JP5467404B2 - 3d撮像システム - Google Patents

3d撮像システム Download PDF

Info

Publication number
JP5467404B2
JP5467404B2 JP2011502433A JP2011502433A JP5467404B2 JP 5467404 B2 JP5467404 B2 JP 5467404B2 JP 2011502433 A JP2011502433 A JP 2011502433A JP 2011502433 A JP2011502433 A JP 2011502433A JP 5467404 B2 JP5467404 B2 JP 5467404B2
Authority
JP
Japan
Prior art keywords
object
template
image
templates
viewpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011502433A
Other languages
English (en)
Other versions
JP2011516849A (ja
Inventor
ロナルド・ダニエル
ジェイムズ・パターソン
デイビッド・エイチ・オーティ
Original Assignee
エイコナ・リミテッドEykona Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB0805971.9 priority Critical
Priority to GB0805971.9A priority patent/GB2458927B/en
Application filed by エイコナ・リミテッドEykona Ltd filed Critical エイコナ・リミテッドEykona Ltd
Priority to PCT/GB2009/050299 priority patent/WO2009122200A1/en
Publication of JP2011516849A publication Critical patent/JP2011516849A/ja
Application granted granted Critical
Publication of JP5467404B2 publication Critical patent/JP5467404B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Description

本発明は、3次元画像を取得する装置及び方法に関する。特に、本発明は、目的物の表面の3D撮像及び計測に関する。

3D撮像は、実際の目的物の表面領域の形状(物理形状)のデジタルフォームへの取得である。場合により、目的物の物質反射特性も取得され得る。目的物の表面領域は、目的物の物理的表面のサブ領域と考えられ得る。システムは、広範な表面領域の撮像を含むように拡張できるが、このことは、システムは、単一のビューポイントから画像装置により取得可能な領域よりも大きい領域(例えば、3Dの目的物の一つ以上の側面に関する表面領域)を取得できることを意味する。システムは、形状の計量特性と同時に、目的物若しくはシーンの表面形状及び物質特性の、一部もしくは全てを捕捉できる。物質反射特性の例は、散乱表面色、物質の示す鏡面反射性の性質の計測を含み、両方とも絶対値として、及び、スペクトル成分により、示される。

R,I.Hartley and A.Zissermanによる"Multiple View Geometry in Computer Vision".Cambridge University Press,ISBN:05216230492000 J−Y Bouguet"Camera Calibration Toolbox for Matlab"http:www.vision.caltech.edu/bouguetj/calib doc/index.html R,I.Hartley及びA.Zissermanによる"Multiple View Geometry in Computer Vision",Cambridge University Press,ISBN:05216230492000 Kolmogorov及びZabihによる"Multi−Camera Scene Reconstruction via Graph Cuts In Proceedings",International Conference on Computer Vision 2003 A.S.Georghiadesによる"Recovering 3−D shape and reflectance from a small number of photographs"in Proceedings,Eurographics Workshop on Rendering,ページ230−240、2003 S.Smithによる"Digital Signal Processing:A Practical Guide for Engineers and Scientists",Butterworth−Heinemann 2002 J.C.Carr及びR.K.Beatson及びJ.B.Cherrie及びT.J.Mitchell及びW.R.Fright及びB.C.McCallum及びT.R.Evansによる"Reconstruction and Representation of 3D Objects with Radial Basis Functions"in Proceedings of ACM SIGGRAPHページ67−76,2001

3D撮像の利用例は、様々な領域で見出され得る。医療目的の人体の撮像、ビデオゲーム及びフィルムの生産でレンダするためのデータの捕捉、アーキテクチャモデルキャプチャ、CADのためのリバースエンジニアリング、及び、考古学などの、アーカイブ目的のデータチャプチャ、などである。目的物の形状の3D収集のための、様々なシステムが知られているが、通常、現存のシステムは、この点に関して以下の制約(欠点)の一つ又はそれ以上を示す。
・それらは形状のみ取得し、物質反射率について取得しない。
・それらは携帯式ではなく、従って“あるがままでの”キャプチャができない。
・それらは、説得力のあるレンダリング、即ち、詳細な分析のための、十分な解像度(ユニット領域当たりのサンプル)に達していない。
・それらは、対象の十分な領域(例えば、全体壁若しくは床、又は、単一のビューポイントから取得し得ない、人体の部分などの、自己閉塞した目的物)をキャプチャしない。
・それらは、“ステッチ”する十分な手段を与えない。ここで、“ステッチ”することとは、キャプチャされたデータの多数の小さいセクションを、自動的に単一の連続のより大きいセクションに組み合わせることである。
・システムは、自動式ロボットアーム、精密製造部品などの、複雑で及び/又は非常に高価なハードウエアを利用する。
・システムは、複雑で且つ時間の掛かる較正を要求する。
・撮像装置及び他のシステム形状の較正は、独立した手順として実施されねばならず、結果として、システム較正エラーが積み重なることがある。
・システムのキーとなる物理パラメータは、計量規格に付託されない。
・結果として計測は、度量衡標準へ辿ることができない。
・システムは、例えば、射影レーザストライプに基づく“能動的”ステレオスコープ技術
を要求するが、システムの安全性若しくは受容性に関する問題により、システムは、例えば医療的利用に適さないものになってしまう。

本システムは、上記問題の少なくとも一部を緩和することを目的とする。

本発明の一つの形態によって、目的物の3次元モデルを計算するための装置が提示される。装置は、目的物を指向的に照射するように構成された少なくとも一つの指向性エネルギ源を含む。撮像検知アセンブリは、相互に相対して、固定された位置で少なくとも2つの空間的に分離したビューポイントを有し、目的物が上記エネルギ源により照射されるとき、個々のビューポイントにて目的物に関する一連の画像を記録するように構成されている。少なくとも一つの位置特定テンプレートは、所定の形状フィーチャを有し、ビューポイントの少なくとも一つに対して、目的物と同時に可視である。プロセッサは、ビューポイントにて記録された画像を分析するように構成されており、一連の画像内の個々の画像につき、上記位置特定テンプレートに相対する個々のビューポイントの位置及びポーズを判別し、計算されたビューポイントの位置及びポーズ、並びに、画像データ及びエネルギ源からの照射の指向を、利用して、目的物のための測光データを生成する。プロセッサは、更に、光学三角測量を用いてステレオスコープ復元を実行することにより目的物の初期の3次元モデルを含む形状データを生成し、上記形状データと上記測光データを組み合わせて3次元モデルを構築するように構成されている。

よって、装置は、目的物の少なくとも2つの分離したビューポイントを設けることができる。2つのビューポイントの場合、これは“ステレオペア”としばしば称される。但し、当然ながら2以上のビューポイントも利用可能であり、このことは、装置の正確さ及び/又は可視範囲を増大させる。本明細書で用いる“ステレオ”及び“ステレオスコープ”の用語は、2若しくは3又はそれ以上のビューポイントからの画像の処理を含むことを意図するものであり、ペアのビューポイントのみに開示を限定することを意図しない。

指向性エネルギ源は、例えば、標準的写真フラッシュ、高輝度LEDクラスタ、若しくは、キセノンフラッシュ電球即ち“リングフラッシュ”であってもよい。但し、当然ながら、エネルギは可視光スペクトル内である必要は無い。エネルギ源は、電磁放射などの指向性エネルギを生成するどの手段を含んでもよく、以降ではそれを“光”と称するものとし、当然ながらこれは可視スペクトル内の放射に限定されない。例えば、偏光フィルタなどの、適切な光学フィルタリングは、エネルギ源及び/又は画像検知アセンブリに含まれてビューポイントにおける指向性エネルギ源の直接の反射の可視性を減少させるものであってもよい。可視光指向性エネルギが利用される場合、例えば、2つ若しくはそれ以上の標準的デジタルカメラ、若しくはビデオカメラ、又は適宜搭載されたCMOSセンサ及びレンズを含む、センサが、ビューポイントに設けられてもよい。他のタイプの指向性エネルギの場合、利用される指向性エネルギに対して適切なセンサが、選ばれる。離散センサが個々のビューポイントに配置されてもよく、別の形態では単一のセンサが、分割レンズの背後に配置されてもよい。

一つの実施形態では、照射の指向性はビューポイントに相対して、周知であってもよい。このことは、例えば、照射が、ビューポイントに相対して固定された、多数のエネルギ源により設けられるならば、達成され得る。

照射の指向性がビューポイントに相対して周知でないならば、位置特定テンプレートはエネルギ源により照射されねばならず、同時に、一連の画像のうちの個々の画像において、ビューポイントの少なくとも一つに対して、可視で無ければならない。例えば、エネルギ源は、一連の画像内において画像間で移動可能であり、その場合、位置特定テンプレートは照射の指向性を特定するのに利用され得る。

位置特定テンプレートは、撮像デバイスと位置特定テンプレートの相対的位置が位置特定テンプレートを撮像することにより判別され得るように、(例えば、プリントパターンなどの)所定のセットの形状フィーチャを含んでもよい。パターンのフィーチャは、画像処理アルゴリズムのための非常に刺激的なビーコンとして作用するように設計されてもよい。周知の寸法の光源位置特定フィーチャも、位置特定テンプレートに関するエネルギ源の相対的位置の計算を促進すべく、設けられ得る。これは、例えば、周知の寸法のコーン若しくはピラミッドであればよい。位置特定テンプレートは、撮像デバイス内で色応答較正及び/又は訂正を促進する色較正部を含んでもよい。

