JP5464722B2 - Embedded copper foil for microcircuit formation - Google Patents

Embedded copper foil for microcircuit formation Download PDF

Info

Publication number
JP5464722B2
JP5464722B2 JP2012526669A JP2012526669A JP5464722B2 JP 5464722 B2 JP5464722 B2 JP 5464722B2 JP 2012526669 A JP2012526669 A JP 2012526669A JP 2012526669 A JP2012526669 A JP 2012526669A JP 5464722 B2 JP5464722 B2 JP 5464722B2
Authority
JP
Japan
Prior art keywords
layer
copper foil
embedded
seed layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012526669A
Other languages
Japanese (ja)
Other versions
JP2013503965A (en
Inventor
ジョンホ リュウ
チャンヨル ヤン
Original Assignee
イルジン カッパー ホイル カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イルジン カッパー ホイル カンパニー リミテッド filed Critical イルジン カッパー ホイル カンパニー リミテッド
Publication of JP2013503965A publication Critical patent/JP2013503965A/en
Application granted granted Critical
Publication of JP5464722B2 publication Critical patent/JP5464722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0369Etching selective parts of a metal substrate through part of its thickness, e.g. using etch resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0376Etching temporary metallic carrier substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0384Etch stop layer, i.e. a buried barrier layer for preventing etching of layers under the etch stop layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、微細回路の形成のためのエンベデッド用銅箔に係り、特にバリヤー層を備えるエンベデッド用銅箔に関する。   The present invention relates to an embedded copper foil for forming a fine circuit, and more particularly to an embedded copper foil having a barrier layer.

電子部品の高集積化、小型化、軽量化に対応して、回路の微細化及び樹脂の厚さ減少が進められている。これに係わる一つの技術として、既存のエッチングによる回路の形成でない、樹脂内に回路を埋め込むエンベデッド方式の微細回路パターン技術が開発されている。   In response to the high integration, miniaturization, and weight reduction of electronic components, circuit miniaturization and resin thickness reduction are being promoted. As one technique related to this, an embedded type fine circuit pattern technique for embedding a circuit in a resin, which is not the formation of a circuit by existing etching, has been developed.

かかる微細回路パターンを有するエンベデッド配線基板の製造のために、既存の物理的に剥離できる剥離層が存在する極薄銅箔を使用しようとする試みが進められたが、この場合、剥離層を物理的に除去する間に、シワの発生、剥離層間への薬品浸透などの問題点が存在して、実用化に困難さを有している。また、エンベデッド方式の場合にも、シード層の粗度が高い場合、メッキレジスト層との密着性が低下して、回路の形成のための電解銅メッキ時に、シード層とメッキレジストパターン部との間のエッジにも銅メッキが形成され、微細パターンの配線間の間隔が狭くなるという問題が発生する。また、キャリア銅箔層、バリヤー層、シード層を順次に完全にエッチングさせる場合、シード層の粗度の高い部分が過度にエッチングされることで、回路の短絡の問題が発生する。   In order to manufacture an embedded wiring board having such a fine circuit pattern, an attempt was made to use an ultra-thin copper foil having an existing physically peelable release layer. However, there are problems such as generation of wrinkles and penetration of chemicals into the peeling layer during the removal, which makes it difficult to put into practical use. Also, in the case of the embedded method, when the seed layer has a high roughness, the adhesion with the plating resist layer is lowered, and the electrolytic layer is formed between the seed layer and the plating resist pattern portion during electrolytic copper plating for circuit formation. Copper plating is also formed at the edge between them, causing a problem that the interval between the wirings of the fine pattern becomes narrow. In addition, when the carrier copper foil layer, the barrier layer, and the seed layer are completely etched sequentially, a portion having a high roughness of the seed layer is excessively etched, thereby causing a problem of short circuit.

したがって、前記シード層とメッキレジスト層との密着性が向上することで、微細パターンの配線間の間隔が均一に得られるエンベデッドパターン用銅箔が要求される。   Therefore, there is a need for an embedded pattern copper foil that improves the adhesion between the seed layer and the plating resist layer so that the spacing between fine pattern wirings can be obtained uniformly.

本発明の一側面は、新たなエンベデッドパターン用銅箔を提供するところにある。   One aspect of the present invention is to provide a new copper foil for an embedded pattern.

本発明の一側面によって、キャリア銅箔層と、前記キャリア銅箔層の一表面に形成されたバリヤー層と、前記バリヤー層の表面に形成されたシード層と、からなり、前記バリヤー層は、ニッケルまたはニッケル合金層であり、前記シード層は、銅層であり、前記シード層の表面の平均粗度は、Rz:1.5μm未満、Rmax:2.5μm未満であるエンベデッドパターン用銅箔を提供する。   According to one aspect of the present invention, a carrier copper foil layer, a barrier layer formed on one surface of the carrier copper foil layer, and a seed layer formed on the surface of the barrier layer, the barrier layer comprises: An embedded pattern copper foil, which is a nickel or nickel alloy layer, the seed layer is a copper layer, and the average roughness of the surface of the seed layer is Rz: less than 1.5 μm and Rmax: less than 2.5 μm. provide.

本発明の一側面によれば、表面粗度の低いシード層を備える銅箔を使用することで、微細パターンの形成時に回路の短絡や回路幅の減少がなく、物理的な剥離によるシード層のシワ及び剥離層の薬品性浸透がないので、高密度の回路パターンを有するエンベデッド配線基板が得られる。   According to one aspect of the present invention, by using a copper foil including a seed layer with a low surface roughness, there is no short circuit or reduction in circuit width when forming a fine pattern, and the seed layer is physically peeled off. Since there is no chemical penetration of the wrinkles and the release layer, an embedded wiring board having a high-density circuit pattern can be obtained.

