WO2016135949A1 - Inductor and wireless power transmission device - Google Patents

Inductor and wireless power transmission device Download PDF

Info

Publication number
WO2016135949A1
WO2016135949A1 PCT/JP2015/055859 JP2015055859W WO2016135949A1 WO 2016135949 A1 WO2016135949 A1 WO 2016135949A1 JP 2015055859 W JP2015055859 W JP 2015055859W WO 2016135949 A1 WO2016135949 A1 WO 2016135949A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
inductor
inductor according
housing
magnetic core
Prior art date
Application number
PCT/JP2015/055859
Other languages
French (fr)
Japanese (ja)
Inventor
徹 司城
健一郎 小川
尾林 秀一
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/055859 priority Critical patent/WO2016135949A1/en
Priority to JP2017501795A priority patent/JP6236571B2/en
Publication of WO2016135949A1 publication Critical patent/WO2016135949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • Embodiments described herein relate generally to an inductor and a wireless power transmission device.
  • an inductor having a structure in which a magnetic core and windings are covered with resin has been used.
  • Such an inductor is manufactured by casting resin so as to cover the magnetic core and the winding.
  • stress is applied to the magnetic core due to curing shrinkage of the resin that occurs during casting.
  • magnetostriction of the magnetic core is inhibited. This caused problems such as a decrease in L value and an increase in core loss.
  • an inductor having a magnetic core covered with a buffer material has been proposed.
  • this inductor has a problem that stress cannot be sufficiently suppressed when the thickness of the buffer material is insufficient.
  • an inductor and a wireless power transmission device in which stress applied to a magnetic core is suppressed.
  • An inductor includes a plurality of magnetic cores, one or more cases, a winding, a housing, and a reinforcing portion.
  • the case houses the magnetic core inside.
  • the winding is wound around the case.
  • the housing is formed of the first resin so as to cover the case and the winding.
  • a reinforcement part is formed in at least one part between magnetic body cores. The difference between the inner dimension of the case in the same direction and the dimension of the magnetic core is larger than the amount of change in the dimension of the case in that direction when the housing is formed.
  • FIG. 2 is a cross-sectional view of the inductor of FIG. 1 along the line AA.
  • XY plane sectional drawing which shows an example of the inductor which concerns on 1st Embodiment.
  • XY plane sectional drawing which shows an example of the inductor which concerns on 2nd Embodiment.
  • FIG. 5 is a cross-sectional view of the inductor of FIG. 4 along the line AA.
  • the YZ plane sectional view showing an example of the inductor concerning a 3rd embodiment.
  • FIG. 7 is a cross-sectional view of the inductor of FIG. 6 along the line AA.
  • XY plane sectional drawing which shows an example of the magnetic body core which concerns on 11th Embodiment.
  • the block diagram which shows an example of the power receiving apparatus which concerns on 12th Embodiment.
  • FIG. 1 is an XY plane sectional view showing an example of an inductor according to the present embodiment.
  • 2 is a cross-sectional view taken along the line AA in FIG. 1 (YZ plane cross-sectional view).
  • the inductor according to the present embodiment includes a plurality of magnetic cores 1, a case 2, a winding 3, a housing 4, a buffer material 5, a reinforcing portion 6, Is provided.
  • the magnetic core 1 is formed of a magnetic material such as ferrite or an electromagnetic steel plate.
  • the direction in which the magnetic flux generated inside the magnetic core 1 is maximized when a current is passed through the winding 3 is the length direction (the direction of the arrow X in FIG. 1), and the direction perpendicular to the length direction is the width.
  • Direction and height direction The width direction is the direction of the arrow Y in FIGS. 1 and 2, and the height direction is the direction of the arrow Z in FIG. Further, it is assumed that the length of the magnetic core 1 is l, the width is w, and the height is h.
  • the magnetic core 1 is formed so that a portion in the vicinity of the winding 3 has a larger cross-sectional area (cross-sectional area in the YZ plane) viewed from the length direction than the other portions.
  • the vicinity of the winding 3 is a portion of the magnetic core 1 surrounded by the winding 3.
  • a portion near the winding 3 is a portion where the magnetic flux density is maximum in the magnetic core 1. When the cross-sectional area of this portion is increased, the magnetic flux density of the magnetic core 1 can be reduced.
  • core loss occurs in an inductor having a magnetic core 1.
  • the core loss is energy loss that occurs in the magnetic core 1.
  • Core loss includes hysteresis loss and eddy current loss. This core loss increases as the magnetic flux density in the magnetic core 1 increases. Therefore, core loss can be reduced by thickening part of the magnetic core 1 and reducing the magnetic flux density of the magnetic core 1.
  • the core loss of the inductor can be reduced by making the total cross-sectional area of the magnetic core 1 in the vicinity of the winding 3 larger than the total cross-sectional area of the magnetic core 1 in other parts. Therefore, as shown in FIG. 3, the inductor may include a plurality of magnetic cores 1 having a constant cross-sectional area viewed from the length direction. Since the magnetic core 1 ′ at the center of the inductor shown in FIG. 3 is disposed only in the vicinity of the winding 3, the total cross-sectional area of the vicinity of the winding 3 is greater than the total cross-sectional area of other portions. It is getting bigger. Also in this case, the core loss of the inductor can be reduced.
  • the inductor may include four or more magnetic cores 4.
  • the cross-sectional area of the magnetic core 1 is increased by increasing the dimension in the width direction of the vicinity of the winding 3, but the magnetic core 1 is increased by increasing the dimension in the height direction.
  • the cross sectional area may be increased.
  • Case 2 houses one or more magnetic cores 1 inside. Since the casing 4 is formed outside the case 2, the casing 4 and the magnetic core 1 are not in contact with each other, and stress or thermal stress due to hardening shrinkage of the casing 4 is directly applied to the magnetic core 1. Absent. Therefore, the stress applied to the magnetic core 1 can be suppressed by providing the case 2.
  • Case 2 is formed of an insulating material.
  • a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polypropylene, ABS resin, or polyethylene, and glass are used.
  • the inner dimension in the length direction of the case 2 is L
  • the inner dimension in the width direction is W
  • the inner dimension in the height direction is H.
  • the inner dimension of the case 2 is a dimension between inner walls of the case 2 in each direction. Note that L, W, and H are internal dimensions of the case 2 when no current flows through the winding 3. The relationship between the inner dimension of the case 2 and the dimension of the magnetic core 1 will be described later.
  • the inductor includes two cases 2, and each case 2 stores one magnetic core 1.
  • the case 2 may store a plurality of magnetic cores 1.
  • the inductor when the inductor includes two magnetic cores 1, the inductor may include one case 2, and the two magnetic cores 1 may be accommodated in the case 2.
  • the winding 3 is wound around the case 2. More specifically, the winding 3 is wound not around each case 2 but around the entire plurality of cases 2.
  • the winding 3 for example, a copper wire, an aluminum wire, a litz wire, or the like is used. When a current flows through the winding 3, the inductor generates a magnetic field.
  • the housing 4 is formed of an insulating first resin so as to cover the case 2 and the winding 3.
  • the housing 4 is formed after the magnetic core 1 is housed inside the case 2 and the winding 3 is wound around the case 2.
  • a method for forming the housing 4 for example, casting or injection molding is used. Also, a layered manufacturing method using a 3D printer may be used.
  • the first resin is selected according to these manufacturing methods.
  • a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polypropylene, ABS resin, or polyethylene, and glass are used.
  • the case 2 described above may be formed of a first resin. Thereby, the adhesive strength between the casing 4 and the case 2 can be improved, and the interface peeling between the casing 4 and the case 2 when vibration or impact is applied to the inductor can be suppressed.
  • the case 2 may be formed of a second resin different from the first resin.
  • the case 2 is formed of a second resin having high strength
  • the housing 4 is formed of a first resin having high thermal conductivity.
  • strength and heat dissipation of an inductor can be improved.
  • the productivity of the inductor can be improved by forming the housing 4 from the first resin having a low viscosity.
  • the case 2 is preferably sealed before the housing 4 is formed so that the first resin does not enter the case 2.
  • a resonance capacitance may be incorporated in a part of the housing 4.
  • the capacitance is built in a space 41 generated in a portion where the cross-sectional areas of the two magnetic cores 1 are small.
  • the housing 4 may include a storage unit for incorporating a capacitance, and the capacitance may be mounted after the housing 4 is formed.
  • casing 4 may be formed by casting etc. in the state which arrange
  • the buffer material 5 is provided between the case 2 and the magnetic core 1 so as to cover at least a part of the magnetic core 1.
  • the buffer material 5 fixes the magnetic core 1 inside the case 2 and suppresses stress applied to the magnetic core 1 from the outside.
  • the buffer material 5 is formed of an insulating or semiconductive material.
  • the semiconductive material here refers to a material having higher electrical conductivity than an insulator and lower electrical conductivity than a conductor. Therefore, the semiconductive material has higher conductivity than the material of the case 2 and the housing 4.
  • the semiconductive material is a material having an electric conductivity of 10 ⁇ 6 S / m or more and 10 6 S / m or less.
  • the semiconductive material is, for example, a mixture of an insulator and a conductor such as carbon.
  • the material of the buffer material 5 for example, a foamed resin, a rubber resin, a gel resin, a nonwoven fabric, or the like is used. Also, synthetic rubber such as acrylic rubber or silicon rubber may be used.
  • the buffer material 5 is formed of a semiconductive material, the concentration of the electric field can be relaxed, so that partial discharge between the magnetic core 1 and the winding 3 can be suppressed.
  • the buffer material 5 is preferably formed of a material having a lower elastic modulus than that of the first resin in order to buffer stress due to curing shrinkage of the housing 4. Moreover, in order to buffer the stress due to the thermal contraction of the case 2, it is preferably formed of a material having a lower elastic modulus than that of the case 2. Furthermore, the buffer material 5 is preferably provided so as to cover the entire magnetic core 1 as shown in FIGS. 1 and 2 in order to improve the heat dissipation from the magnetic core 1.
  • the reinforcing portion 6 is formed between the magnetic cores 1 and reinforces the strength of the inductor and mainly supports the load in the height direction. Since the inner dimension of the case 2 is larger than the outer dimension of the magnetic core 1, the load cannot be supported by the magnetic core 1 when a load is applied to the inductor without the reinforcing portion 6. In view of this, the magnetic core 1 is divided, and a reinforcing portion 6 is provided to support a load at a portion between the divided magnetic cores 1. In FIG. 1, the reinforcing portion 6 is formed by a side surface of the case 2 positioned between two magnetic cores 1 and a housing 4 between the two cases 2.
  • the magnetic core 1 is at least partially covered with the buffer material 5. Although the stress applied to the magnetic core 1 is suppressed by such a stress buffer structure, the load resistance of the portion where the magnetic core 1 is disposed is reduced. Therefore, in the present embodiment, a plurality of magnetic cores 1 are provided, and the reinforcing portions 6 are formed between the magnetic cores 1 to improve the load resistance of the inductor.
  • the inductor according to this embodiment can be used for applications that require high load resistance.
  • applications include, for example, inductors for power transmission for electric vehicles that are assumed to be stepped on by vehicles.
  • the reinforcing portion 6 may be formed of a resin having a higher compressive strength than the first resin, or a fiber reinforced plastic (FRP) using a fiber such as a glass cloth. It may be formed.
  • FRP fiber reinforced plastic
  • reinforcing portions 6 may be formed between the magnetic cores 1 in the case 2.
  • the minimum value of the difference between the inner dimension P of the case 2 and the dimension p of the magnetic core 1 in the same direction is larger than the change ⁇ P of the inner dimension of the case 2 in the direction.
  • Min (P ⁇ p)> ⁇ P the magnetic core 1 and the case 2 have a minimum value of the difference between the length L of the case 2 and the length l of the magnetic core 1 in the length direction. It is designed to be larger than the change amount ⁇ L of the internal dimension of the case 2 in the direction.
  • the amount of change ⁇ P of the inner dimension of the case 2 is the maximum value of the dimension of the case 2 that contracts due to thermal contraction at the time of inductor manufacture (when the housing 4 is formed).
  • Thermal shrinkage during inductor manufacturing is, for example, from the curing temperature when thermosetting the thermosetting resin (85 ° C to 150 ° C) or from the temperature when the thermoplastic resin is injection molded (180 ° C or higher) to room temperature. There is heat shrinkage when returning.
  • the minimum value of the inner dimension of the contracting case 2 is P MIN
  • ⁇ P P ⁇ P MIN .
  • the temperature change amount ⁇ T is the maximum value of the temperature change amount in case 2 that rises when the inductor is manufactured.
  • ⁇ T T MAX ⁇ T, where T is the temperature of Case 2 at the lowest temperature at which the inductor is operated (operating temperature of the inductor), and T MAX is the maximum temperature of Case 2 that rises when the inductor is manufactured.
  • the temperature T of the case 2 can be arbitrarily set according to the installation environment of the inductor. For example, when the EV operating temperature is from -10 degrees to 40 degrees, T is -10 degrees.
  • the magnetic core 1 and the case 2 are designed so that min (Pp)> ⁇ P ⁇ T holds in each direction. That is, the following formulas are established at arbitrary locations in the length direction, the width direction, and the height direction.
  • 0.01% / ° C.
  • L 100 mm
  • ⁇ T 100 ° C., l ⁇ 99 mm.
  • the total thickness Q in each direction is the difference between the inner dimension P of the case 2 and the dimension p of the magnetic core 1.
  • Q P ⁇ p
  • the total thickness value Q is the total value of the thickness of the buffer material 5 provided on one side of the magnetic core 1 and the thickness of the buffer material 5 provided on the other side of the magnetic core 1. It is.
  • the thickness of the buffer material 5 provided on the upper side of the magnetic core 1 is q 1
  • the thickness of the buffer material 5 provided on the lower side of the magnetic core 1 is q 2 .
  • the casing 4 can improve the strength and heat dissipation of the inductor.
  • the case 2 and the buffer material 5 can suppress the stress applied to the magnetic core 1 due to the hardening shrinkage of the housing 4.
