JP2024081965A - Power reception device and non-contact power feeding system - Google Patents

Power reception device and non-contact power feeding system Download PDF

Info

Publication number
JP2024081965A
JP2024081965A JP2022195599A JP2022195599A JP2024081965A JP 2024081965 A JP2024081965 A JP 2024081965A JP 2022195599 A JP2022195599 A JP 2022195599A JP 2022195599 A JP2022195599 A JP 2022195599A JP 2024081965 A JP2024081965 A JP 2024081965A
Authority
JP
Japan
Prior art keywords
power
power receiving
vehicle
coil
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022195599A
Other languages
Japanese (ja)
Inventor
和峰 木村
Kazutaka Kimura
正樹 金▲崎▼
Masaki Kanezaki
雅人 前村
Masahito Maemura
トルステン クルパット
Torsten Krupat
ガイスラー フィリップ トビアス メンツェル
Tobias Menzel Geisler Phillip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022195599A priority Critical patent/JP2024081965A/en
Publication of JP2024081965A publication Critical patent/JP2024081965A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To enhance a ratio of a magnetic flux passing though an inner side of a power reception coil.SOLUTION: A power reception device 14 that is provided to a vehicle 5 and receives a power from a ground power feeding device 1, includes: a power reception coil 22 that includes an axis line extended to a ground surface with an angle; a first magnetic member 51 that includes a non-conductive performance and a conductive performance, arranged to the ground surface side against the power reception coil; and a second magnetic member 52 that includes the non-conductive performance and the conductive performance that are arranged onto the side opposite to the ground surface side against the power reception coil. The second magnetic member includes a transverse member 53 extended over the power reception coil to a width direction of the vehicle. When viewing the first and second magnetic members to an axial direction of the power reception coil, it is arranged so as to be overlapped in the inner side of the power reception coil.SELECTED DRAWING: Figure 2

Description

本開示は、受電装置及び非接触給電システムに関する。 This disclosure relates to a power receiving device and a non-contact power supply system.

地上に設置された送電コイルと、車体下面に設置された受電コイルとの間で非接触給電を行う非接触給電システムが知られている(例えば、特許文献1)。特に、特許文献1に係る非接触給電システムでは、車両の金属製のアンダーカバーの下方に磁性塗膜を配置すると共に、磁性塗膜の更に下方に受電コイル及びコイルコアを配置することが提案されている。これにより、アンダーカバーを貫通する磁束が少なくなってアンダーカバーに生じる渦電流が減少し、電力伝送効率を良好に保つことができるとされている。 A non-contact power supply system that performs non-contact power supply between a power transmission coil installed on the ground and a power receiving coil installed on the underside of the vehicle body is known (for example, Patent Document 1). In particular, the non-contact power supply system according to Patent Document 1 proposes arranging a magnetic coating film below the metal undercover of the vehicle, and arranging the power receiving coil and coil core further below the magnetic coating film. This reduces the magnetic flux penetrating the undercover, reducing eddy currents generated in the undercover, and maintaining good power transmission efficiency.

特開2017-76653号公報JP 2017-76653 A

ところで、電力伝送効率を高めるためには、受電コイルの内側を通る磁束の割合が増えることが必要であり、特許文献1に記載の非接触給電システムには、受電コイルの内側を通る磁束の割合を高めるための余地がある。 However, in order to improve power transmission efficiency, it is necessary to increase the proportion of magnetic flux passing through the inside of the power receiving coil, and the contactless power transfer system described in Patent Document 1 has room to increase the proportion of magnetic flux passing through the inside of the power receiving coil.

上記課題に鑑みて、本開示の目的は、受電コイルの内側を通る磁束の割合を高めることにある。 In view of the above problems, the objective of this disclosure is to increase the proportion of magnetic flux that passes through the inside of the receiving coil.

本開示の要旨は以下のとおりである。 The gist of this disclosure is as follows:

(1)車両に設けられて地上給電装置から受電する受電装置であって、
地面に対して角度をもって延びる軸線を有する受電コイルと、
前記受電コイルに対して地面側に配置された非導電性及び磁性を有する第1部材と、
前記受電コイルに対して地面側とは反対側に配置された非導電性及び磁性を有する第2部材と、を有し、
前記第2部材は、前記車両の幅方向に前記受電コイルを越えて延びる横部材を有し、
前記第1部材と前記第2部材とは、前記受電コイルの軸線方向に見たときに、前記受電コイルの内側で重なるように配置される、受電装置。
(2)前記第1部材と前記第2部材とは、前記受電コイルの軸線方向に見たときに、前記受電コイルの外側で重ならないように配置される、上記(1)に記載の受電装置。
(3)前記第1部材は、前記車両の前後方向に前記受電コイルを越えて延びる、上記(1)又は(2)に記載の受電装置。
(4)前記車両の前後方向における前記第1部材の長さは、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の前後方向における前記送電コイルの長さの半分以上であって2倍以下である、上記(3)に記載の受電装置。
(5)前記車両の幅方向における前記第1部材の長さは、前記車両の幅方向における前記受電コイルの長さ以下である、上記(3)又は(4)に記載の受電装置。
(6)前記受電コイルの外側に且つ前記受電コイルの軸線方向において前記第1部材と前記第2部材との間に、非磁性体が配置される、上記(1)~(5)のいずれか1つに記載の受電装置。
(7)前記非磁性体は、前記受電コイルの軸線方向に見たときに、少なくとも部分的に前記第1部材及び前記第2部材の少なくともいずれか一方と重なるように配置される、上記(6)に記載の受電装置。
(8)前記非磁性体は、前記受電コイルに隣接して配置される、上記(6)又は(7)に記載の受電装置。
(9)前記第2部材は、前記横部材の両端にそれぞれ結合された縦部材を有し、
前記縦部材は、それぞれ前記横部材に比べて前記車両の前後方向に突出するように延びる、上記(1)~(8)のいずれか1つに記載の受電装置。
(10)車両に設けられて地上給電装置から受電する受電装置であって、
地面に対して角度をもって延びる軸線を有する受電コイルと、
前記受電コイルに対して地面側とは反対側に配置された非導電性及び磁性を有する磁性部材と、を有し、
前記磁性部材は、前記車両の幅方向に前記受電コイルを越えて延びる横部材と、該横部材の両端にそれぞれ結合された縦部材と、を有し、
前記縦部材は、それぞれ前記横部材に比べて前記車両の前後方向に突出するように延び、
前記横部材は、前記受電コイルの軸線方向に見たときに、前記受電コイルの内側と重なるように配置される、受電装置。
(11)前記車両の前後方向における前記縦部材の長さは、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の前後方向における前記送電コイルの長さの2倍以下である、上記(9)又は(10)に記載の受電装置。
(12)前記縦部材間の間隔は、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の幅方向おける前記送電コイルの長さ以上である、上記(9)~(11)のいずれか1つに記載の受電装置。
(13)前記車両の前後方向における前記横部材の長さは、前記車両の前後方向における前記受電コイルの長さ以下である、上記(1)~(12)のいずれか1つに記載の受電装置。
(14)前記受電コイルは、その外形が前記地上給電装置の送電コイルの外形よりも小さい、上記(1)~(13)のいずれか1つに記載の受電装置。
(15)上記(1)~(14)のいずれか1つに記載の受電装置と、送電コイルを有する地上給電装置と、を有する非接触給電システムであって、
前記送電コイルは、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の前後方向の長さが、前記車両の幅方向における長さよりも長くなるように形成される、非接触給電システム。
(16)前記地上給電装置は、前記送電コイルよりも上方に少なくとも部分的に地中に埋め込まれた磁性を有する磁束誘導部材を更に有する、上記(15)に記載の非接触給電システム。
(1) A power receiving device that is provided in a vehicle and receives power from a ground power supply device,
a receiving coil having an axis extending at an angle with respect to the ground;
a first member that is non-conductive and magnetic and is disposed on a ground side with respect to the power receiving coil;
a second member having non-conductivity and magnetism and disposed on an opposite side to the ground side with respect to the power receiving coil,
the second member has a lateral member extending beyond the power receiving coil in a width direction of the vehicle,
The power receiving device, wherein the first member and the second member are arranged so as to overlap inside the power receiving coil when viewed in the axial direction of the power receiving coil.
(2) The power receiving device described in (1) above, wherein the first member and the second member are arranged so as not to overlap outside the power receiving coil when viewed in the axial direction of the power receiving coil.
(3) The power receiving device according to (1) or (2) above, wherein the first member extends beyond the power receiving coil in the front-rear direction of the vehicle.
(4) The power receiving device described in (3) above, wherein the length of the first member in the fore-and-aft direction of the vehicle is at least half and not more than twice the length of the power transmission coil in the fore-and-aft direction of the vehicle when positioned in a normal manner on the power transmission coil of the ground power supply device.
(5) The power receiving device according to (3) or (4) above, wherein the length of the first member in the width direction of the vehicle is equal to or less than the length of the power receiving coil in the width direction of the vehicle.
(6) A power receiving device described in any one of (1) to (5) above, in which a non-magnetic material is arranged outside the power receiving coil and between the first member and the second member in the axial direction of the power receiving coil.
(7) The power receiving device described in (6) above, wherein the non-magnetic body is arranged so as to at least partially overlap with at least one of the first member and the second member when viewed in the axial direction of the power receiving coil.
(8) The power receiving device according to (6) or (7) above, wherein the non-magnetic body is disposed adjacent to the power receiving coil.
(9) The second member has vertical members respectively connected to both ends of the horizontal member,
The power receiving device according to any one of (1) to (8) above, wherein the vertical members each extend so as to protrude in the fore-and-aft direction of the vehicle compared to the horizontal members.
(10) A power receiving device provided in a vehicle and receiving power from a ground power supply device,
a receiving coil having an axis extending at an angle with respect to the ground;
a magnetic member having non-conductivity and magnetism and disposed on an opposite side to a ground side with respect to the power receiving coil,
the magnetic member has a horizontal member extending beyond the power receiving coil in a width direction of the vehicle, and vertical members coupled to both ends of the horizontal member,
The vertical members each extend so as to protrude in the front-rear direction of the vehicle relative to the horizontal members,
A power receiving device, wherein the cross member is positioned so as to overlap the inside of the power receiving coil when viewed in the axial direction of the power receiving coil.
(11) The power receiving device according to (9) or (10) above, wherein the length of the vertical member in the fore-and-aft direction of the vehicle is less than or equal to twice the length of the power transmission coil in the fore-and-aft direction of the vehicle when positioned in a normal manner on the power transmission coil of the ground power supply device.
(12) The power receiving device according to any one of (9) to (11) above, wherein the distance between the vertical members is equal to or greater than the length of the power transmission coil in the width direction of the vehicle positioned in a normal manner above the power transmission coil of the ground power supply device.
(13) The power receiving device according to any one of (1) to (12), wherein the length of the cross member in the fore-and-aft direction of the vehicle is equal to or less than the length of the power receiving coil in the fore-and-aft direction of the vehicle.
(14) The power receiving device according to any one of (1) to (13), wherein the power receiving coil has an outer shape smaller than an outer shape of the power transmitting coil of the ground power feeding device.
(15) A contactless power supply system including the power receiving device according to any one of (1) to (14) above and a ground power supply device having a power transmission coil,
A wireless power supply system, wherein the power transmission coil is formed so that a length in a front-to-rear direction of the vehicle positioned in a normal manner on the power transmission coil of the ground power supply device is longer than a length in a width direction of the vehicle.
(16) The wireless power supply system according to (15), wherein the ground power supply device further includes a magnetic flux guide member that is at least partially embedded in the ground above the power transmission coil.

本開示によれば、受電コイルの内側を通る磁束の割合を高めることができる。 This disclosure makes it possible to increase the proportion of magnetic flux passing through the inside of the receiving coil.