表面粗度の低いシード層を備える銅箔を使用して製造されたエンベデッド配線基板の製造過程の模式図である。It is a schematic diagram of the manufacturing process of the embedded wiring board manufactured using copper foil provided with a seed layer with low surface roughness. 表面粗度の高いシード層を備える銅箔を使用して製造されたエンベデッド配線基板の製造過程の模式図である。It is a schematic diagram of the manufacturing process of the embedded wiring board manufactured using copper foil provided with a seed layer with high surface roughness. 実施例1で製造されたエンベデッドパターン用銅箔の表面の走査電子顕微鏡の写真である。2 is a scanning electron microscope photograph of the surface of a copper foil for embedded pattern manufactured in Example 1. FIG. 比較例1で製造されたエンベデッドパターン用銅箔の表面の走査電子顕微鏡の写真である。4 is a scanning electron microscope photograph of the surface of the embedded pattern copper foil produced in Comparative Example 1. FIG. キャリア銅箔層の表面にそれぞれのバリヤー層、シード層、防錆層を連続的に電着できる表面処理器の模式図である。It is a schematic diagram of a surface treatment device that can continuously electrodeposit each barrier layer, seed layer, and rust prevention layer on the surface of a carrier copper foil layer.

以下では、本発明の一具現例によるエンベデッドパターン用銅箔、エンベデッド配線基板の製造方法、及び前記方法で製造されたエンベデッド配線基板に関してさらに詳細に説明する。   Hereinafter, a copper foil for an embedded pattern, a method of manufacturing an embedded wiring board, and an embedded wiring board manufactured by the method according to an embodiment of the present invention will be described in more detail.

例示的な一具現例によるエンベデッドパターン用銅箔は、キャリア銅箔層と、前記キャリア銅箔層の一表面に形成されたバリヤー層と、前記バリヤー層の表面に形成されたシード層(回路形成前層)と、からなり、前記バリヤー層が、ニッケルまたはニッケル合金層であり、前記シード層が、銅層であり、前記シード層の表面の平均粗度が、Rz:1.5μm未満、Rmax:2.5μm未満である。   An embedded pattern copper foil according to an exemplary embodiment includes a carrier copper foil layer, a barrier layer formed on one surface of the carrier copper foil layer, and a seed layer (circuit formation) formed on the surface of the barrier layer. The barrier layer is a nickel or nickel alloy layer, the seed layer is a copper layer, and the average roughness of the surface of the seed layer is Rz: less than 1.5 μm, Rmax : Less than 2.5 μm.

前記シード層の表面の平均粗度が、Rz:1.5μm未満、Rmax:2.5μm未満の範囲を超えれば、シード層の表面粗度の高い部位とメッキレジスト層との間に、密着性の低下によるエッジ部に空隙が発生しうる。したがって、微細回路パターンの銅メッキ層の形成ステップで、前記空隙に銅メッキ層が形成されて回路幅が減少し、回路幅が不均一になるという問題が発生しうる。また、最終的なエンベデッド基板を製造するために、キャリア銅箔層、バリヤー層、シード層を順次に除去する間に、高い粗度を有する部位が相対的に過度にエッチングされることで、回路の短絡などの不良が発生しうる。   If the average roughness of the surface of the seed layer exceeds the range of Rz: less than 1.5 μm and Rmax: less than 2.5 μm, the adhesion between the portion having a high surface roughness of the seed layer and the plating resist layer An air gap may be generated at the edge portion due to the decrease in. Therefore, in the step of forming a copper plating layer having a fine circuit pattern, a copper plating layer is formed in the gap, so that the circuit width is reduced and the circuit width becomes non-uniform. In addition, in order to manufacture the final embedded substrate, a portion having high roughness is relatively excessively etched while the carrier copper foil layer, the barrier layer, and the seed layer are sequentially removed, so that a circuit is obtained. Defects such as short circuit may occur.

前記エンベデッドパターン用銅箔において、前記バリヤー層は、ニッケルまたはニッケル合金層である。前記ニッケルまたはニッケル合金層は、銅からなるキャリア銅箔層及びシード層のエッチングステップで、銅エッチング液に溶けずに安定的であり、バリヤー層のエッチングステップで、残留物なしに完全にエッチングされる。   In the embedded pattern copper foil, the barrier layer is a nickel or nickel alloy layer. The nickel or nickel alloy layer is stable without dissolving in the copper etchant in the copper carrier copper foil layer and seed layer etching step, and is completely etched without residue in the barrier layer etching step. The

前記エンベデッドパターン用銅箔において、前記キャリア銅箔層の厚さは、18ないし70μmである。さらに望ましくは、前記キャリア銅箔層の厚さは、18ないし35μmである。前記キャリア銅箔層の厚さが厚すぎれば、エンベデッドパターンの形成後に、キャリア銅箔層の除去時間が長くなり、エッチング液の寿命も短縮されるなど生産性が低下する。前記キャリア銅箔層の厚さが薄すぎれば、作業過程で前記キャリア銅箔層の支持台の役割が低下して、シワが多く発生しうる。また、銅回路パターンの形成過程で、キャリア銅箔層が速くエッチングされることで、相対的にニッケルバリヤー層が過度にエッチングされる。   In the embedded pattern copper foil, the carrier copper foil layer has a thickness of 18 to 70 μm. More preferably, the thickness of the carrier copper foil layer is 18 to 35 μm. If the thickness of the carrier copper foil layer is too thick, after the embedded pattern is formed, the removal time of the carrier copper foil layer becomes long and the life of the etching solution is shortened. If the thickness of the carrier copper foil layer is too thin, the role of the support of the carrier copper foil layer is lowered during the work process, and many wrinkles may occur. Further, in the process of forming the copper circuit pattern, the carrier copper foil layer is quickly etched, so that the nickel barrier layer is relatively excessively etched.