  • the buffer material 5 can suppress the stress applied to the magnetic core 1 due to the thermal contraction of the case 2. Therefore, it is possible to suppress a decrease in the L value of the inductor and an increase in core loss.
  • the reinforcing portion 6 can reinforce the strength of the inductor and improve the load resistance.
  • FIG. 4 is an XY plane sectional view showing an example of the inductor according to the present embodiment.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4 (YZ plane cross-sectional view).
  • the inductor according to the present embodiment further includes a bobbin 7.
  • the bobbin 7 is a cylindrical member for winding the winding 3 on the surface, and is formed of an insulating material.
  • the inductor may be formed by manufacturing the bobbin 7 wound with the winding 3 and the case 2 containing the magnetic core 1 and then inserting the case 2 into the hollow portion of the bobbin 7. Further, the case 2 and the bobbin 7 may be integrally formed.
  • FIG. 6 is an XY plane cross-sectional view showing an example of the inductor according to the present embodiment.
  • FIG. 7 is a cross-sectional view (YZ plane cross-sectional view) taken along line AA of FIG.
  • the inductor according to this embodiment further includes a conductor plate 8.
  • the conductor plate 8 is provided so as to cover at least a part of the surface of the housing 4. By providing the conductor plate 8, the electromagnetic field in the direction in which the conductor plate 8 is provided can be shielded.
  • this inductor is used as an inductor for wireless power transmission, the conductor plate 8 is not provided on the surface of the housing 4 facing the power transmission direction, but is provided on the other surface.
  • the conductor plate 8 is preferably provided so as to cover the side surface and the bottom surface of the housing 4 as shown in FIG. 7.
  • FIG. 8 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 8, the inductor according to this embodiment further includes a fiber layer 9.
  • the fiber layer 9 is formed of a fiber reinforced plastic structure (FRP structure) including at least one kind of fiber.
  • the fiber layer 9 can be formed at any location in the housing 4 or on the housing 4.
  • the strength and load resistance of the inductor can be improved. As shown in FIG. 8, when the fiber layer 9 forms the fiber layer 9 above the case 2, the load resistance in the height direction of the inductor is improved.
  • the fiber layer 9 is formed by, for example, casting a first resin after arranging fibers at a predetermined position. Thereby, it forms in FRP and the housing
  • the fiber layer 9 may be formed by forming the housing 4 and then placing fibers on the housing 4 and casting a third resin different from the first resin. As a result, an FRP made of the third resin and the fiber is formed on the housing 4.
  • the fibers forming the fiber layer 9 for example, glass fibers, resin fibers, carbon fibers, and conductor wires such as aluminum and copper are used. Further, as the third resin, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polypropylene, an ABS resin, or polyethylene, and glass can be used.
  • a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polypropylene, an ABS resin, or polyethylene, and glass can be used.
  • the inductor according to this embodiment includes a fiber layer 9.
  • 9 and 10 are schematic views showing an example of the fiber layer 9 according to the present embodiment.
  • the fiber layer 9 according to this embodiment includes conductive fibers 91 and insulating fibers 92.
  • the conductive fibers 91 are arranged so that adjacent fibers do not contact each other.
  • the conductive fiber 91 is, for example, a conductor wire such as carbon fiber, aluminum, or copper.
  • the strength of the fiber layer 9 can be improved.
  • the conductive fibers 91 when the conductive fibers 91 are arranged in a predetermined direction, the conductive fibers 91 act like a polarizing plate, and a specific polarization incident on the inductor is reflected. Thereby, the leakage electromagnetic field intensity
  • the insulating fiber 92 is, for example, glass fiber or resin fiber.
  • the conductive fibers 91 are in contact with each other and a loop is formed by the conductive fibers 91, an eddy current flows through the loop, the loss of the inductor increases, the loop current shields the magnetic flux, and the electrical characteristics deteriorate. To do. Therefore, the insulating fibers 92 are arranged so that the adjacent conductive fibers 91 do not contact each other. Thereby, deterioration of the electrical characteristics of the inductor can be suppressed.
  • the fiber layer 9 is formed of, for example, a woven fabric using the conductive fibers 91 as warps and the insulating fibers 92 as wefts, and a resin. Further, the fiber layer 9 may include a plurality of layers of conductive fibers 91 arranged in a predetermined direction. Thereby, the leakage electromagnetic field intensity of the harmonic can be further reduced.
  • FIG. 10 shows a fiber layer 9 having two layers of conductive fibers 91 arranged in a predetermined direction.
  • Each layer of the conductive fiber 91 is laminated so that the arrangement direction is orthogonal.
  • the conductive fibers 91 of each layer are insulated by insulating fibers 92 so that adjacent fibers do not contact each other.
  • an insulating layer (not shown) is preferably provided between the layers of the conductive fibers 91 in order to insulate the layers of the conductive fibers 91.
  • the insulator layer can be formed of the insulating fiber 92, the first resin, the third resin, and the like.
  • FIGS. 11 and 12 are YZ plane sectional views showing an example of the inductor according to this embodiment.
  • the inductor according to the present embodiment further includes a protective layer 10.
  • the protective layer 10 includes at least one of sand and gravel and is provided in the casing 4 or on the casing 4. By providing the protective layer 10, the strength and wear resistance of the inductor can be improved.
  • the protective layer 10 is formed by, for example, casting a first resin after placing sand or gravel at a predetermined position. Thereby, as shown in FIG. 11, the protective layer 10 is formed in the housing 4. Moreover, after forming the housing
  • the protective layer 10 may be formed by casting the first resin, the third resin, the fourth resin, and the like after placing sand, gravel, and fibers at predetermined positions. . Thereby, as shown in FIG. 12, the fiber layer 9 and the protective layer 10 can be integrally formed.
  • FIG. 13 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 13, the inductor according to this embodiment further includes an uneven pattern 11.
  • the uneven pattern 11 is provided so as to cover at least a part of the surface of the housing 4. By providing the concavo-convex pattern 11, the slip resistance of the inductor surface can be improved.
  • the inductor of FIG. 13 includes the uneven pattern 11 only on the surface of the housing 4, but the uneven pattern 11 may be provided on the surface of the conductor plate 8. Further, when the fiber layer 9, the protective layer 10, or the like is formed on the housing 4, an uneven pattern may be formed on the surface of the fiber layer 9 or the protective layer 10.
  • FIG. 14 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 14, the inductor according to the present embodiment further includes a paint part 12.
  • the coating part 12 is provided so as to cover at least a part of the surface of the housing 4.
  • the coating unit 12 may be formed by painting the surface of the housing 4 or may be formed by sticking a painted sheet or the like to the surface of the housing 4.
  • the inductor of FIG. 14 includes the painted portion 12 only on the surface of the housing 4, but the painted portion 12 may be provided on the surface of the conductor plate 8. Further, when the fiber layer 9, the protective layer 10, or the like is formed on the housing 4, the coating portion 12 may be provided on the surface of the fiber layer 9 or the protective layer 10.
  • FIG. 15 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 15, the inductor according to this embodiment further includes a cover 13.
  • the cover 13 is provided so as to cover at least a part of the surface of the housing 4 facing the power transmission direction of the inductor. By providing the cover 13, the strength and weather resistance of the inductor can be improved.
  • the cover 13 is formed of an arbitrary insulating material having high strength, weather resistance, heat resistance, water resistance, wear resistance, and the like according to the purpose.
  • the cover 13 may be the fiber layer 9 and the protective layer 10 formed on the housing 4, and may have the uneven pattern 12 and the coating portion 13 on the surface.
  • FIGS. 16 and 17 are YZ plane cross-sectional views illustrating an example of the inductor according to the present embodiment. As shown in FIGS. 16 and 17, the inductor according to the present embodiment includes a semiconductive portion 14.
  • the semiconductive portion 14 is formed of a paint or sheet made of the above-described semiconductive material.
  • the semiconductive portion 14 is provided on at least one part of the inner surface of the case 2 and part of the surface of the housing 4.
  • the 16 includes a semiconductive portion 14 between the entire inner surface of the case 2, that is, between the case 2 and the magnetic core 1.
  • the inductor shown in FIG. 17 includes a semiconductive portion 14 between a part of the surface of the housing 4, that is, between the housing 4 and the conductor plate 8. With such a configuration, the concentration of the electric field can be relaxed, so that partial discharge between the conductor plate 8 and the winding 3 can be suppressed.
  • the buffer material 5 serves as the semiconductive portion 14.
  • the inductor according to the present embodiment includes a magnetic core 1 formed by arranging a plurality of magnetic pieces 15 in a planar shape and coupling them together.
  • Each magnetic piece 15 has a generally flat plate shape, and the magnetic core 1 has a large plate shape as a whole.
  • FIG. 18 is an XY plane sectional view showing an example of the magnetic core 1 according to the present embodiment.
  • FIG. 19 is a YZ plane sectional view showing an example of the magnetic core 1 according to the present embodiment.
  • Each magnetic piece 15 is made of ferrite, a dust core, an electromagnetic steel plate, or the like.
  • the reason why the magnetic core 1 is formed from the plurality of magnetic pieces 15 is as follows.
  • the size of the inductor is determined according to the transmitted power and distance. For example, when power is transmitted to a position about 10 cm away, a large inductor having a side of several tens of cm is used.
  • the magnetic core 1 is formed of ferrite, a dust core, or the like, it is difficult to manufacture a large core due to the molding process and firing process. Therefore, as in this embodiment, a plurality of small magnetic pieces 15 are combined and used as a large inductor and a core.
  • the plurality of magnetic body pieces 15 forming the magnetic body core 1 are coupled through a fluid material filled with a magnetic body material.
  • a fluid material for example, an adhesive composed of a resin material such as an epoxy resin or silicon can be used.
  • each magnetic piece 15 is bonded by an adhesive 16 filled with ferrite powder as magnetic powder.
  • the adhesion between the magnetic pieces 15 is performed, for example, by applying an adhesive 16 to the side surface of each magnetic piece 15 and pressing the magnetic pieces 15 against each other for a predetermined time or more.
  • the magnetic core 1 which suppresses generation
  • the magnetic pieces 15 may be bonded to each other by using a fluid material such as a resin-based material having no adhesive strength or a weak material filled with magnetic powder.
  • a fluid material such as a resin-based material having no adhesive strength or a weak material filled with magnetic powder.
  • bonds each magnetic body piece 15 using the material which consists only of ferrite powder is also possible.
  • each magnetic body piece 15 is bonded to the both surfaces or one side of the magnetic body core 1 with an adhesive. May be fixed.
  • the sheet 17 a sheet made of polyimide film, silicon, acrylic, or the like can be used. Further, as the sheet 17, a glass cloth may be used instead of the above-described sheet.
  • the adhesive that bonds the sheet 17 may be, for example, a resin material such as unsaturated polyester.
  • the wireless power transmission device includes the inductor according to each of the embodiments described above.
  • the wireless power transmission device here includes a power receiving device and a power transmission device for wireless power transmission.
  • the power receiving device and the power transmitting device will be described separately.
  • FIG. 20 is a block diagram illustrating a schematic configuration of the power receiving device 100 according to the present embodiment.
  • the power receiving apparatus 100 includes an inductor unit 101, a rectifier 102, a DC / DC converter 103, and a storage battery 104.
  • the inductor unit 101 includes one or more inductors according to the above-described embodiments.
  • the inductor receives power by resonating with the inductor on the power transmission side.
  • the received power is input to the rectifier 102.
  • the inductor unit 101 may include a capacitor that forms a resonance circuit or a circuit for improving the power factor together with the inductor.
  • the rectifier 102 rectifies the AC power input from the inductor unit 101 into DC power.
  • the rectifier 102 is configured by a bridge circuit using a diode, for example.
  • the power rectified by the rectifier 102 is input to the DC / DC converter 103.
  • the DC / DC converter 103 adjusts the voltage so that an appropriate voltage is applied to the storage battery 104.
  • the voltage adjusted by the DC / DC converter 103 is input to the storage battery 104.
  • the power receiving apparatus 100 may be configured without the DC / DC converter 103.
  • the storage battery 104 stores the power input from the DC / DC converter 103 or the rectifier 102.
  • An arbitrary storage battery such as a lead storage battery or a lithium ion battery can be used as the storage battery 104.
  • the power receiving device 100 may be configured without the storage battery 104.
  • FIG. 21 is a block diagram illustrating a schematic configuration of the power transmission device 110 according to the present embodiment.
  • the power transmission device 110 includes an inductor unit 101 and an AC power source 105 as shown in FIG.
  • AC power supply 105 inputs AC power to inductor unit 101.
  • the AC power supply 105 receives power from a commercial power supply, rectifies the input power, converts it into AC power using an inverter circuit, and inputs the AC power to the inductor unit 101.
  • the AC power source 105 can be configured to include a circuit for adjusting the voltages of commercial power, DC power, and AC power, and a power factor correction circuit called a PFC circuit.
  • the inductor of the inductor unit 101 generates an AC magnetic field by the electric power input from the AC power source 105 and transmits the AC magnetic field to the inductor on the power receiving side.
  • the power receiving device 100 and the power transmitting device 110 described above transmit power through the inductors according to the above-described embodiments, the loss of the inductor due to the manufacturing method is small. Therefore, the power receiving device 100 and the power transmitting device 110 can transmit power with high transmission efficiency.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment is also conceivable. Furthermore, you may combine suitably the component described in different embodiment.