図1は、第実施形態に係る非接触給電システムの構成を概略的に示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a contactless power supply system according to a third embodiment. 図2は、送電コイル及び受電コイルの周りの構成を概略的に示す斜視図である。FIG. 2 is a perspective view that illustrates a schematic configuration around the power transmitting coil and the power receiving coil. 図3は、受電コイルの周りの構成を概略的に示す平面図である。FIG. 3 is a plan view that illustrates a schematic configuration around the power receiving coil. 図4は、図3の線IV-IVに沿って見た、受電コイルの周りの構成を概略的に示す断面図である。FIG. 4 is a cross-sectional view showing a schematic configuration around the power receiving coil, taken along line IV-IV in FIG. 図5は、送電コイルによって生じる磁束の主な流れを概略的に示す、図2と同様な斜視図である。FIG. 5 is a perspective view similar to FIG. 2 , illustrating generally the main flows of magnetic flux generated by the sending coil. 図6は、送電コイル及び受電コイルの周りの構成を概略的に示す、図2と同様な斜視図である。FIG. 6 is a perspective view similar to FIG. 2, which illustrates a schematic configuration around the power transmitting coil and the power receiving coil. 図7は、受電コイルの周りの構成を概略的に示す、図3と同様な平面図である。FIG. 7 is a plan view similar to FIG. 3, which illustrates a schematic configuration around the power receiving coil. 図8は、送電コイル及び受電コイルの周りの構成を概略的に示す、図2と同様な斜視図である。FIG. 8 is a perspective view similar to FIG. 2, which illustrates a schematic configuration around the power transmitting coil and the power receiving coil. 図9は、受電コイルの周りの構成を概略的に示す、図4と同様な断面図である。FIG. 9 is a cross-sectional view similar to FIG. 4, which illustrates a schematic configuration around the power receiving coil. 図10は、受電コイルの周りの構成を概略的に示す、図4及び図9と同様な断面図である。FIG. 10 is a cross-sectional view similar to FIGS. 4 and 9, which illustrates a schematic configuration around the power receiving coil. 図11は、送電コイル及び受電コイルの周りの構成を概略的に示す、図2と同様な斜視図である。FIG. 11 is a perspective view similar to FIG. 2, which illustrates a schematic configuration around the power transmitting coil and the power receiving coil.

以下、図面を参照して実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。 The following describes the embodiments in detail with reference to the drawings. In the following description, similar components are given the same reference numbers.

第1実施形態
<非接触給電システムの概要>
図1は、第実施形態に係る非接触給電システム100の構成を概略的に示す図である。非接触給電システム100は、道路Rに設けられた地上給電装置1と、地上給電装置1から電力を受電可能な車両5とを有する。非接触給電システム100では、地上給電装置1から車両5へ磁界共振結合(磁界共鳴)による非接触電力伝送が行われる。本実施形態では、車両5が停車しているときのみならず、車両5の走行中にも非接触電力伝送が行われる。
First embodiment <Outline of non-contact power supply system>
1 is a diagram illustrating a schematic configuration of a contactless power supply system 100 according to a third embodiment. The contactless power supply system 100 includes a ground power supply device 1 provided on a road R, and a vehicle 5 capable of receiving power from the ground power supply device 1. In the contactless power supply system 100, contactless power transmission is performed from the ground power supply device 1 to the vehicle 5 by magnetic field resonant coupling (magnetic field resonance). In this embodiment, contactless power transmission is performed not only when the vehicle 5 is stopped, but also when the vehicle 5 is traveling.

地上給電装置1は、非接触で車両5に送電するように構成された送電装置32を有し、車両5は、非接触で電力を受電するように構成された受電装置14を有する。地上給電装置1の送電装置32に電力が供給されると送電装置32の送電コイル44により磁界が生成される。車両5の受電装置14の受電コイル22が送電コイル44上に位置すると、送電コイル44によって発生した磁界により受電コイル22に電流が流れ、よって受電装置14により電力が受電される。 The ground power supply device 1 has a power transmission device 32 configured to transmit power to the vehicle 5 in a contactless manner, and the vehicle 5 has a power receiving device 14 configured to receive power in a contactless manner. When power is supplied to the power transmission device 32 of the ground power supply device 1, a magnetic field is generated by the power transmission coil 44 of the power transmission device 32. When the power receiving coil 22 of the power receiving device 14 of the vehicle 5 is positioned above the power transmission coil 44, a current flows in the power receiving coil 22 due to the magnetic field generated by the power transmission coil 44, and thus power is received by the power receiving device 14.

<車両の構成>
次に、図1を参照して、車両5の構成について説明する。図1に示されるように、車両5は、モータ11、バッテリ12、パワーコントロールユニット(PCU)13、受電装置14、及び電子制御ユニット(ECU)15を有する。車両5は、モータ11が車両5を駆動する電動車両(BEV)、又はモータ11に加えて内燃機関が車両5を駆動するハイブリッド車両(HEV)である。
<Vehicle configuration>
Next, the configuration of the vehicle 5 will be described with reference to Fig. 1. As shown in Fig. 1, the vehicle 5 has a motor 11, a battery 12, a power control unit (PCU) 13, a power receiving device 14, and an electronic control unit (ECU) 15. The vehicle 5 is an electric vehicle (BEV) in which the motor 11 drives the vehicle 5, or a hybrid vehicle (HEV) in which an internal combustion engine in addition to the motor 11 drives the vehicle 5.

モータ11は、例えば交流同期モータであり、電動機及び発電機として機能する。モータ11は、電動機として機能するときには、バッテリ12に蓄えられた電力を動力源として駆動される。モータ11の出力は減速機及び車軸を介して車輪に伝達される。 The motor 11 is, for example, an AC synchronous motor, and functions as both an electric motor and a generator. When functioning as an electric motor, the motor 11 is driven by electricity stored in the battery 12 as a power source. The output of the motor 11 is transmitted to the wheels via a reduction gear and an axle.

バッテリ12は、充電可能な二次電池であり、例えば、リチウムイオン電池、ニッケル水素電池等から構成される。バッテリ12は車両5の走行に必要な電力(例えばモータ11の駆動電力)を蓄える。受電装置14が受電した電力がバッテリ12に供給されると、バッテリ12が充電される。バッテリ12が充電されると、バッテリ12の充電率(SOC:State Of Charge)が回復する。なお、バッテリ12は、車両5に設けられた充電ポートを介して地上給電装置1以外の外部電源によっても充電可能であってもよい。 The battery 12 is a rechargeable secondary battery, and is, for example, a lithium-ion battery, a nickel-metal hydride battery, or the like. The battery 12 stores the power required for the vehicle 5 to run (for example, the driving power of the motor 11). When the power received by the power receiving device 14 is supplied to the battery 12, the battery 12 is charged. When the battery 12 is charged, the charging rate (SOC: State Of Charge) of the battery 12 is restored. Note that the battery 12 may also be rechargeable by an external power source other than the ground power supply device 1 through a charging port provided on the vehicle 5.

PCU13はモータ11及びバッテリ12に電気的に接続される。PCU13は、インバータ、昇圧コンバータ及びDC/DCコンバータを有する。インバータは、バッテリ12から供給された直流電力を交流電力に変換し、交流電力をモータ11に供給する。昇圧コンバータは、バッテリ12に蓄えられた電力がモータ11に供給されるときに、必要に応じてバッテリ12の電圧を昇圧する。DC/DCコンバータは、バッテリ12に蓄えられた電力がヘッドライト等の電子機器に供給されるときに、バッテリ12の電圧を降圧する。 The PCU 13 is electrically connected to the motor 11 and the battery 12. The PCU 13 has an inverter, a boost converter, and a DC/DC converter. The inverter converts DC power supplied from the battery 12 into AC power and supplies the AC power to the motor 11. The boost converter boosts the voltage of the battery 12 as necessary when the power stored in the battery 12 is supplied to the motor 11. The DC/DC converter reduces the voltage of the battery 12 when the power stored in the battery 12 is supplied to electronic devices such as headlights.

受電装置14は、送電装置32から受電し、受電した電力をバッテリ12に供給する。受電装置14は、受電側共振回路21、受電側整流回路24及び充電回路25を有する。 The power receiving device 14 receives power from the power transmitting device 32 and supplies the received power to the battery 12. The power receiving device 14 has a power receiving side resonant circuit 21, a power receiving side rectifier circuit 24, and a charging circuit 25.

受電側共振回路21は、路面との距離が小さくなるように車両5の底部に配置される。受電側共振回路21は、受電コイル22及び受電側共振コンデンサ23を有する。本実施形態では、受電コイル22は、路面に対する距離が規定の距離になるように配置される。受電コイル22は、周りに磁界が生じると、受電コイル22に電流が流れるように構成される。受電コイル22と受電側共振コンデンサ23とは共振器を構成する。受電コイル22及び受電側共振コンデンサ23の各種パラメータ(受電コイル22の外径及び内径、受電コイル22の巻数、受電側共振コンデンサ23の静電容量、等)は、受電側共振回路21の共振周波数が送電側共振回路43の共振周波数と一致するように定められる。なお、受電側共振回路21の共振周波数と送電側共振回路43の共振周波数とのずれ量が小さければ、例えば受電側共振回路21の共振周波数が送電側共振回路43の共振周波数の±10%の範囲内であれば、受電側共振回路21の共振周波数は送電側共振回路43の共振周波数と必ずしも一致している必要はない。 The receiving side resonant circuit 21 is arranged at the bottom of the vehicle 5 so as to reduce the distance from the road surface. The receiving side resonant circuit 21 has a receiving coil 22 and a receiving side resonant capacitor 23. In this embodiment, the receiving coil 22 is arranged so as to be at a specified distance from the road surface. The receiving coil 22 is configured so that a current flows through the receiving coil 22 when a magnetic field is generated around it. The receiving coil 22 and the receiving side resonant capacitor 23 form a resonator. Various parameters of the receiving coil 22 and the receiving side resonant capacitor 23 (outer diameter and inner diameter of the receiving coil 22, the number of turns of the receiving coil 22, the capacitance of the receiving side resonant capacitor 23, etc.) are determined so that the resonant frequency of the receiving side resonant circuit 21 matches the resonant frequency of the transmitting side resonant circuit 43. In addition, if the deviation between the resonant frequency of the power receiving side resonant circuit 21 and the resonant frequency of the power transmitting side resonant circuit 43 is small, for example, if the resonant frequency of the power receiving side resonant circuit 21 is within a range of ±10% of the resonant frequency of the power transmitting side resonant circuit 43, the resonant frequency of the power receiving side resonant circuit 21 does not necessarily have to match the resonant frequency of the power transmitting side resonant circuit 43.

受電側整流回路24は受電側共振回路21及び充電回路25に電気的に接続される。受電側整流回路24は、受電側共振回路21から供給される交流電力を整流して直流電力に変換し、直流電力を充電回路25に供給する。受電側整流回路24は例えばAC/DCコンバータである。 The receiving side rectifier circuit 24 is electrically connected to the receiving side resonant circuit 21 and the charging circuit 25. The receiving side rectifier circuit 24 rectifies the AC power supplied from the receiving side resonant circuit 21, converts it to DC power, and supplies the DC power to the charging circuit 25. The receiving side rectifier circuit 24 is, for example, an AC/DC converter.

充電回路25は受電側整流回路24及びバッテリ12に電気的に接続される。充電回路25は、受電側整流回路24から供給された直流電力をバッテリ12の電圧レベルに変換してバッテリ12に供給する。送電装置32から送電された電力が受電装置14によってバッテリ12に供給されると、バッテリ12が充電される。充電回路25は例えばDC/DCコンバータである。 The charging circuit 25 is electrically connected to the receiving rectifier circuit 24 and the battery 12. The charging circuit 25 converts the DC power supplied from the receiving rectifier circuit 24 to the voltage level of the battery 12 and supplies it to the battery 12. When the power transmitted from the power transmitting device 32 is supplied to the battery 12 by the power receiving device 14, the battery 12 is charged. The charging circuit 25 is, for example, a DC/DC converter.

ECU15は車両5の各種制御を行う。例えば、ECU15は、受電装置14の充電回路25に電気的に接続され、送電装置32から送電された電力によるバッテリ12の充電を制御すべく充電回路25を制御する。また、ECU15は、PCU13に電気的に接続され、バッテリ12とモータ11との間の電力の授受を制御すべくPCU13を制御する。 The ECU 15 performs various controls of the vehicle 5. For example, the ECU 15 is electrically connected to a charging circuit 25 of the power receiving device 14, and controls the charging circuit 25 to control charging of the battery 12 with power transmitted from the power transmitting device 32. The ECU 15 is also electrically connected to the PCU 13, and controls the PCU 13 to control the exchange of power between the battery 12 and the motor 11.

<地上給電装置の構成>
次に、図1を参照して、地上給電装置1の構成について概略的に説明する。図1に示されるように、地上給電装置1は、電源31と、送電装置32と、コントローラ33と、を有する。
<Configuration of Ground Power Supply Device>
Next, a configuration of the ground power supply device 1 will be described briefly with reference to Fig. 1. As shown in Fig. 1, the ground power supply device 1 has a power source 31, a power transmission device 32, and a controller 33.

電源31は、送電装置32に電力を供給する。電源31は、例えば、単層交流電力を供給する商用交流電源である。なお、電源31は、三相交流電力を供給する他の交流電源であってもよいし、燃料電池のような直流電源であってもよい。 The power source 31 supplies power to the power transmission device 32. The power source 31 is, for example, a commercial AC power source that supplies single-phase AC power. Note that the power source 31 may be another AC power source that supplies three-phase AC power, or may be a DC power source such as a fuel cell.