前記エンベデッドパターン用銅箔において、前記バリヤー層の厚さは、0.1ないし10μmである。さらに望ましくは、前記バリヤー層の厚さは、0.3ないし3μmである。前記バリヤー層の厚さが厚すぎれば、メッキの表面が粗くなって、シード層のメッキ時に表面粗度が高くなるという問題を発生させ、かつ、エッチング時間が長くなり、エッチング液の寿命も短縮されるなど生産性が低下する。前記バリヤー層の厚さが薄すぎれば、メッキ層でピンホールなどのメッキの不良により、キャリア銅箔除去過程でピンホールを通じて微細銅回路層もエッチングされる。前記バリヤー層は、表面粗度が低い。   In the embedded pattern copper foil, the barrier layer has a thickness of 0.1 to 10 μm. More preferably, the barrier layer has a thickness of 0.3 to 3 μm. If the barrier layer is too thick, the surface of the plating becomes rough, resulting in a problem that the surface roughness becomes high when the seed layer is plated, and the etching time becomes longer and the life of the etching solution is shortened. Productivity decreases. If the barrier layer is too thin, the fine copper circuit layer is also etched through the pinhole in the process of removing the carrier copper foil due to plating defects such as pinholes in the plating layer. The barrier layer has a low surface roughness.

前記エンベデッドパターン用銅箔において、前記バリヤー層は、前記シード層用エッチング液に対して非活性である。すなわち、前記バリヤー層は、シード層のエッチングに使われるエッチング液によりエッチングされなくてもよい。前記バリヤー層が前記シード層用エッチング液に対して非活性であるので、安定的なバリヤー層を形成できる。   In the embedded pattern copper foil, the barrier layer is inactive to the seed layer etchant. That is, the barrier layer may not be etched with an etchant used for etching the seed layer. Since the barrier layer is inactive to the seed layer etchant, a stable barrier layer can be formed.

前記エンベデッドパターン用銅箔において、前記シード層の厚さは、0.1ないし10μmである。さらに望ましくは、前記シード層の厚さは、2ないし5μmである。前記シード層の厚さが厚すぎれば、エンベデッドパターンの形成後にシード層を除去するためのエッチング時間が長くなり、かつエッチング液の寿命も短縮されるなど生産性が低下する。前記シード層の厚さが薄すぎれば、メッキレジストの形成及び微細パターンの形成のための現像過程で、シード層の表面改質ステップ及びその他の洗浄工程時間が不足して、微細回路パターンの銅メッキ形成過程で、ピンホール及びその他のメッキ不良が発生しうる。   In the embedded pattern copper foil, the seed layer has a thickness of 0.1 to 10 μm. More preferably, the seed layer has a thickness of 2 to 5 μm. If the thickness of the seed layer is too thick, the etching time for removing the seed layer after the formation of the embedded pattern becomes long, and the productivity of the etching solution decreases, for example, the life of the etching solution is shortened. If the thickness of the seed layer is too thin, the development process for forming the plating resist and the formation of the fine pattern is insufficient for the surface modification step of the seed layer and other cleaning process time, and the copper of the fine circuit pattern. Pin holes and other plating defects may occur during the plating process.

前記エンベデッドパターン用銅箔において、前記バリヤー層の形成に使われるメッキ液は、ニッケル供給源としてスルファミン酸ニッケル、硫酸ニッケル、塩化ニッケルなどを含む。前記メッキ液は、pH調節剤として炭酸ニッケル及び硫酸を含む。前記メッキ液は、メッキ速度調節及びメッキ分解を防止する錯化剤としてクエン酸、グリコール酸、乳酸などを含み、メッキ膜の性質を改善する湿潤剤としてアリルスルホン酸ナトリウム、ベンゼンスルホン酸、ラウリルスルホン酸ナトリウムなどを含む。また、前記メッキ液は、光沢剤を含んでもよい。   In the embedded pattern copper foil, the plating solution used to form the barrier layer includes nickel sulfamate, nickel sulfate, nickel chloride and the like as a nickel supply source. The plating solution contains nickel carbonate and sulfuric acid as pH adjusting agents. The plating solution contains citric acid, glycolic acid, lactic acid and the like as complexing agents for controlling plating rate and preventing plating decomposition, and sodium allyl sulfonate, benzene sulfonic acid, lauryl sulfone as wetting agents to improve the properties of the plating film. Contains sodium acid. The plating solution may include a brightener.

前記エンベデッドパターン用銅箔において、前記シード層は、光沢メッキにより形成される。光沢メッキにより形成される前記シード層は、低い表面粗度を有する。   In the embedded pattern copper foil, the seed layer is formed by gloss plating. The seed layer formed by bright plating has a low surface roughness.

前記光沢メッキに使われるメッキ液は、シアン化銅、硫酸銅などを含む。例えば、前記光沢メッキに使われるメッキ液は、硫酸銅五水和物(CuSO5HO)80〜400g/L、硫酸(HSO)10〜250g/L、塩素イオン(Cl)1〜100ppm、光沢促進剤1〜100ppm、キャリア剤1〜100ppm及び電着抑制剤1〜100ppmを含み、必要に応じて、電解銅箔の強度を高めるために、窒素含有化合物などをさらに含んでもよい。 The plating solution used for the bright plating includes copper cyanide, copper sulfate and the like. For example, the plating solution used for the bright plating is copper sulfate pentahydrate (CuSO 4 5H 2 O) 80 to 400 g / L, sulfuric acid (H 2 SO 4 ) 10 to 250 g / L, chlorine ion (Cl ). 1 to 100 ppm, gloss accelerator 1 to 100 ppm, carrier agent 1 to 100 ppm and electrodeposition inhibitor 1 to 100 ppm, and if necessary, to further increase the strength of the electrolytic copper foil, a nitrogen-containing compound or the like may be further included. Good.

