electromagnetic induction coil, 140, 230 Switching device, 150, 210 Resonance coil, 160, 310 Communication antenna, 170, 300 Communication device, 180, 290 ECU, 200 vehicle, 240 rectifier circuit, 250 charger, 260 power storage device, 270 power output device, 280 power sensor, 320 load, 350 power plug.

Claims (8)

車両に搭載された受電用コイルと電磁場を介して共鳴することにより前記受電用コイルへ非接触で送電するように構成された送電用コイルと、
所定の周波数を有する電力を発生する電源装置と、
前記電源装置から出力される電力を前記送電用コイルへ電磁誘導により供給するように各々が構成された複数の電磁誘導コイルと、
前記複数の電磁誘導コイルと前記電源装置との間に設けられ、前記電源装置に電気的に接続される電磁誘導コイルを切替可能に構成された切替装置とを備える車両用給電装置。
A power transmission coil configured to transmit power to the power reception coil in a non-contact manner by resonating with a power reception coil mounted on a vehicle via an electromagnetic field;
A power supply device that generates electric power having a predetermined frequency;
A plurality of electromagnetic induction coils each configured to supply electric power output from the power supply device to the power transmission coil by electromagnetic induction; and
A vehicle power supply device comprising: a switching device provided between the plurality of electromagnetic induction coils and the power supply device, and configured to be able to switch the electromagnetic induction coils electrically connected to the power supply device.
前記切替装置は、前記複数の電磁誘導コイルにそれぞれ対応して設けられる複数のリレーを含み、
前記複数のリレーの各々は、対応の電磁誘導コイルと前記電源装置との間に接続される、請求項1に記載の車両用給電装置。
The switching device includes a plurality of relays provided corresponding to the plurality of electromagnetic induction coils,
2. The vehicle power supply device according to claim 1, wherein each of the plurality of relays is connected between a corresponding electromagnetic induction coil and the power supply device.
前記複数の電磁誘導コイルの各々のコイル径は、互いに異なる、請求項1に記載の車両用給電装置。   The vehicle power supply device according to claim 1, wherein the coil diameters of the plurality of electromagnetic induction coils are different from each other. 前記複数の電磁誘導コイルの各々は、同一平面内に配設される、請求項3に記載の車両用給電装置。   4. The vehicle power supply device according to claim 3, wherein each of the plurality of electromagnetic induction coils is disposed in the same plane. 車両に搭載された受電装置であって、
車両外部の給電装置に含まれる送電用コイルと電磁場を介して共鳴することにより前記送電用コイルから非接触で受電するように構成された受電用コイルと、
前記受電用コイルにより受電された電力を電磁誘導により取出すように各々が構成された複数の電磁誘導コイルと、
前記複数の電磁誘導コイルと車両電気システムとの間に設けられ、前記車両電気システムに電気的に接続される電磁誘導コイルを切替可能に構成された切替装置とを備える受電装置。
A power receiving device mounted on a vehicle,
A power receiving coil configured to receive power from the power transmitting coil in a non-contact manner by resonating with a power transmitting coil included in a power feeding device outside the vehicle; and
A plurality of electromagnetic induction coils each configured to take out the electric power received by the power receiving coil by electromagnetic induction; and
A power receiving device comprising: a switching device provided between the plurality of electromagnetic induction coils and the vehicle electrical system, and configured to be able to switch the electromagnetic induction coils electrically connected to the vehicle electrical system.
前記切替装置は、前記複数の電磁誘導コイルにそれぞれ対応して設けられる複数のリレーを含み、
前記複数のリレーの各々は、対応の電磁誘導コイルと前記車両電気システムとの間に接続される、請求項5に記載の受電装置。
The switching device includes a plurality of relays provided corresponding to the plurality of electromagnetic induction coils,
The power receiving device according to claim 5, wherein each of the plurality of relays is connected between a corresponding electromagnetic induction coil and the vehicle electrical system.
前記複数の電磁誘導コイルの各々のコイル径は、互いに異なる、請求項5に記載の受電装置。   The power receiving device according to claim 5, wherein coil diameters of the plurality of electromagnetic induction coils are different from each other. 前記複数の電磁誘導コイルの各々は、同一平面内に配設される、請求項7に記載の受電装置。   The power receiving device according to claim 7, wherein each of the plurality of electromagnetic induction coils is disposed in the same plane.
JP2010029991A 2010-02-15 2010-02-15 Electric power feed device for vehicle, and electric power reception device Withdrawn JP2011167036A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010029991A JP2011167036A (en) 2010-02-15 2010-02-15 Electric power feed device for vehicle, and electric power reception device
PCT/JP2010/007215 WO2011099106A1 (en) 2010-02-15 2010-12-13 Electric power feed device for vehicle and electric power reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029991A JP2011167036A (en) 2010-02-15 2010-02-15 Electric power feed device for vehicle, and electric power reception device