個々の位置特定テンプレートは、個別の位置特定テンプレートが自動的に一意的に特定され得る一つ若しくはそれ以上の一意的フィーチャを包含してもよい。このことの一つの例は、プリントされた1D若しくは2Dの“バーコード”である。このことの別の例は、無線周波数特定デバイス、即ち“RFIDタグ”を含む。別の例は、パターン内に配置された、一つ若しくはそれ以上の逆反射マーカを含み得る。更なる例は、位置特定テンプレート内の埋め込みEEPROMチップなどを含む。これらのフィルタのどれもが、記録された画像を目的物にリンクし、及び/又は、位置特定テンプレートの単一の利用を保証する、“鍵”として利用され得る。位置特定テンプレートは、計量基準に対して、自動的な識別及び/又は計測を可能にする、更なるマーカを含み得る。ショートレンジのRFIDタグトランシーバにより、RFIDタグを含む位置特定テンプレートと装置の残部との間の通信が可能になる。装置内のインタフェースハードウエアにより、EEPROMなどを含む位置特定テンプレートと装置の残部との間の通信が可能になる。

一意的識別フィーチャは、他の3D画像取得システムと共に用いられるテンプレート上にも含まれ得る。従って、本発明の別の形態によると、目的物の3次元モデルを計算する装置が提示され、該装置は、目的物の少なくとも一つの3Dモデルを生成するように構成された少なくとも一つの画像スキャナを含む。装置は、所定の形状フィーチャを有する少なくとも一つの位置特定テンプレートと、他の位置特定テンプレートとの区別を可能にする一意的識別フィーチャも含む。位置特定テンプレートは、利用時に目的物と同時にスキャナにより検出されるように構成されている。プロセッサは、センサにより記録された画像を分析し3次元モデルを構築するように構成されている。本発明は、そのような一意的識別フィーチャを有する位置特定テンプレートも提示する。

好適な実施形態では、装置は、複数の位置特定テンプレートを含む。センサ及びエネルギ源が、少なくとも2つの第1のテンプレートが、目的物の第1の部分と同時に、センサの少なくとも一つに対して可視である、第1の位置に配置され、上記少なくとも2つの第1のテンプレートの少なくとも一つが、少なくとも一つの他のテンプレート、及び、上記第1の部分とオーバラップする目的物の第2の部分と同時に、センサに対して尚可視である、第2の位置へ移動可能である。センサが両方の位置からの画像を記録し、画像からのデータが組み合わされて目的物の第1と第2の部分をカバーするモデルを生成する。

言い換えれば、多数のテンプレートを利用することにより、大きい目的物のオーバラップする部分の画像を、別途可能なものよりも、目的物のより大きい部分の画像を構築するのに用いることができる。更に、多数のテンプレートは、形状データを取得する他の手段(例えば、レーザストライパ)と共に用いることもでき、その利用は受動的ステレオを用いる構成に限定されない。よって本発明の更なる形態によると、目的物の3次元モデルを構築する装置が提示され、該装置は、目的物の画像を記録するように構成されている少なくとも一つの画像センサを含む。装置は、複数の位置特定テンプレートを含み、各々の位置特定テンプレートは、表面と同時にセンサに可視である所定のセットの形状フィーチャを含み、これにより、テンプレートに関してセンサの相対的位置の判別が可能になる。プロセッサは、センサにより記録された記録された画像を分析して、個々の位置特定テンプレートに関するセンサの相対的位置を判別し更なる処理のために目的物の多数のビューポイントからの画像を組み合わせるように構成されている。目的物の表面の表面復元は、指向性エネルギ源からの反射エネルギの計測変動を用いて、若しくは、周知の他の方法を利用して画像を処理することにより、実施され得る。

プロセッサは、撮像デバイスからの画像を格納し、或る画像処理機能、検査中の目的物の表面の3D復元及び表示、並びに、分離した照射状況の復元、計量基準の抽出、色基準の抽出、一意的識別子の抽出及び記録、及びテンプレートに対する単一の利用の実行などの、他の機能を実行する、手段を含んでもよい。通常、これは、モニタを伴うデスクトップ若しくはラップトップ、ハードディスク、及び、全ての他の一般的コンポーネントであればよい。

システムは、計測学的原理を採用する。よって、少なくとも好適な実施形態では、原理上、上位の計量基準にトレース可能な基準的“テンプレート”に関して、計測が為される。全ての撮像は、固定座標データ若しくは座標データのセットを用いて実行される。システムの全ての較正は、原理上、参照目的物としての“テンプレート”を用いて実行され得る。システムの一つの実施形態の特別の特徴は、シーンの単一のカメラビューでは収まりきらない大きい表面領域を実効的に処理することができることである。受動的ステレオスコープ形状データと測光データを組み合わせることにより、レーザストライパプロジェクションなどのパターン化光に対する要求は除去される。

システムは、携帯式キャプチャにたいして適合的であるのが好ましい。即ち、システムは、“そのままで”キャプチャできるように目的物若しくは拡張表面に対して移動可能である。よってセンサは、携帯式の、ハンドヘルド器具で組み合わされているのが好ましい。利用時には、表面の一連の画像が、表面上に若しくは表面周りに配置された一つ若しくはそれ以上のテンプレートでキャプチャされ、表面と同時に撮像されるのが好ましい。ステレオ画像のセットは、指向性エネルギ源を移動し、ステレオ(二つ若しくはそれ以上のビューポイント)画像カメラと同期する指向性エネルギ源を発射することにより、取得される。その後、検査中の表面を復元する処理を実行する(キャプチャ後“オフライン”でも実行可能である)。所得された表面の測光復元は、2つのステレオビューポイントの一つの“サイド”からの変動する指向性照明を有する画像のセットを処理することにより、実施され得る。取得された表面の受動的ステレオスコープ復元は、画像の一つ若しくはそれ以上のステレオペアを処理することにより、実施され得る。

本発明の更なる形態によると、目的物の3次元モデルを計算するための方法が提示される。目的物は、少なくとも一つの指向性エネルギ源で、指向的に照射される。目的物に関する一連の画像が、相互に相対して、固定された位置で少なくとも2つの空間的に分離したビューポイントの各々において記録される。ビューポイントの少なくとも一つからの画像は所定の形状フィーチャを有する少なくとも一つの位置特定テンプレートも含む。位置特定テンプレートに相対する個々のビューポイントの位置及びポーズは、記録された画像から、判別される。目的物のための測光データは、記録された画像から、計算されたビューポイントの位置及びポーズ、並びに、照射の指向を利用して、生成される。目的物の初期の3次元モデルを含む形状データは、光学三角測量を用いてステレオスコープ復元を実行することにより生成される。形状データと測光データは、3次元モデルを構築するために組み合わされる。

本発明の更なる形態によると、目的物の3次元モデルを構築する方法が提示される。 画像センサが、複数のビューポイントからの目的物のオーバラップする部分の画像を記録するために利用され、個々の画像は、所定の形状フィーチャを有する少なくとも2つの位置特定テンプレートを含む。画像センサの相対的位置は、位置特定テンプレートに関して、判別される。更なる処理のために、表面の多数のビューポイントからの画像が組み合わされる。好ましくは、指向性エネルギ源からの反射エネルギにおける計測変動を用いて。目的物の表面の表面復元が実行される。

本発明の別途の形態によると、目的物の3次元モデルを計算する方法が提示される。他の位置特定テンプレートとの区別を可能にする一意的識別フィーチャと、所定の形状フィーチャとを有する、少なくとも一つの位置特定テンプレートと共に、目的物の画像を記録するために少なくとも一つの画像センサが利用される。3次元モデルを構築するために、画像センサにより記録された画像が分析される。

本発明に係るシステムにより、上記問題の少なくとも一部が緩和される。

目的物の3D画像を取得する装置を示す。 携帯電話のセクションをキャプチャする、利用時の図1の装置を示す。 壁のセクションをキャプチャする、利用時の別の装置を示す。 位置特定テンプレートの例を示す。 “従来の”測光ステレオのための通常のセットアップを示す。 ステレオスコープの範囲決定の形状図を示す。 多数のオーバラップの領域での撮像による、拡張表面領域をキャプチャする、利用時の図1の装置を示す。 多数のオーバラップの領域での撮像による、拡張表面領域をキャプチャする、利用時の図3の装置を示す。 様々なビューポイントから取得される画像を組み合わせるシステムの例を示す。

本発明の複数の好適な実施形態を、添付の図面を参照しつつ例示としてのみ説明する。

図1は、目的物101の3D画像をキャプチャする装置100を示す。装置100は、2台のカメラ111、112、及び、カメラ111、112に堅固に固定された4台の指向性光源106−109を備える撮像デバイス104を含む。この例で示されるように、デバイス104は、人間の肢の表面の位置をキャプチャするのに利用されている。もっとも、当然ながらその利用は人体に限定されるものではなく、デバイスは、概略類似の特徴を有する目的物、若しくはより大きい目的物のセクション、又は、壁や床などの環境の表面に、用いられ得る。一つ若しくはそれ以上の位置特定テンプレート102、103は、目的物101の表面が、同時に撮像デバイス104から見えるように、目的物101上に若しくは傍に配置される。これらテンプレート102、103は、復元を為すべく、カメラ111、112の視野内にあることが要求される。単一のテンプレート102、103が画像を復元するのに要求されているが、単一のテンプレートのみが利用されるときに取得可能な目的物101の表面領域は限定される。テンプレートの数を増すことにより、システムは、必要な広い領域をカバーすることができる。例えば、“使い捨て”の粘着パッドや両面テープを用いるアタッチメントなどの、テンプレートを添付する方法が利用される。

この例では、視覚デバイス104はハンドヘルドであり、ケーシング及びハンドル105を含むこととされている。もっとも、この物理的構成は制約的なものではないことは明らかであり、デバイスはどんな適切な形状でもよく、例えば、ハンドヘルドではなく三脚により支持されてもよい。光源は、カメラに対して堅固に固定されているので、カメラに対する光源の位置は分かっている。システムの更なる特徴は、関連する位置特定テンプレート102、103に埋め込まれたRFIDタグと通信して一義的に特定する、ケーシング105内部に含まれた無線トランシーバである。システムのまた更なる特徴は、関連する位置特定テンプレート102、103に埋め込まれたEEPROM若しくは類似のデバイスと通信して一義的に特定する、インタフェースハードウエアである。