Abstract

[Problem] To provide an inductor wherein stress applied to a magnetic core is suppressed, and a wireless power transmission device. [Solution] According to one embodiment of the present invention, an inductor is provided with a plurality of magnetic cores, one or a plurality of cases, a winding wire, a housing, and a reinforcing section. The case houses the magnetic cores therein. The winding wire is wound around the case. The housing is formed of a first resin such that the case and the winding wire are covered with the housing. The reinforcing section is formed at least at a part between the magnetic cores. A difference between a case inner dimension and a magnetic core dimension in the same direction is larger than a quantity a case dimension changes in such direction when forming the housing.

Description

インダクタ及び無線電力伝送装置Inductor and wireless power transmission device
 本発明の実施形態は、インダクタ及び無線電力伝送装置に関する。 Embodiments described herein relate generally to an inductor and a wireless power transmission device.
 従来、無線電力伝送用のインダクタの強度や放熱性を向上させるために、磁性体コアや巻線を樹脂で覆った構造を有するインダクタが用いられている。このようなインダクタは、磁性体コアや巻線を覆うように樹脂を注型することにより製造される。従来のインダクタでは、磁性体コアと樹脂とが接触していたため、注型の際に生じる樹脂の硬化収縮により、磁性体コアに応力が加わった。磁性体コアに応力が加わると、磁性体コアの磁歪が阻害される。これにより、L値の低下や、コアロスの増大などの問題が生じた。 Conventionally, in order to improve the strength and heat dissipation of an inductor for wireless power transmission, an inductor having a structure in which a magnetic core and windings are covered with resin has been used. Such an inductor is manufactured by casting resin so as to cover the magnetic core and the winding. In the conventional inductor, since the magnetic core and the resin are in contact with each other, stress is applied to the magnetic core due to curing shrinkage of the resin that occurs during casting. When stress is applied to the magnetic core, magnetostriction of the magnetic core is inhibited. This caused problems such as a decrease in L value and an increase in core loss.
 そこで、磁性体コアに加わる応力を抑制するために、緩衝材で磁性体コアを覆ったインダクタが提案されている。しかしながら、このインダクタでは、緩衝材の厚みが不十分な場合、応力を十分に抑制することができないという問題があった。 Therefore, in order to suppress the stress applied to the magnetic core, an inductor having a magnetic core covered with a buffer material has been proposed. However, this inductor has a problem that stress cannot be sufficiently suppressed when the thickness of the buffer material is insufficient.
特開2013-55229号公報JP 2013-55229 A 特開2002-164229号公報JP 2002-164229 A 特開2010-172084号公報JP 2010-172084 A
 磁性体コアに加わる応力が抑制されたインダクタ及び無線電力伝送装置を提供する。 Provided are an inductor and a wireless power transmission device in which stress applied to a magnetic core is suppressed.
 一実施形態に係るインダクタは、複数の磁性体コアと、1つ又は複数のケースと、巻線と、筐体と、補強部と、を備える。ケースは、内側に磁性体コアを収納する。巻線は、ケースの周囲に巻付けられる。筐体は、ケースと巻線とを覆うように、第1の樹脂により形成される。補強部は、磁性体コア同士の間の少なくとも一部に形成される。同一方向におけるケースの内寸と磁性体コアの寸法との差は、筐体の形成時の当該方向におけるケースの寸法の変化量よりも大きい。 An inductor according to an embodiment includes a plurality of magnetic cores, one or more cases, a winding, a housing, and a reinforcing portion. The case houses the magnetic core inside. The winding is wound around the case. The housing is formed of the first resin so as to cover the case and the winding. A reinforcement part is formed in at least one part between magnetic body cores. The difference between the inner dimension of the case in the same direction and the dimension of the magnetic core is larger than the amount of change in the dimension of the case in that direction when the housing is formed.
第1実施形態に係るインダクタの一例を示すXY平面断面図。XY plane sectional drawing which shows an example of the inductor which concerns on 1st Embodiment. 図1のインダクタのA-A線断面図。FIG. 2 is a cross-sectional view of the inductor of FIG. 1 along the line AA. 第1実施形態に係るインダクタの一例を示すXY平面断面図。XY plane sectional drawing which shows an example of the inductor which concerns on 1st Embodiment. 第2実施形態に係るインダクタの一例を示すXY平面断面図。XY plane sectional drawing which shows an example of the inductor which concerns on 2nd Embodiment. 図4のインダクタのA-A線断面図。FIG. 5 is a cross-sectional view of the inductor of FIG. 4 along the line AA. 第3実施形態に係るインダクタの一例を示すYZ平面断面図。The YZ plane sectional view showing an example of the inductor concerning a 3rd embodiment. 図6のインダクタのA-A線断面図。FIG. 7 is a cross-sectional view of the inductor of FIG. 6 along the line AA. 第4実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning a 4th embodiment. 第5実施形態に係る繊維層の一例を示す模式図。The schematic diagram which shows an example of the fiber layer which concerns on 5th Embodiment. 第5実施形態に係る繊維層の一例を示す模式図。The schematic diagram which shows an example of the fiber layer which concerns on 5th Embodiment. 第6実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning a 6th embodiment. 第6実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning a 6th embodiment. 第7実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning a 7th embodiment. 第8実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning an 8th embodiment. 第9実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning a 9th embodiment. 第10実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning a 10th embodiment. 第10実施形態に係るインダクタの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of an inductor concerning a 10th embodiment. 第11実施形態に係る磁性体コアの一例を示すXY平面断面図。XY plane sectional drawing which shows an example of the magnetic body core which concerns on 11th Embodiment. 第11実施形態に係る磁性体コアの一例を示すYZ平面断面図。A YZ plane sectional view showing an example of a magnetic core according to an eleventh embodiment. 第12実施形態に係る受電装置の一例を示すブロック図。The block diagram which shows an example of the power receiving apparatus which concerns on 12th Embodiment. 第12実施形態に係る送電装置の一例を示すブロック図。The block diagram which shows an example of the power transmission apparatus which concerns on 12th Embodiment.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施形態)
 まず、第1実施形態に係るインダクタについて、図1~図3を参照して説明する。図1は、本実施形態に係るインダクタの一例を示すXY平面断面図である。図2は、図1のA-A線断面図(YZ平面断面図)である。図1及び図2に示すように、本実施形態に係るインダクタは、複数の磁性体コア1と、ケース2と、巻線3と、筐体4と、緩衝材5と、補強部6と、を備える。
(First embodiment)
First, the inductor according to the first embodiment will be described with reference to FIGS. FIG. 1 is an XY plane sectional view showing an example of an inductor according to the present embodiment. 2 is a cross-sectional view taken along the line AA in FIG. 1 (YZ plane cross-sectional view). As shown in FIGS. 1 and 2, the inductor according to the present embodiment includes a plurality of magnetic cores 1, a case 2, a winding 3, a housing 4, a buffer material 5, a reinforcing portion 6, Is provided.
 磁性体コア1は、フェライトや電磁鋼板などの磁性体により形成される。以下では、巻線3に電流を流した際に磁性体コア1の内部に生じる磁束が最大となる方向を長さ方向(図1の矢印Xの方向)、長さ方向と垂直な方向を幅方向及び高さ方向という。幅方向は、図1及び図2の矢印Yの方向であり、高さ方向は、図2の矢印Zの方向であるものとする。また、磁性体コア1の長さ方向の寸法はl、幅方向の寸法はw、高さ方向の寸法はhであるものとする。 The magnetic core 1 is formed of a magnetic material such as ferrite or an electromagnetic steel plate. In the following, the direction in which the magnetic flux generated inside the magnetic core 1 is maximized when a current is passed through the winding 3 is the length direction (the direction of the arrow X in FIG. 1), and the direction perpendicular to the length direction is the width. Direction and height direction. The width direction is the direction of the arrow Y in FIGS. 1 and 2, and the height direction is the direction of the arrow Z in FIG. Further, it is assumed that the length of the magnetic core 1 is l, the width is w, and the height is h.
 磁性体コア1は、巻線3の近傍部分が、他の部分より、長さ方向からみた断面積(YZ平面の断面積)が大きくなるように形成されている。巻線3の近傍部分とは、磁性体コア1のうち、巻線3に囲まれた部分のことである。巻線3の近傍部分は、磁性体コア1において、磁束密度が最大となる部分である。この部分の断面積を大きくすると、磁性体コア1の磁束密度を低下させることができる。 The magnetic core 1 is formed so that a portion in the vicinity of the winding 3 has a larger cross-sectional area (cross-sectional area in the YZ plane) viewed from the length direction than the other portions. The vicinity of the winding 3 is a portion of the magnetic core 1 surrounded by the winding 3. A portion near the winding 3 is a portion where the magnetic flux density is maximum in the magnetic core 1. When the cross-sectional area of this portion is increased, the magnetic flux density of the magnetic core 1 can be reduced.
 一般に、磁性体コア1を有するインダクタではコアロスが発生する。コアロスとは、磁性体コア1において生じるエネルギー損失のことである。コアロスには、ヒステリシス損失や渦電流損失が含まれる。このコアロスは、磁性体コア1における磁束密度が大きくなるほど大きくなる。したがって、磁性体コア1の一部を太くし、磁性体コア1の磁束密度を低下させることにより、コアロスを低下させることができる。 Generally, core loss occurs in an inductor having a magnetic core 1. The core loss is energy loss that occurs in the magnetic core 1. Core loss includes hysteresis loss and eddy current loss. This core loss increases as the magnetic flux density in the magnetic core 1 increases. Therefore, core loss can be reduced by thickening part of the magnetic core 1 and reducing the magnetic flux density of the magnetic core 1.
 また、インダクタのコアロスは、巻線3の近傍部分の磁性体コア1の断面積の合計を、他の部分の磁性体コア1の断面積の合計より大きくすることにより、低下させることができる。したがって、図3に示すように、インダクタは、長さ方向からみた断面積が一定の複数の磁性体コア1を備えてもよい。図3のインダクタの中央の磁性体コア1′は、巻線3の近傍部分にしか配置されていないため、巻線3の近傍部分の断面積の合計は、他の部分の断面積の合計より大きくなっている。この場合も、インダクタのコアロスを低減することができる。 Further, the core loss of the inductor can be reduced by making the total cross-sectional area of the magnetic core 1 in the vicinity of the winding 3 larger than the total cross-sectional area of the magnetic core 1 in other parts. Therefore, as shown in FIG. 3, the inductor may include a plurality of magnetic cores 1 having a constant cross-sectional area viewed from the length direction. Since the magnetic core 1 ′ at the center of the inductor shown in FIG. 3 is disposed only in the vicinity of the winding 3, the total cross-sectional area of the vicinity of the winding 3 is greater than the total cross-sectional area of other portions. It is getting bigger. Also in this case, the core loss of the inductor can be reduced.
 なお、インダクタは、4つ以上の磁性体コア4を備えてもよい。また、図1では、巻線3の近傍部分の幅方向の寸法を大きくすることにより磁性体コア1の断面積を大きくしているが、高さ方向の寸法を大きくすることにより磁性体コア1の断面積を大きくしてもよい。 Note that the inductor may include four or more magnetic cores 4. In FIG. 1, the cross-sectional area of the magnetic core 1 is increased by increasing the dimension in the width direction of the vicinity of the winding 3, but the magnetic core 1 is increased by increasing the dimension in the height direction. The cross sectional area may be increased.
 ケース2は、内側に1つ又は複数の磁性体コア1を収納する。筐体4は、ケース2の外側に形成されるため、筐体4と磁性体コア1とは接触せず、筐体4の硬化収縮による応力や熱応力が磁性体コア1に直接的に加わらない。したがって、ケース2を設けることにより、磁性体コア1に加わる応力を抑制することができる。 Case 2 houses one or more magnetic cores 1 inside. Since the casing 4 is formed outside the case 2, the casing 4 and the magnetic core 1 are not in contact with each other, and stress or thermal stress due to hardening shrinkage of the casing 4 is directly applied to the magnetic core 1. Absent. Therefore, the stress applied to the magnetic core 1 can be suppressed by providing the case 2.
 ケース2は、絶縁性の材料により形成される。ケース2の材料として、例えば、エポキシ樹脂などの熱硬化性樹脂、ポリプロピレン、ABS樹脂、ポリエチレンなどの熱可塑性樹脂、及びガラスなどが用いられる。以下では、ケース2の長さ方向の内寸はL、幅方向の内寸はW、高さ方向の内寸はHであるものとする。ケース2の内寸とは、各方向におけるケース2の内壁間の寸法のことである。なお、上記のL,W,Hは、巻線3に電流が流れていないときのケース2の内寸である。ケース2の内寸と磁性体コア1の寸法との関係については後述する。 Case 2 is formed of an insulating material. As a material of the case 2, for example, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polypropylene, ABS resin, or polyethylene, and glass are used. In the following, it is assumed that the inner dimension in the length direction of the case 2 is L, the inner dimension in the width direction is W, and the inner dimension in the height direction is H. The inner dimension of the case 2 is a dimension between inner walls of the case 2 in each direction. Note that L, W, and H are internal dimensions of the case 2 when no current flows through the winding 3. The relationship between the inner dimension of the case 2 and the dimension of the magnetic core 1 will be described later.
 図1において、インダクタは、2つのケース2を備え、各ケース2が磁性体コア1を1つずつ収納している。しかしながら、ケース2は、複数の磁性体コア1を収納してもよい。例えば、図1のように、インダクタが磁性体コア1を2つ備える場合、インダクタは、ケース2を1つ備え、当該ケース2に2つの磁性体コア1が収納されてもよい。 1, the inductor includes two cases 2, and each case 2 stores one magnetic core 1. However, the case 2 may store a plurality of magnetic cores 1. For example, as shown in FIG. 1, when the inductor includes two magnetic cores 1, the inductor may include one case 2, and the two magnetic cores 1 may be accommodated in the case 2.
 巻線3は、ケース2の周囲に巻付けられている。より詳細には、巻線3は、各ケース2に対してではなく、複数のケース2の全体に対して巻付けられる。巻線3として、例えば、銅線、アルミ線、及びリッツ線などが用いられる。この巻線3に電流が流れることにより、インダクタは磁界を発生させる。 The winding 3 is wound around the case 2. More specifically, the winding 3 is wound not around each case 2 but around the entire plurality of cases 2. As the winding 3, for example, a copper wire, an aluminum wire, a litz wire, or the like is used. When a current flows through the winding 3, the inductor generates a magnetic field.
 筐体4は、ケース2及び巻線3を覆うように、絶縁性の第1の樹脂により形成される。筐体4は、ケース2の内側に磁性体コア1を収納し、ケース2の周囲に巻線3を巻付けた後に形成される。筐体4の形成方法として、例えば、注型や射出成形が用いられる。また、3Dプリンタを用いた積層造形法が用いられてもよい。第1の樹脂は、これらの製造方法に応じて選択される。第1の樹脂として、例えば、エポキシ樹脂などの熱硬化性樹脂、ポリプロピレン、ABS樹脂、ポリエチレンなどの熱可塑性樹脂、及びガラスなどが用いられる。 The housing 4 is formed of an insulating first resin so as to cover the case 2 and the winding 3. The housing 4 is formed after the magnetic core 1 is housed inside the case 2 and the winding 3 is wound around the case 2. As a method for forming the housing 4, for example, casting or injection molding is used. Also, a layered manufacturing method using a 3D printer may be used. The first resin is selected according to these manufacturing methods. As the first resin, for example, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polypropylene, ABS resin, or polyethylene, and glass are used.