送電装置32は、電源31から供給された電力を非接触で車両5へ送電する。送電装置32は、送電側整流回路41、インバータ回路42及び送電側共振回路43を有する。送電装置32の送電側共振回路43、特に送電側共振回路43の送電コイル44は、図1に示されるように、車両5が走行する道路R内(地中)に、例えば車両5が走行する車線の中央に、一列に埋め込まれる。なお、送電装置32の送電側整流回路41及びインバータ回路42は、地中に埋め込まれてもよいし、地上に配置されてもよい。 The power transmission device 32 transmits power supplied from the power source 31 to the vehicle 5 in a non-contact manner. The power transmission device 32 has a power transmission side rectifier circuit 41, an inverter circuit 42, and a power transmission side resonant circuit 43. The power transmission side resonant circuit 43 of the power transmission device 32, particularly the power transmission coils 44 of the power transmission side resonant circuit 43, are embedded in a row (underground) on the road R on which the vehicle 5 travels, for example, in the center of the lane on which the vehicle 5 travels, as shown in FIG. 1. The power transmission side rectifier circuit 41 and the inverter circuit 42 of the power transmission device 32 may be embedded in the ground or may be disposed above ground.

送電側整流回路41は、電源31及びインバータ回路42に電気的に接続される。送電側整流回路41は、電源31から供給される交流電力を整流して直流電力に変換し、直流電力をインバータ回路42に供給する。送電側整流回路41は例えばAC/DCコンバータである。本実施形態では、一つの送電装置32に一つの送電側整流回路41が設けられる。なお、電源31が直流電源である場合には、送電側整流回路41は省略されてもよい。 The power transmission side rectifier circuit 41 is electrically connected to the power source 31 and the inverter circuit 42. The power transmission side rectifier circuit 41 rectifies AC power supplied from the power source 31, converts it to DC power, and supplies the DC power to the inverter circuit 42. The power transmission side rectifier circuit 41 is, for example, an AC/DC converter. In this embodiment, one power transmission device 32 is provided with one power transmission side rectifier circuit 41. Note that if the power source 31 is a DC power source, the power transmission side rectifier circuit 41 may be omitted.

インバータ回路42は送電側整流回路41及び送電側共振回路43に電気的に接続される。インバータ回路42は、送電側整流回路41から供給された直流電力を、電源31の交流電力よりも高い周波数の交流電力(高周波交流電力)に変換し、高周波交流電力を送電側共振回路43に供給する。本実施形態では、送電装置32は、送電側共振回路43の数に対応する数のインバータ回路42を有する。各インバータ回路42は、それぞれ対応する一つの互いに異なる送電側共振回路43に接続される。 The inverter circuit 42 is electrically connected to the power transmission side rectifier circuit 41 and the power transmission side resonant circuit 43. The inverter circuit 42 converts the DC power supplied from the power transmission side rectifier circuit 41 into AC power (high frequency AC power) having a higher frequency than the AC power of the power source 31, and supplies the high frequency AC power to the power transmission side resonant circuit 43. In this embodiment, the power transmission device 32 has a number of inverter circuits 42 corresponding to the number of power transmission side resonant circuits 43. Each inverter circuit 42 is connected to a corresponding different power transmission side resonant circuit 43.

送電側共振回路43は、送電コイル44と送電側共振コンデンサ45とを有する。送電コイル44は、環状に形成されると共に、電流が流れると、非接触で電力を伝送すべく磁界を発生させる。送電コイル44と送電側共振コンデンサ45とは共振器を構成する。送電コイル44及び送電側共振コンデンサ45の各種パラメータ(送電コイル44の外形及び内径、送電コイル44の巻数、送電側共振コンデンサ45の静電容量、等)は、送電装置32の共振周波数が所定の設定値になるように定められる。所定の設定値は、例えば10kHz~100GHzであり、好ましくは、非接触電力伝送用の周波数帯域としてSAE TIR J2954規格によって定められた85kHzである。 The power transmission side resonant circuit 43 has a power transmission coil 44 and a power transmission side resonant capacitor 45. The power transmission coil 44 is formed in a ring shape, and when a current flows, it generates a magnetic field to transmit power contactlessly. The power transmission coil 44 and the power transmission side resonant capacitor 45 form a resonator. Various parameters of the power transmission coil 44 and the power transmission side resonant capacitor 45 (outer diameter and inner diameter of the power transmission coil 44, number of turns of the power transmission coil 44, capacitance of the power transmission side resonant capacitor 45, etc.) are determined so that the resonant frequency of the power transmission device 32 becomes a predetermined set value. The predetermined set value is, for example, 10 kHz to 100 GHz, and is preferably 85 kHz, which is determined by the SAE TIR J2954 standard as a frequency band for contactless power transmission.

コントローラ33は、例えば汎用コンピュータであり、地上給電装置1の各種制御を行う。特に、コントローラ33は、送電装置32のインバータ回路42に電気的に接続され、送電装置32による送電を制御すべくインバータ回路42を制御する。具体的には、例えば、コントローラ33は、任意のセンサ(図示せず)からの出力に基づいて車両5が上に位置している送電コイル44を特定すると共に、特定された送電コイル44に電力を供給するようにインバータ回路42を制御する。コントローラ33は、各種処理を実行するプロセッサと、プロセッサに各種処理を実行させるためのプログラム及びプロセッサが各種処理を実行するときに使用される各種データ等を記憶するメモリと、を有する。 The controller 33 is, for example, a general-purpose computer, and performs various controls of the ground power supply device 1. In particular, the controller 33 is electrically connected to the inverter circuit 42 of the power transmission device 32, and controls the inverter circuit 42 to control power transmission by the power transmission device 32. Specifically, for example, the controller 33 identifies the power transmission coil 44 above which the vehicle 5 is located based on the output from an arbitrary sensor (not shown), and controls the inverter circuit 42 to supply power to the identified power transmission coil 44. The controller 33 has a processor that executes various processes, and a memory that stores programs for causing the processor to execute various processes and various data used when the processor executes various processes.

このように構成された非接触給電システム100では、図1に示されるように車両5の受電コイル22が地上給電装置1の送電コイル44と対向しているときに、送電側共振回路43に交流電力が供給されて送電コイル44によって交番磁界が生成される。このように交番磁界が生成されると、交番磁界の振動が、受電コイル22に伝達される。この結果、電磁誘導によって受電コイル22に誘導電流が流れ、誘導電流によって受電側共振回路21に誘導起電力が発生する。すなわち、送電側共振回路43を含む送電装置32から受電側共振回路21を含む受電装置14へ電力が伝送される。 In the contactless power supply system 100 configured in this manner, when the power receiving coil 22 of the vehicle 5 faces the power transmitting coil 44 of the ground power supply device 1 as shown in FIG. 1, AC power is supplied to the power transmitting side resonant circuit 43 and an alternating magnetic field is generated by the power transmitting coil 44. When the alternating magnetic field is generated in this manner, the vibration of the alternating magnetic field is transmitted to the power receiving coil 22. As a result, an induced current flows in the power receiving coil 22 due to electromagnetic induction, and an induced electromotive force is generated in the power receiving side resonant circuit 21 by the induced current. In other words, power is transmitted from the power transmitting device 32 including the power transmitting side resonant circuit 43 to the power receiving device 14 including the power receiving side resonant circuit 21.

<コイル周りの構成>
次に、図2~図4を参照して、送電コイル44及び受電コイル22周りの構成について説明する。図2は、送電コイル44及び受電コイル22の周りの構成を概略的に示す斜視図である。図3は、受電コイル22の周りの構成を概略的に示す平面図である。図4は、図3の線IV-IVに沿って見た、受電コイル22の周りの構成を概略的に示す断面図である。
<Coil configuration>
Next, the configuration around the power transmitting coil 44 and the power receiving coil 22 will be described with reference to Fig. 2 to Fig. 4. Fig. 2 is a perspective view that shows a schematic configuration around the power transmitting coil 44 and the power receiving coil 22. Fig. 3 is a plan view that shows a schematic configuration around the power receiving coil 22. Fig. 4 is a cross-sectional view that shows a schematic configuration around the power receiving coil 22, as viewed along line IV-IV in Fig. 3.

図2に示されるように、地上給電装置1の送電コイル44は、送電側コイルユニット46内に組み込まれる。送電側コイルユニット46は、送電コイル44と、送電コイル44の周りを囲むように設けられた樹脂製の送電側包囲部材47とを有する。送電側コイルユニット46は、地中に埋め込まれる。 As shown in FIG. 2, the power transmission coil 44 of the ground power supply device 1 is incorporated in a power transmission side coil unit 46. The power transmission side coil unit 46 has the power transmission coil 44 and a power transmission side surrounding member 47 made of resin that is provided to surround the power transmission coil 44. The power transmission side coil unit 46 is buried in the ground.

本明細書では、送電側コイルユニット46における方向を、送電コイル44上に通常の態様で位置する車両5の方向に対応する方向として説明する。したがって、送電コイル44上に通常の態様で位置する車両5の前後方向に対応する送電コイル44の方向を送電コイル44の車両前後方向と称する。同様に、送電コイル44上に通常の態様で位置する車両5の幅方向に対応する送電コイル44の方向を送電コイル44の車両幅方向と称する。また、送電コイル44上の通常の態様での車両5の位置とは、例えば、送電コイル44が車道に埋め込まれている場合にはその車道を車線に沿って車両5が走行しているときの車両5の位置を意味し、送電コイル44が駐車場に埋め込まれている場合にはその駐車場に駐車枠に合わせて車両5が停止しているときの車両5の位置を意味する。 In this specification, the direction in the power transmission side coil unit 46 is described as the direction corresponding to the direction of the vehicle 5 positioned in a normal manner on the power transmission coil 44. Therefore, the direction of the power transmission coil 44 corresponding to the front-rear direction of the vehicle 5 positioned in a normal manner on the power transmission coil 44 is referred to as the vehicle front-rear direction of the power transmission coil 44. Similarly, the direction of the power transmission coil 44 corresponding to the width direction of the vehicle 5 positioned in a normal manner on the power transmission coil 44 is referred to as the vehicle width direction of the power transmission coil 44. In addition, the position of the vehicle 5 in a normal manner on the power transmission coil 44 means, for example, the position of the vehicle 5 when the vehicle 5 is traveling along the lane on the roadway when the power transmission coil 44 is embedded in the roadway, and means the position of the vehicle 5 when the vehicle 5 is stopped in the parking lot in line with the parking space when the power transmission coil 44 is embedded in the parking lot.

本実施形態では、送電コイル44は、スパイラルコイルであり、四角形状に形成されている。特に、本実施形態では、送電コイル44は、車両前後方向における長さが、車両幅方向における長さよりも長くなるように形成される。例えば、車両5が走行する道路内に送電コイル44が埋め込まれている場合には、送電コイル44の車線方向(送電コイル44上を走行する車両5の前後方向に相当)における長さが、送電コイル44の車線の幅方向(送電コイル44上を走行する車両5の幅方向に相当)における長さよりも長くなるように形成される。 In this embodiment, the power transmission coil 44 is a spiral coil and is formed in a rectangular shape. In particular, in this embodiment, the power transmission coil 44 is formed so that the length in the vehicle's fore-and-aft direction is longer than the length in the vehicle's width direction. For example, when the power transmission coil 44 is embedded in the road on which the vehicle 5 runs, the power transmission coil 44 is formed so that the length in the lane direction (corresponding to the fore-and-aft direction of the vehicle 5 running on the power transmission coil 44) is longer than the length in the lane width direction (corresponding to the width direction of the vehicle 5 running on the power transmission coil 44).

また、送電コイル44は、地面と平行なるように配置される。換言すると、送電コイル44は、その軸線が地面に対して垂直になるように配置される。 The power transmission coil 44 is also arranged so that it is parallel to the ground. In other words, the power transmission coil 44 is arranged so that its axis is perpendicular to the ground.

なお、本実施形態では、送電コイル44は、四角形状に形成されているが、円形状、楕円形状及び角丸四角形状等、四角形状以外の形状を有するスパイラルコイルとして形成されてもよい。この場合においても、送電コイル44は、楕円形状及び角丸四角形状等、縦横の長さが異なる形状を有する場合には、車両5の前後方向に対応する方向における長さが、車両5の幅方向に対応する方向における長さよりも長くなるように形成される。 In this embodiment, the power transmission coil 44 is formed in a rectangular shape, but may be formed as a spiral coil having a shape other than a rectangular shape, such as a circle, an ellipse, or a rounded rectangle. Even in this case, when the power transmission coil 44 has a shape with different length and width, such as an ellipse or a rounded rectangle, the length in the direction corresponding to the front-rear direction of the vehicle 5 is longer than the length in the direction corresponding to the width direction of the vehicle 5.