指向性光源106−109は、両方のカメラ111、112と同時に動作し、これにより、ここのカメラは、目的物101とテンプレート102、103の一連の2D画像を取得する。カメラからの2D画像は、以下で詳しく説明する、目的物101の3D表現を生成する処理手段により処理される。処理手段は、この例ではラップトップコンピュータ110として示されている。もっとも、当然ながら“オンボード”プロセッサにより処理が実施され得る。“オンラインで”(即ち、イメージキャプチャの間に、若しくはその直後に)でも、一連の画像が例えばフラッシュメモリにセーブされ後で処理される“オフラインで”でも、処理が実施され得るのは明白である。

前述のように、撮像システムは、人体の撮像に限定されるものではない。図2は、無生物の目的物、この場合は携帯電話201の表面領域を撮像するのに用いる、本発明の類似のハンドヘルドの形態を示す。この場合、単一の位置特定テンプレート202のみが、利用され、目的物近傍に配置され、撮像デバイス104で目的物と同時に視覚される必要がある。

別のハードウエア構成が図3に示される。この例では、壁301の領域などの、拡張された環境の3D画像をキャプチャするのに、別の装置が用いられている。この例では、(ハンドヘルドの写真用フラッシュなどの)単一の光源302は、三脚304に搭載されているカメラ303とは独立して、移動可能である。一連の画像は、個々の画像に対して様々に配置される光源302により、カメラ303でキャプチャされる。テンプレート305−310の配列が、壁301上に、離れて配置される。個々のテンプレートは、図4に示しており且つ以下で詳しく説明する、“光位置特定”フィーチャ404を含む。個々のテンプレート上の光位置特定フィーチャ404は、テンプレートの画像に関する画像処理を介して、個々の画像内の指向性光源の位置を解決するのに利用される。画像処理は、専用の処理デバイス311により実行され得る。もっとも、当然ながらどの適切な処理手段も用いられ得る。

カメラ303により撮像される一連の画像は、3D情報及び物質表面特性を取得するために、処理される。結果データのサンプリングの解像度は、カメラ303の解像度に直接関連する。カメラ303自身は撮像間に動かすこともでき、よって、(後で詳しく述べるように)セクションで全壁を撮像できる。当然ながら、セクションの目的物101の表面をマップすべく、図1、2の撮像デバイス104により同様のアプローチを採用することもできる。目的物101、201、301をセクションで撮像することが必要である複数の理由がある。
1)表面のサイズに関して、所望の復元解像度に対する撮像デバイスの解像度は、全体領域が一つのセクションであるならば、不十分である。
2)表面の完全な領域において、指向性光源によりアウトプットされるエネルギの量は、反射エネルギからの表面復元には不十分である。
3)表面目的物に関して対象の領域は、目的物の自己閉塞により、単一の位置から見ることができない(例えば、一つのビューポイントから人間の肢の全体表面領域を見ることは不可能である)。

図3、7、8、9は、目的物101、301の表面の拡張された領域の画像をセクションで取得する原理を示す。図3では、カメラ303の可視領域312が、全体壁301の一部、及び、全セットの6テンプレート305−310のうち4個のテンプレート305、306、308、309のみを含むのが分かる。壁の多数セクションの画像を得ることにより、全体表面の3Dマップが構築され得る。このことは更に図8、9で示される。

同様に、図7は、3つの異なる位置705、706、707にある図1の撮像デバイス104を示し、それら位置の各々では、カメラ111、112は異なる視野708、709、710を有している。個々の視野は、撮像される目的物701の全体表面領域の部分を含み、また、位置特定テンプレート702、703、704の少なくとも2つを含む。一貫性ある単一モデルへの視覚の自動的組み合わせのキーは、多数の位置特定テンプレートの利用であり、このことは以下でより詳しく説明する。

3D情報を得るための3つの原理的取得技術を説明する。第1は光度復元であり、この場合、表面方向は、指向性光源からの周知の入射角に対する、反射エネルギの観測される変動から、計算される。このことにより、相対的な表面反射率のマップ(若しくは、照射の無い色)と一緒に、相対的高解像度表面法線マップが与えられる。相対的な表面反射のマップは統合され、深さ、若しくは範囲の情報を与えるのであり、それら情報は、目的物表面の3D形状を特定する。良好な高周波数ディテールのアウトプットはこの収集方法に対して一貫しているが、撮像処理内に存在するノイズの性質のために、絶対計量形状ではなく、低周波数ドリフト若しくは曲率の、導入部が存在する。取得の第2の方法は、受動的なステレオスコープの復元であり、光学三角測量に基づいて表面深さを計算する。これは、光学視差の周知の原理に基づく。この技術は概略、良好な低周波情報(目的物の表面の下層の粗の形状)を与えるが、ノイズが多く高周波数ディテールに欠ける。よって、2つの方法は補完的である。一つ若しくはそれ以上の位置特定テンプレートの利用を介して両方のモダリティからの情報を組み合わせるシステムは、携帯式のコンパクトなパッケージで優れた3D復元を生成できる。

本明細書で開示するシステムの光学フィーチャは、撮像デバイスと指向性光源に対する光学フィルタリングを利用する。目的は、復元ソフトウエアを混乱させる画像内のアーチファクトに導いてしまう、取得した画像内での指向性光源の鏡面反射が、見えることを減らすことにある。例えば、このことは、円偏光子フィルタの適切な方向のセットの利用によって、達成され得る。光学フィルタリングは、本明細書で開示するシステムで用いられる3D復元の2つの方法により実施される画像処理と共に利用すると、特に利点がある。

図4は、(図1−3、7の位置特定テンプレート102、103、202、305−310、702−4として用いるのに適当な)例示の位置特定テンプレートを詳細に示す。性質上2D及び3Dの両方の、種々のテンプレート構成が、撮像装置及び指向性エネルギ源の位置特定を実行するのに利用可能であること、及び、以下のフィーチャの多くは光学的であり機能等価物により置換可能であることは、当業者であれば理解するところである。この例では、テンプレートは、周知の計量寸法及び正確性のプリントパターンを伴う平坦平面ブロック401であり、以下のものを含む。
1.細い中央白線402を伴う太い黒ボーダ。
2.光位置特定フィーチャ。この例では、(測光光源302などの)指向性光源により証明されときブロックに付属するコーン404により、三角のシャドウ(図示せず)が投じられる中央白領域403として、示される。別の実施形態では、マットピラミッドが、コーンの代わりに利用され得る。ピラミッドが利用され得ると、指向性光源で照らした場合、ピラミッドの側部は、強度を様々変えることで撮像デバイスにより、観測される。光位置特定フィーチャに対する必要性は、選択されたシステム光源構成により決定される。
3.方向マーカ405。これはブロックから90°回転対称を除去する。光学コーディング406。この例ではバーコードであるが、特定の位置特定テンプレートを一意的に特定する。これらは、単一のフィーチャに組み合され得る。
4.埋め込み無線周波数識別デバイス(RFIDタグ)(図示せず)。これは、ハンドヘルドデバイスのケーシング105内の短距離無線トランシーバの利用を介して、テンプレートを一意的に特定するのに利用され得る。
5.埋め込みEEPROMデバイス等(図示せず)。これは、ハンドヘルドデバイスとの通信を介して、テンプレートを一意的に特定するのに利用され得る。これは、ハンドヘルドデバイスのケーシング105内の適当なドッキング領域と接触させることにより、達成され得る。
6.色較正フィーチャ407。これは、例えば、撮像デバイス内の色反応較正及び/又は訂正を促進するように設計された色彩パターンを有する領域を含む。
7.逆反射デバイス408。これは、撮像デバイスへの同様の起源の位置を有する光源により照らされると、“ビーコン”として作用する画像内の特定可能フィーチャとなる。これは、画像処理ルーチンによる画像内のテンプレートの検出をアシストし得る。

指向性エネルギ源としての光、及び、撮像装置としてのステレオカメラペアを利用する、図1、2で示される撮像デバイス104の操作を、実施される機能、即ち、(光学識別による)テンプレート位置特定、測光3D復元、受動ステレオスコープ3D復元、並びに、測光及びステレオスコープデータの統合による3D復元に形式で、以下、説明する。

システムの第1の機能は、目的物が撮像される個々のビューポイントから見える一つ若しくはそれ以上のテンプレートに対する撮像デバイス104と、多数のビューポイントが用いられるべき場合の、全てのテンプレート自身の相対的位置とを、位置特定することである。図1の例では、ステレオカメラ111、112の初期の視野は、表面と2つの位置特定テンプレート102、103のセクションを含む。光学カメラ位置特定は、位置特定テンプレート上で規定される絶対座標フレームに関して、ステレオカメラシステムの空間内のポーズ(特に、ミリメートルなどのメータ単位での、実効的なカメラ中心座標X、Y、Zによる、カメラのロール角、傾斜角及びヨー角)の決定である。位置特定テンプレートは、周知の計量サイズのものであるので、例えば、Essential Matrix(R,I.Hartley and A.Zissermanによる“Multiple View Geometry in Computer Vision”.Cambridge University Press,ISBN:05216230492000(非特許文献1))に記載されるような、例えば、焦点距離や、2つのカメラ間の射影的関係などの、カメラの撮像特性を幾つか計量的に与えられると、ステレオカメラの相対的位置は決定され得る。