 上述のケース2は、第1の樹脂により形成されてもよい。これにより、筐体4とケース2との接着強度を向上させ、インダクタに振動や衝撃が加わった際の、筐体4とケース2との間の界面剥離を抑制することができる。 The case 2 described above may be formed of a first resin. Thereby, the adhesive strength between the casing 4 and the case 2 can be improved, and the interface peeling between the casing 4 and the case 2 when vibration or impact is applied to the inductor can be suppressed.
 また、ケース2は、第1の樹脂と異なる第2の樹脂により形成されてもよい。例えば、ケース2を強度が高い第2の樹脂により形成し、筐体4を熱伝導率が高い第1の樹脂で形成することが考えられる。これにより、インダクタの強度及び放熱性を向上させることができる。また、筐体4を粘度の低い第1の樹脂で形成することにより、インダクタの生産性を向上させることができる。 The case 2 may be formed of a second resin different from the first resin. For example, it is conceivable that the case 2 is formed of a second resin having high strength, and the housing 4 is formed of a first resin having high thermal conductivity. Thereby, the intensity | strength and heat dissipation of an inductor can be improved. In addition, the productivity of the inductor can be improved by forming the housing 4 from the first resin having a low viscosity.
 なお、筐体4を形成する際に、第1の樹脂がケース2に浸入すると、磁性体コア1に熱応力が加わる恐れがある。このため、ケース2は、第1の樹脂がケース2に浸入しないように、筐体4の形成の前に密封されるのが好ましい。 If the first resin enters the case 2 when forming the housing 4, thermal stress may be applied to the magnetic core 1. For this reason, the case 2 is preferably sealed before the housing 4 is formed so that the first resin does not enter the case 2.
 また、筐体4の一部に、共振用のキャパシタンスが内蔵されてもよい。キャパシタンスは、例えば、2つの磁性体コア1の断面積が小さい部分に生じたスペース41に内蔵される。筐体4は、キャパシタンスを内蔵するための収納部を備え、筐体4の形成後に、キャパシタンスを搭載されてもよい。また、筐体4は、キャパシタンスを所定の位置(例えば、スペース41)に配置された状態で、注型などにより形成されてもよい。この場合、筐体4の形成と同時に、キャパシタンスが内蔵される。 Further, a resonance capacitance may be incorporated in a part of the housing 4. For example, the capacitance is built in a space 41 generated in a portion where the cross-sectional areas of the two magnetic cores 1 are small. The housing 4 may include a storage unit for incorporating a capacitance, and the capacitance may be mounted after the housing 4 is formed. Moreover, the housing | casing 4 may be formed by casting etc. in the state which arrange | positioned the capacitance in the predetermined position (for example, space 41). In this case, the capacitance is built in simultaneously with the formation of the housing 4.
 緩衝材5は、ケース2と磁性体コア1との間に、磁性体コア1の少なくとも一部を覆うように設けられる。緩衝材5は、磁性体コア1をケース2の内側で固定するとともに、磁性体コア1に外部から加わる応力を抑制する。 The buffer material 5 is provided between the case 2 and the magnetic core 1 so as to cover at least a part of the magnetic core 1. The buffer material 5 fixes the magnetic core 1 inside the case 2 and suppresses stress applied to the magnetic core 1 from the outside.
 緩衝材5は、絶縁性又は半導電性の材料により形成される。ここでいう半導電性の材料とは、絶縁体よりも電気伝導率が高く、導体よりも電気伝導率が低い材料のことをいう。したがって、半導電性の材料は、ケース2や筐体4の材料よりも導電率が高い。具体的には、半導電性の材料は、電気伝導率が10-6S/m以上10S/m以下の材料である。半導電性の材料は、例えば、絶縁体とカーボンなどの導電体との混合物である。 The buffer material 5 is formed of an insulating or semiconductive material. The semiconductive material here refers to a material having higher electrical conductivity than an insulator and lower electrical conductivity than a conductor. Therefore, the semiconductive material has higher conductivity than the material of the case 2 and the housing 4. Specifically, the semiconductive material is a material having an electric conductivity of 10 −6 S / m or more and 10 6 S / m or less. The semiconductive material is, for example, a mixture of an insulator and a conductor such as carbon.
 緩衝材5の材料として、例えば、発泡系樹脂、ゴム系樹脂、ゲル系樹脂、不織布などが用いられる。また、アクリルゴムやシリコンゴムなどの合成ゴムが用いられてもよい。緩衝材5を半導電性の材料により形成した場合、電界の集中を緩和することができるため、磁性体コア1と巻線3との間の部分放電を抑制することができる。 As the material of the buffer material 5, for example, a foamed resin, a rubber resin, a gel resin, a nonwoven fabric, or the like is used. Also, synthetic rubber such as acrylic rubber or silicon rubber may be used. When the buffer material 5 is formed of a semiconductive material, the concentration of the electric field can be relaxed, so that partial discharge between the magnetic core 1 and the winding 3 can be suppressed.
 なお、緩衝材5は、筐体4の硬化収縮による応力を緩衝するため、第1の樹脂よりも弾性率が低い材料により形成されるのが好ましい。また、ケース2の熱収縮による応力を緩衝するため、ケース2の材料よりも弾性率が低い材料により形成されるのが好ましい。さらに、緩衝材5は、磁性体コア1からの放熱性を向上させるため、図1及び図2に示すように、磁性体コア1の全体を覆うように設けられるのが好ましい。 The buffer material 5 is preferably formed of a material having a lower elastic modulus than that of the first resin in order to buffer stress due to curing shrinkage of the housing 4. Moreover, in order to buffer the stress due to the thermal contraction of the case 2, it is preferably formed of a material having a lower elastic modulus than that of the case 2. Furthermore, the buffer material 5 is preferably provided so as to cover the entire magnetic core 1 as shown in FIGS. 1 and 2 in order to improve the heat dissipation from the magnetic core 1.
 補強部6は、磁性体コア1同士の間に形成され、インダクタの強度を補強し、主として高さ方向の荷重を支持する。ケース2の内寸が、磁性体コア1の外寸よりも大きいため、補強部6が無いと、インダクタに荷重がかかった時に、磁性体コア1で荷重を支えられない。そこで、磁性体コア1を分割し、分割した磁性体コア1の間の部分で荷重を支えるために、補強部6を備える。図1において、補強部6は、2つの磁性体コア1の間に位置するケース2の側面と、2つのケース2の間の筐体4と、により形成されている。 The reinforcing portion 6 is formed between the magnetic cores 1 and reinforces the strength of the inductor and mainly supports the load in the height direction. Since the inner dimension of the case 2 is larger than the outer dimension of the magnetic core 1, the load cannot be supported by the magnetic core 1 when a load is applied to the inductor without the reinforcing portion 6. In view of this, the magnetic core 1 is divided, and a reinforcing portion 6 is provided to support a load at a portion between the divided magnetic cores 1. In FIG. 1, the reinforcing portion 6 is formed by a side surface of the case 2 positioned between two magnetic cores 1 and a housing 4 between the two cases 2.
 上述の通り、磁性体コア1は、緩衝材5によって少なくとも一部を覆われる。このような応力緩衝構造により、磁性体コア1に加わる応力は抑制されるものの、磁性体コア1が配置された部分の耐荷重性は低下する。そこで、本実施形態では、磁性体コア1を複数設け、磁性体コア1同士の間に補強部6を形成し、インダクタの耐荷重性を向上させる。 As described above, the magnetic core 1 is at least partially covered with the buffer material 5. Although the stress applied to the magnetic core 1 is suppressed by such a stress buffer structure, the load resistance of the portion where the magnetic core 1 is disposed is reduced. Therefore, in the present embodiment, a plurality of magnetic cores 1 are provided, and the reinforcing portions 6 are formed between the magnetic cores 1 to improve the load resistance of the inductor.
 このような構成により、本実施形態に係るインダクタは、高い耐荷重性を要求される用途に利用することができる。このような用途には、例えば、車両に踏まれることが想定される、電気自動車向けの送電用のインダクタが含まれる。 With such a configuration, the inductor according to this embodiment can be used for applications that require high load resistance. Such applications include, for example, inductors for power transmission for electric vehicles that are assumed to be stepped on by vehicles.
 なお、インダクタの耐荷重性を高めるために、補強部6は、第1の樹脂より圧縮強度が高い樹脂により形成されてもよいし、ガラスクロスなどの繊維を用いた繊維強化プラスチック(FRP)により形成されてもよい。また、ケース2が複数の磁性体コア1を収納する場合には、ケース2内の各磁性体コア1の間に、補強部6が形成されてもよい。 In order to increase the load resistance of the inductor, the reinforcing portion 6 may be formed of a resin having a higher compressive strength than the first resin, or a fiber reinforced plastic (FRP) using a fiber such as a glass cloth. It may be formed. In addition, when the case 2 houses a plurality of magnetic cores 1, reinforcing portions 6 may be formed between the magnetic cores 1 in the case 2.
 ここで、ケース2の内寸と磁性体コア1の寸法との関係について説明する。磁性体コア1及びケース2は、同一方向におけるケース2の内寸Pと磁性体コア1の寸法pとの差の最小値が、当該方向におけるケース2の内寸の変化量ΔPよりも大きくなるように設計される(min(P-p)>ΔP)。例えば、長さ方向に着目すると、磁性体コア1及びケース2は、ケース2の長さ方向の内寸Lと磁性体コア1の長さ方向の寸法lとの差の最小値が、長さ方向におけるケース2の内寸の変化量ΔLよりも大きくなるように設計される。 Here, the relationship between the inner dimension of the case 2 and the dimension of the magnetic core 1 will be described. In the magnetic core 1 and the case 2, the minimum value of the difference between the inner dimension P of the case 2 and the dimension p of the magnetic core 1 in the same direction is larger than the change ΔP of the inner dimension of the case 2 in the direction. (Min (P−p)> ΔP). For example, when paying attention to the length direction, the magnetic core 1 and the case 2 have a minimum value of the difference between the length L of the case 2 and the length l of the magnetic core 1 in the length direction. It is designed to be larger than the change amount ΔL of the internal dimension of the case 2 in the direction.
 ケース2の内寸の変化量ΔPとは、インダクタ製造時(筐体4の形成時)の熱収縮により収縮するケース2の寸法の最大値ことである。インダクタ製造時の熱収縮は、例えば、熱硬化性樹脂を熱硬化させるときの硬化温度(85度~150度)や、熱可塑性樹脂を射出成型するときの温度(180度~)から、常温に戻る際の熱収縮などがある。収縮するケース2の内寸の最小値をPMINとすると、ΔP=P-PMINとなる。 The amount of change ΔP of the inner dimension of the case 2 is the maximum value of the dimension of the case 2 that contracts due to thermal contraction at the time of inductor manufacture (when the housing 4 is formed). Thermal shrinkage during inductor manufacturing is, for example, from the curing temperature when thermosetting the thermosetting resin (85 ° C to 150 ° C) or from the temperature when the thermoplastic resin is injection molded (180 ° C or higher) to room temperature. There is heat shrinkage when returning. Assuming that the minimum value of the inner dimension of the contracting case 2 is P MIN , ΔP = P−P MIN .
 変化量ΔPは、ケース2の線膨張係数α(%/℃)と、ケース2の内寸Pと、温度の変化量ΔT(℃)との積となる(ΔP=αPΔT)。温度の変化量ΔTは、インダクタ製造時に上昇するケース2の温度の変化量の最大値である。インダクタを動作させる最低温度(インダクタの動作温度)におけるケース2の温度をT、インダクタを製造する際に上昇するケース2の温度の最大値をTMAXとすると、ΔT=TMAX-Tとなる。ケース2の温度Tは、インダクタの設置環境に応じて任意に設定可能である。例えば、EVの動作温度が-10度から40度の場合は、Tは-10度となる。 The change amount ΔP is the product of the linear expansion coefficient α (% / ° C.) of the case 2, the inner dimension P of the case 2, and the temperature change amount ΔT (° C.) (ΔP = αPΔT). The temperature change amount ΔT is the maximum value of the temperature change amount in case 2 that rises when the inductor is manufactured. ΔT = T MAX −T, where T is the temperature of Case 2 at the lowest temperature at which the inductor is operated (operating temperature of the inductor), and T MAX is the maximum temperature of Case 2 that rises when the inductor is manufactured. The temperature T of the case 2 can be arbitrarily set according to the installation environment of the inductor. For example, when the EV operating temperature is from -10 degrees to 40 degrees, T is -10 degrees.
 以上より、磁性体コア1及びケース2は、min(P-p)>αPΔTが各方向で成り立つように設計される。すなわち、長さ方向、幅方向、高さ方向の任意の箇所で、それぞれ以下の式が成り立つ。
磁束方向:L-l>αLΔT
幅方向 :W-w>αWΔT
高さ方向:H-h>αHΔT
 例えば、α=0.01%/℃、L=100mm、ΔT=100℃の場合、l<99mmとなる。
As described above, the magnetic core 1 and the case 2 are designed so that min (Pp)> αPΔT holds in each direction. That is, the following formulas are established at arbitrary locations in the length direction, the width direction, and the height direction.
Magnetic flux direction: L-1> αLΔT
Width direction: W-w> αWΔT
Height direction: Hh> αHΔT
For example, when α = 0.01% / ° C., L = 100 mm, and ΔT = 100 ° C., l <99 mm.
 磁性体コア1及びケース2をこのように設計することによって、ケース2に熱収縮が生じた場合であっても、ケース2の熱収縮による応力が磁性体コア1に直接的に加わらないようにすることができる。 By designing the magnetic core 1 and the case 2 in this way, even when the case 2 is thermally contracted, the stress due to the thermal contraction of the case 2 is not directly applied to the magnetic core 1. can do.
 なお、緩衝材5は、磁性体コア1とケース2との間に設けられるため、各方向における厚さの合計値Qは、ケース2の内寸Pと磁性体コア1の寸法pとの差となる(Q=P-p)。厚さの合計値Qとは、磁性体コア1の一方側に設けられた緩衝材5の厚さと、磁性体コア1の他方側に設けられた緩衝材5の厚さと、の合計値のことである。例えば、図2に示すように、磁性体コア1の上側に設けられた緩衝材5の厚さがq、磁性体コア1の下側に設けられた緩衝材5の厚さがqの場合、高さ方向における緩衝材5の厚さの合計値Qは、Q=q+qとなる。 Since the buffer material 5 is provided between the magnetic core 1 and the case 2, the total thickness Q in each direction is the difference between the inner dimension P of the case 2 and the dimension p of the magnetic core 1. (Q = P−p). The total thickness value Q is the total value of the thickness of the buffer material 5 provided on one side of the magnetic core 1 and the thickness of the buffer material 5 provided on the other side of the magnetic core 1. It is. For example, as shown in FIG. 2, the thickness of the buffer material 5 provided on the upper side of the magnetic core 1 is q 1 , and the thickness of the buffer material 5 provided on the lower side of the magnetic core 1 is q 2 . In this case, the total value Q of the thicknesses of the buffer materials 5 in the height direction is Q = q 1 + q 2 .
 以上説明した通り、本実施形態によれば、筐体4によりインダクタの強度や放熱性を向上させることができる。また、ケース2や緩衝材5により、筐体4の硬化収縮によって磁性体コア1に加わる応力を抑制することができる。さらに、緩衝材5により、ケース2の熱収縮によって磁性体コア1に加わる応力を抑制することができる。したがって、インダクタのL値の低下やコアロスの増大を抑制することができる。また、補強部6により、インダクタの強度を補強し、耐荷重性を向上させることができる。 As described above, according to the present embodiment, the casing 4 can improve the strength and heat dissipation of the inductor. In addition, the case 2 and the buffer material 5 can suppress the stress applied to the magnetic core 1 due to the hardening shrinkage of the housing 4. Furthermore, the buffer material 5 can suppress the stress applied to the magnetic core 1 due to the thermal contraction of the case 2. Therefore, it is possible to suppress a decrease in the L value of the inductor and an increase in core loss. Further, the reinforcing portion 6 can reinforce the strength of the inductor and improve the load resistance.