Publications (1)

Publication Number Publication Date
JP2011167036A true JP2011167036A (en) 2011-08-25

Family

ID=44177977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029991A Withdrawn JP2011167036A (en) 2010-02-15 2010-02-15 Electric power feed device for vehicle, and electric power reception device

Country Status (2)

Country Link
JP (1) JP2011167036A (en)
WO (1) WO2011099106A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130102218A (en) * 2012-03-07 2013-09-17 엘에스전선 주식회사 Wireless power receiving device with multi coil and wireless power receiving method
JP2013258897A (en) * 2012-06-13 2013-12-26 Siemens Ag Inductive wireless energy transmission device
WO2014002831A1 (en) * 2012-06-26 2014-01-03 オリンパス株式会社 Medical wireless power supply system
US8981599B2 (en) 2010-12-24 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Power feeding device and contactless power feeding system provided with power feeding device
JPWO2013054399A1 (en) * 2011-10-12 2015-03-30 トヨタ自動車株式会社 Power transmission device, power reception device, and power transmission system
JP2016529864A (en) * 2013-08-07 2016-09-23 エルジー イノテック カンパニー リミテッド Wireless power transmitter
JP2017093174A (en) * 2015-11-11 2017-05-25 清水建設株式会社 Power supply system and control method of power supply system
CN108352728A (en) * 2015-09-08 2018-07-31 Cpg技术有限责任公司 It is received from lead schedule surface wave and measures and report power
CN111257789A (en) * 2020-03-25 2020-06-09 中车青岛四方车辆研究所有限公司 Simulation test device of tramcar non-contact power supply system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6092017B2 (en) 2013-06-25 2017-03-08 ルネサスエレクトロニクス株式会社 Power transmission device, non-contact power feeding system, and control method
CN103501059B (en) * 2013-09-27 2016-01-20 重庆大学 Field coupled formula energy signal walks abreast wireless transmitting system
US9991048B2 (en) * 2014-06-24 2018-06-05 The Board Of Trustees Of The University Of Alabama Wireless power transfer systems and methods
CN105118279B (en) * 2015-08-31 2019-02-19 重庆大学 WPT system signal transmitting apparatus based on parasitic parameter
US10594156B2 (en) 2017-01-23 2020-03-17 Nike, Inc. Wireless charging system with multi-coil scanning and learning
CN107181327B (en) * 2017-04-27 2021-03-09 上海蔚来汽车有限公司 Wireless charging device and coil switching method thereof, and related device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821728A (en) * 1996-07-22 1998-10-13 Schwind; John P. Armature induction charging of moving electric vehicle batteries
JP3692541B2 (en) 1997-02-03 2005-09-07 ソニー株式会社 Power transmission device and power transmission method
US5926004A (en) * 1997-10-10 1999-07-20 Schott Power Systems Incorporated Method and apparatus for charging one or more electric vehicles
JP2004166384A (en) 2002-11-12 2004-06-10 Sharp Corp Non-contact power feeding system, electromagnetic coupling characteristic adjustment method therein and power feeder
CN102983639B (en) 2005-07-12 2016-01-27 麻省理工学院 Wireless non-radiative energy transmits
US7650192B2 (en) * 2005-12-02 2010-01-19 Medtronic, Inc. Passive charge of implantable medical device utilizing external power source and method
WO2009042214A1 (en) * 2007-09-26 2009-04-02 Governing Dynamics, Llc Self-charging electric vehicles and aircraft, and wireless energy distribution system
JP4453741B2 (en) 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374463B2 (en) 2010-12-24 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Power feeding device and contactless power feeding system provided with power feeding device
US9876395B2 (en) 2010-12-24 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Power feeding device and contactless power feeding system provided with power feeding device
US8981599B2 (en) 2010-12-24 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Power feeding device and contactless power feeding system provided with power feeding device
JPWO2013054399A1 (en) * 2011-10-12 2015-03-30 トヨタ自動車株式会社 Power transmission device, power reception device, and power transmission system
KR20130102218A (en) * 2012-03-07 2013-09-17 엘에스전선 주식회사 Wireless power receiving device with multi coil and wireless power receiving method
US9412514B2 (en) 2012-06-13 2016-08-09 Siemens Aktiengesellschaft Arrangement for the inductive wireless delivery of energy
CN103490526A (en) * 2012-06-13 2014-01-01 西门子公司 Arrangement for the inductive wireless delivery of energy
JP2013258897A (en) * 2012-06-13 2013-12-26 Siemens Ag Inductive wireless energy transmission device
WO2014002831A1 (en) * 2012-06-26 2014-01-03 オリンパス株式会社 Medical wireless power supply system
JP2016529864A (en) * 2013-08-07 2016-09-23 エルジー イノテック カンパニー リミテッド Wireless power transmitter
CN108352728A (en) * 2015-09-08 2018-07-31 Cpg技术有限责任公司 It is received from lead schedule surface wave and measures and report power
JP2018528430A (en) * 2015-09-08 2018-09-27 シーピージー テクノロジーズ、 エルエルシーCpg Technologies, Llc Measurement and notification of power received from induced surface waves
JP2017093174A (en) * 2015-11-11 2017-05-25 清水建設株式会社 Power supply system and control method of power supply system
CN111257789A (en) * 2020-03-25 2020-06-09 中车青岛四方车辆研究所有限公司 Simulation test device of tramcar non-contact power supply system