また、図2~図4に示されるように、車両5の受電コイル22は、送電コイル44と同様に、受電側コイルユニット26内に組み込まれる。受電側コイルユニット26は、受電コイル22と、受電コイル22の周りを囲むように設けられた樹脂製の受電側包囲部材27とを有する。受電側コイルユニット26は、車両5の底部、例えば、車両5のアンダーカバーの下方に配置される。 As shown in Figs. 2 to 4, the power receiving coil 22 of the vehicle 5 is incorporated in the power receiving coil unit 26, similar to the power transmitting coil 44. The power receiving coil unit 26 has the power receiving coil 22 and a power receiving enclosing member 27 made of resin that is arranged to surround the power receiving coil 22. The power receiving coil unit 26 is disposed on the bottom of the vehicle 5, for example, below the undercover of the vehicle 5.

本実施形態では、受電コイル22は、スパイラルコイルであり、受電コイル22の軸線X回りで四角形状に形成されている。特に、本実施形態では、受電コイル22は、正方形状に形成されている。しかしながら、受電コイル22は、正方形以外の四角形状、円形状、楕円形状及び角丸四角形状等、正方形状以外の形状を有するスパイラルコイルとして形成されてもよい。また、受電コイル22は、その軸線Xが地面に対してほぼ垂直になるように配置される。なお、受電コイル22は、その軸線Xが地面に対して垂直以外の角度をもって延びるように配置されてもよい。 In this embodiment, the power receiving coil 22 is a spiral coil and is formed in a quadrangle around the axis X of the power receiving coil 22. In particular, in this embodiment, the power receiving coil 22 is formed in a square shape. However, the power receiving coil 22 may be formed as a spiral coil having a shape other than a square, such as a quadrangle other than a square, a circle, an oval, or a quadrangle with rounded corners. Furthermore, the power receiving coil 22 is arranged so that its axis X is approximately perpendicular to the ground. Furthermore, the power receiving coil 22 may be arranged so that its axis X extends at an angle other than perpendicular to the ground.

また、本実施形態では、受電コイル22は、その外形が送電コイル44の外形よりも小さくなるように形成される。特に、本実施形態では、車両5の幅方向における受電コイル22の長さは、車両幅方向における送電コイル44の長さよりも小さい。加えて、車両5の前後方向における受電コイル22の長さは、車両前後方向における送電コイル44の長さよりも小さい。 In addition, in this embodiment, the power receiving coil 22 is formed so that its outer shape is smaller than the outer shape of the power transmitting coil 44. In particular, in this embodiment, the length of the power receiving coil 22 in the width direction of the vehicle 5 is smaller than the length of the power transmitting coil 44 in the vehicle width direction. In addition, the length of the power receiving coil 22 in the front-rear direction of the vehicle 5 is smaller than the length of the power transmitting coil 44 in the front-rear direction of the vehicle.

また、図2~図4に示されるように、受電側コイルユニット26の下方(すなわち、受電側コイルユニット26に対して地面側)には、非導電性及び磁性を有する第1磁性部材51が配置される。具体的には、第1磁性部材51は、例えば、フェライトによって形成される。 As shown in Figs. 2 to 4, a first magnetic member 51 that is non-conductive and magnetic is disposed below the power receiving coil unit 26 (i.e., on the ground side of the power receiving coil unit 26). Specifically, the first magnetic member 51 is formed of, for example, ferrite.

第1磁性部材51は、図2~図4に示されるように、車両5の前後方向に延びる。第1磁性部材51は、本実施形態では、長方形の板状の部材である。本実施形態では、第1磁性部材51は、受電コイル22の軸線X方向に見たときに(すなわち、図3の平面図において)、車両5の前後方向に受電側コイルユニット26の外形を越えて延びる。したがって、第1磁性部材51は、受電コイル22の軸線X方向に見たときに、受電コイル22の外形を越えて車両5の前後方向に延びる。よって、第1磁性部材51は、受電側コイルユニット26又は受電コイル22の前端を越えて前方に延びると共に、受電側コイルユニット26又は受電コイル22の後端を越えて後方に延びる。 As shown in Figs. 2 to 4, the first magnetic member 51 extends in the front-rear direction of the vehicle 5. In this embodiment, the first magnetic member 51 is a rectangular plate-shaped member. In this embodiment, the first magnetic member 51 extends in the front-rear direction of the vehicle 5 beyond the outer shape of the power receiving coil unit 26 when viewed in the axial X direction of the power receiving coil 22 (i.e., in the plan view of Fig. 3). Therefore, when viewed in the axial X direction of the power receiving coil 22, the first magnetic member 51 extends in the front-rear direction of the vehicle 5 beyond the outer shape of the power receiving coil 22. Therefore, the first magnetic member 51 extends forward beyond the front end of the power receiving coil unit 26 or the power receiving coil 22, and extends rearward beyond the rear end of the power receiving coil unit 26 or the power receiving coil 22.

また、本実施形態では、車両5の前後方向における第1磁性部材51の中心は、受電コイル22の軸線X上に位置する。また、車両5の前後方向における第1磁性部材51の長さは、車両前後方向における送電コイル44の長さとほぼ等しい。しかしながら、車両5の前後方向における第1磁性部材51の長さは、車両前後方向における送電コイル44の長さの半分以上であって2倍以下であれば、車両前後方向における送電コイル44の長さとは異なる長さであってもよい。或いは、車両5の前後方向における第1磁性部材51の長さは、車両前後方向における受電コイル22の長さ以下であってもよい。 In addition, in this embodiment, the center of the first magnetic member 51 in the front-rear direction of the vehicle 5 is located on the axis X of the power receiving coil 22. Furthermore, the length of the first magnetic member 51 in the front-rear direction of the vehicle 5 is approximately equal to the length of the power transmitting coil 44 in the front-rear direction of the vehicle. However, the length of the first magnetic member 51 in the front-rear direction of the vehicle 5 may be different from the length of the power transmitting coil 44 in the front-rear direction of the vehicle, as long as it is more than half and less than twice the length of the power transmitting coil 44 in the front-rear direction of the vehicle. Alternatively, the length of the first magnetic member 51 in the front-rear direction of the vehicle 5 may be less than the length of the power receiving coil 22 in the front-rear direction of the vehicle.

また、本実施形態では、車両5の幅方向における第1磁性部材51の中心は、受電コイル22の軸線X上に位置する。車両5の幅方向における第1磁性部材51の長さは、車両5の幅方向における受電コイル22の長さ(車両5の幅方向における受電コイル22の外形上の長さ)以下である。したがって、第1磁性部材51は、受電コイル22の外形を越えて車両5の幅方向に延びてはいない。また、本実施形態では、車両5の幅方向における第1磁性部材51の長さは、車両5の幅方向における受電コイル22の内側形状での長さ以上である。したがって、受電コイル22の軸線X方向に見たときに、第1磁性部材51は受電コイル22の内側の空間全体と重なるように配置される。なお、車両5の幅方向における第1磁性部材51の長さは、車両5の幅方向における受電コイル22の内側形状での長さ未満であってもよい。この場合には、受電コイル22の軸線X方向に見たときに、第1磁性部材51は受電コイル22の内側の空間と部分的に重なるように配置される。或いは、車両5の幅方向における第1磁性部材51の長さは、車両の幅方向における受電コイル22の長さ以上であってもよい。 In addition, in this embodiment, the center of the first magnetic member 51 in the width direction of the vehicle 5 is located on the axis X of the power receiving coil 22. The length of the first magnetic member 51 in the width direction of the vehicle 5 is less than the length of the power receiving coil 22 in the width direction of the vehicle 5 (the length of the power receiving coil 22 on the outer shape in the width direction of the vehicle 5). Therefore, the first magnetic member 51 does not extend in the width direction of the vehicle 5 beyond the outer shape of the power receiving coil 22. In addition, in this embodiment, the length of the first magnetic member 51 in the width direction of the vehicle 5 is greater than or equal to the length of the inner shape of the power receiving coil 22 in the width direction of the vehicle 5. Therefore, when viewed in the axis X direction of the power receiving coil 22, the first magnetic member 51 is arranged so as to overlap the entire inner space of the power receiving coil 22. Note that the length of the first magnetic member 51 in the width direction of the vehicle 5 may be less than the length of the inner shape of the power receiving coil 22 in the width direction of the vehicle 5. In this case, when viewed in the axial direction X of the power receiving coil 22, the first magnetic member 51 is arranged so as to partially overlap with the space inside the power receiving coil 22. Alternatively, the length of the first magnetic member 51 in the width direction of the vehicle 5 may be equal to or greater than the length of the power receiving coil 22 in the width direction of the vehicle.

また、図2~図4に示されるように、受電側コイルユニット26の上方(すなわち、受電側コイルユニット26に対して地面側とは反対側)には、非導電性及び磁性を有する第2磁性部材52が配置される。第2磁性部材52は、第1磁性部材51と同一の材料によって形成されてもよい。具体的には、第2磁性部材52も、例えば、フェライトによって形成される。 As shown in Figs. 2 to 4, a second magnetic member 52 that is non-conductive and magnetic is disposed above the power receiving coil unit 26 (i.e., on the side opposite the ground side of the power receiving coil unit 26). The second magnetic member 52 may be made of the same material as the first magnetic member 51. Specifically, the second magnetic member 52 is also made of, for example, ferrite.

第2磁性部材52は、図2及び図3に示されるように、車両5の幅方向に延びる横部材53と、車両5の前後方向に延びる縦部材54と、を有する。横部材53及び縦部材54は、本実施形態では、いずれも長方形の板状の部材である。縦部材54は、横部材53の両端において横部材53に結合される。本実施形態では、縦部材54は、横部材53の下面に結合されるが、縦部材54と横部材53とは同一平面上に位置するように結合されてもよい。また、横部材53と縦部材54とは、別体として製造されてその後互いに取付られてもよいし、一体的に製造されてもよい。 2 and 3, the second magnetic member 52 has a horizontal member 53 extending in the width direction of the vehicle 5 and a vertical member 54 extending in the front-rear direction of the vehicle 5. In this embodiment, the horizontal member 53 and the vertical member 54 are both rectangular plate-shaped members. The vertical member 54 is connected to the horizontal member 53 at both ends of the horizontal member 53. In this embodiment, the vertical member 54 is connected to the lower surface of the horizontal member 53, but the vertical member 54 and the horizontal member 53 may be connected so as to be located on the same plane. In addition, the horizontal member 53 and the vertical member 54 may be manufactured separately and then attached to each other, or may be manufactured as a single unit.

本実施形態では、横部材53は、受電コイル22の軸線X方向に見たときに(すなわち、図3の平面図において)、車両5の幅方向に受電側コイルユニット26の外形を越えて延びる。したがって、横部材53は、受電コイル22の軸線X方向に見たときに、受電コイル22の外形を越えて車両5の幅方向に延びる。よって、横部材53は、受電側コイルユニット26又は受電コイル22の左端を越えて左方に延びると共に、受電側コイルユニット26又は受電コイル22の右端を越えて右方に延びる。 In this embodiment, the cross member 53 extends beyond the outer shape of the power receiving coil unit 26 in the width direction of the vehicle 5 when viewed in the axial direction X of the power receiving coil 22 (i.e., in the plan view of FIG. 3). Therefore, the cross member 53 extends beyond the outer shape of the power receiving coil 22 in the width direction of the vehicle 5 when viewed in the axial direction X of the power receiving coil 22. Therefore, the cross member 53 extends leftward beyond the left end of the power receiving coil unit 26 or the power receiving coil 22, and extends rightward beyond the right end of the power receiving coil unit 26 or the power receiving coil 22.

また、本実施形態では、車両5の幅方向における横部材53の中心は、受電コイル22の軸線X上に位置する。また、車両5の幅方向における横部材53の長さは、車両幅方向における送電コイル44の長さ以上である。この結果、横部材53の両端にそれぞれ配置された縦部材54は、受電コイル22の軸線Xが送電コイル44の軸線と一致しているときには、受電コイル22の軸線X方向に見たときに、送電コイル44の外側に位置する。したがって、縦部材54間の間隔は、車両幅方向における送電コイル44の長さ以上である。なお、車両5の幅方向における横部材53の長さは、車両幅方向における送電コイル44の長さ未満であってもよい。この場合、縦部材54間の間隔は、車両幅方向における送電コイル44の長さ未満である。 In addition, in this embodiment, the center of the horizontal member 53 in the width direction of the vehicle 5 is located on the axis X of the power receiving coil 22. Furthermore, the length of the horizontal member 53 in the width direction of the vehicle 5 is equal to or greater than the length of the power transmitting coil 44 in the vehicle width direction. As a result, the vertical members 54 arranged at both ends of the horizontal member 53 are located outside the power transmitting coil 44 when viewed in the direction of the axis X of the power receiving coil 22 when the axis X of the power receiving coil 22 coincides with the axis of the power transmitting coil 44. Therefore, the distance between the vertical members 54 is equal to or greater than the length of the power transmitting coil 44 in the vehicle width direction. Note that the length of the horizontal member 53 in the width direction of the vehicle 5 may be less than the length of the power transmitting coil 44 in the vehicle width direction. In this case, the distance between the vertical members 54 is less than the length of the power transmitting coil 44 in the vehicle width direction.