(第2実施形態)
 次に、第2実施形態に係るインダクタについて、図4及び図5を参照して説明する。図4は、本実施形態に係るインダクタの一例を示すXY平面断面図である。図5は、図4のA-A線断面図(YZ平面断面図)である。図4及び図5に示すように、本実施形態に係るインダクタは、ボビン7をさらに備える。
(Second Embodiment)
Next, an inductor according to a second embodiment will be described with reference to FIGS. FIG. 4 is an XY plane sectional view showing an example of the inductor according to the present embodiment. FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4 (YZ plane cross-sectional view). As shown in FIGS. 4 and 5, the inductor according to the present embodiment further includes a bobbin 7.
 ボビン7は、表面に巻線3を巻付けるための筒状部材であり、絶縁性の材料により形成される。インダクタは、巻線3を巻付けられたボビン7と、磁性体コア1を収納したケース2とをそれぞれ製造した後、ボビン7の空洞部分にケース2を差し込むことにより形成してもよい。また、ケース2とボビン7とが一体に形成されてもよい。 The bobbin 7 is a cylindrical member for winding the winding 3 on the surface, and is formed of an insulating material. The inductor may be formed by manufacturing the bobbin 7 wound with the winding 3 and the case 2 containing the magnetic core 1 and then inserting the case 2 into the hollow portion of the bobbin 7. Further, the case 2 and the bobbin 7 may be integrally formed.
(第3実施形態)
 次に、第3実施形態に係るインダクタについて、図6及び図7を参照して説明する。図6は、本実施形態に係るインダクタの一例を示すXY平面断面図である。図7は、図6のA-A線断面図(YZ平面断面図)である。図6及び図7に示すように、本実施形態に係るインダクタは、導体板8をさらに備える。
(Third embodiment)
Next, an inductor according to a third embodiment will be described with reference to FIGS. FIG. 6 is an XY plane cross-sectional view showing an example of the inductor according to the present embodiment. FIG. 7 is a cross-sectional view (YZ plane cross-sectional view) taken along line AA of FIG. As shown in FIGS. 6 and 7, the inductor according to this embodiment further includes a conductor plate 8.
 導体板8は、筐体4の表面の少なくとも一部を覆うように設けられる。導体板8を設けることにより、導体板8が設けられた方向への電磁界をシールドすることができる。このインダクタを無線電力伝送用のインダクタとして用いる場合には、導体板8は、電力伝送方向に面した筐体4の表面には設けられず、他の表面に設けられる。例えば、電力伝送方向が図7の上方向の場合、図7に示すように、導体板8は、筐体4の側面及び底面を覆うように設けるのが好ましい。 The conductor plate 8 is provided so as to cover at least a part of the surface of the housing 4. By providing the conductor plate 8, the electromagnetic field in the direction in which the conductor plate 8 is provided can be shielded. When this inductor is used as an inductor for wireless power transmission, the conductor plate 8 is not provided on the surface of the housing 4 facing the power transmission direction, but is provided on the other surface. For example, when the power transmission direction is the upward direction in FIG. 7, the conductor plate 8 is preferably provided so as to cover the side surface and the bottom surface of the housing 4 as shown in FIG. 7.
(第4実施形態)
 次に、第4実施形態に係るインダクタについて、図8を参照して説明する。図8は、本実施形態に係るインダクタの一例を示すYZ平面断面図である。図8に示すように、本実施形態に係るインダクタは、繊維層9を更に備える。
(Fourth embodiment)
Next, an inductor according to a fourth embodiment will be described with reference to FIG. FIG. 8 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 8, the inductor according to this embodiment further includes a fiber layer 9.
 繊維層9は、少なくとも1種類の繊維を含む繊維強化プラスチック構造(FRP構造)により形成される。繊維層9は、筐体4中又は筐体4上の任意の箇所に形成可能である。繊維層9を形成することにより、インダクタの強度や耐荷重性を向上させることができる。図8に示すように、繊維層9は、ケース2の上方に繊維層9を形成すると、インダクタの高さ方向の耐荷重性が向上する。 The fiber layer 9 is formed of a fiber reinforced plastic structure (FRP structure) including at least one kind of fiber. The fiber layer 9 can be formed at any location in the housing 4 or on the housing 4. By forming the fiber layer 9, the strength and load resistance of the inductor can be improved. As shown in FIG. 8, when the fiber layer 9 forms the fiber layer 9 above the case 2, the load resistance in the height direction of the inductor is improved.
 繊維層9は、例えば、所定の位置に繊維を配置した後、第1の樹脂を注型することにより形成される。これにより、第1の樹脂と繊維とからなるFRP、筐体4中に形成される。 The fiber layer 9 is formed by, for example, casting a first resin after arranging fibers at a predetermined position. Thereby, it forms in FRP and the housing | casing 4 which consist of 1st resin and a fiber.
 また、繊維層9は、筐体4を形成した後、筐体4上に繊維を配置し、第1の樹脂とは異なる第3の樹脂を注型することにより形成されてもよい。これにより、第3の樹脂と繊維とからなるFRPが、筐体4上に形成される。 Further, the fiber layer 9 may be formed by forming the housing 4 and then placing fibers on the housing 4 and casting a third resin different from the first resin. As a result, an FRP made of the third resin and the fiber is formed on the housing 4.
 繊維層9を形成する繊維として、例えば、ガラス繊維、樹脂繊維、カーボン繊維及びアルミや銅などの導体線が用いられる。また、第3の樹脂として、エポキシ樹脂などの熱硬化性樹脂、ポリプロピレン、ABS樹脂、ポリエチレンなどの熱可塑性樹脂、及びガラスなどを用いることができる。 As the fibers forming the fiber layer 9, for example, glass fibers, resin fibers, carbon fibers, and conductor wires such as aluminum and copper are used. Further, as the third resin, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polypropylene, an ABS resin, or polyethylene, and glass can be used.
(第5実施形態)
 次に、第5実施形態に係るインダクタについて、図9及び図10を参照して説明する。本実施形態に係るインダクタは、繊維層9を備える。図9及び図10は、本実施形態に係る繊維層9の一例を示す模式図である。図9及び図10に示すように、本実施形態に係る繊維層9は、導電性繊維91と、絶縁性繊維92と、を含む。
(Fifth embodiment)
Next, an inductor according to a fifth embodiment will be described with reference to FIGS. The inductor according to this embodiment includes a fiber layer 9. 9 and 10 are schematic views showing an example of the fiber layer 9 according to the present embodiment. As shown in FIGS. 9 and 10, the fiber layer 9 according to this embodiment includes conductive fibers 91 and insulating fibers 92.
 導電性繊維91は、隣接する繊維同士が接触しないように配置される。導電性繊維91は、例えば、カーボン繊維、アルミや銅などの導体線である。導電性繊維91を用いて繊維層9を形成することにより、繊維層9の強度を向上させることができる。また、図9に示すように、導電性繊維91を所定の方向に配列すると、導電性繊維91が偏光板のように作用し、インダクタに入射する特定の偏波が反射される。これにより、高調波の漏洩電磁界強度を低減することができる。 The conductive fibers 91 are arranged so that adjacent fibers do not contact each other. The conductive fiber 91 is, for example, a conductor wire such as carbon fiber, aluminum, or copper. By forming the fiber layer 9 using the conductive fibers 91, the strength of the fiber layer 9 can be improved. Also, as shown in FIG. 9, when the conductive fibers 91 are arranged in a predetermined direction, the conductive fibers 91 act like a polarizing plate, and a specific polarization incident on the inductor is reflected. Thereby, the leakage electromagnetic field intensity | strength of a harmonic can be reduced.
 絶縁性繊維92は、例えば、ガラス繊維や樹脂繊維である。上述の導電性繊維91同士が接触し、導電性繊維91によるループが形成されると、ループに渦電流が流れ、インダクタの損失が増加したり、ループ電流が磁束をシールドし、電気特性が劣化したりする。そこで、絶縁性繊維92は、隣接する導電性繊維91同士が接触しないように配置される。これにより、インダクタの電気特性の劣化を抑制することができる。 The insulating fiber 92 is, for example, glass fiber or resin fiber. When the conductive fibers 91 are in contact with each other and a loop is formed by the conductive fibers 91, an eddy current flows through the loop, the loss of the inductor increases, the loop current shields the magnetic flux, and the electrical characteristics deteriorate. To do. Therefore, the insulating fibers 92 are arranged so that the adjacent conductive fibers 91 do not contact each other. Thereby, deterioration of the electrical characteristics of the inductor can be suppressed.
 本実施形態に係る繊維層9は、例えば、導電性繊維91を縦糸及び絶縁性繊維92を横糸とした織布と、樹脂と、により形成される。また、繊維層9は、それぞれ所定の方向に配列された導電性繊維91の層を、複数備えてもよい。これにより、高調波の漏洩電磁界強度をさらに低減することができる。 The fiber layer 9 according to the present embodiment is formed of, for example, a woven fabric using the conductive fibers 91 as warps and the insulating fibers 92 as wefts, and a resin. Further, the fiber layer 9 may include a plurality of layers of conductive fibers 91 arranged in a predetermined direction. Thereby, the leakage electromagnetic field intensity of the harmonic can be further reduced.
 図10は、所定の方向に配列された導体性繊維91の層を2つ有する繊維層9を示している。導体性繊維91の各層は、配列方向が直交するように積層されている。また、各層の導体性繊維91は、隣接した繊維同士が接触しないように、絶縁性繊維92により絶縁されている。繊維層9をこのような積層構造とする場合、導電性繊維91の各層を絶縁するために、導電性繊維91の各層の間に、絶縁体の層(図示省略)を設けるのが好ましい。絶縁体の層は、絶縁性繊維92、第1の樹脂、及び第3の樹脂などにより形成できる。 FIG. 10 shows a fiber layer 9 having two layers of conductive fibers 91 arranged in a predetermined direction. Each layer of the conductive fiber 91 is laminated so that the arrangement direction is orthogonal. In addition, the conductive fibers 91 of each layer are insulated by insulating fibers 92 so that adjacent fibers do not contact each other. When the fiber layer 9 has such a laminated structure, an insulating layer (not shown) is preferably provided between the layers of the conductive fibers 91 in order to insulate the layers of the conductive fibers 91. The insulator layer can be formed of the insulating fiber 92, the first resin, the third resin, and the like.
(第6実施形態)
 次に、第6実施形態に係るインダクタについて、図11及び図12を参照して説明する。図11及び図12は、本実施形態に係るインダクタの一例を示すYZ平面断面図である。図11及び図12に示すように、本実施形態に係るインダクタは、保護層10をさらに備える。
(Sixth embodiment)
Next, an inductor according to a sixth embodiment will be described with reference to FIGS. 11 and 12 are YZ plane sectional views showing an example of the inductor according to this embodiment. As shown in FIGS. 11 and 12, the inductor according to the present embodiment further includes a protective layer 10.
 保護層10は、砂及び砂利の少なくとも一方を含み、筐体4中又は筐体4上に設けられる。保護層10を設けることにより、インダクタの強度や耐摩耗性を向上させることができる。 The protective layer 10 includes at least one of sand and gravel and is provided in the casing 4 or on the casing 4. By providing the protective layer 10, the strength and wear resistance of the inductor can be improved.
 保護層10は、例えば、所定の位置に砂や砂利を配置した後、第1の樹脂を注型することにより形成される。これにより、図11に示すように、筐体4中に保護層10が形成される。また、保護層10は、筐体4を形成した後、筐体4上に砂や砂利を配置し、第1の樹脂とは異なる第4の樹脂を注型することにより形成されてもよい。これにより、筐体4上に保護層10が形成される。 The protective layer 10 is formed by, for example, casting a first resin after placing sand or gravel at a predetermined position. Thereby, as shown in FIG. 11, the protective layer 10 is formed in the housing 4. Moreover, after forming the housing | casing 4, the protective layer 10 may be formed by arrange | positioning sand and gravel on the housing | casing 4, and casting 4th resin different from 1st resin. Thereby, the protective layer 10 is formed on the housing 4.
 さらに、保護層10は、所定の位置に砂や砂利と、繊維と、を配置した後、第1の樹脂、第3の樹脂、第4の樹脂などを注型することにより形成されてもよい。これにより、図12に示すように、繊維層9と保護層10とを一体に形成することができる。 Furthermore, the protective layer 10 may be formed by casting the first resin, the third resin, the fourth resin, and the like after placing sand, gravel, and fibers at predetermined positions. . Thereby, as shown in FIG. 12, the fiber layer 9 and the protective layer 10 can be integrally formed.
(第7実施形態)
 次に、第7実施形態に係るインダクタについて、図13を参照して説明する。図13は、本実施形態に係るインダクタの一例を示すYZ平面断面図である。図13に示すように、本実施形態に係るインダクタは、凹凸パターン11をさらに備える。
(Seventh embodiment)
Next, an inductor according to a seventh embodiment will be described with reference to FIG. FIG. 13 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 13, the inductor according to this embodiment further includes an uneven pattern 11.
 凹凸パターン11は、筐体4の表面の少なくとも一部を覆うように設けられる。凹凸パターン11を設けることにより、インダクタの表面の耐スリップ性を向上させることができる。図13のインダクタは、筐体4の表面にのみ凹凸パターン11を備えるが、導体板8の表面に凹凸パターン11が設けられてもよい。また、筐体4上に繊維層9や保護層10などが形成される場合、繊維層9や保護層10の表面に凹凸パターンが形成されてもよい。 The uneven pattern 11 is provided so as to cover at least a part of the surface of the housing 4. By providing the concavo-convex pattern 11, the slip resistance of the inductor surface can be improved. The inductor of FIG. 13 includes the uneven pattern 11 only on the surface of the housing 4, but the uneven pattern 11 may be provided on the surface of the conductor plate 8. Further, when the fiber layer 9, the protective layer 10, or the like is formed on the housing 4, an uneven pattern may be formed on the surface of the fiber layer 9 or the protective layer 10.
(第8実施形態)
 次に、第8実施形態に係るインダクタについて、図14を参照して説明する。図14は、本実施形態に係るインダクタの一例を示すYZ平面断面図である。図14に示すように、本実施形態に係るインダクタは、塗装部12をさらに備える。
(Eighth embodiment)
Next, an inductor according to an eighth embodiment will be described with reference to FIG. FIG. 14 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 14, the inductor according to the present embodiment further includes a paint part 12.
 塗装部12は、筐体4の表面の少なくとも一部を覆うように設けられる。塗装部12は、筐体4の表面を塗装することにより形成されてもよいし、塗装されたシートなどを筐体4の表面に貼付することにより形成されてもよい。 The coating part 12 is provided so as to cover at least a part of the surface of the housing 4. The coating unit 12 may be formed by painting the surface of the housing 4 or may be formed by sticking a painted sheet or the like to the surface of the housing 4.
 塗装部12を設けることにより、インダクタの表面の耐スリップ性を向上させたり、インダクタの耐候性や耐水性を向上させたりすることができる。図14のインダクタは、筐体4の表面にのみ塗装部12を備えるが、導体板8の表面に塗装部12が設けられてもよい。また、筐体4上に繊維層9や保護層10などが形成される場合、繊維層9や保護層10の表面に塗装部12が設けられてもよい。 By providing the coating portion 12, it is possible to improve the slip resistance of the surface of the inductor and improve the weather resistance and water resistance of the inductor. The inductor of FIG. 14 includes the painted portion 12 only on the surface of the housing 4, but the painted portion 12 may be provided on the surface of the conductor plate 8. Further, when the fiber layer 9, the protective layer 10, or the like is formed on the housing 4, the coating portion 12 may be provided on the surface of the fiber layer 9 or the protective layer 10.
(第9実施形態)
 次に、第9実施形態に係るインダクタについて、図15を参照して説明する。図15は、本実施形態に係るインダクタの一例を示すYZ平面断面図である。図15に示すように、本実施形態に係るインダクタは、カバー13を更に備える。
(Ninth embodiment)
Next, an inductor according to a ninth embodiment will be described with reference to FIG. FIG. 15 is a YZ plane sectional view showing an example of the inductor according to the present embodiment. As shown in FIG. 15, the inductor according to this embodiment further includes a cover 13.