個別のカメラと、ステレオ若しくはマルチビューカメラシステムとの両方の形状較正は周知の技術であり、較正テンプレートを撮像すること、或る特徴を抽出すること、及び、射影幾何学を利用してステレオカメラシステムの撮像特性を詳述するパラメータを決定することによる、画像ベースのアプローチで、実施され得る。その技術の実装は、J−Y Bouguet“Camera Calibration Toolbox for Matlab”http:www.vision.caltech.edu/bouguetj/calib doc/index.html(非特許文献2)により記載されている。カメラシステムの撮像の特徴を知ることで、光学カメラ位置特定は、位置特定テンプレートの単一のビューポイントから(即ち、ステレオペアの単一の画像を用いて)実行され得る。このことは、(例示のテンプレート内の細い白線402などの)或る特徴を検知する画像処理ルーチンを実行すること、及び、射影幾何学を適用してカメラに対するテンプレートの座標フレーム間のホモグラフィを計算することを、含む。テンプレートのステレオビューの場合、較正されたステレオシステムを仮定すると、ポーズの評価の更なる正確性が得られ、及び/又は、較正パラメータが実証される。テンプレートのマルチプルビューも、原理上、カメラを記述する(若しくは較正する)のに必要とされる、鍵となる物理的パラメータを生成するのに利用可能であり、よって、同じ計量規格が、正確な復元に必要なカメラ位置及びパラメータを規定することができる。

システムは、調査される目的物の表面上に若しくは側に配置された一つ若しくはそれ以上の位置特定テンプレートを利用する。前述のように、図1の例では、カメラ111、112のビューポイントにより、カメラはテンプレート102、103を撮像でき、多数のテンプレートが可視である場合、ステレオカメラ111、112のポーズは、視覚上テンプレート102、103の各々に関して決定され得る。個別のテンプレートから計算されるものとして、若しくは、これらの座標フレームの全て若しくは一部の変換として、標準的ポーズが(任意に)選択され得る。標準的ビューは、テンプレートの現存のグループの全てのビューが投射される単一の座標フレームである。更に、テンプレート102、103が同じビューポイントから同時に撮像されるので、テンプレート102、103の相対的座標フレームの間の変換マッピングは、自明に計算され得る。多数のテンプレートを利用することと、テンプレート間の相対的ポーズを計算することは、大きい表面をセクションで撮像することの鍵である。

図7は、拡張表面領域、この例でも人間の足701の上方部を、キャプチャする使用中の図1のシステムを示す。3つの位置特定テンプレート702、703、704は足701に添付され、足は、3つの位置705、706、707に、撮像デバイス104及び関連ハードウエアを配置することで、ビューされる。個々の視野708、709、710は、少なくとも一つの他の視野とオーバラップし、3つのテンプレート702、703、704のうちの少なくとも2つを含む。ステレオカメラシステムの較正は一定のままであり、個々のビュー内の個々のテンプレートの間の相対的ポーズは(即ち、テンプレート702を703に、703を704に、702を704にマッピングして)計算され得るので、異なる位置705、706、707のための相対的ポーズと共に、全てのテンプレートの相対的ポーズを決定する完全なマッピングが、決定され得る。

個々のテンプレートは、単一のビューポイントから独立した位置特定を、与えるので、ビューポイントに渡る位置評価を組み合わせる必要が無く、(“ドリフト”として知られる)画像登録から生じるポーズ評価内での蓄積されたエラーを回避し、標準的ビュー座標間での変換と関連するスタックされたエラーを残すのみである。原理上、標準的ビュー間でスタックしたエラーが容認できないとみなされたとしても、独立の画像がテンプレートの全アンサンブルから取られて単一のグローバル座標系を規定できる。これは、“追跡する”方法に基づくビデオカメラに関する、本システムの重要な利点である。

この処理を自動的に実行するために、シーンの個々のビュー内で個々のテンプレートを一貫したやり方で特定することが、必要である。図4に関して前述したように、個々の位置特定テンプレート401は、その位置特定テンプレートを一意的に特定するのに利用される、バーコード406などのコーディングを含む。コーディングが信頼性高く検出され得る限り、あらゆるテンプレートは一意的となる。これは以下1)2)を満たすならば必要では無い。
1)位置特定テンプレートが不規則に配置され、オーバラップするビューが(少なくとも)2つのテンプレートを共通して含む。
2)位置特定が十分に正確である。

位置特定のテンプレートの間の相対的ポーズは、それらを一意的に特定するのに用いられ得る。配置の不規則性、及び、ポーズ評価の正確性によって、テンプレートから90°対称を除去する(図4に示される)方向マーカ405を用いることが、必要になったりならなかったりする。採用されるRFIDシステムの相対的感度及び範囲によっては、テンプレートの一意的特定を助ける埋め込みRFIDタグを利用することが、バーコードの代替策となる。更なる代替策は、一意的な特定を助ける適切な通信ハードウエアを伴うテンプレート内の埋め込みEEPROMチップなどを用いることである。

テンプレートの一意的な特定の利点は、大きい表面をセクションで撮像するのに多数のテンプレートが用いられる場合に限定されるものではない。一意的な特定は、結果としての画像ファイルの処理や格納にて助けとなる、システムによってキャプチャされる画像に関する更なるメタデータを、与えることができる。一つの特別な例は、医療的撮像に関するものであり、ターゲットのコードが、電子的患者記録と共に一意的スキャンを格納する助けとなるように用いられ得る。一意的な識別子は、データオーディットトレールを与えることにより、臨床試験の助けとなる。ターゲットが患者の皮膚に直接に配置されているならば、交差感染の可能性のため、別の患者に再利用してはならない。テンプレート識別子コードの不揮発性のリストは撮像デバイス内に格納されて、再利用されるテンプレートに関する処理を回避し、衛生実践を奨励するように、用いることができる。生産的プロセスの更なる例では、本明細書に開示される撮像方法は、品質保証管理のためにエンドツーエンドのオーディットトレールを与えるターゲットのコードにより、コンポーネントの構築の正確性を実証するのに、適用され得る。より一般的な例では、特定のコードをテンプレートに割り付け物理的分布を制御することにより、一意的識別子は、3D画像の創作者を判別する“ウオータマーク”を与え得る。

システムの第2の機能は、検査中の目的物の表面の測光回復を実行することである。測光回復の基本的原理は、測光ステレオ(PS)の原理である。測光ステレオの標準的フォームでは、表面に関する、一連の測光画像が取得され、このとき、カメラは目的物の表面に関して静止しているが、画像間にて照明方向で幾何学的変動はある。図5はそのようなシステムを示す。目的物501の表面から幾何学的上方をキャプチャすることが所望される。このことを達成するため、目的物は、複数の同一光源503〜505により個別に照らされるが、単一のカメラビューポイント502により撮像される。通常、3つの光源の最小のものが用いられる。

測光ステレオは、表面物質反射特性の近似モデルを要求する。一般的には、これは、双方向反射率分布関数(BRDF)により(表面の単一ポイントにて)モデル化され得る。問題を追跡可能にするために、単純化モデルが通常利用される。一つの例は、ランバートの余弦則モデルである。この単純なモデルでは、カメラにより観測される表面の強度は、光源からの入射照射エネルギの量、及び、目的物の表面形状による縮小効果のみに、依存する。これは以下のように表され得る。
ここで、Iは、目的物に関して、単一のポイントでのカメラの観測された強度を表し、Pは、そのポイントでの入射照射光エネルギを表し、Nは、目的物−相対表面の法線ベクトルを表し、Lは、入射光の、正規化された目的物−相対方向を表し、ρはそのポイントでの目的物のランバート反射率を表す。

通常、目的物の表面におけるPの変動は、先行の較正するステップで決定され、よって補償され得る。Lは通常、較正により決定され得る。原理的に、テンプレートを撮像することにより取得される情報を用いて、両方の較正するステップは実行されうる。図5の較正では、カメラと目的物は静止を維持しており、よって特定のピクセルにおいてカメラにより観測される表面の領域は同一を維持する。従って、変動する光方向により、画像のセットにおける特定のカメラピクセルにて観測される強度は、測光サンプルのセットと考えられ得る。光方向のカウントをM(M>2)として、倍数を積み重ねることにより(数1)N及びρに対する解は、擬似逆元を介して最小二乗の意味で、見出され得る。

ここで、Nが正規化されねばならないと更に分かることにより、ρはNのノルムとして回復され得る。よって、表面反射率の適切なトレース可能モデルであるならば、PSは、(例えば、可能な不均質ランバート反射係数などの)表面法線マップ及び物質特性として、目的物形状を取得するのに利用され得る。PSは、単なるランバート反射の回復に限定されるものではないことに留意されたい。より洗練されたモデルの利用により、色反射、及び、例えば、鏡面反射の計測が回復され得る。別の(若しくは更なる)アプローチは、画像内で鏡面反射が見えることを減じさせるように、撮像デバイス及び光源の適切な光学フィルタリングを設けることである。

図5に示すPSの“従来の”構成に関していくつかの潜在的な問題がある。第一に、多数の物理的光源のハードウエアエキップメントは、幾つかの利用例では、コストが掛かり、ポータブルキャプチャには不便である。第二に、相対的光方向が既には知られていない場合、入射光方向の較正及び入射照射光の変動は、時間が掛かる。前述の位置特定テンプレートの利用は、これら問題を緩和する。

光学フィーチャとして、位置特定テンプレートは、光方向が単一の画像から決定され得る方法を与え得る。このことは、位置特定テンプレートの相対的ポーズを計算すること、及び(光位置特定フィーチャ404がコーンである場合には)コーンによりテンプレートの平面403に投射される三角シャドーを観測することにより、達成され得る。光線は、(テンプレートの平面に有る)三角シャドーの頂点から、周知の寸法を有し拠ってテンプレートの座標フレームに関して周知の位置を有するコーン404の先端を介して、投射されるので、入射光の方向が見出され得る。マットピラミッドの場合、ピラミッドの4面の表面の法線方向は周知であるので、側面の相対的強度は、数2と同様に用いて光源に対する光線を計算することができる。