また、本実施形態では、車両5の前後方向における横部材53の中心は、受電コイル22の軸線X上に位置する。加えて、本実施形態では、車両5の前後方向における横部材53の長さは、車両5の前後方向における受電コイル22の長さ(車両5の前後方向における受電コイル22の外形上の長さ)以下である。したがって、横部材53は、受電コイル22の外形を越えて車両5の前後方向に延びてはいない。また、本実施形態では、車両5の前後方向における横部材53の長さは、車両5の前後方向における受電コイル22の内側形状での長さ以上である。したがって、受電コイル22の軸線X方向に見たときに、横部材53は受電コイル22の内側の空間全体と重なるように配置される。なお、車両5の前後方向における横部材53の長さは、車両5の幅方向における受電コイル22の内側形状での長さ未満であってもよい。この場合には、受電コイル22の軸線X方向に見たときに、横部材53は受電コイル22の内側の空間と部分的に重なるように配置される。或いは、車両5の前後方向における横部材53の長さは、車両の前後方向における受電コイル22の長さ以上であってもよい。 In addition, in this embodiment, the center of the horizontal member 53 in the longitudinal direction of the vehicle 5 is located on the axis X of the power receiving coil 22. In addition, in this embodiment, the length of the horizontal member 53 in the longitudinal direction of the vehicle 5 is less than the length of the power receiving coil 22 in the longitudinal direction of the vehicle 5 (the length of the power receiving coil 22 on the outer shape in the longitudinal direction of the vehicle 5). Therefore, the horizontal member 53 does not extend in the longitudinal direction of the vehicle 5 beyond the outer shape of the power receiving coil 22. In addition, in this embodiment, the length of the horizontal member 53 in the longitudinal direction of the vehicle 5 is greater than or equal to the length of the inner shape of the power receiving coil 22 in the longitudinal direction of the vehicle 5. Therefore, when viewed in the axial direction X of the power receiving coil 22, the horizontal member 53 is arranged so as to overlap the entire inner space of the power receiving coil 22. Note that the length of the horizontal member 53 in the longitudinal direction of the vehicle 5 may be less than the length of the inner shape of the power receiving coil 22 in the width direction of the vehicle 5. In this case, when viewed in the direction of the axis X of the power receiving coil 22, the horizontal member 53 is arranged so as to partially overlap the space inside the power receiving coil 22. Alternatively, the length of the horizontal member 53 in the front-rear direction of the vehicle 5 may be equal to or greater than the length of the power receiving coil 22 in the front-rear direction of the vehicle.

縦部材54は、その前後方向における中心が、横部材53の前後方向における中心上に位置するように配置される。縦部材54は、それぞれ横部材53に比べて車両5の前後方向に突出するように延びる。特に、本実施形態では、車両5の前後方向における縦部材54の長さは、車両前後方向における送電コイル44の長さとほぼ等しい。しかしながら、車両5の前後方向における縦部材54の長さは、車両5の前後方向における横部材53の長さ以上であって車両前後方向における送電コイル44の長さの2倍以下であれば、車両前後方向における送電コイル44の長さとは異なる長さであってもよい。 The vertical members 54 are arranged so that their centers in the fore-aft direction are located on the centers of the horizontal members 53 in the fore-aft direction. The vertical members 54 each extend so as to protrude in the fore-aft direction of the vehicle 5 compared to the horizontal members 53. In particular, in this embodiment, the length of the vertical members 54 in the fore-aft direction of the vehicle 5 is approximately equal to the length of the power transmission coil 44 in the fore-aft direction of the vehicle. However, the length of the vertical members 54 in the fore-aft direction of the vehicle 5 may be different from the length of the power transmission coil 44 in the fore-aft direction of the vehicle, so long as it is equal to or greater than the length of the horizontal members 53 in the fore-aft direction of the vehicle 5 and equal to or less than twice the length of the power transmission coil 44 in the fore-aft direction of the vehicle.

また、本実施形態では、車両5の幅方向における縦部材54の長さは、車両5の前後方向における横部材53の長さに等しい。これにより、製造時において、横部材53と縦部材54とを、同一の板状部材から形成することができる。なお、車両5の幅方向における縦部材54の長さは、車両5の前後方向における横部材53の長さと異なっていてもよい。 In addition, in this embodiment, the length of the vertical member 54 in the width direction of the vehicle 5 is equal to the length of the horizontal member 53 in the front-rear direction of the vehicle 5. This allows the horizontal member 53 and the vertical member 54 to be formed from the same plate-shaped member during manufacturing. Note that the length of the vertical member 54 in the width direction of the vehicle 5 may be different from the length of the horizontal member 53 in the front-rear direction of the vehicle 5.

本実施形態では、受電コイル22の外側であって、受電コイル22の軸線X方向において第1磁性部材51と第2磁性部材52との間の所定の位置には、何も部材が配置されない。したがって、斯かる所定の位置には、非磁性体である空気55が配置されることなる。 In this embodiment, no member is disposed at a predetermined position outside the power receiving coil 22 between the first magnetic member 51 and the second magnetic member 52 in the axial direction X of the power receiving coil 22. Therefore, air 55, which is a non-magnetic material, is disposed at this predetermined position.

具体的には、本実施形態では、図4に示されるように、第1磁性部材51の上方であって、受電コイル22に隣接して、非磁性体である空気55が配置される。したがって、非磁性体である空気55は、受電コイル22の軸線X方向に見たときに、部分的に第1磁性部材51と重なるように配置される。 Specifically, in this embodiment, as shown in FIG. 4, air 55, which is a non-magnetic material, is disposed above the first magnetic member 51 and adjacent to the power receiving coil 22. Therefore, the non-magnetic air 55 is disposed so as to partially overlap the first magnetic member 51 when viewed in the axial direction X of the power receiving coil 22.

なお、本実施形態では、非磁性体である空気55は、受電コイル22の軸線X方向に見たときに部分的に第1磁性部材51と重なるように配置されているが、第1磁性部材51と全体的に重なるように配置されてもよい。 In this embodiment, the non-magnetic air 55 is arranged so that it partially overlaps with the first magnetic member 51 when viewed in the axial direction X of the power receiving coil 22, but it may be arranged so that it entirely overlaps with the first magnetic member 51.

また、本実施形態では、第2磁性部材52の下方には、非磁性体である空気は配置されていないが、第2磁性部材52の下方にも配置されてもよい。この場合にも、非磁性体である空気は、受電コイル22に隣接して配置されてもよい。また、非磁性体である空気は、受電コイル22の軸線X方向に見たときに、第2磁性部材52の一部(例えば、横部材53のみ)と重なるように配置されてもよいし、第2磁性部材52の全体と重なるように配置されてもよい。 In addition, in this embodiment, the non-magnetic air is not disposed below the second magnetic member 52, but it may be disposed below the second magnetic member 52. In this case, the non-magnetic air may be disposed adjacent to the receiving coil 22. The non-magnetic air may be disposed so as to overlap a portion of the second magnetic member 52 (for example, only the horizontal member 53) or the entire second magnetic member 52 when viewed in the axial direction X of the receiving coil 22.

本実施形態では、第1磁性部材51及び第2磁性部材52が上述したように構成されることにより、第1磁性部材51と第2磁性部材52(特に、横部材53)とは、受電コイル22の軸線X方向に見たときに、受電コイル22の内側で重なるように配置される。また、本実施形態では、第1磁性部材51と第2磁性部材52は、受電コイル22の軸線X方向に見たときに、受電コイル22の外側では重ならないよう配置される。 In this embodiment, by configuring the first magnetic member 51 and the second magnetic member 52 as described above, the first magnetic member 51 and the second magnetic member 52 (particularly the cross member 53) are arranged so as to overlap on the inside of the power receiving coil 22 when viewed in the axial X direction of the power receiving coil 22. Also, in this embodiment, the first magnetic member 51 and the second magnetic member 52 are arranged so as not to overlap on the outside of the power receiving coil 22 when viewed in the axial X direction of the power receiving coil 22.

<効果・変形例>
図5を参照して、本実施形態に係る非接触給電システム100、特に受電装置14における効果について説明する。図5は、送電コイル44によって生じる磁束の主な流れを概略的に示す、図2と同様な斜視図である。図中の矢印は、磁束の向きを表している。なお、送電コイル44によって交番磁界が生成されることから、磁束の向きは、図5に示された向き(矢印の向き)と、図5に示された向きとは反対向きとが交互に繰り返し変更されることになる。
<Effects and Modifications>
The effects of the contactless power supply system 100 according to this embodiment, particularly the power receiving device 14, will be described with reference to Fig. 5. Fig. 5 is a perspective view similar to Fig. 2, which shows a schematic view of the main flow of magnetic flux generated by the power transmitting coil 44. The arrows in the figure indicate the direction of the magnetic flux. Note that, since an alternating magnetic field is generated by the power transmitting coil 44, the direction of the magnetic flux is repeatedly changed alternately between the direction shown in Fig. 5 (the direction of the arrow) and the direction opposite to the direction shown in Fig. 5.

図5に示されるように、本実施形態に係る受電装置14では、第1磁性部材51と第2磁性部材52とが、受電コイルの軸線X方向に見たときに、受電コイル22の内側で重なるように配置される。このため、第1磁性部材51と第2磁性部材52とが重なっている領域において両磁性部材間の距離が短く、よって両磁性部材間で磁束が通り易いことから、磁束が受電コイル22の内側を通りやすくなる。この結果、受電コイル22の内側を通る磁束の割合を高めることができる。特に、本実施形態では、車両5の幅方向における第1磁性部材51の長さは、車両5の幅方向における受電コイル22の長さ以下である。加えて、車両5の前後方向における横部材53の長さは、車両5の前後方向における受電コイル22の長さ以下である。よって、本実施形態では、第1磁性部材51と第2磁性部材52とは、受電コイル22の軸線X方向に見たときに、受電コイル22の外側では重ならないように配置されている。したがって、本実施形態では、受電コイル22の外側に比べて、受電コイル22の内側を磁束がより通りやすくなり、受電コイル22の内側を通る磁束の割合を高めることができる。 5, in the power receiving device 14 according to the present embodiment, the first magnetic member 51 and the second magnetic member 52 are arranged so as to overlap on the inside of the power receiving coil 22 when viewed in the axial direction X of the power receiving coil. Therefore, the distance between the first magnetic member 51 and the second magnetic member 52 is short in the area where the first magnetic member 51 and the second magnetic member 52 overlap, and therefore the magnetic flux easily passes between the two magnetic members, so that the magnetic flux easily passes inside the power receiving coil 22. As a result, the proportion of the magnetic flux passing inside the power receiving coil 22 can be increased. In particular, in the present embodiment, the length of the first magnetic member 51 in the width direction of the vehicle 5 is equal to or less than the length of the power receiving coil 22 in the width direction of the vehicle 5. In addition, the length of the horizontal member 53 in the front-rear direction of the vehicle 5 is equal to or less than the length of the power receiving coil 22 in the front-rear direction of the vehicle 5. Therefore, in the present embodiment, the first magnetic member 51 and the second magnetic member 52 are arranged so as not to overlap on the outside of the power receiving coil 22 when viewed in the axial direction X of the power receiving coil 22. Therefore, in this embodiment, magnetic flux passes more easily inside the power receiving coil 22 than outside the power receiving coil 22, and the proportion of magnetic flux passing through the inside of the power receiving coil 22 can be increased.

また、本実施形態に係る受電装置14では、車両5の前後方向において、第1磁性部材51が受電コイル22を越えて延びる。したがって、図5に矢印で示されるように、受電コイル22の内側よも車両5の前方又は後方において送電コイル44を通る磁束が、第1磁性部材51において受電コイル22の内側に向かうことになる。この結果、受電コイル22の内側を磁束がより通りやすくなる。特に、受電コイル22の軸線Xが送電コイル44の軸線から車両5の前後方向に多少ずれても受電コイル22の内側を磁束が通りやすくなり、よって車両5の走行中に給電が行われても効率的に給電を行うことができる。 In addition, in the power receiving device 14 according to this embodiment, the first magnetic member 51 extends beyond the power receiving coil 22 in the fore-and-aft direction of the vehicle 5. Therefore, as shown by the arrows in FIG. 5, the magnetic flux passing through the power transmitting coil 44 at the front or rear of the vehicle 5 from the inside of the power receiving coil 22 is directed toward the inside of the power receiving coil 22 at the first magnetic member 51. As a result, the magnetic flux can pass more easily inside the power receiving coil 22. In particular, even if the axis X of the power receiving coil 22 is slightly deviated from the axis of the power transmitting coil 44 in the fore-and-aft direction of the vehicle 5, the magnetic flux can pass more easily inside the power receiving coil 22, and therefore power can be efficiently supplied even when power is supplied while the vehicle 5 is traveling.