 カバー13は、インダクタの電力伝送方向に面した筐体4の表面の、少なくとも一部を覆うように設けられる。カバー13を設けることにより、インダクタの強度や耐候性を向上させることができる。カバー13は、目的に応じて、強度、対候性、耐熱性、耐水性、及び耐摩耗性などが高い絶縁性の任意の材料により形成される。カバー13は、筐体4上に形成された繊維層9や保護層10であってもよいし、表面に凹凸パターン12や塗装部13を備えてもよい。 The cover 13 is provided so as to cover at least a part of the surface of the housing 4 facing the power transmission direction of the inductor. By providing the cover 13, the strength and weather resistance of the inductor can be improved. The cover 13 is formed of an arbitrary insulating material having high strength, weather resistance, heat resistance, water resistance, wear resistance, and the like according to the purpose. The cover 13 may be the fiber layer 9 and the protective layer 10 formed on the housing 4, and may have the uneven pattern 12 and the coating portion 13 on the surface.
(第10実施形態)
 次に、第10実施形態に係るインダクタについて、図16及び図17を参照して説明する。図16及び図17は、本実施形態に係るインダクタの一例を示すYZ平面断面図である。図16及び図17に示すように、本実施形態に係るインダクタは、半導電部14を備える。
(10th Embodiment)
Next, an inductor according to a tenth embodiment will be described with reference to FIGS. 16 and 17 are YZ plane cross-sectional views illustrating an example of the inductor according to the present embodiment. As shown in FIGS. 16 and 17, the inductor according to the present embodiment includes a semiconductive portion 14.
 半導電部14は、上述の半導電性の材料からなる塗料やシートにより形成される。半導電部14は、ケース2の内面の少なくとも一部、及び筐体4の表面の一部、の少なくとも一方に設けられる。 The semiconductive portion 14 is formed of a paint or sheet made of the above-described semiconductive material. The semiconductive portion 14 is provided on at least one part of the inner surface of the case 2 and part of the surface of the housing 4.
 図16に示すインダクタは、ケース2の内面全体、すなわち、ケース2と磁性体コア1との間に半導電部14を備える。このような構成により、電界の集中を緩和することができるため、磁性体コア1と巻線3との間の部分放電を抑制することができる。 16 includes a semiconductive portion 14 between the entire inner surface of the case 2, that is, between the case 2 and the magnetic core 1. With such a configuration, the concentration of the electric field can be alleviated, so that partial discharge between the magnetic core 1 and the winding 3 can be suppressed.
 図17に示すインダクタは、筐体4の表面の一部、すなわち、筐体4と導体板8との間に半導電部14を備える。このような構成により、電界の集中を緩和することができるため、導体板8と巻線3との間の部分放電を抑制することができる。 The inductor shown in FIG. 17 includes a semiconductive portion 14 between a part of the surface of the housing 4, that is, between the housing 4 and the conductor plate 8. With such a configuration, the concentration of the electric field can be relaxed, so that partial discharge between the conductor plate 8 and the winding 3 can be suppressed.
 なお、半導電部14を、ケース2の内面に設ける場合、緩衝材5と半導電部14とそれぞれ設けてもよいし、緩衝材5を半導電性の材料によって形成してもよい。この場合、緩衝材5が半導電部14の役割を果たす。 In addition, when providing the semiconductive part 14 in the inner surface of the case 2, you may provide the buffer material 5 and the semiconductive part 14, respectively, and you may form the buffer material 5 with a semiconductive material. In this case, the buffer material 5 serves as the semiconductive portion 14.
(第11実施形態)
 次に、第11実施形態に係るインダクタについて、図18及び図19を参照して説明する。本実施形態に係るインダクタは、複数の磁性体片15を平面状に配置して、互いに結合することにより形成された磁性体コア1を備える。各磁性体片15は、概ね扁平な板状であり、磁性体コア1は全体として大きな板状になっている。図18は、本実施形態に係る磁性体コア1の一例を示すXY平面断面図である。図19は、本実施形態に係る磁性体コア1の一例を示すYZ平面断面図である。
(Eleventh embodiment)
Next, an inductor according to an eleventh embodiment will be described with reference to FIGS. The inductor according to the present embodiment includes a magnetic core 1 formed by arranging a plurality of magnetic pieces 15 in a planar shape and coupling them together. Each magnetic piece 15 has a generally flat plate shape, and the magnetic core 1 has a large plate shape as a whole. FIG. 18 is an XY plane sectional view showing an example of the magnetic core 1 according to the present embodiment. FIG. 19 is a YZ plane sectional view showing an example of the magnetic core 1 according to the present embodiment.
 各磁性体片15は、フェライト、圧粉磁心、電磁鋼板などにより構成される。複数の磁性体片15から磁性体コア1を形成している理由は、以下の通りである。 Each magnetic piece 15 is made of ferrite, a dust core, an electromagnetic steel plate, or the like. The reason why the magnetic core 1 is formed from the plurality of magnetic pieces 15 is as follows.
 インダクタを無線電力伝送に用いる場合、伝送する電力や距離に応じて、インダクタのサイズが決まる。例えば、10cm程度離れた位置に電力を伝送する場合には、一辺が数10cmほどの大型インダクタが用いられる。磁性体コア1をフェライトや圧粉磁心などで形成する場合、成形工程や焼成工程の関係で、大型コアの製造が困難である。そこで、本実施形態のように、小型の磁性体片15を複数結合させて、大型インダクタとコアとして使用する。 When using an inductor for wireless power transmission, the size of the inductor is determined according to the transmitted power and distance. For example, when power is transmitted to a position about 10 cm away, a large inductor having a side of several tens of cm is used. When the magnetic core 1 is formed of ferrite, a dust core, or the like, it is difficult to manufacture a large core due to the molding process and firing process. Therefore, as in this embodiment, a plurality of small magnetic pieces 15 are combined and used as a large inductor and a core.
 磁性体コア1を形成する複数の磁性体片15の間は、磁性体材料を充填した流動性材料を介して結合されている。充填する磁性体材料として、例えば、粉状又は粒状の材料を用いることができる。また、流動性材料として、例えば、エポキシ樹脂またはシリコンなどの樹脂材料で構成される接着剤を用いることができる。図15において、各磁性体片15は、磁性体粉末としてフェライト粉末を充填した接着剤16により結合されている。 The plurality of magnetic body pieces 15 forming the magnetic body core 1 are coupled through a fluid material filled with a magnetic body material. As the magnetic material to be filled, for example, a powdery or granular material can be used. Moreover, as a fluid material, for example, an adhesive composed of a resin material such as an epoxy resin or silicon can be used. In FIG. 15, each magnetic piece 15 is bonded by an adhesive 16 filled with ferrite powder as magnetic powder.
 磁性体片15間の接着は、例えば、各磁性体片15の側面に接着剤16を塗布し、各磁性体片15を互いに一定時間以上押し付けることで行う。これにより、磁性体片15間に、空気の隙間等による比透磁率の低い領域の発生を抑制した磁性体コア1を形成できる。したがって、磁性体コア1における局所的な磁束の集中が抑制され、コアロスを低減することができる。 The adhesion between the magnetic pieces 15 is performed, for example, by applying an adhesive 16 to the side surface of each magnetic piece 15 and pressing the magnetic pieces 15 against each other for a predetermined time or more. Thereby, the magnetic core 1 which suppresses generation | occurrence | production of the area | region with a low relative magnetic permeability by the clearance gap of air etc. between the magnetic body pieces 15 can be formed. Therefore, local concentration of magnetic flux in the magnetic core 1 is suppressed, and core loss can be reduced.
 本実施形態において、接着力がない又は弱い樹脂系材料等の流動性材料に磁性体粉末を充填したものを用いて、磁性体片15同士を結合してもよい。また、フェライト粉末のみからなる材料を用いて、各磁性体片15を結合する構成も可能である。この場合は、磁性体片15同士の結合を維持するために、図19に示すように、磁性体コア1の両面または片面に、シート17を接着剤で貼り付けることで、各磁性体片15を固定してもよい。 In this embodiment, the magnetic pieces 15 may be bonded to each other by using a fluid material such as a resin-based material having no adhesive strength or a weak material filled with magnetic powder. Moreover, the structure which couple | bonds each magnetic body piece 15 using the material which consists only of ferrite powder is also possible. In this case, in order to maintain the coupling between the magnetic body pieces 15, as shown in FIG. 19, each magnetic body piece 15 is bonded to the both surfaces or one side of the magnetic body core 1 with an adhesive. May be fixed.
 シート17として、ポリイミドフィルム、シリコン系、アクリル系などによるシートを用いることができる。また、シート17として、上述のシートの代わりにガラスクロスを用いてもよい。シート17を接着する接着剤は、例えば、不飽和ポリエステルなどの樹脂材料であってもよい。 As the sheet 17, a sheet made of polyimide film, silicon, acrylic, or the like can be used. Further, as the sheet 17, a glass cloth may be used instead of the above-described sheet. The adhesive that bonds the sheet 17 may be, for example, a resin material such as unsaturated polyester.
(第12実施形態)
 次に、第12実施形態に係る無線電力伝送装置について、図20及び図21を参照して説明する。本実施形態に係る無線電力伝送装置は、上述の各実施形態に係るインダクタを備える。ここでいう無線電力伝送装置には、無線電力伝送のための受電装置及び送電装置が含まれる。以下では、受電装置と送電装置とに分けて説明する。
(Twelfth embodiment)
Next, a wireless power transmission device according to the twelfth embodiment will be described with reference to FIGS. The wireless power transmission device according to the present embodiment includes the inductor according to each of the embodiments described above. The wireless power transmission device here includes a power receiving device and a power transmission device for wireless power transmission. Hereinafter, the power receiving device and the power transmitting device will be described separately.
 図20は、本実施形態に係る受電装置100の概略構成を示すブロック図である。受電装置100は、図20に示すように、インダクタユニット101と、整流器102と、DC/DCコンバータ103と、蓄電池104と、を備える。 FIG. 20 is a block diagram illustrating a schematic configuration of the power receiving device 100 according to the present embodiment. As shown in FIG. 20, the power receiving apparatus 100 includes an inductor unit 101, a rectifier 102, a DC / DC converter 103, and a storage battery 104.
 インダクタユニット101は、上述の各実施形態に係るインダクタを1つ又は複数備える。受電装置100において、インダクタは、送電側のインダクタと共振して電力を受電する。受電された電力は、整流器102に入力される。なお、インダクタユニット101には、インダクタとともに共振回路ないしは力率を改善するための回路を構成するキャパシタを備えてもよい。 The inductor unit 101 includes one or more inductors according to the above-described embodiments. In the power receiving device 100, the inductor receives power by resonating with the inductor on the power transmission side. The received power is input to the rectifier 102. The inductor unit 101 may include a capacitor that forms a resonance circuit or a circuit for improving the power factor together with the inductor.
 整流器102は、インダクタユニット101から入力された交流電力を直流電力に整流する。整流器102は、例えば、ダイオードを使ったブリッジ回路により構成される。整流器102により整流された電力は、DC/DCコンバータ103に入力される。 The rectifier 102 rectifies the AC power input from the inductor unit 101 into DC power. The rectifier 102 is configured by a bridge circuit using a diode, for example. The power rectified by the rectifier 102 is input to the DC / DC converter 103.
 DC/DCコンバータ103は、蓄電池104へ適切な電圧がかかるように、電圧を調整する。DC/DCコンバータ103により調整された電圧は、蓄電池104に入力される。なお、受電装置100は、DC/DCコンバータ103を備えない構成も可能である。 The DC / DC converter 103 adjusts the voltage so that an appropriate voltage is applied to the storage battery 104. The voltage adjusted by the DC / DC converter 103 is input to the storage battery 104. Note that the power receiving apparatus 100 may be configured without the DC / DC converter 103.
 蓄電池104は、DC/DCコンバータ103又は整流器102から入力された電力を蓄積する。蓄電池104として、鉛蓄電池やリチウムイオン電池など、任意の蓄電池を用いることができる。なお、受電装置100は、蓄電池104を備えない構成も可能である。 The storage battery 104 stores the power input from the DC / DC converter 103 or the rectifier 102. An arbitrary storage battery such as a lead storage battery or a lithium ion battery can be used as the storage battery 104. Note that the power receiving device 100 may be configured without the storage battery 104.
 図21は、本実施形態に係る送電装置110の概略構成を示すブロック図である。送電装置110は、図21に示すようにインダクタユニット101と、交流電源105と、を備える。 FIG. 21 is a block diagram illustrating a schematic configuration of the power transmission device 110 according to the present embodiment. The power transmission device 110 includes an inductor unit 101 and an AC power source 105 as shown in FIG.
 交流電源105は、交流電力をインダクタユニット101に入力する。例えば、交流電源105は、商用電源から電力を入力され、入力された電力を整流し、インバータ回路を用いて交流電力に変換し、インダクタユニット101に入力する。また、交流電源105は、商用電力、直流電力、及び交流電力の電圧を調整する回路や、PFC回路と呼ばれる力率改善回路を備える構成も可能である。 AC power supply 105 inputs AC power to inductor unit 101. For example, the AC power supply 105 receives power from a commercial power supply, rectifies the input power, converts it into AC power using an inverter circuit, and inputs the AC power to the inductor unit 101. Further, the AC power source 105 can be configured to include a circuit for adjusting the voltages of commercial power, DC power, and AC power, and a power factor correction circuit called a PFC circuit.
 インダクタユニット101のインダクタは、交流電源105から入力された電力によって交流磁界を発生させ、受電側のインダクタに送電する。 The inductor of the inductor unit 101 generates an AC magnetic field by the electric power input from the AC power source 105 and transmits the AC magnetic field to the inductor on the power receiving side.
 以上説明した受電装置100及び送電装置110は、上述の各実施形態に係るインダクタを介して電力を伝送するため、製造方法によるインダクタの損失増加が少ない。したがって、受電装置100及び送電装置110は、高い伝送効率で電力を伝送することができる。 Since the power receiving device 100 and the power transmitting device 110 described above transmit power through the inductors according to the above-described embodiments, the loss of the inductor due to the manufacturing method is small. Therefore, the power receiving device 100 and the power transmitting device 110 can transmit power with high transmission efficiency.
 なお、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。 Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment is also conceivable. Furthermore, you may combine suitably the component described in different embodiment.
1:コア、2:ケース、3:巻線、4:樹脂、5:緩衝材、6:補強部、7:ボビン、8:導体板、9:繊維層、10:保護層、11:凹凸パターン、12:塗装部、13:カバー、14:半導電部、15:磁性体片、16:接着剤、17:シート、41:スペース、91:導電性繊維、92:絶縁性繊維、100:受電装置、101:101:インダクタユニット、102:整流器、103:DC/DCコンバータ、104:蓄電池、105:交流電源、110:送電装置 1: Core, 2: Case, 3: Winding, 4: Resin, 5: Buffer material, 6: Reinforcing part, 7: Bobbin, 8: Conductor plate, 9: Fiber layer, 10: Protective layer, 11: Concavity and convexity pattern , 12: Painted part, 13: Cover, 14: Semiconductive part, 15: Magnetic piece, 16: Adhesive, 17: Sheet, 41: Space, 91: Conductive fiber, 92: Insulating fiber, 100: Power reception Device: 101: 101: inductor unit, 102: rectifier, 103: DC / DC converter, 104: storage battery, 105: AC power supply, 110: power transmission device