入射光強度(P)の変動は、コーン形の光位置特定フィーチャの場合、位置特定テンプレートの影の無い部分からサンプルすることにより、評価され得る。ピラミッド光位置特定フィーチャの場合、位置特定テンプレート上のピラミッド周りの平坦領域が、同じ目的のために利用され得る。これらの領域403は、一様に白く平坦であり、従って、この領域における光強度の変動は、カメラ画像のピクセル強度の変化として現れる。サンプルは、画像内に存在する複数の位置特定テンプレートから組み合わせられ得、十分に拡散した光源が用いられるならば、Pの変動はスムーズになる。テンプレートが画像に渡って分布されていると仮定すると、サンプルは集合的に、表面の可視領域におけるPの変動を表すものと考えられ得る。2D補間機能(例えば、バイ−クワドラテック)は適用可能であり画像内の任意の位置のPのための値を評価する。

位置特定テンプレートの更なる光学的機能は、撮像システム、例えば、カメラの“ホワイトバランス”のカラーレスポンスの変動に対する、較正及び/又は訂正を助けることである。テンプレートは、例えば、白及び黒の領域を有する、周知の反射率を備えるので、このことは、テンプレートの画像を処理することを介して、達成され得る。このことを達成する方法は、当業者には周知である。この機能は更に、テンプレート内の特定のカラー較正フィーチャ407を組み合わせることにより、促進され得るものである。このカラー較正フィーチャ407は周知の反射率の付色領域を有する。このことにより、撮像されたカラーレスポンスと周知のベース反射率との間の直接の比較が可能になる。

システムの第3の機能は、光学三角測量を用いて受動的ステレオスコープ復元を実行することである。この技術は、それ自身物質反射率特性の取得のためのものではなく、(同じ撮像デバイスが用いられたならば)測光的アプローチよりも低い解像度形状データを生成するものであることに、留意されたい。この利点は、測光的復元を保管する、回復したデータのノイズ特徴にある。

この議論の目的のために、撮像デバイスは、2つの僅かに分離するビューポイントから、即ち、ステレオ画像ペアから、目的物の表面の画像を取得することが考えられる。2つのステレオビューポイント間の射影関係が、先行する較正を介して知られているならば、深さ情報は、ステレオペアを形成する画像間で2Dポイントを相互に関連付けることにより、解像され得る。ステレオビューポイントを用いる範囲情報の復元は、例えば、R,I.Hartley及びA.Zissermanによる“Multiple View Geometry in Computer Vision”,Cambridge University Press,ISBN:05216230492000(非特許文献3)に記載されており、更に、図6を参照して示される。標準的“ピンホール”モデルを仮定すると、平面601は、分離したカメラビューポイントの中心を表す2つのポイント602、603と交差し、2つの平面605、606はカメラ画像平面を表し、目的物の表面に第3のポイント604がある。目的物表面ポイント604の概念上のカメラ画像平面の画像607、608は、カメラの中心から目的物表面ポイント604への光線609,610の交差点である。従って、所与のポイント607に対して、対応するポイント608は、他のカメラ画像平面606内での平面601の交差部分である直線上に、なければならない。深さ情報の復元は、ステレオビュー間の対応の相対的密度セットが達成され得るならば、較正されたステレオカメラが与えられることにより、達成され得る。この分野では多数のアルゴリズムが残されている。例えば、Kolmogorov及びZabihによる“Multi−Camera Scene Reconstruction via Graph Cuts In Proceedings”,International Conference on Computer Vision 2003(非特許文献4)に記載されている。

一意的な対応が見出され得ないので完全な影の画像領域は回復され得ない、ということが、受動的ステレオスコープ復元に関する一つの問題である。本明細書に記載のシステムの利点は、指向性のライティングを変動することで、多数のステレオ画像ペアを取得し得ることである。全ての可視的ポイントにて画像ペアの少なくとも一つで表面が適切に照射され、データを損失すること無く復元され得るという可能性は、このことにより大きく増大する。異なるステレオ画像セットから復元される形状は、位置特定テンプレートが参照のフレームを与えるので、単一の統合データセットに容易にマージされ得る。受動的ステレオスコープ復元に関する更なる問題は、画像内の優勢な光源からの直接の鏡面反射の存在である。鏡面反射は高画像コントラストの領域となることが多く、表面の位置が、見る方向で変動する。よって、それらは、“虚偽の対応”の光源となり、ステレオ復元を妨げるものとして、知られている。この問題を最小化するためのアプローチは、適切な光学フィルタを撮像デバイス及び光源に適用し、可視的な鏡面反射を最小化することである。

システムの第4の機能は、関連する(空間的に変動する)物質特性に従って、検査中の表面の3Dモデルを復元することである。このことは、前述の測光及び形状回復方法から復元されるデータを融合することにより、為される。測光ステレオにより、(不均質な)物質反射率モデルの係数と同時に、高密度表面法線マップの回復が与えられる。この開示の目的のために、用いられる表面形状の基本モデルは、“レンジマップ”即ち、レンジサンプルの2Dマトリクスとして、モデル化されるカメラに可視である目的物の表面のモデルである。この場合、形状復元により生成されるデータは、予測可能な量の高周波数ノイズを伴う、実際の“レンジマップ”のバイアスの無い、相対的に低解像のサンプリングであると、考えられ得る。測光復元により与えられる法線マップデータは、比較的高解像度の、但しバイアスの或る、実際の“レンジマップ”の導関数のサンプリングである、と考えられ得る。本発明の範囲から乖離すること無く、他の表現も利用し得ることは、当業者は理解し得る。例えば、走査される目的物の表面が、歪んだ平面(即ち、レンジマップ)として表現し得ないならば、例えば、表面作用素が、法線データに適合して曲率の詳細な計測を取得するのに用いられ、表面が、例えば、その測地的若しくは原理的曲率を介して、多様体として局所的に表され得る。

法線マップの統合により、バイアスされたレンジマップとして、表面は回復し得る。統合における問題の解決策への多数のアプローチは当業者に周知であるが、一つのアプローチは、以下の式の変分問題として扱うものである。離散化することにより、このことは、即座に解かれる二次最適化問題となる。

測光回復から所得される表面法線を用いてレンジマップを回復することに関し、複数の問題がある。
1)法線評価の正確性は、物質反射率モデルが基本表面をどれだけ十分に表しているかに、限定される。
2)法線評価は、カメラセンサの質に依存するノイズのレベルに支配される。
3)法線マップは、ステップエッジを、即ち、表面の非連続部を、表すことができない(即ち、回復できない)。同様に、DC情報(即ち、カメラからの、表面の全体のグロスの距離は直接には得られない。

最終的な結果は、ドリフト、即ち、復元されたレンジマップでの曲率歪みである。(A.S.Georghiadesによる“Recovering 3−D shape and reflectance from a small number of photographs”in Proceedings,Eurographics Workshop on Rendering,ページ230−240、2003(非特許文献5)にて用いられている、反射鏡の用語を含むような)より洗練された物質反射率モデルを適用することで、この問題を幾分解決できるが、(2)(3)の問題は残る。解決策は、受動的ステレオスコープ復元プロセスからのデータセットなどの、別の取得手段から目的物表面の形状の更なる情報を採用することである。このデータは、グロススケール形状を示す低解像度の“スケルトン”を与え、一方で測光データは、高周波数形状詳細及び物質反射率特徴を与えるのに用いられる。

測光データ及びステレオスコープデータを融合するアプローチは、多数の利点を示すものである。特に、エラー及びバイアスモダリティは、相補的である。測光回復は、非常に詳細な形状を与えるが、回復時の低周波数ノイズ(即ち、バイアス)の影響を受ける。形状に係る方法は通常、低解像度であるが、高周波数ノイズを有しゼロバイアスである。両方のアプローチの組み合わせは、少ない撮像ハードウエア及びより高速の処理時間により、高解像度及び軽量回復を実現するので、強力である。測光−ステレオスコープの融合タスクは、2つのモダリティからのデータを組み合わせて、単一のモデルを生成することである。当業者には複数のアプローチが知られているが、しかしながら、一つの特別の適切な方法は、ウイーナフィルタを用いることである。

ウイーナフィルタは、カルマンフィルタを用いて解決されるような最適状態評価問題のための、定常状態解である。ウイーナフィルタは、測光データとステレオスコープデータを組み合わせる場合など、信号の導関数の計測がある場合、特定の値に関するものである。ウイーナフィルタは、定常状態の復元高さの最小分散推定を見出す結果である。ウイーナフィルタは、計測信号のフーリエ変換を見出すこと、更に、これらの信号はホワイトノイズプロセスにより生成されたのであってS.Smithによる“Digital Signal Processing:A Practical Guide for Engineers and Scientists”,Butterworth−Heinemann 2002(非特許文献6)で示されるような周知の周波数スペクトラムの計測ノイズにより化けが生じていると仮定することにより、取得される。この実施形態では、例として、ノイズプロセスはそれ自身ホワイトである、と仮定する。

目的物の表面の位置の推定値を、zと表すとすると、ウイーナフィルタは以下を最小化する。
ここで、E[]は期待値を示す。

別のアプローチは、以下の式を用いて、数3の式での3つの計測値から計測“d”が取得される、決定論的方法での積分である。
ここで、λは、受動的ステレオスコープ復元から取得されるデータへの、全体的な相対重みを示す。値を増加すると、アウトプットを、ステレオスコープデータにより近づけるように限定することになる。実際には、このことは、高速フーリエ変換などの標準的な技術を利用することにより、周波数領域で非常に高速で達成され得る。ここでFFTを利用することは、ウイーナフィルタなどの最小二乗問題を解くよりも、高速で達成することであることに、留意されたい。例えば、高速ウエーブレット変換を用いるなど、他の技術も利用され得る。