さらに、本実施形態に係る受電装置14では、第2磁性部材52が、横部材53の両端にそれぞれ結合された縦部材54を有し、各縦部材54が、横部材53に比べて車両5の前後方向に突出する。したがって、図5に矢印で示されるように、受電コイル22の内側よりも車両5の前方又は後方において、送電コイル44の外側を通る磁束が、縦部材54の中央に、そして横部材53を介して受電コイル22の内側に向かうことになる。この結果、受電コイル22の内側を磁束がより通り易くなる。特に、受電コイル22の軸線Xが送電コイル44の軸線から車両5の前後方向に多少ずれても受電コイル22の内側を磁束が通りやすくなり、よって車両5の走行中に給電が行われても効率的に給電を行うことができる。加えて、本実施形態では、縦部材54間の間隔が、車両幅方向における送電コイル44の長さ以上であるため、送電コイル44の外側通る磁束が縦部材54を通り易い。このことによっても、受電コイル22の内側を磁束が通り易くなる。 Furthermore, in the power receiving device 14 according to this embodiment, the second magnetic member 52 has vertical members 54 connected to both ends of the horizontal member 53, and each vertical member 54 protrudes in the front-rear direction of the vehicle 5 compared to the horizontal member 53. Therefore, as shown by the arrow in FIG. 5, the magnetic flux passing through the outside of the power transmission coil 44 at the front or rear of the vehicle 5 rather than the inside of the power receiving coil 22 will be directed to the center of the vertical member 54 and to the inside of the power receiving coil 22 via the horizontal member 53. As a result, the magnetic flux can pass more easily inside the power receiving coil 22. In particular, even if the axis X of the power receiving coil 22 is slightly shifted from the axis of the power transmission coil 44 in the front-rear direction of the vehicle 5, the magnetic flux can pass more easily inside the power receiving coil 22, and therefore, even if power is supplied while the vehicle 5 is running, power can be supplied efficiently. In addition, in this embodiment, the interval between the vertical members 54 is equal to or greater than the length of the power transmission coil 44 in the vehicle width direction, so that the magnetic flux passing through the outside of the power transmission coil 44 can easily pass through the vertical member 54. This also makes it easier for magnetic flux to pass through the inside of the power receiving coil 22.

また、本実施形態では、受電コイル22は、その外形が送電コイル44の外形よりも小さくなるように形成されている。加えて、送電コイル44は、その車両前後方向における長さが、その車両幅方向における長さよりも長くなるように形成されている。このため、第1磁性部材51や第2磁性部材52が設けられていない場合には、送電コイル44において生成された磁束のごく一部のみしか受電コイル22の内側を通っていなかった。これに対して、本実施形態によれば、第1磁性部材51や第2磁性部材52が設けられることにより、本来、受電コイル22の外側を通ることになっていた磁束の少なくとも一部が受電コイル22の内側を通ることになる。したがって、受電コイル22や送電コイル44がこのように構成されていることにより、第1磁性部材51や第2磁性部材52を設けることで、より効果的に磁束が受電コイル22の内側を通るようになる。 In addition, in this embodiment, the power receiving coil 22 is formed so that its outer shape is smaller than that of the power transmitting coil 44. In addition, the power transmitting coil 44 is formed so that its length in the vehicle front-rear direction is longer than its length in the vehicle width direction. For this reason, if the first magnetic member 51 and the second magnetic member 52 were not provided, only a small part of the magnetic flux generated in the power transmitting coil 44 passed inside the power receiving coil 22. In contrast, according to this embodiment, by providing the first magnetic member 51 and the second magnetic member 52, at least a part of the magnetic flux that would originally pass outside the power receiving coil 22 passes inside the power receiving coil 22. Therefore, by configuring the power receiving coil 22 and the power transmitting coil 44 in this way, by providing the first magnetic member 51 and the second magnetic member 52, the magnetic flux passes more effectively inside the power receiving coil 22.

また、本実施形態では、受電コイル22の外側であって受電コイル22の軸線X方向において第1磁性部材51と第2磁性部材52との間に、非磁性体である空気が配置される。これにより、第1磁性部材51と第2磁性部材52との間の磁束が受電コイル22外側を通ることが抑制され、よって受電コイル22の内側を磁束が通り易くなる。特に、本実施形態では、非磁性体である空気は、受電コイル22の軸線X方向に見たときに、少なくとも部分的に第1磁性部材51と第2磁性部材52との少なくともいずれか一方と重なるように配置される。加えて、非磁性体である空気は、受電コイル22に隣接して配置される。これにより、第1磁性部材51と第2磁性部材52との間の磁束が受電コイル22の外側において通り易い領域が非磁性体で遮断されることになり、この結果、受電コイル22の内側を磁束が通り易くなる。 In addition, in this embodiment, air, which is a non-magnetic material, is arranged between the first magnetic member 51 and the second magnetic member 52 outside the power receiving coil 22 in the axial direction of the power receiving coil 22. This prevents the magnetic flux between the first magnetic member 51 and the second magnetic member 52 from passing outside the power receiving coil 22, and therefore the magnetic flux can easily pass inside the power receiving coil 22. In particular, in this embodiment, the air, which is a non-magnetic material, is arranged so as to at least partially overlap with at least one of the first magnetic member 51 and the second magnetic member 52 when viewed in the axial direction of the power receiving coil 22. In addition, the air, which is a non-magnetic material, is arranged adjacent to the power receiving coil 22. As a result, the area where the magnetic flux between the first magnetic member 51 and the second magnetic member 52 easily passes outside the power receiving coil 22 is blocked by the non-magnetic material, and as a result, the magnetic flux can easily pass inside the power receiving coil 22.

なお、上記実施形態では、第2磁性部材52は、横部材53に加えて縦部材54を有している。しかしながら、第2磁性部材52は、縦部材54を有さずに横部材53のみを有してもよい。 In the above embodiment, the second magnetic member 52 has a vertical member 54 in addition to the horizontal member 53. However, the second magnetic member 52 may have only the horizontal member 53 without the vertical member 54.

また、上記実施形態では、第1磁性部材51は、受電コイル22の外形を越えて車両5の前後方向に延びている。しかしながら、第1磁性部材51は、受電コイル22の外形を越えずに、すなわち軸線X方向に見たときに受電コイル22内で車両5の前後方向に延びていてもよい。 In addition, in the above embodiment, the first magnetic member 51 extends beyond the outer shape of the power receiving coil 22 in the fore-and-aft direction of the vehicle 5. However, the first magnetic member 51 may extend in the fore-and-aft direction of the vehicle 5 without exceeding the outer shape of the power receiving coil 22, i.e., within the power receiving coil 22 when viewed in the direction of the axis X.

第2実施形態
次に、図6及び図7を参照して、第2実施形態に係る非接触給電システム100について説明する。第2実施形態に係る非接触給電システム100の構成は基本的に第1実施形態に係る非接触給電システム100の構成と同様である。以下では、主に、第1実施形態に係る非接触給電システム100の構成とは異なる部分について説明する。
Second embodiment Next, a contactless power supply system 100 according to a second embodiment will be described with reference to Fig. 6 and Fig. 7. The configuration of the contactless power supply system 100 according to the second embodiment is basically the same as the configuration of the contactless power supply system 100 according to the first embodiment. The following mainly describes the parts that are different from the configuration of the contactless power supply system 100 according to the first embodiment.

図6は、送電コイル44及び受電コイル22の周りの構成を概略的に示す、図2と同様な斜視図である。図7は、受電コイル22の周りの構成を概略的に示す、図3と同様な平面図である。 Figure 6 is a perspective view similar to Figure 2, but showing the configuration around the power transmission coil 44 and the power receiving coil 22. Figure 7 is a plan view similar to Figure 3, but showing the configuration around the power receiving coil 22.

図6及び図7に示されるように、第2実施形態に係る非接触給電システム100の受電装置14では、第1実施形態と同様に、受電側コイルユニット26の上方に非導電性及び磁性を有する第2磁性部材52が設けられる。一方で、第2実施形態に係る受電装置14では、受電側コイルユニット26の下方には第1磁性部材51は設けられない。 As shown in Figs. 6 and 7, in the power receiving device 14 of the contactless power supply system 100 according to the second embodiment, a second magnetic member 52 that is non-conductive and magnetic is provided above the power receiving coil unit 26, as in the first embodiment. On the other hand, in the power receiving device 14 according to the second embodiment, a first magnetic member 51 is not provided below the power receiving coil unit 26.

第2磁性部材52は、第1実施形態と同様に構成される。したがって、本実施形態では、第2磁性部材52は、受電コイル22の軸線X方向に見たときに車両5の幅方向に受電コイル22を越えて延びる横部材53と、横部材53の両隊にそれぞれ結合された縦部材54と、を有する。そして、縦部材54は、それぞれ横部材53に比べて車両5の前後方向に延びるように配置される。加えて、横部材53は、受電コイル22の軸線X方向に見たときに、受電コイル22の内側と重なるように配置される。 The second magnetic member 52 is configured in the same manner as in the first embodiment. Therefore, in this embodiment, the second magnetic member 52 has a horizontal member 53 that extends beyond the power receiving coil 22 in the width direction of the vehicle 5 when viewed in the axial direction X of the power receiving coil 22, and vertical members 54 that are respectively connected to both ends of the horizontal member 53. The vertical members 54 are arranged to extend further in the fore-and-aft direction of the vehicle 5 than the horizontal members 53. In addition, the horizontal members 53 are arranged to overlap the inside of the power receiving coil 22 when viewed in the axial direction X of the power receiving coil 22.

本実施形態によれば、第1実施形態とは異なり、第1磁性部材51が設けられていない。しかしながら、第2磁性部材52が設けられているため、図5に示された例と同様に、第2磁性部材52を磁束が通ることになる。この結果、第2磁性部材52を設けなかった場合に比べて、受電コイル22の内側を磁束が通り易くなる。 In this embodiment, unlike the first embodiment, the first magnetic member 51 is not provided. However, since the second magnetic member 52 is provided, magnetic flux passes through the second magnetic member 52, as in the example shown in FIG. 5. As a result, magnetic flux passes more easily inside the power receiving coil 22 than when the second magnetic member 52 is not provided.

第3実施形態
次に、図8及び図9を参照して、第3実施形態に係る非接触給電システム100について説明する。第3実施形態に係る非接触給電システム100の構成は基本的に第1実施形態に係る非接触給電システム100の構成と同様である。以下では、主に、第1実施形態に係る非接触給電システム100の構成とは異なる部分について説明する。
Third embodiment Next, a contactless power supply system 100 according to a third embodiment will be described with reference to Fig. 8 and Fig. 9. The configuration of the contactless power supply system 100 according to the third embodiment is basically the same as the configuration of the contactless power supply system 100 according to the first embodiment. The following mainly describes the parts that are different from the configuration of the contactless power supply system 100 according to the first embodiment.

図8は、送電コイル44及び受電コイル22の周りの構成を概略的に示す、図2と同様な斜視図である。図9は、受電コイル22の周りの構成を概略的に示す、図4と同様な断面図である。 Figure 8 is a perspective view similar to Figure 2, but showing the configuration around the power transmission coil 44 and the power receiving coil 22. Figure 9 is a cross-sectional view similar to Figure 4, but showing the configuration around the power receiving coil 22.

図8及び図9に示されるよう、本実施形態では、受電コイル22の外側であって、受電コイル22の軸線X方向において第1磁性部材51と第2磁性部材52との間の所定の位置には、シールド部材56が設けられる。シールド部材56は、透磁率が低い材料で形成され、よって非磁性体である。具体的には、シールド部材56は、例えば、アルミニウムにより形成される。 As shown in Figs. 8 and 9, in this embodiment, a shield member 56 is provided outside the power receiving coil 22 at a predetermined position between the first magnetic member 51 and the second magnetic member 52 in the axial direction X of the power receiving coil 22. The shield member 56 is made of a material with low magnetic permeability and is therefore a non-magnetic body. Specifically, the shield member 56 is made of aluminum, for example.

本実施形態では、図8及び図9に示されるように、第1磁性部材51の上方であって、受電側コイルユニット26に隣接して(したがって、受電コイル22に隣接して)、シールド部材56が配置される。したがって、シールド部材56は、受電コイル22の軸線X方向に見たときに、部分的に第1磁性部材51と重なるように配置される。 In this embodiment, as shown in Figs. 8 and 9, the shield member 56 is disposed above the first magnetic member 51 and adjacent to the power receiving coil unit 26 (and therefore adjacent to the power receiving coil 22). Therefore, the shield member 56 is disposed so as to partially overlap the first magnetic member 51 when viewed in the axial direction X of the power receiving coil 22.