前記光沢促進剤は、硫黄化合物が使われる。前記硫黄化合物に含まれる硫黄は、銅に対して高い親和力を有している。したがって、前記硫黄は、負極によく吸着されて、金属イオンが活性点に移動することを妨害することで、メッキされる粒子の微細化を促進する役割を行う。例えば、ビス−(3−スルホプロピル)−ジスルフィド
ジナトリウム塩(SPS)、メルカプトプロパンスルホン酸(MPS)、N,N−ジメチルジチオカルバミン酸からなる群から選択された一つ以上を含むが、それらに限定されず、当該技術分野で使われる光沢促進剤はいずれも使われる。
The gloss accelerator is a sulfur compound. Sulfur contained in the sulfur compound has a high affinity for copper. Therefore, the sulfur is well adsorbed on the negative electrode and prevents metal ions from moving to the active site, thereby promoting the miniaturization of the particles to be plated. For example, including one or more selected from the group consisting of bis- (3-sulfopropyl) -disulfide disodium salt (SPS), mercaptopropanesulfonic acid (MPS), N, N-dimethyldithiocarbamic acid, Without limitation, any gloss accelerator used in the art can be used.

前記キャリア剤は、負極の表面に吸着して、金属イオンの拡散距離を延長することで、銅の急激な析出を抑制する。また、前記キャリア剤は、負極の表面に吸着して、金属イオンの拡散経路を変化させることで、活性化分極を拡大させて、結果的に銅の電着の均一性を改善する役割を行う。例えば、ポリエチレングリコール、ポリプロピレングリコールなどのC−O結合を有する負極との親和力が高いポリマー、及びヒドロキシエチルセルロース(HEC)またはそれらの混合物を含むが、それらに限定されず、当該技術分野で使われるキャリア剤はいずれも使われる。   The carrier agent is adsorbed on the surface of the negative electrode and extends the diffusion distance of metal ions, thereby suppressing rapid precipitation of copper. In addition, the carrier agent is adsorbed on the surface of the negative electrode and changes the diffusion path of metal ions, thereby expanding the activation polarization and consequently improving the uniformity of copper electrodeposition. . For example, a carrier having a high affinity with a negative electrode having a C—O bond, such as polyethylene glycol and polypropylene glycol, and hydroxyethyl cellulose (HEC) or a mixture thereof, but is not limited thereto, and is a carrier used in the art. Any agent is used.

前記電着抑制剤は、相対的に電流密度の高い部位によく吸着され、活性化分極を拡大させて銅の析出を遅らせる役割を行う。例えば、ゼラチン及び阿膠のようなポリアミン形態のアミン、アミドなどの窒素含有結合を有する界面活性剤、またはそれらの混合物を含むが、それらに限定されず、当該技術分野で使われる電着抑制剤はいずれも使われる。   The electrodeposition inhibitor is well adsorbed at a portion having a relatively high current density, and plays a role of delaying copper deposition by expanding activation polarization. Examples of electrodeposition inhibitors used in the art include, but are not limited to, surfactants having nitrogen-containing bonds, such as amines in polyamine forms such as gelatin and glue, amides, or mixtures thereof. Both are used.

前記エンベデッドパターン用銅箔は、前記シード層上に防錆層がさらに形成されてもよい。前記防錆層は、Zn,Ni,Cr,Mo,Fe,Snのうち一つ以上の成分を含む。   In the embedded pattern copper foil, a rust prevention layer may be further formed on the seed layer. The rust preventive layer includes one or more components of Zn, Ni, Cr, Mo, Fe, and Sn.

例示的な他の具現例によるエンベデッドパターン用銅箔の製造方法は、キャリア銅箔層にバリヤー層及びシード層を連続的に電着して製造される。また、前記エンベデッドパターン用銅箔は、キャリア銅箔層にバリヤー層、シード層及び防錆層を連続的に電着して製造される。例えば、前記エンベデッドパターン用銅箔は、図5に示すように、前記バリヤー層とシード層とを連続的にメッキするために、相異なる電解液が持続的に供給されるそれぞれの電解槽、負電位が印加されるそれぞれの通電ロール及び各電解槽にアノードを備えた表面処理器を利用して、前記キャリア銅箔層の一表面にバリヤー層、シード層及び防錆層を連続的に電着して製造される。   According to another exemplary embodiment, a copper foil for an embedded pattern is manufactured by continuously electrodepositing a barrier layer and a seed layer on a carrier copper foil layer. The embedded pattern copper foil is manufactured by continuously electrodepositing a barrier copper layer, a seed layer, and a rust preventive layer on a carrier copper foil layer. For example, as shown in FIG. 5, the embedded pattern copper foil is formed in each electrolytic cell, negative electrode, to which different electrolytes are continuously supplied in order to continuously plate the barrier layer and the seed layer. A barrier layer, a seed layer, and a rust preventive layer are continuously electrodeposited on one surface of the carrier copper foil layer using each energizing roll to which potential is applied and a surface treatment device equipped with an anode in each electrolytic cell. Manufactured.