“レンジマップ”として目的物表面について前述の形状表現を与えるこのステージからのアウトプットは、一つ若しくはそれ以上の位置特定テンプレートにより規定される、任意の座標フレームに相対する目的物の表面への距離の2Dマトリクスを与える融合レンジマップであり、このレンジマップは、測光データ若しくはステレオスコープデータの何れかに加えて、エラー特徴を改良するものであり、同時に、物質反射率係数の対応する2Dマトリクスは、例えば、カラー反射率を表す。

システムの最後の光学的機能は、多数のビューポイントからのデータセットが単一の一貫したデータセットに自動的に組み合わされる(若しくは“ステッチされる”)自動的方法を与え、目的物の拡張表面の3D撮像を実行することである。ビューポイント間の相対ポーズが計算可能であれば、形状データセットの融合は即座に達成され得る。物質、即ち、カラー反射率データの融合は、照射不変物質反射率マップの生成を要求する。これら両方のタスクは、本明細書で開示するように、多数の位置特定テンプレートを利用することにより、大いに促進される。

図7は、図1に示すハードウエア構成に基づき、オーバラップするビューポイント708、709、710を用いて、このことを達成する、例示の走査構成を示す。撮像を実行し上述のステップを処理することで、3つのデータセット711、712、713が生成される。夫々は目的物701の表面のサブセクションを表す。夫々のビューポイントは、別のビューポイントと共通して少なくとも一つのテンプレートを共有するのであり、判別するために共通して視覚されるテンプレートに対するカメラポーズの変更を容認するものである。一つのカメラビューを他のものに対してマップする変換のセットは、任意に選択された座標フレームに関して、決定され得る。グローバル座標フレームにより、形状のセクションは、相互に関して登録され得るのであり、更に、例えば、J.C.Carr及びR.K.Beatson及びJ.B.Cherrie及びT.J.Mitchell及びW.R.Fright及びB.C.McCallum及びT.R.Evansによる“Reconstruction and Representation of 3D Objects with Radial Basis Functions”in Proceedings of ACM SIGGRAPHページ67−76,2001(非特許文献7)に記載される、標準的アルゴリズムが、データセットを融合するのに用いられ得る。

多数のビューポイントから取得された物質反射率データセットをステッチすることの鍵は、全体の照射及び色の不変性を保証することである。システムの位置は、ビューポイント間で変化するので、光源の全体の距離は一定とならず、テンプレートシステムが利用されないならば、例えば、物質特性の全体照明の変動に繋がり得る。このことは、様々なビューポイントからの、サンプル物質特性に対する洗練されたアルゴリズムの開発に繋がったのであり、それは、(例えば、米国特許第6686921号に例として記載される)一様な照射及び色不変性を達成する変換を計算するものである。較正されたテンプレートのセットの利用は、測光画像に対して反射率標準を与えるものであり、そのような技術を不必要にする。これは、全ての復元が較正されたテンプレートによって実施され、入射光強度、カメラカラーバランスなどの変動が、周知の標準に対して、推定され且つ訂正され得るからである。取得される物質特徴は、本来的に照射及び色不変性である。従って、多数の物質反射率データセットをステッチすることは、例えば、当業者に十分知られた色補間アルゴリズムと同時に、確立されたグローバル座標フレームの利用を要求するのみである。

当然のことながら、拡張表面の3D撮像を達成する多数の位置特定ターゲットを利用することは、図7に示すような、ステレオカメラの利用に限定されるものではない。図8は、拡張表面領域、この例でも壁801をキャプチャする、利用時の図3のシステムを示す。(図4に示す位置特定テンプレート401と同様の)4つの位置特定テンプレート802−805が、壁に貼られ、壁は、撮像デバイス303及び関連ハードウエア311を2つのポジション806、807、808で配置して、ビューされている。ビュー809、810、811のオーバラップするフィールドは夫々、4つのテンプレートのうち少なくとも2つを含む。カメラの較正は一定のままであり、個々のビューにおける個々のテンプレート間の相対的ポーズ(即ち、803に対する802の、804に対する803の、805に対する804のマッピング)は計算可能であるから、位置806、807、808に対する相対的ポーズと共に、全てのテンプレートの相対的ポーズを決定する完全なマッピングは、図7の構成と同様にして、決定され得る。

検査中の表面の複雑性、及び、復元の所望の正確性によっては、従来の形状キャプチャ方法を利用して、更なる形状情報を取得することが望ましい。図8にて、そのようなデバイス(図示せず)が、主要な撮像デバイス303に結合されてもよい。例えば、(WO2007/129047に記載されるような)レーザストリップやスペックル、ホワイトライト若しくはフリンジベースの投射など、様々なアプローチが用いられてもよい。これらのシステムはそれ自身、物質反射率特性を取得する方法を与えるものではなく、受動的ステレオスコープアプローチと同様に、測光アプローチよりも低解像度形状データを生成する傾向にある、ということに留意されたい。

(図8に示されるように)ビューのオーバラップするフィールドを用いて、多数の位置特定テンプレートをキャプチャすることにより、全てのテンプレートに対する、相対的ポーズ変換の完全なセットが、計算可能である。位置特定テンプレート自身のポーズを把握することで、検査中の表面に対する概略全体の形状を与える更なる方法が、示される。位置特定テンプレートの全体スケールにて基本的表面がスムーズに湾曲しているならば、(適切に配置された)テンプレートは、局所の表面勾配を概算するものと考えられ得る。よって、個々のテンプレートは、検査中の表面上の、空間における単一の絶対位置(頂点)と、テンプレートの表面に垂直である、このポイントにおける即時の局所表面法線の計測量とを、与える。グローバル座標フレームは任意に選択可能であり、3D表面は、頂点及び法線データに適合する。よって、適切に円滑に変化する表面に対して、基本的な3D構造の粗モデは、更なる形状走査ハードウエアを利用すること無く、導出され得る。

図9は、復元された測光データ及び形状データをマージするのに利用され得る、一つの例示の方法を示す。図9は、3つのカメラビューポイント901、902、903の“バードアイ”ビューを概略示す図であり、個々のビューポイントは、対応する画像平面904、905、906を有する。画像自身は、例えば、測光法線データ、若しくは、形状レンジデータから、構成されてよい。延長された点線911で示されるように、“アウタ(外部)”ビュー904、905を中間ビュー905のビューポイントに変換してもよい。当業者に周知であるように、このことは、平面投射を介して達成され得る。結果として復元されたビューポイント907となる。台形領域908、910は、外部(アウタ)ビューポイント904、905の平面投射から生じており、ここで、矩形領域909は元の画像905である。3つの領域908−910外部の領域に対して、データは利用不可能である。画像907は、カメラにキャプチャされたビューポイントを超えて拡張する。オーバラップする領域913、914は、再投射が、同じ位置で利用可能である多数のデータサンプルとなることを、示す。データの性質に依存する適切な操作と共に、フィルタ操作は、これら領域で利用されねばならない。例えば、検査中の表面領域の基本的全体形状に拠っては、(部分的に)円柱若しくは球面にマッピングするような、他の投射方法も利用可能であることを、当業者であれば理解し得るところである。

当然のことながら、上述の実施形態からの変更も、本発明の範囲内にあり得る。例えば、図4の位置特定テンプレートは、形状フィーチャの特別のセットを示すが、当然ながら、計測を確立するのに利用可能などの適切なフィーチャも利用可能である。同様に、例示の撮像デバイスは“カメラ”を含むものとして記載してきたが、どの適切な画像センサも利用可能である。実際に、レンズスプリッタを伴う単一のセンサも適切である。他の例として、ビデオカメラ、CMOSセンサなどを含む。更に、照射する放射は、可視光である必要は無い。エネルギのどの適切な形態も利用可能であり、画像センサも然るべく選択される。カメラは、ケーシングに“堅固に”付されたものとして、種々の実施形態で記載したが、当然のことながら、このことは、カメラがケーシングに伸縮自在に搭載されているような、状況も含む。

101・・・目的物、
102、103・・・位置特定テンプレート、
104・・・撮像デバイス、
105・・・ケーシング、
111、112・・・カメラ。

Claims (24)