本実施形態によれば、シールド部材56が配置されることによって、第1磁性部材51と第2磁性部材52との間の磁束が受電コイル22の外側を通ることが抑制され、よって受電コイル22の内側を磁束が通り易くなる。また、非磁性体として空気が用いられた場合にはその空気内に何らかの事情で磁性材料が侵入する可能性があるのに対して、非磁性体としてシールド部材56が用いられた場合にはそのような事態は生じず、よってより確実に受電コイル22の内側を磁束が通り易くなる。 According to this embodiment, the shielding member 56 is disposed to prevent the magnetic flux between the first magnetic member 51 and the second magnetic member 52 from passing outside the power receiving coil 22, and therefore the magnetic flux can easily pass inside the power receiving coil 22. In addition, when air is used as a non-magnetic material, there is a possibility that a magnetic material may enter the air for some reason, whereas when the shielding member 56 is used as a non-magnetic material, such a situation does not occur, and therefore the magnetic flux can more reliably pass inside the power receiving coil 22.

なお、シールド部材56は、受電コイル22の軸線X方向に見たときに第1磁性部材51と全体的に重なるように配置されてもよい。また、シールド部材56は、第1磁性部材51の上方に加えて又は第1磁性部材51の上方に代えて、第2磁性部材52の下方にも配置されてもよい。この場合にも、シールド部材56は、受電側コイルユニット26に隣接して(したがって、受電コイル22に隣接して)配置されてもよい。また、シールド部材56は、受電コイル22の軸線X方向に見たときに、第2磁性部材52の一部(例えば、横部材53のみ)と重なるように配置されてもよいし、第2磁性部材52の全体と重なるように配置されてもよい。 The shielding member 56 may be arranged so as to overlap the entire first magnetic member 51 when viewed in the axial direction X of the power receiving coil 22. The shielding member 56 may also be arranged below the second magnetic member 52 in addition to or instead of above the first magnetic member 51. In this case, the shielding member 56 may also be arranged adjacent to the power receiving coil unit 26 (and therefore adjacent to the power receiving coil 22). The shielding member 56 may also be arranged so as to overlap a part of the second magnetic member 52 (for example, only the horizontal member 53) or the entire second magnetic member 52 when viewed in the axial direction X of the power receiving coil 22.

第4実施形態
次に、図10を参照して、第4実施形態に係る非接触給電システム100について説明する。第4実施形態に係る非接触給電システム100の構成は基本的に第3実施形態に係る非接触給電システム100の構成と同様である。以下では、主に、第3実施形態に係る非接触給電システム100の構成とは異なる部分について説明する。
Fourth embodiment Next, a contactless power supply system 100 according to a fourth embodiment will be described with reference to Fig. 10. The configuration of the contactless power supply system 100 according to the fourth embodiment is basically the same as the configuration of the contactless power supply system 100 according to the third embodiment. The following mainly describes the parts that are different from the configuration of the contactless power supply system 100 according to the third embodiment.

図10は、受電コイル22の周りの構成を概略的に示す、図4及び図9と同様な断面図である。図10に示されるように、本実施形態では、第3実施形態におけるシールド部材56の代わりに、可動シールド部材57が用いられる。可動シールド部材57は、透磁率が低い材料で形成され、よって非磁性体である。具体的には、可動シールド部材57は、例えば、アルミニウムにより形成される。 Figure 10 is a cross-sectional view similar to Figures 4 and 9, which shows a schematic configuration around the power receiving coil 22. As shown in Figure 10, in this embodiment, a movable shield member 57 is used instead of the shield member 56 in the third embodiment. The movable shield member 57 is made of a material with low magnetic permeability and is therefore non-magnetic. Specifically, the movable shield member 57 is made of, for example, aluminum.

図10に示されるように、可動シールド部材57は、第1磁性部材51の上方に配置される。また、可動シールド部材57は、その内側の端部が、受電側コイルユニット26に隣接して(したがって、受電コイル22に隣接して)配置される。加えて、可動シールド部材57は、その外側の端部の位置が、図10に矢印で示されるように、車両5の幅方向に変化する。可動シールド部材57の外側の端部の位置が変化することによって、受電コイル22の軸線X方向に見たときに、可動シールド部材57が第1磁性部材51と重なる面積が変化する。具体的には、例えば、可動シールド部材57は蛇腹状に形成されていてもよいし、受電コイル22側で巻き取り可能に形成されてもよい。 10, the movable shield member 57 is disposed above the first magnetic member 51. The movable shield member 57 has an inner end disposed adjacent to the power receiving coil unit 26 (and therefore adjacent to the power receiving coil 22). In addition, the position of the outer end of the movable shield member 57 changes in the width direction of the vehicle 5, as shown by the arrow in FIG. 10. By changing the position of the outer end of the movable shield member 57, the area of overlap of the movable shield member 57 with the first magnetic member 51 changes when viewed in the axial direction X of the power receiving coil 22. Specifically, for example, the movable shield member 57 may be formed in a bellows shape, or may be formed so as to be retractable on the power receiving coil 22 side.

ここで、本発明者らの実験により、受電コイル22の軸線X方向に見たときに可動シールド部材57が第1磁性部材51と重なる面積が変化すると、受電コイル22のインダクタンスが変化することが判明した。具体的には、可動シールド部材57が第1磁性部材51と重なる面積が大きくなると、受電コイル22のインダクタンスが大きくなる。このように受電コイル22のインダクタンスが変化することにより、受電コイル22を含む受電側共振回路21における共振周波数が変化する。したがって、本実施形態によれば、受電装置14の製造時や、受電装置14に経年劣化が生じたときなど、受電側共振回路21の共振周波数が送電側共振回路43の共振周波数(例えば、85kHz)からズレているときに、可動シールド部材57の外側の端部の位置を調整することによって受電側共振回路21の共振周波数を送電側共振回路43の共振周波数に一致するように調整することができる。 Here, the inventors' experiments have revealed that when the area where the movable shield member 57 overlaps with the first magnetic member 51 changes when viewed in the axial direction X of the power receiving coil 22, the inductance of the power receiving coil 22 changes. Specifically, when the area where the movable shield member 57 overlaps with the first magnetic member 51 increases, the inductance of the power receiving coil 22 increases. This change in inductance of the power receiving coil 22 changes the resonant frequency of the power receiving side resonant circuit 21 including the power receiving coil 22. Therefore, according to this embodiment, when the resonant frequency of the power receiving side resonant circuit 21 deviates from the resonant frequency of the power transmitting side resonant circuit 43 (e.g., 85 kHz) during the manufacture of the power receiving device 14 or when the power receiving device 14 deteriorates over time, the resonant frequency of the power receiving side resonant circuit 21 can be adjusted to match the resonant frequency of the power transmitting side resonant circuit 43 by adjusting the position of the outer end of the movable shield member 57.

なお、可動シールド部材57は、第1磁性部材51の上方に加えて又は第1磁性部材51の上方に代えて、第2磁性部材52の下方にも配置されてもよい。この場合にも、可動シールド部材57は、受電側コイルユニット26に隣接して(したがって、受電コイル22に隣接して)配置されてもよい。 The movable shield member 57 may be disposed below the second magnetic member 52 in addition to or instead of above the first magnetic member 51. In this case, the movable shield member 57 may be disposed adjacent to the power receiving coil unit 26 (and therefore adjacent to the power receiving coil 22).

第5実施形態
次に、図11を参照して、第5実施形態に係る非接触給電システム100について説明する。第5実施形態に係る非接触給電システム100の構成は基本的に第1実施形態から第4実施形態に係る非接触給電システム100の構成と同様である。以下では、主に、第1実施形態から第4実施形態に係る非接触給電システム100の構成とは異なる部分について説明する。
Fifth embodiment Next, a contactless power supply system 100 according to a fifth embodiment will be described with reference to Fig. 11. The configuration of the contactless power supply system 100 according to the fifth embodiment is basically the same as the configurations of the contactless power supply systems 100 according to the first to fourth embodiments. The following mainly describes the parts that are different from the configurations of the contactless power supply systems 100 according to the first to fourth embodiments.

図11は、送電コイル44及び受電コイル22の周りの構成を概略的に示す、図2と同様な斜視図である。図11に示されるように、本実施形態では、地上給電装置1の送電側コイルユニット46の上方(送電側コイルユニット46に対して地面側又は車両5側)にラバーシート48が設けられる。特に、本実施形態では、送電側コイルユニット46の上面全面に亘って、ラバーシート48が設けられる。 Figure 11 is a perspective view similar to Figure 2, which shows a schematic configuration around the power transmission coil 44 and the power receiving coil 22. As shown in Figure 11, in this embodiment, a rubber sheet 48 is provided above the power transmission coil unit 46 of the ground power supply device 1 (on the ground side or vehicle 5 side relative to the power transmission coil unit 46). In particular, in this embodiment, the rubber sheet 48 is provided over the entire upper surface of the power transmission coil unit 46.

加えて、本実施形態では、ラバーシート48の上方に、したがって送電側コイルユニット46の上方に、磁束誘導部材49が設けられる。磁束誘導部材49は、非導電性及び磁性を有する材料、例えば、磁性コンクリートによって形成される。本実施形態では、車両幅方向に三つ並んで配置される。送電コイル44の軸線方向に見たときに(例えば、地面と垂直な方向に見たときに)、一つの磁束誘導部材49が送電コイル44の内側に配置されると共に、残りの磁束誘導部材49が送電コイル44の外側に配置される。また、送電コイル44の軸線方向に見たときに、送電コイル44の内側に配置された磁束誘導部材49の両側それぞれに、残りの磁束誘導部材49が一つずつ配置される。 In addition, in this embodiment, a magnetic flux induction member 49 is provided above the rubber sheet 48, and therefore above the power transmission side coil unit 46. The magnetic flux induction member 49 is made of a non-conductive and magnetic material, for example, magnetic concrete. In this embodiment, three magnetic flux induction members 49 are arranged side by side in the vehicle width direction. When viewed in the axial direction of the power transmission coil 44 (for example, when viewed in a direction perpendicular to the ground), one magnetic flux induction member 49 is arranged inside the power transmission coil 44, and the remaining magnetic flux induction members 49 are arranged outside the power transmission coil 44. Also, when viewed in the axial direction of the power transmission coil 44, the remaining magnetic flux induction members 49 are arranged one on each side of the magnetic flux induction member 49 arranged inside the power transmission coil 44.

また、各磁束誘導部材49は、車両前後方向に延びる。特に、本実施形態では、各磁束誘導部材49は、その車両前後方向の長さがその車両幅方向の長さよりも大きくなるように構成される。本実施形態では、車両前後方向における磁束誘導部材49の長さは、互いに等しく、車両前後方向における送電コイル44の内側形状での長さ以下である。ただし、車両前後方向における磁束誘導部材49の長さは互いに異なる長さであってもよく、また、車両前後方向における送電コイル44の内側形状での長さ以上であってもよい。したがって、磁束誘導部材49は、例えば、中央に配置された磁束誘導部材49のみの車両前後方向における長さが車両前後方向における送電コイル44の内側形状での長さよりも短く、残りの磁束誘導部材49の車両前後方向における長さが車両前後方向における送電コイル44の内側形状での長さよりも長くなるように形成されてもよい。 In addition, each magnetic flux induction member 49 extends in the vehicle front-rear direction. In particular, in this embodiment, each magnetic flux induction member 49 is configured so that its length in the vehicle front-rear direction is greater than its length in the vehicle width direction. In this embodiment, the lengths of the magnetic flux induction members 49 in the vehicle front-rear direction are equal to each other and are equal to or less than the length of the inner shape of the power transmission coil 44 in the vehicle front-rear direction. However, the lengths of the magnetic flux induction members 49 in the vehicle front-rear direction may be different from each other, or may be equal to or greater than the length of the inner shape of the power transmission coil 44 in the vehicle front-rear direction. Therefore, the magnetic flux induction members 49 may be formed so that, for example, the length of only the centrally located magnetic flux induction member 49 in the vehicle front-rear direction is shorter than the length of the inner shape of the power transmission coil 44 in the vehicle front-rear direction, and the length of the remaining magnetic flux induction members 49 in the vehicle front-rear direction is longer than the length of the inner shape of the power transmission coil 44 in the vehicle front-rear direction.

また、各磁束誘導部材49は、その上面が路面上に露出するように道路内に埋め込まれる。しかしながら、各磁束誘導部材49は、その上面が路面には露出しないように道路内に埋め込まれてもよい。したがって、磁束誘導部材49は、少なくとも部分的に地中に埋め込まれているといえる。 Furthermore, each magnetic flux induction member 49 is embedded in the road so that its upper surface is exposed above the road surface. However, each magnetic flux induction member 49 may also be embedded in the road so that its upper surface is not exposed above the road surface. Therefore, it can be said that each magnetic flux induction member 49 is at least partially embedded in the ground.