例示的な他の具現例によるエンベデッド配線基板の製造方法は、キャリア銅箔層、バリヤー層及びシード層からなるエンベデッドパターン用銅箔を準備するステップと、前記エンベデッドパターン用銅箔のシード層の表面に、メッキレジスト層を形成するステップと、前記メッキレジスト層が形成されていない領域に、微細パターンの形成のための微細銅メッキ層のメッキステップと、前記メッキレジスト層を完全に除去して、微細パターンを有する銅メッキ層が形成されたエンベデッドパターン用銅箔を準備するステップと、前記微細パターンを有する銅メッキ層を絶縁層に含浸させて、銅クラッド積層板を製造するステップと、前記絶縁層の反対面に存在するキャリア銅箔層を除去して、バリヤー層を露出させるステップと、前記バリヤー層を除去して、シード層を露出させるステップと、前記シード層を除去するステップと、を含む。   An embedded wiring board manufacturing method according to another exemplary embodiment includes a step of preparing a copper foil for an embedded pattern including a carrier copper foil layer, a barrier layer, and a seed layer, and a surface of the seed layer of the copper foil for embedded pattern In addition, a step of forming a plating resist layer, a plating step of a fine copper plating layer for forming a fine pattern in a region where the plating resist layer is not formed, and completely removing the plating resist layer, Preparing a copper foil for an embedded pattern in which a copper plating layer having a fine pattern is formed; impregnating the copper plating layer having the fine pattern into an insulating layer to produce a copper clad laminate; and Removing the carrier copper foil layer present on the opposite side of the layer to expose the barrier layer; and By removing the layer includes exposing a seed layer, and a step of removing the seed layer.

前記製造方法は、図1を参照して、さらに具体的に説明する。図1の最初のステップで示すように、キャリア銅箔層、前記キャリア銅箔層の一面上に形成されたバリヤー層、及び前記バリヤー層上に形成されたシード層からなるエンベデッドパターン用銅箔が準備される。   The manufacturing method will be described more specifically with reference to FIG. As shown in the first step of FIG. 1, an embedded pattern copper foil comprising a carrier copper foil layer, a barrier layer formed on one surface of the carrier copper foil layer, and a seed layer formed on the barrier layer is provided. Be prepared.

前記準備されるエンベデッドパターン用銅箔は、前述したエンベデッドパターン用銅箔が使われる。すなわち、前記製造方法で使われるエンベデッドパターン用銅箔のシード層の表面粗度が低いので、メッキレジスト層とシード層との密着性が向上する。したがって、メッキレジスト層が部分的に現像された後で得られるパターンのエッジで、シード層とメッキレジスト層との空隙の発生が抑制される。   As the prepared embedded pattern copper foil, the aforementioned embedded pattern copper foil is used. That is, since the surface roughness of the seed layer of the copper foil for embedded patterns used in the manufacturing method is low, the adhesion between the plating resist layer and the seed layer is improved. Therefore, the generation of voids between the seed layer and the plating resist layer is suppressed at the edge of the pattern obtained after the plating resist layer is partially developed.

次いで、前記シード層の表面にメッキレジスト層が形成され、前記メッキレジスト層が形成されていない領域に、シード層を電極として微細銅メッキ層を形成した後、メッキレジストを完全に除去することで、最終的に微細パターンが形成される。前記メッキレジスト層の形成に使われるメッキレジストの種類は、特に限定されず、当該技術分野で使われるものであれば、特に限定されない。メッキレジスト層の現像も、当該技術分野で知られた従来の技術を使用して行われる。   Next, a plating resist layer is formed on the surface of the seed layer, and after forming a fine copper plating layer using the seed layer as an electrode in an area where the plating resist layer is not formed, the plating resist is completely removed. Finally, a fine pattern is formed. The kind of plating resist used for forming the plating resist layer is not particularly limited, and is not particularly limited as long as it is used in the technical field. Development of the plating resist layer is also performed using conventional techniques known in the art.

次いで、前記メッキレジスト層が形成されていない領域に、シード層を電極として銅メッキ層を電解メッキし、前記メッキレジストを完全に除去する。前記銅メッキ層の形成に使われるメッキ液として、電解メッキに通常的に使われる銅メッキ液が使われる。   Next, a copper plating layer is electrolytically plated using the seed layer as an electrode in a region where the plating resist layer is not formed, and the plating resist is completely removed. As a plating solution used for forming the copper plating layer, a copper plating solution usually used for electrolytic plating is used.

そして、前記微細パターンを有する銅メッキ層が、プリプレグのような絶縁層に含浸されて、銅クラッド積層板が製造される。最後に、前記銅クラッド積層板で、キャリア銅箔層、バリヤー層及びシード層が順次にエッチングされて、最終的に微細エンベデッド配線基板が得られる。前記プリプレグは、当該技術分野で通常的に使われるエポキシ樹脂、ポリイミド、フェノール、ビスマレイミドトリアジン樹脂(BT)などが使われ、特に限定されない。   And the copper plating layer which has the said fine pattern is impregnated in an insulating layer like a prepreg, and a copper clad laminated board is manufactured. Finally, a carrier copper foil layer, a barrier layer, and a seed layer are sequentially etched with the copper clad laminate, and a fine embedded wiring board is finally obtained. The prepreg may be an epoxy resin, polyimide, phenol, bismaleimide triazine resin (BT) or the like that is commonly used in the technical field, and is not particularly limited.

これに対し、図2に示すように、表面粗度の高いシード層が存在する銅箔では、シード層の表面が不均一であるため、メッキレジスト層とシード層との密着性が低下する。したがって、メッキレジスト層が部分的に現像された後で得られるパターンのエッジで、シード層とメッキレジスト層との空隙が発生し、前記空隙に銅メッキ層が浸透することで、回路幅が狭くなり、全体的な回路間隔が不均一になることで、均一な微細回路パターンを具現しがたい。   On the other hand, as shown in FIG. 2, in the copper foil in which the seed layer having a high surface roughness exists, the surface of the seed layer is non-uniform, so that the adhesion between the plating resist layer and the seed layer is lowered. Therefore, a gap between the seed layer and the plating resist layer is generated at the edge of the pattern obtained after the plating resist layer is partially developed, and the copper plating layer penetrates into the gap, thereby reducing the circuit width. Therefore, it is difficult to implement a uniform fine circuit pattern because the entire circuit interval becomes non-uniform.