  1. 目的物の3次元モデルを計算するための装置において、
    目的物を指向的に照射するように構成された複数の指向性エネルギ源、及び、相互に対して固定された位置で少なくとも2つの空間的に分離したビューポイントを有し、目的物が上記エネルギ源の各々により照射されるとき個々のビューポイントにて目的物に関する一連の画像を記録するように構成されている撮像検知アセンブリを有する、携帯可能なハンドヘルド器具と、
    所定の形状フィーチャを有し、利用時にビューポイントの少なくとも一つに対して、目的物と同時に可視であるように構成されている少なくとも一つの位置特定テンプレートと、
    ビューポイントにて記録された画像を分析するように構成されているプロセッサであって、
    一連の画像内の個々の画像につき、上記位置特定テンプレートに相対する個々のビューポイントの位置及びポーズを判別し、
    計算されたビューポイントの位置及びポーズ、並びに、個々のエネルギ源からの照射の指向を利用して、目的物のための測光データを生成し、
    光学三角測量を用いてステレオスコープ復元を実行することにより目的物のスケルトンの3次元モデルを含む形状データを生成して目的物のグロススケール形状を与え
    上記グロススケール形状上に高周波数形状詳細を与える測光データを用いることにより上記形状データと上記測光データを組み合わせて3次元モデルを構築する
    プロセッサと
    を含む、装置。
  2. 上記複数のエネルギ源がビューポイントに相対して固定された位置にあり、よってビューポイントに相対するエネルギ源の各々からの照射の指向が周知である、請求項1に記載の装置。
  3. 上記位置特定テンプレートが、ビューポイントの少なくとも一つに対して、目的物と同時に可視であるとき、利用時に上記エネルギ源により照射されるように構成されており、
    上記プロセッサが、上記位置特定テンプレートを包含する個々の画像の一部から、照射の指向を計算するように構成されている、請求項1に記載の装置。
  4. 上記エネルギ源が、一連の画像内の画像間でビューポイントに相対して移動可能である、請求項に記載の装置。
  5. 上記位置特定テンプレートが、3次元エネルギ源位置特定フィーチャを含み、
    上記プロセッサが、上記エネルギ源位置特定フィーチャを包含する画像の一部から、上記位置特定テンプレートに相対する上記エネルギ源のポーズを判別するように構成されている、請求項に記載の装置。
  6. 上記エネルギ源位置特定フィーチャが、周知の寸法のピラミッド若しくはコーンを含む、請求項に記載の装置。
  7. 複数の位置特定テンプレートを更に含み、
    少なくとも2つの第1のテンプレートが、目的物の第1の部分と同時に、ビューポイントの少なくとも一つに対して可視である、第1の位置に、ビューポイント及びエネルギ源が配置され、
    上記少なくとも2つの第1のテンプレートの少なくとも一つが、少なくとも一つの他のテンプレート、及び、上記第1の部分とオーバラップする目的物の第2の部分と同時に、ビューポイントの少なくとも一つに対して尚可視である、第2の位置へ、ビューポイント及びエネルギ源が移動可能であり、
    ビューポイントが、第1及び第2の位置からの画像を記録するように構成されており、上記プロセッサが、画像からのデータを組み合わせて目的物の第1と第2の部分をカバーするモデルを生成するように、構成されている、
    請求項1乃至のうちのいずれか一に記載の装置。
  8. 光学センサが個々のビューポイントに配置されている、請求項1乃至のうちのいずれか一に記載の装置。
  9. 画像内のエネルギ源の直接反射の可視性を減少する光学フィルタリングを含む
    請求項1乃至のうちのいずれか一に記載の装置。
  10. 上記若しくは個々の位置特定テンプレートが、他の位置特定テンプレートとの区別を可能にする一意的識別フィーチャを含む
    請求項1乃至のうちのいずれか一に記載の装置。
  11. 上記一意的識別フィーチャが、上記プロセッサにより復号されるバーコードを含む
    請求項10に記載の装置。
  12. 上記一意的識別フィーチャが、RFIDタグを含む
    請求項10に記載の装置。
  13. 上記一意的識別フィーチャが、EEPROMチップ含む
    請求項10に記載の装置。
  14. 目的物が、3次元物品の少なくとも一部を含む
    請求項1乃至13のうちのいずれか一に記載の装置。
  15. 目的物が、表面、若しくは表面の一部を含む
    請求項1乃至14のうちのいずれか一に記載の装置。
  16. 目的物の3次元モデルを計算するための方法において、
    携帯可能なハンドヘルド器具内に収容された複数の指向性エネルギ源で、目的物を指向的に照射するステップと、
    相互に相対して、固定された位置で少なくとも2つの空間的に分離したビューポイントの各々において、上記エネルギ源の各々により照射され、且つ上記器具内に収容された目的物に関する一連の画像を記録するステップであって、ビューポイントの少なくとも一つからの画像は所定の形状フィーチャを有する少なくとも一つの位置特定テンプレートも含む、ステップと、
    記録された画像から、上記位置特定テンプレートに相対する個々のビューポイントの位置及びポーズを判別するステップと、
    記録された画像から、計算されたビューポイントの位置及びポーズ、並びに、個々のエネルギ源からの照射の指向を利用して、目的物のための測光データを生成するステップと、
    光学三角測量を用いてステレオスコープ復元を実行することにより目的物のスケルトンの3次元モデルを含む形状データを生成して目的物のグロススケール形状を与えるステップと、
    上記グロススケール形状上に高周波数形状詳細を与える測光データを用いることにより上記形状データと上記測光データを組み合わせて3次元モデルを構築するステップと
    を含む、方法。
  17. 上記位置特定テンプレートが、3次元エネルギ源位置特定フィーチャを含み、
    更に、上記エネルギ源位置特定フィーチャを包含する画像の一部から、上記位置特定テンプレートに相対する上記エネルギ源のポーズを判別するステップを含む
    請求項16に記載の方法。
  18. 更に、
    複数の位置特定テンプレートを更に含み、
    少なくとも2つの第1のテンプレートが、目的物の第1の部分と同時に、ビューポイントの少なくとも一つに対して可視である、第1の位置に、ビューポイント及びエネルギ源を配置するステップと、
    第1の位置からの個々のビューポイントにて第1の画像を記録するステップであって、個々の第1の画像が、目的物の第1の部分及び上記少なくとも2つの第1のテンプレートを含む、ステップと、
    上記少なくとも2つの第1のテンプレートの少なくとも一つが、少なくとも一つの他のテンプレート、及び、上記第1の部分とオーバラップする目的物の第2の部分と同時に、ビューポイントの少なくとも一つに対して尚可視である、第2の位置へ、ビューポイント及びエネルギ源を移動するステップと、
    第2の位置からの個々のビューポイントにて第2の画像を記録するステップと、
    目的物の第1と第2の部分をカバーするモデルを生成するために、第1と第2の画像からのデータを組み合わせるステップと
    を含む
    請求項16又は17に記載の方法。
  19. 上記若しくは個々の位置特定テンプレートが、他の位置特定テンプレートとの区別を可能にする一意的識別フィーチャを含む
    請求項16乃至18のうちのいずれか一に記載の方法。
  20. 上記一意的識別フィーチャが、バーコードを含み、
    更に、上記位置特定テンプレートを特定するために、画像内のバーコードを特定してバーコードを復号するステップを含む
    請求項19に記載の方法。
  21. 上記一意的識別フィーチャが、RFIDタグを含み、
    更に、上記位置特定テンプレートを特定するために、RFリーダを利用するステップを含む
    請求項19に記載の方法。
  22. 上記一意的識別フィーチャが、EEPROMチップ含み、
    更に、上記位置特定テンプレートを特定するために、リーダを利用するステップを含む
    請求項19に記載の方法。
  23. 目的物が、3次元物品の少なくとも一部を含む
    請求項16乃至22のうちのいずれか一に記載の方法。
  24. 目的物が、表面、若しくは表面の一部を含む
    請求項16乃至23のうちのいずれか一に記載の方法。
JP2011502433A 2008-04-02 2009-03-27 3d撮像システム Active JP5467404B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0805971.9 2008-04-02
GB0805971.9A GB2458927B (en) 2008-04-02 2008-04-02 3D Imaging system
PCT/GB2009/050299 WO2009122200A1 (en) 2008-04-02 2009-03-27 3d imaging system

Publications (2)

Publication Number Publication Date
JP2011516849A JP2011516849A (ja) 2011-05-26
JP5467404B2 true JP5467404B2 (ja) 2014-04-09

Family

ID=39409930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011502433A Active JP5467404B2 (ja) 2008-04-02 2009-03-27 3d撮像システム

Country Status (8)