本実施形態によれば、磁束誘導部材49を設けることにより、送電コイル44によって生成された磁束が上方へ、よって車両5の受電コイル22へ向かうようになる。このため、送電コイル44によって生成された磁束が受電コイル22の内側を通りやすくなる。また、磁束誘導部材49を設置するにあたって送電側コイルユニット46と磁束誘導部材49との間にラバーシート48が設けられることにより、設置の際に送電側コイルユニット46が損傷することが抑制される。 According to this embodiment, by providing the magnetic flux induction member 49, the magnetic flux generated by the power transmission coil 44 is directed upward, toward the power receiving coil 22 of the vehicle 5. This makes it easier for the magnetic flux generated by the power transmission coil 44 to pass through the inside of the power receiving coil 22. In addition, by providing a rubber sheet 48 between the power transmission side coil unit 46 and the magnetic flux induction member 49 when installing the magnetic flux induction member 49, damage to the power transmission side coil unit 46 during installation is suppressed.

なお、ラバーシート48は、必ずしも送電側コイルユニット46の上面全面に亘って設けられなくてもよく、送電側コイルユニット46の上面のうちの一部の領域に設けられてもよい。したがって、ラバーシート48は、例えば、磁束誘導部材49が設けられる領域においてのみ、送電側コイルユニット46の上面上に設けられてもよい。 The rubber sheet 48 does not necessarily have to be provided over the entire upper surface of the power transmission side coil unit 46, but may be provided in a partial area of the upper surface of the power transmission side coil unit 46. Therefore, the rubber sheet 48 may be provided on the upper surface of the power transmission side coil unit 46 only in the area where the magnetic flux induction member 49 is provided, for example.

また、上記実施形態では、送電装置32には、3つの磁束誘導部材49が設けられているが、1つのみが設けられてもよい。この場合には、例えば、送電コイル44の軸線方向に見たときに、磁束誘導部材49は送電コイル44の内側に配置される。或いは、送電装置32には、3つの磁束誘導部材49が設けられてもよい。この場合には、例えば、送電コイル44の軸線方向に見たときに、2つの磁束誘導部材49は共に送電コイル44の外側に配置される。 In addition, in the above embodiment, the power transmission device 32 is provided with three magnetic flux induction members 49, but only one may be provided. In this case, for example, when viewed in the axial direction of the power transmission coil 44, the magnetic flux induction member 49 is disposed inside the power transmission coil 44. Alternatively, the power transmission device 32 may be provided with three magnetic flux induction members 49. In this case, for example, when viewed in the axial direction of the power transmission coil 44, both of the two magnetic flux induction members 49 are disposed outside the power transmission coil 44.

以上、本発明に係る好適な実施形態を説明したが、本発明はこれら実施形態に限定されるものではなく、特許請求の範囲の記載内で様々な修正及び変更を施すことができる。 The above describes preferred embodiments of the present invention, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

1 地上給電装置
5 車両
14 受電装置
21 受電側共振回路
22 受電コイル
32 送電装置
43 送電側共振回路
44 送電コイル
51 第1磁性部材
52 第2磁性部材
53 横部材
54 縦部材
REFERENCE SIGNS LIST 1 Ground power feeding device 5 Vehicle 14 Power receiving device 21 Power receiving side resonant circuit 22 Power receiving coil 32 Power transmitting device 43 Power transmitting side resonant circuit 44 Power transmitting coil 51 First magnetic member 52 Second magnetic member 53 Horizontal member 54 Vertical member

Claims (16)

車両に設けられて地上給電装置から受電する受電装置であって、
地面に対して角度をもって延びる軸線を有する受電コイルと、
前記受電コイルに対して地面側に配置された非導電性及び磁性を有する第1部材と、
前記受電コイルに対して地面側とは反対側に配置された非導電性及び磁性を有する第2部材と、を有し、
前記第2部材は、前記車両の幅方向に前記受電コイルを越えて延びる横部材を有し、
前記第1部材と前記第2部材とは、前記受電コイルの軸線方向に見たときに、前記受電コイルの内側で重なるように配置される、受電装置。
A power receiving device provided in a vehicle and receiving power from a ground power feeding device,
a receiving coil having an axis extending at an angle with respect to the ground;
a first member that is non-conductive and magnetic and is disposed on a ground side with respect to the power receiving coil;
a second member having non-conductivity and magnetism and arranged on an opposite side to the ground side with respect to the power receiving coil,
the second member has a lateral member extending beyond the power receiving coil in a width direction of the vehicle,
The power receiving device, wherein the first member and the second member are arranged so as to overlap inside the power receiving coil when viewed in the axial direction of the power receiving coil.
前記第1部材と前記第2部材とは、前記受電コイルの軸線方向に見たときに、前記受電コイルの外側で重ならないように配置される、請求項1に記載の受電装置。 The power receiving device according to claim 1, wherein the first member and the second member are arranged so as not to overlap with each other outside the power receiving coil when viewed in the axial direction of the power receiving coil. 前記第1部材は、前記車両の前後方向に前記受電コイルを越えて延びる、請求項1又は2に記載の受電装置。 The power receiving device according to claim 1 or 2, wherein the first member extends beyond the power receiving coil in the fore-and-aft direction of the vehicle. 前記車両の前後方向における前記第1部材の長さは、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の前後方向における前記送電コイルの長さの半分以上であって2倍以下である、請求項3に記載の受電装置。 The power receiving device according to claim 3, wherein the length of the first member in the fore-and-aft direction of the vehicle is at least half and not more than twice the length of the power transmission coil in the fore-and-aft direction of the vehicle that is positioned in a normal manner on the power transmission coil of the ground power supply device. 前記車両の幅方向における前記第1部材の長さは、前記車両の幅方向における前記受電コイルの長さ以下である、請求項3に記載の受電装置。 The power receiving device according to claim 3, wherein the length of the first member in the width direction of the vehicle is equal to or less than the length of the power receiving coil in the width direction of the vehicle. 前記受電コイルの外側に且つ前記受電コイルの軸線方向において前記第1部材と前記第2部材との間に、非磁性体が配置される、請求項1又は2に記載の受電装置。 The power receiving device according to claim 1 or 2, wherein a non-magnetic material is disposed outside the power receiving coil and between the first member and the second member in the axial direction of the power receiving coil. 前記非磁性体は、前記受電コイルの軸線方向に見たときに、少なくとも部分的に前記第1部材及び前記第2部材の少なくともいずれか一方と重なるように配置される、請求項6に記載の受電装置。 The power receiving device according to claim 6, wherein the non-magnetic body is arranged so as to at least partially overlap with at least one of the first member and the second member when viewed in the axial direction of the power receiving coil. 前記非磁性体は、前記受電コイルに隣接して配置される、請求項6に記載の受電装置。 The power receiving device according to claim 6, wherein the non-magnetic body is disposed adjacent to the power receiving coil. 前記第2部材は、前記横部材の両端にそれぞれ結合された縦部材を有し、
前記縦部材は、それぞれ前記横部材に比べて前記車両の前後方向に突出するように延びる、請求項1に記載の受電装置。
The second member has vertical members connected to both ends of the horizontal member,
The power receiving device according to claim 1 , wherein the vertical members each extend so as to protrude in a front-rear direction of the vehicle compared to the horizontal members.
車両に設けられて地上給電装置から受電する受電装置であって、
地面に対して角度をもって延びる軸線を有する受電コイルと、
前記受電コイルに対して地面側とは反対側に配置された非導電性及び磁性を有する磁性部材と、を有し、
前記磁性部材は、前記車両の幅方向に前記受電コイルを越えて延びる横部材と、該横部材の両端にそれぞれ結合された縦部材と、を有し、
前記縦部材は、それぞれ前記横部材に比べて前記車両の前後方向に突出するように延び、
前記横部材は、前記受電コイルの軸線方向に見たときに、前記受電コイルの内側と重なるように配置される、受電装置。
A power receiving device provided in a vehicle and receiving power from a ground power feeding device,
a receiving coil having an axis extending at an angle with respect to the ground;
a magnetic member having non-conductivity and magnetism and disposed on an opposite side to a ground side with respect to the power receiving coil,
the magnetic member has a horizontal member extending beyond the power receiving coil in a width direction of the vehicle, and vertical members coupled to both ends of the horizontal member,
The vertical members each extend so as to protrude in the front-rear direction of the vehicle relative to the horizontal members,
A power receiving device, wherein the cross member is positioned so as to overlap the inside of the power receiving coil when viewed in the axial direction of the power receiving coil.
前記車両の前後方向における前記縦部材の長さは、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の前後方向における前記送電コイルの長さの2倍以下である、請求項9又は10に記載の受電装置。 The power receiving device according to claim 9 or 10, wherein the length of the vertical member in the fore-and-aft direction of the vehicle is equal to or less than twice the length of the power transmission coil in the fore-and-aft direction of the vehicle that is positioned in a normal manner on the power transmission coil of the ground power supply device. 前記縦部材間の間隔は、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の幅方向おける前記送電コイルの長さ以上である、請求項9又は10に記載の受電装置。 The power receiving device according to claim 9 or 10, wherein the distance between the vertical members is equal to or greater than the length of the power transmission coil in the width direction of the vehicle that is positioned in a normal manner above the power transmission coil of the ground power supply device. 前記車両の前後方向における前記横部材の長さは、前記車両の前後方向における前記受電コイルの長さ以下である、請求項1又は10に記載の受電装置。 The power receiving device according to claim 1 or 10, wherein the length of the cross member in the fore-and-aft direction of the vehicle is equal to or less than the length of the power receiving coil in the fore-and-aft direction of the vehicle. 前記受電コイルは、その外形が前記地上給電装置の送電コイルの外形よりも小さい、請求項1又は10に記載の受電装置。 The power receiving device according to claim 1 or 10, wherein the outer shape of the power receiving coil is smaller than the outer shape of the power transmitting coil of the ground power supply device. 請求項1又は10に記載の受電装置と、送電コイルを有する地上給電装置と、を有する非接触給電システムであって、
前記送電コイルは、前記地上給電装置の送電コイル上に通常の態様で位置する前記車両の前後方向の長さが、前記車両の幅方向における長さよりも長くなるように形成される、非接触給電システム。
A contactless power supply system including the power receiving device according to claim 1 or 10 and a ground power supply device having a power transmission coil,
A wireless power supply system, wherein the power transmission coil is formed so that a length in a front-to-rear direction of the vehicle positioned in a normal manner on the power transmission coil of the ground power supply device is longer than a length in a width direction of the vehicle.
前記地上給電装置は、前記送電コイルよりも上方に少なくとも部分的に地中に埋め込まれた磁性を有する磁束誘導部材を更に有する、請求項15に記載の非接触給電システム。 The non-contact power supply system according to claim 15, wherein the ground power supply device further includes a magnetic flux induction member that is at least partially embedded in the ground above the power transmission coil.
JP2022195599A 2022-12-07 2022-12-07 Power reception device and non-contact power feeding system Pending JP2024081965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022195599A JP2024081965A (en) 2022-12-07 2022-12-07 Power reception device and non-contact power feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022195599A JP2024081965A (en) 2022-12-07 2022-12-07 Power reception device and non-contact power feeding system

Publications (1)

Publication Number Publication Date
JP2024081965A true JP2024081965A (en) 2024-06-19

Family

ID=91523853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022195599A Pending JP2024081965A (en) 2022-12-07 2022-12-07 Power reception device and non-contact power feeding system

Country Status (1)

Country Link
JP (1) JP2024081965A (en)

Similar Documents

Publication Publication Date Title
US10202045B2 (en) Vehicle with shielded power receiving coil
US9124126B2 (en) Coil unit, power transmission device, external power feeding apparatus, and vehicle charging system
CN103038089B (en) Coil unit, non-contact power transmitting device, noncontact power receiving apparatus, vehicle and contactless power supply system
US20140111021A1 (en) Power transmission device, power reception device and power transfer system
JP2010098807A (en) Noncontact power supply system
JP5988210B2 (en) Power transmission system
KR20150015491A (en) Vehicle
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
US20140306655A1 (en) Contactless battery charger
JP5549748B2 (en) Vehicle and external power supply device
JP5988211B2 (en) Power transmission system
JP2015056950A (en) Power reception apparatus, power transmission apparatus, and vehicle
US10332677B2 (en) Power reception device and power transmission device
US20130320774A1 (en) Resonance coil, electric power transmission device, electric power receiving device, and electronic power transmission system
JP5991054B2 (en) Non-contact power feeding device
WO2015028868A2 (en) Power reception system, power transfer system, and vehicle
JP2024081965A (en) Power reception device and non-contact power feeding system
WO2024090013A1 (en) Power transmission device
WO2024048061A1 (en) Ground power supply device and wiring
JP2014093797A (en) Power transmission system
JP2014093322A (en) Power transmission system
US20230110224A1 (en) Contactless power supply system and coil unit thereof
JP6587895B2 (en) Contactless power supply system
JP2014093321A (en) Power transmission system
JPWO2013001636A1 (en) Power transmission device, power reception device, and power transmission system