前記製造方法において、前記キャリア銅箔層及びシード層を選択的に除去するエッチング液は、硫酸、過酸化水素及び硝酸からなる群から選択される。   In the manufacturing method, the etching solution for selectively removing the carrier copper foil layer and the seed layer is selected from the group consisting of sulfuric acid, hydrogen peroxide, and nitric acid.

前記製造方法において、バリヤー層を選択的に除去するエッチング液は、550ml/Lないし650ml/L濃度の特級硫酸溶液、硫酸・硝酸及び添加剤の混合溶液からなる群から選択される。例えば、600ないし620ml/L濃度の硫酸溶液を使用して、前記溶液中でバリヤー層であるニッケル層またはニッケル合金層を選択的にエッチングできる。   In the manufacturing method, the etching solution for selectively removing the barrier layer is selected from the group consisting of a special grade sulfuric acid solution having a concentration of 550 ml / L to 650 ml / L, and a mixed solution of sulfuric acid / nitric acid and an additive. For example, by using a sulfuric acid solution having a concentration of 600 to 620 ml / L, a nickel layer or a nickel alloy layer as a barrier layer can be selectively etched in the solution.

例示的なさらに他の具現例によるエンベデッド配線基板は、前記エンベデッド配線基板の製造方法により製造される。前記エンベデッド配線基板の製造方法により製造された配線基板は、微細配線間の距離が均一であるので、不良率が低く、生産性に優れている。   An embedded wiring board according to still another exemplary embodiment is manufactured by the method for manufacturing an embedded wiring board. A wiring board manufactured by the method of manufacturing an embedded wiring board has a low defect rate and excellent productivity because the distance between the fine wirings is uniform.

以下、望ましい実施例を挙げて、本発明をさらに詳細に説明するが、本発明がこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to preferred examples, but the present invention is not limited thereto.

(エンベデッド配線基板用銅箔の製造)
実施例1
1.キャリア箔の準備
厚さ20μmの電解銅箔を100g/Lの硫酸に5秒間浸漬して酸洗処理後、純水で洗浄した。
(Manufacture of copper foil for embedded wiring boards)
Example 1
1. Preparation of Carrier Foil An electrolytic copper foil having a thickness of 20 μm was immersed in 100 g / L sulfuric acid for 5 seconds, pickled, and then washed with pure water.

2.バリヤー層の形成
下記条件のメッキ浴でNiメッキによるバリヤー層を形成した。
スルファミン酸ニッケル:350〜600g/L
ホウ酸(HBO):15〜40g/L
メッキ浴の温度:40〜60℃
電流密度:20A/dm
形成されたバリヤー層の厚さは、2μmであった。
2. Formation of Barrier Layer A barrier layer was formed by Ni plating in a plating bath under the following conditions.
Nickel sulfamate: 350-600 g / L
Boric acid (H 3 BO 3 ): 15-40 g / L
Plating bath temperature: 40-60 ° C
Current density: 20 A / dm 2
The thickness of the formed barrier layer was 2 μm.

3.シード層(微細回路前層)の形成
下記組成を有する銅メッキ浴を使用して、下記条件で光沢メッキ層を形成した。
メッキ浴の温度:25〜30℃
電流密度:10〜20A/dm
硫酸銅光沢メッキ浴の組成
CuSO5HO:(200)g/L,HSO:100g/L
塩素イオン(Cl):5〜30ppm
メルカプトプロパンスルホン酸(MPS、光沢促進剤):5〜10ppm
ヒドロキシエチルセルロース(キャリア剤):1〜5ppm
ゼラチン(電着抑制剤):10〜20ppm
以上で形成されたシード層の厚さは、4μmであった。
3. Formation of seed layer (pre-fine circuit layer) A bright plating layer was formed under the following conditions using a copper plating bath having the following composition.
Plating bath temperature: 25-30 ° C
Current density: 10-20 A / dm 2
Composition of copper sulfate bright plating bath CuSO 4 5H 2 O: (200) g / L, H 2 SO 4 : 100 g / L
Chlorine ion (Cl ): 5 to 30 ppm
Mercaptopropanesulfonic acid (MPS, gloss accelerator): 5-10 ppm
Hydroxyethyl cellulose (carrier agent): 1 to 5 ppm
Gelatin (electrodeposition inhibitor): 10 to 20 ppm
The seed layer formed as described above had a thickness of 4 μm.

実施例3
実施例1と同じ方法でバリヤー層及びシード層を形成し、防錆層を下記方法で前記シード層上に形成させた。
Example 3
A barrier layer and a seed layer were formed by the same method as in Example 1, and a rust preventive layer was formed on the seed layer by the following method.

4.防錆層の形成
メッキ浴の温度:25〜30℃
電流密度:0.5〜1A/dm
クロム酸(CrO):1.5g/L
処理時間:4秒
前記条件で防錆層を形成した。
4). Formation of antirust layer Plating bath temperature: 25-30 ° C
Current density: 0.5-1 A / dm 2
Chromic acid (CrO 3 ): 1.5 g / L
Treatment time: 4 seconds A rust prevention layer was formed under the above conditions.

比較例1
シード層の形成ステップで、光沢メッキの代わりに、下記組成を有する一般的な電解メッキ用のメッキ浴を使用して、一般的な電解メッキ層を形成した点を除いては、実施例1と同じ方法でエンベデッドパターン用銅箔を製造した。
メッキ浴の温度:40〜60℃
電流密度:10〜20A/dm
硫酸銅メッキ浴の組成
CuSO5HO:200g/L,HSO:100g/L
塩素イオン(Cl):5〜30ppm
この時、形成されたシード層の厚さは、4μmであった。
Comparative Example 1
Example 1 is the same as Example 1 except that, in the seed layer formation step, a general electrolytic plating layer having the following composition is used instead of the bright plating, and a general electrolytic plating layer is formed. The copper foil for embedded patterns was manufactured by the same method.
Plating bath temperature: 40-60 ° C
Current density: 10-20 A / dm 2
Composition of copper sulfate plating bath CuSO 4 5H 2 O: 200 g / L, H 2 SO 4 : 100 g / L
Chlorine ion (Cl ): 5 to 30 ppm
At this time, the thickness of the formed seed layer was 4 μm.