Claims (20)

  1.  複数の磁性体コアと、
     内側に前記磁性体コアを収納する1つ又は複数のケースと、
     前記ケースの周囲に巻付けられる巻線と
     前記ケースと前記巻線とを覆うように、第1の樹脂により形成される筐体と、
     前記磁性体コア同士の間の少なくとも一部に形成される補強部と、
    を備え、
     同一方向における前記ケースの内寸と前記磁性体コアの寸法との差は、前記筐体の形成時の当該方向における前記ケースの寸法の変化量よりも大きい
    インダクタ。
    A plurality of magnetic cores;
    One or more cases for accommodating the magnetic core inside,
    A winding wound around the case; a housing formed of a first resin so as to cover the case and the winding;
    A reinforcing portion formed at least in part between the magnetic cores;
    With
    An inductor in which a difference between an inner dimension of the case and a dimension of the magnetic core in the same direction is larger than a change amount of the dimension of the case in the direction when the casing is formed.
  2.  前記補強部は、前記ケースの側面及び前記ケース同士の間の前記筐体の少なくとも一方により形成される
    請求項1に記載のインダクタ。
    The inductor according to claim 1, wherein the reinforcing portion is formed by at least one of the case and a side surface of the case.
  3.  前記筐体上又は前記筐体中に形成された繊維層を更に備える
    請求項1又は請求項2に記載のインダクタ。
    The inductor according to claim 1, further comprising a fiber layer formed on or in the casing.
  4.  前記繊維層は、少なくとも1つの繊維を含む繊維強化プラスチックにより形成される
    請求項3に記載のインダクタ。
    The inductor according to claim 3, wherein the fiber layer is formed of a fiber reinforced plastic including at least one fiber.
  5.  前記繊維層は、絶縁性繊維と、導電性繊維と、を含む
    請求項3又は請求項4に記載のインダクタ。
    The inductor according to claim 3 or 4, wherein the fiber layer includes an insulating fiber and a conductive fiber.
  6.  前記筐体上又は前記筐体中に形成された、砂及び砂利の少なくとも一方を含む保護層を更に備える
    請求項1乃至請求項5のいずれか1項の記載のインダクタ。
    The inductor according to any one of claims 1 to 5, further comprising a protective layer formed on or in the casing and including at least one of sand and gravel.
  7.  前記ケースの寸法の変化量は、前記ケースの線膨張係数と、動作温度における前記ケースの寸法と、前記筐体の形成時の前記ケースの温度の変化量と、の積である
    請求項1乃至請求項6のいずれか1項に記載のインダクタ。
    The amount of change in the size of the case is a product of the linear expansion coefficient of the case, the size of the case at an operating temperature, and the amount of change in the temperature of the case when the housing is formed. The inductor according to claim 6.
  8.  前記複数の磁性体コアは、前記巻線の近傍部分の長さ方向の断面積の合計が、他の部分の長さ方向の断面積の合計より大きい
    請求項1乃至請求項7のいずれか1項に記載のインダクタ。
    The plurality of magnetic cores according to any one of claims 1 to 7, wherein the total cross-sectional area in the length direction of the vicinity of the winding is larger than the total cross-sectional area in the length direction of the other part. The inductor according to the item.
  9.  前記ケースは、前記第1の樹脂により形成される
    請求項1乃至請求項8のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 8, wherein the case is formed of the first resin.
  10.  前記ケースと前記磁性体コアとの間の少なくとも一部に、前記磁性体コアを固定する緩衝材を更に備える
    請求項1乃至請求項9のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 9, further comprising a buffer material that fixes the magnetic core at least at a part between the case and the magnetic core.
  11.  前記緩衝材は、前記第1の樹脂より弾性率が低い材料により形成される
    請求項10に記載のインダクタ。
    The inductor according to claim 10, wherein the buffer material is formed of a material having a lower elastic modulus than the first resin.
  12.  前記巻線が巻付けられるボビンを更に備える
    請求項1乃至請求項11のいずれか1項に記載のインダクタ。
    The inductor according to claim 1, further comprising a bobbin around which the winding is wound.
  13.  前記筐体の表面の少なくとも一部を覆う導体板を更に備える
    請求項1乃至請求項12のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 12, further comprising a conductor plate that covers at least a part of a surface of the housing.
  14.  前記筐体の表面の少なくとも一部に形成された凹凸パターンを更に備える
    請求項1乃至請求項13のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 13, further comprising a concavo-convex pattern formed on at least a part of a surface of the casing.
  15.  前記筐体の表面の少なくとも一部に形成された塗装部を更に備える
    請求項1乃至請求項14のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 14, further comprising a coating portion formed on at least a part of a surface of the casing.
  16.  前記筐体の表面の少なくとも一部を覆う絶縁性のカバーを更に備える
    請求項1乃至請求項15のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 15, further comprising an insulating cover that covers at least a part of a surface of the housing.
  17.  前記ケースの内面の少なくとも一部に、前記第1の樹脂より導電率が高い材料からなる半導電部を更に備える
    請求項1乃至請求項16のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 16, further comprising a semiconductive portion made of a material having a higher conductivity than the first resin on at least a part of an inner surface of the case.
  18.  前記筐体と前記筐体の表面の少なくとも一部を覆う導体板との間に、前記第1の樹脂より導電率が高い材料からなる半導電部を更に備える
    請求項1又は請求項17のいずれか1項に記載のインダクタ。
    18. The semiconductor device according to claim 1, further comprising a semiconductive portion made of a material having a higher conductivity than the first resin, between the housing and a conductor plate covering at least a part of the surface of the housing. 2. The inductor according to item 1.
  19.  前記磁性体コアは、平面状に配置され、磁性体材料を含む材料により互いに結合された複数の磁性体片を含む
    請求項1乃至請求項18のいずれか1項に記載のインダクタ。
    The inductor according to any one of claims 1 to 18, wherein the magnetic core includes a plurality of magnetic pieces arranged in a plane and coupled to each other by a material including a magnetic material.
  20.  請求項1乃至請求項19のいずれか1項に記載のインダクタを備える
    無線電力伝送装置。
    A wireless power transmission device comprising the inductor according to any one of claims 1 to 19.
PCT/JP2015/055859 2015-02-27 2015-02-27 Inductor and wireless power transmission device WO2016135949A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/055859 WO2016135949A1 (en) 2015-02-27 2015-02-27 Inductor and wireless power transmission device
JP2017501795A JP6236571B2 (en) 2015-02-27 2015-02-27 Inductor and wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055859 WO2016135949A1 (en) 2015-02-27 2015-02-27 Inductor and wireless power transmission device