Country Link
US (1) US8773508B2 (ja)
EP (1) EP2272047B1 (ja)
JP (1) JP5467404B2 (ja)
AT (1) AT549703T (ja)
ES (1) ES2384086T3 (ja)
GB (1) GB2458927B (ja)
NZ (1) NZ588740A (ja)
WO (1) WO2009122200A1 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10469831B2 (en) * 2002-06-07 2019-11-05 University Of Southern California Near-instant capture of high-resolution facial geometry and reflectance
US20110066020A1 (en) * 2008-03-13 2011-03-17 Alexander Svojanovsky Multi-channel eeg electrode system
US10368771B2 (en) 2008-03-13 2019-08-06 Alexander Svojanovsky EEG electrode and multi-channel EEG electrode system
US9380292B2 (en) 2009-07-31 2016-06-28 3Dmedia Corporation Methods, systems, and computer-readable storage media for generating three-dimensional (3D) images of a scene
US20110025830A1 (en) 2009-07-31 2011-02-03 3Dmedia Corporation Methods, systems, and computer-readable storage media for generating stereoscopic content via depth map creation
WO2011014419A1 (en) 2009-07-31 2011-02-03 3Dmedia Corporation Methods, systems, and computer-readable storage media for creating three-dimensional (3d) images of a scene
JP5615055B2 (ja) * 2010-06-18 2014-10-29 キヤノン株式会社 情報処理装置及びその処理方法
US9013550B2 (en) 2010-09-09 2015-04-21 Qualcomm Incorporated Online reference generation and tracking for multi-user augmented reality
US9185388B2 (en) 2010-11-03 2015-11-10 3Dmedia Corporation Methods, systems, and computer program products for creating three-dimensional video sequences
US10200671B2 (en) 2010-12-27 2019-02-05 3Dmedia Corporation Primary and auxiliary image capture devices for image processing and related methods
WO2012092246A2 (en) 2010-12-27 2012-07-05 3Dmedia Corporation Methods, systems, and computer-readable storage media for identifying a rough depth map in a scene and for determining a stereo-base distance for three-dimensional (3d) content creation
US8274552B2 (en) 2010-12-27 2012-09-25 3Dmedia Corporation Primary and auxiliary image capture devices for image processing and related methods
ITFI20110045A1 (it) * 2011-03-26 2012-09-27 Menci Software S R L Apparato e metodo per la rilevazione e la ricostruzione di immagini in tre dimensioni.
US9292963B2 (en) * 2011-09-28 2016-03-22 Qualcomm Incorporated Three-dimensional object model determination using a beacon
JP2013096784A (ja) * 2011-10-31 2013-05-20 Toppan Printing Co Ltd 表面特性測定装置及びコンピュータプログラム
CN104080401B (zh) 2011-11-17 2016-08-24 泰克梅德3D公司 生成人体对象虚拟模型的方法及系统
US9055289B2 (en) * 2011-11-23 2015-06-09 Korea Institute Of Science And Technology 3D display system
FR2991448B1 (fr) * 2012-06-01 2015-01-09 Centre Nat Rech Scient Procede de mesures tridimensionnelles par stereo-correlation utilisant une representation parametrique de l'objet mesure
US9286530B2 (en) 2012-07-17 2016-03-15 Cognex Corporation Handheld apparatus for quantifying component features
US9291527B2 (en) * 2012-07-25 2016-03-22 TIREAUDIT.COM, Inc. System and method for analysis of surface features
KR101385601B1 (ko) 2012-09-17 2014-04-21 한국과학기술연구원 손동작 인식 및 인터렉션을 위한 장갑장치 및 방법
GB201219171D0 (en) * 2012-10-25 2012-12-12 Epipole Ltd Image acquisition apparatus
US9382654B2 (en) 2013-06-03 2016-07-05 Whirlpool Corporation Method of determining a load size in a laundry treating appliance
US9416479B2 (en) 2013-06-03 2016-08-16 Whirlpool Corporation Methods of determining a load size in a laundry treating appliance
ITBO20130407A1 (it) * 2013-07-26 2015-01-27 Swisslog Italia Spa Dispositivo e procedimento per singolarizzare prodotti raggruppati in blister
WO2015030623A1 (en) * 2013-09-02 2015-03-05 3Divi Company Methods and systems for locating substantially planar surfaces of 3d scene
WO2015077455A1 (en) 2013-11-25 2015-05-28 Digimarc Corporation Methods and systems for contextually processing imagery
US9958383B2 (en) * 2014-12-18 2018-05-01 Microsoft Technology Licensing, Llc. Range camera
WO2016103285A1 (en) * 2014-12-24 2016-06-30 Datalogic Ip Tech S.R.L. System and method for reading direct part marking (dpm) codes on objects
US10198872B2 (en) 2015-08-10 2019-02-05 The Board Of Trustees Of The Leland Stanford Junior University 3D reconstruction and registration of endoscopic data
WO2017054004A1 (en) 2015-09-24 2017-03-30 California Instutute Of Technology Systems and methods for data visualization using tree-dimensional displays
EP3358293A4 (en) * 2015-09-30 2019-04-10 Sony Corporation Image processing device, image processing method, and program
GB2544725A (en) * 2015-11-03 2017-05-31 Fuel 3D Tech Ltd Systems and methods for forming models of a three-dimensional objects
GB2544263A (en) * 2015-11-03 2017-05-17 Fuel 3D Tech Ltd Systems and methods for imaging three-dimensional objects
GB2544460A (en) * 2015-11-03 2017-05-24 Fuel 3D Tech Ltd Systems and methods for generating and using three-dimensional images
US10438036B1 (en) 2015-11-09 2019-10-08 Cognex Corporation System and method for reading and decoding ID codes on a curved, sloped and/or annular object
GB2545394A (en) * 2015-11-27 2017-06-21 Fuel 3D Tech Ltd Systems and methods for forming three-dimensional models of objects
CN105627926B (zh) * 2016-01-22 2017-02-08 尹兴 四像机组平面阵列特征点三维测量系统及测量方法
JP2018063693A (ja) * 2016-10-12 2018-04-19 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
GB2559978A (en) * 2017-02-22 2018-08-29 Fuel 3D Tech Limited Systems and methods for obtaining eyewear information
EP3589187A1 (en) 2017-03-01 2020-01-08 Canfield Scientific, Incorporated Three dimensional image capture
WO2019221767A1 (en) 2018-05-14 2019-11-21 Virtualitics, Inc. Systems and methods for high dimensional 3d data visualization
GB201809768D0 (en) 2018-06-14 2018-08-01 Fuel 3D Tech Limited Deformity edge detection

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047017B2 (ja) * 1991-07-31 2000-05-29 スタンレー電気株式会社 画像処理方法
US6858826B2 (en) * 1996-10-25 2005-02-22 Waveworx Inc. Method and apparatus for scanning three-dimensional objects
JP2003515829A (ja) * 1999-11-23 2003-05-07 キヤノン株式会社 画像処理装置
US6686921B1 (en) * 2000-08-01 2004-02-03 International Business Machines Corporation Method and apparatus for acquiring a set of consistent image maps to represent the color of the surface of an object
GB2370738B (en) * 2000-10-27 2005-02-16 Canon Kk Image processing apparatus
US6781618B2 (en) * 2001-08-06 2004-08-24 Mitsubishi Electric Research Laboratories, Inc. Hand-held 3D vision system
JP2003065736A (ja) * 2001-08-24 2003-03-05 Sanyo Electric Co Ltd 3次元モデリング装置
US20030074223A1 (en) 2001-09-24 2003-04-17 Scott Laboratories, Inc. Methods and apparatuses for assuring quality and safety of drug administration and medical products and kits
US20030215130A1 (en) * 2002-02-12 2003-11-20 The University Of Tokyo Method of processing passive optical motion capture data
JP4323779B2 (ja) * 2002-11-21 2009-09-02 日本電信電話株式会社 3次元形状計測方法および3次元形状計測装置
US7084386B2 (en) * 2003-05-02 2006-08-01 International Business Machines Corporation System and method for light source calibration
JP4200951B2 (ja) * 2003-08-28 2008-12-24 株式会社デンソーウェーブ 非接触型データキャリア、その端末機器およびアクセスシステム
CN100573579C (zh) * 2004-12-07 2009-12-23 松下电器产业株式会社 图像变换方法和装置、纹理映射方法和装置、服务器客户机系统
JP2006229833A (ja) * 2005-02-21 2006-08-31 Konica Minolta Photo Imaging Inc 撮像装置
JP5002144B2 (ja) 2005-09-30 2012-08-15 株式会社トプコン 三次元計測用投影装置及びシステム
US20070091174A1 (en) * 2005-09-30 2007-04-26 Topcon Corporation Projection device for three-dimensional measurement, and three-dimensional measurement system
JP2007206797A (ja) * 2006-01-31 2007-08-16 Omron Corp 画像処理方法および画像処理装置
GB0608841D0 (en) * 2006-05-04 2006-06-14 Isis Innovation Scanner system and method for scanning
WO2008000055A1 (en) * 2006-06-30 2008-01-03 Vx Technologies Inc. Methods for simultaneous multi-set point matching
FR2904455B1 (fr) * 2006-07-27 2009-04-17 Axs Ingenierie Procede d'imagerie informatise permettant une reconstruction tridimensionnelle a partir d'images radiographiques bidimensionnelles ; dispositif de mise en oeuvre.
CN100470590C (zh) * 2007-02-05 2009-03-18 武汉大学 相机标定方法及所用标定装置
US8105487B2 (en) * 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US8107721B2 (en) * 2008-05-29 2012-01-31 Mitsubishi Electric Research Laboratories, Inc. Method and system for determining poses of semi-specular objects

Also Published As

Publication number Publication date
US20110102550A1 (en) 2011-05-05
EP2272047A1 (en) 2011-01-12
GB0805971D0 (en) 2008-05-07
ES2384086T3 (es) 2012-06-29
EP2272047B1 (en) 2012-03-14
GB2458927B (en) 2012-11-14
WO2009122200A1 (en) 2009-10-08
NZ588740A (en) 2012-07-27
AT549703T (de) 2012-03-15
JP2011516849A (ja) 2011-05-26
GB2458927A (en) 2009-10-07
US8773508B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
US10401143B2 (en) Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device
Lachat et al. First experiences with Kinect v2 sensor for close range 3D modelling
Luhmann et al. Sensor modelling and camera calibration for close-range photogrammetry
JP5816778B2 (ja) 追加の検出装置を備えたレーザスキャナ
US9392262B2 (en) System and method for 3D reconstruction using multiple multi-channel cameras
US9967545B2 (en) System and method of acquiring three-dimensional coordinates using multiple coordinate measurment devices
Eltner et al. Analysis of different methods for 3D reconstruction of natural surfaces from parallel‐axes UAV images
JP6347789B2 (ja) 周囲環境内を光学的に走査及び計測するシステム
Ahmadabadian et al. A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs
Khoshelham Accuracy analysis of kinect depth data
CA2961921C (en) Camera calibration method using a calibration target
US10219866B2 (en) Optical tracking method and system based on passive markers
US8032327B2 (en) Auto-referenced sensing method for three-dimensional scanning
US9020240B2 (en) Method and surveying system for noncontact coordinate measurement on an object surface
CN103782321B (zh) 当3d扫描刚性对象时可移动对象的检测
US7098435B2 (en) Method and apparatus for scanning three-dimensional objects
JP5689681B2 (ja) 非接触プローブ
DE102007054906B4 (de) Verfahren zur optischen Vermessung der dreidimensionalen Geometrie von Objekten
US9207069B2 (en) Device for generating a three-dimensional model based on point cloud data
DE112013004489T5 (de) Laserscanner mit Dynamischer Einstellung der Winkel-Abtastgeschwindigkeit
US20170094251A1 (en) Three-dimensional imager that includes a dichroic camera
Murphy et al. Historic building information modelling (HBIM)
EP2212646B1 (de) Verfahren zur optischen vermessung von objekten unter verwendung eines triangulationsverfahrens
CN102112845B (zh) 用于表面特征自适应性三维扫描的系统
US9115986B2 (en) Device for optically scanning and measuring an environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5467404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250