(エンベデッド配線基板の製造)
実施例2
前記実施例1で製造されたエンベデッド用銅箔のシード層の表面に、メッキレジスト層を形成させた。前記メッキレジスト層の形成には、GMP株式会社のドライフィルムが使われた。前記メッキレジスト層を部分的に現像して、微細パターンを形成させた。次いで、銅メッキ液を使用して、微細パターン銅メッキ層を形成させた。次いで、洗浄液を使用して、前記メッキレジスト層を完全に除去した。次いで、前記微細パターンが形成された銅箔をプリプレグと接触するように対向して配置し、それを積層して熱間圧着して銅クラッド積層板を製造した。次いで、エッチング液を使用して、キャリア銅箔層、バリヤー層及びシード層を順次にエッチングして、エンベデッド配線基板を製造した。
(Manufacture of embedded wiring boards)
Example 2
A plating resist layer was formed on the surface of the seed layer of the embedded copper foil manufactured in Example 1. A dry film made by GMP Corporation was used for forming the plating resist layer. The plating resist layer was partially developed to form a fine pattern. Next, a fine pattern copper plating layer was formed using a copper plating solution. Next, the plating resist layer was completely removed using a cleaning solution. Next, the copper foil on which the fine pattern was formed was disposed so as to be in contact with the prepreg, and was laminated and hot pressed to produce a copper clad laminate. Next, the carrier copper foil layer, the barrier layer, and the seed layer were sequentially etched using an etching solution to manufacture an embedded wiring board.

前記微細パターン銅メッキ層は、前記シード層と同じメッキ液の条件でメッキの厚さを35μmに形成した。   The fine pattern copper plating layer was formed with a plating thickness of 35 μm under the same plating solution conditions as the seed layer.

前記キャリア銅箔層及びシード層(光沢メッキ銅層)のエッチングに使われるエッチング液及びエッチング条件は、次の通りである。   Etching solutions and etching conditions used for etching the carrier copper foil layer and seed layer (bright plated copper layer) are as follows.

硫酸600ml/L、過酸化水素60ml/L、添加剤60ml/Lのエッチング液の条件で、キャリア銅箔を完全にエッチングした。   The carrier copper foil was completely etched under the conditions of an etching solution of 600 ml / L sulfuric acid, 60 ml / L hydrogen peroxide, and 60 ml / L additive.

前記バリヤー層(ニッケル層)のエッチングに使われるエッチング液及びエッチング条件は、次の通りである。   Etching solutions and etching conditions used for etching the barrier layer (nickel layer) are as follows.

硫酸650ml/Lの溶液で、キャリア銅箔層及びシード層のエッチングなしにバリヤー層のみを選択的にエッチングした。   Only a barrier layer was selectively etched with a 650 ml / L sulfuric acid solution without etching of the carrier copper foil layer and the seed layer.

前記条件でエンベデッド基板を製作した。   An embedded substrate was manufactured under the above conditions.

比較例2
前記比較例1で製造されたエンベデッド用銅箔により、前記実施例2と同じ方法でエンベデッド基板を製作した。
Comparative Example 2
An embedded substrate was manufactured by the same method as in Example 2 using the embedded copper foil manufactured in Comparative Example 1.

評価例1:エンベデッドパターン用銅箔の表面粗度の評価
前記実施例1及び比較例1で製造された銅箔の表面(シード層)に対する走査電子顕微鏡写真を測定して、図3及び図4に示し、表面粗度Rz及びRmaxをIPC TM 650 2.2 17A方法によって測定した。測定結果を下記表1に示した。
Evaluation Example 1: Evaluation of Surface Roughness of Embedded Pattern Copper Foil A scanning electron micrograph of the copper foil surface (seed layer) produced in Example 1 and Comparative Example 1 was measured, and FIG. 3 and FIG. The surface roughness Rz and Rmax were measured by the IPC TM 650 2.2 17A method. The measurement results are shown in Table 1 below.

図3及び図4に示すように、実施例1で製造された銅箔は、表面粗度が非常に低くて平坦な表面を表したが、比較例1で製造された銅箔は、表面粗度が高くて不規則な表面を表した。   As shown in FIGS. 3 and 4, the copper foil manufactured in Example 1 exhibited a flat surface with a very low surface roughness, but the copper foil manufactured in Comparative Example 1 had a surface roughness. It represents a highly irregular surface.

評価例2:エンベデッド微細パターンの均一性の評価
前記実施例1及び比較例1で製造された銅箔を利用して、図1及び図2の順にエンベデッド基板を製造した後、エンベデッド微細パターンの断面に対する走査電子顕微鏡の測定結果を下記基準によって評価した。評価結果を下記表1に示した。
Evaluation Example 2: Evaluation of Uniformity of Embedded Fine Pattern After using the copper foil produced in Example 1 and Comparative Example 1 to produce an embedded substrate in the order of FIG. 1 and FIG. 2, the cross section of the embedded fine pattern The measurement result of the scanning electron microscope was evaluated according to the following criteria. The evaluation results are shown in Table 1 below.