Also Published As

Publication number Publication date
WO2011099106A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
JP5083480B2 (en) Non-contact power supply facility, vehicle, and control method for non-contact power supply system
JP5648694B2 (en) Non-contact power supply system and power supply equipment
JP5211088B2 (en) Power feeding device and vehicle power feeding system
JP5077421B2 (en) Contactless power transmission equipment
JP4947241B2 (en) Coil unit, contactless power receiving device, contactless power transmitting device, contactless power feeding system, and vehicle
JP5016069B2 (en) Power transmission system and vehicle power supply device
JP4962621B2 (en) Non-contact power transmission device and vehicle equipped with non-contact power transmission device
JP5287863B2 (en) Non-contact power receiving apparatus and vehicle equipped with the same
JP5152446B2 (en) Non-contact power supply equipment
JP5347708B2 (en) Coil unit, non-contact power transmission device, non-contact power feeding system, and vehicle
KR101634889B1 (en) Power receiving device for vehicle, vehicle provided with same, power supply apparatus, and electric-power transmission system
US20140125144A1 (en) Power transmitting device, power receiving device, vehicle, and contactless power supply system and control method for contactless power supply system
WO2013054399A1 (en) Power transmitting apparatus, power receiving apparatus, and power transmitting system
JP2011250555A (en) Power feeding system and vehicle
JP2011135754A (en) Noncontact power-receiving device and manufacturing method therefor
JP2012060807A (en) Power supplying device, power receiving device and vehicle equipped with the same, and method of controlling power supplying system
JP2010074937A (en) Non-contact power receiving apparatus and vehicle equipped with the same
JP5474470B2 (en) Non-contact power receiving apparatus and electric vehicle including the same
JP2010073885A (en) Resonance coil and non-contact feeding system
RU2461946C1 (en) Device for non-contact power generation and transport means containing such device
JP2010093944A (en) Power reception control device of vehicle, and vehicle equipped with the same
JP2011166931A (en) Power receiving device and vehicle with the same
JP2015027224A (en) Non-contact power-receiving device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111013

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507