Publications (1)

Publication Number Publication Date
WO2016135949A1 true WO2016135949A1 (en) 2016-09-01

Family

ID=56788107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055859 WO2016135949A1 (en) 2015-02-27 2015-02-27 Inductor and wireless power transmission device

Country Status (2)

Country Link
JP (1) JP6236571B2 (en)
WO (1) WO2016135949A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763024B2 (en) 2016-10-03 2020-09-01 Kabushiki Kaisha Toshiba Power transmission apparatus
JP7280918B2 (en) 2020-05-26 2023-05-24 プレモ,エスアー. Wide range/low frequency antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121621U (en) * 1984-01-25 1985-08-16 ティーディーケイ株式会社 transformer
JPH07142265A (en) * 1993-11-12 1995-06-02 Tdk Corp Winding component with ferrite core, its manufacture, core cover for winding component and core with cover for winding component
JP2002110433A (en) * 2000-09-28 2002-04-12 Tokin Corp Stress-relaxed transformer and its manufacturing method
JP2002164229A (en) * 2000-11-29 2002-06-07 Tokin Corp Stress-relief transformer and its manufacturing method
JP2010172084A (en) * 2009-01-21 2010-08-05 Saitama Univ Non-contact power feeding device
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627648B2 (en) * 2000-11-27 2005-03-09 株式会社デンソー Angular velocity sensor
JP5798530B2 (en) * 2012-08-09 2015-10-21 日本電信電話株式会社 Packet processing apparatus and packet processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121621U (en) * 1984-01-25 1985-08-16 ティーディーケイ株式会社 transformer
JPH07142265A (en) * 1993-11-12 1995-06-02 Tdk Corp Winding component with ferrite core, its manufacture, core cover for winding component and core with cover for winding component
JP2002110433A (en) * 2000-09-28 2002-04-12 Tokin Corp Stress-relaxed transformer and its manufacturing method
JP2002164229A (en) * 2000-11-29 2002-06-07 Tokin Corp Stress-relief transformer and its manufacturing method
JP2010172084A (en) * 2009-01-21 2010-08-05 Saitama Univ Non-contact power feeding device
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763024B2 (en) 2016-10-03 2020-09-01 Kabushiki Kaisha Toshiba Power transmission apparatus
JP7280918B2 (en) 2020-05-26 2023-05-24 プレモ,エスアー. Wide range/low frequency antenna

Also Published As

Publication number Publication date
JPWO2016135949A1 (en) 2017-04-27
JP6236571B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6613309B2 (en) Inductor and wireless power transmission device
JP6302212B2 (en) Inductors for power transmission
JP6377336B2 (en) Inductor and manufacturing method thereof
JP6348479B2 (en) Wireless power transfer device and manufacturing method
WO2012128027A1 (en) Magnetic element for wireless power transmission and method for manufacturing same
US20140140111A1 (en) Reactor, converter and power conversion device
WO2013125372A1 (en) Coil unit and contactless power supply system
US20140176291A1 (en) Choke coil
JP2008028290A (en) Reactor device and assembly method thereof
KR101427542B1 (en) Reactor
JP6317814B2 (en) Inductors for wireless power transfer
JP2015518271A5 (en)
JP6323192B2 (en) Pad arrangement structure for power transmission and contactless power transmission system
JP6236571B2 (en) Inductor and wireless power transmission device
JP7089068B2 (en) Inductive energy emitter / receiver for inductive chargers in electric vehicles
JP2011165977A (en) Reactor
JP2013179186A (en) Reactor, component for reactor, converter, and power conversion device
WO2013118524A1 (en) Reactor, converter, and power conversion device, and core material for reactor
JP2013179184A (en) Reactor, converter, and power conversion device
JP5333798B2 (en) Coil molded body and reactor, and converter
JP6678324B2 (en) Coil device, non-contact power supply device, and non-contact power receiving device
JP6274008B2 (en) Power transmission pad and contactless power transmission system
CN111316389B (en) Electric reactor
JP2014093322A (en) Power transmission system
US20230187116A1 (en) Reactor, converter, and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883243

Country of ref document: EP

Kind code of ref document: A1