<回路幅の減少>
X:回路幅が減少した地点が発見されない
△:回路幅が減少した地点が部分的に発見される
O:回路幅が減少した地点が多数発見される
<Reduction in circuit width>
X: A point where the circuit width decreases is not found △: A point where the circuit width decreases is partially found O: Many points where the circuit width decreases are found

<回路の短絡>
X:回路の短絡地点が発見されない
△:回路の短絡地点が部分的に発見される
O:回路の短絡地点が多数発見される
<Short circuit>
X: Circuit short-circuit point is not found Δ: Circuit short-circuit point is partially found O: Many circuit short-circuit points are found

前記表1に示すように、本発明の例示的な具現例による銅箔は、比較例の銅箔に比べてエンベデッド微細パターンを製造する場合、微細パターンの不良率が顕著に改善された。   As shown in Table 1, when the copper foil according to the exemplary embodiment of the present invention produces an embedded fine pattern as compared with the copper foil of the comparative example, the defect rate of the fine pattern is remarkably improved.

本発明の一側面によれば、表面粗度の低いシード層を備える銅箔を使用することで、微細パターンの形成時に回路短絡や回路幅の減少がなく、物理的な剥離によるシード層のシワ及び剥離層の薬品性浸透がないので、高密度の回路パターンを有するエンベデッド配線基板が得られる。   According to one aspect of the present invention, by using a copper foil having a seed layer with a low surface roughness, there is no short circuit or reduction in circuit width when forming a fine pattern, and the wrinkle of the seed layer due to physical peeling is eliminated. Since there is no chemical penetration of the release layer, an embedded wiring board having a high-density circuit pattern can be obtained.

Claims (10)

キャリア銅箔層と、
前記キャリア銅箔層の一表面に形成されたバリヤー層と、
前記バリヤー層の表面に形成されたシード層と、からなり、
前記バリヤー層は、ニッケルまたはニッケル合金層であり、前記シード層は、銅層であり、
前記シード層の表面の平均粗度は、Rz:1.5μm未満、Rmax:2.5μm未満であることを特徴とするエンベデッドパターン用銅箔。
A carrier copper foil layer;
A barrier layer formed on one surface of the carrier copper foil layer;
A seed layer formed on the surface of the barrier layer,
The barrier layer is a nickel or nickel alloy layer, the seed layer is a copper layer;
The average roughness of the surface of the seed layer is Rz: less than 1.5 μm and Rmax: less than 2.5 μm.
前記バリヤー層の厚さは、0.1ないし10μmである請求項1に記載のエンベデッドパターン用銅箔。   The copper foil for embedded patterns according to claim 1, wherein the barrier layer has a thickness of 0.1 to 10 µm. 前記バリヤー層は、前記シード層用のエッチング液に対して非活性である請求項1に記載のエンベデッドパターン用銅箔。   The copper foil for an embedded pattern according to claim 1, wherein the barrier layer is inactive with respect to the etching solution for the seed layer. 前記シード層の厚さは、0.1ないし10μmである請求項1に記載のエンベデッドパターン用銅箔。   The embedded pattern copper foil according to claim 1, wherein the seed layer has a thickness of 0.1 to 10 μm. 前記シード層は、光沢メッキにより形成される請求項1に記載のエンベデッドパターン用銅箔。   The embedded pattern copper foil according to claim 1, wherein the seed layer is formed by gloss plating. 前記光沢メッキに使われるメッキ液は、硫酸銅五水和物(CuSO5HO)10〜400g/L、硫酸(HSO)10〜400g/L、塩素イオン(Cl)1〜100ppm、光沢促進剤、キャリア剤及び電着抑制剤を含む請求項5に記載のエンベデッドパターン用銅箔。 The plating solution used for the bright plating is copper sulfate pentahydrate (CuSO 4 5H 2 O) 10 to 400 g / L, sulfuric acid (H 2 SO 4 ) 10 to 400 g / L, chlorine ion (Cl ) 1 to The copper foil for embedded patterns according to claim 5, comprising 100 ppm, a gloss accelerator, a carrier agent and an electrodeposition inhibitor. 前記光沢促進剤は、二硫化物であるビス−(3−スルホプロピル)−ジスルフィド
ジナトリウム塩(SPS)、メルカプトプロパンスルホン酸(MPS)、N,N−ジメチルジチオカルバミン酸からなる群から選択された一つ以上である請求項6に記載のエンベデッドパターン用銅箔。
The gloss accelerator is selected from the group consisting of disulfide bis- (3-sulfopropyl) -disulfide disodium salt (SPS), mercaptopropanesulfonic acid (MPS), N, N-dimethyldithiocarbamic acid. The copper foil for embedded patterns according to claim 6, which is one or more.
前記キャリア剤は、ポリエチレングリコール、ポリプロピレングリコール及びヒドロキシエチルセルロース(HEC)からなる群から選択された一つ以上である請求項6に記載のエンベデッドパターン用銅箔。   The copper foil for embedded patterns according to claim 6, wherein the carrier agent is one or more selected from the group consisting of polyethylene glycol, polypropylene glycol, and hydroxyethyl cellulose (HEC). 前記電着抑制剤は、ゼラチン及び阿膠からなる群から選択された一つ以上である請求項6に記載のエンベデッドパターン用銅箔。   The copper foil for embedded patterns according to claim 6, wherein the electrodeposition inhibitor is one or more selected from the group consisting of gelatin and glue. 前記シード層上に防錆層がさらに形成された請求項1に記載のエンベデッドパターン用銅箔。   The copper foil for embedded patterns according to claim 1, wherein a rust prevention layer is further formed on the seed layer.
JP2012526669A 2009-09-01 2010-08-31 Embedded copper foil for microcircuit formation Active JP5464722B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0081909 2009-09-01
KR1020090081909A KR101298999B1 (en) 2009-09-01 2009-09-01 Embedded Copper foil for fine pattern
PCT/KR2010/005860 WO2011028004A2 (en) 2009-09-01 2010-08-31 Copper foil for an embedded pattern for forming a microcircuit

Publications (2)

Publication Number Publication Date
JP2013503965A JP2013503965A (en) 2013-02-04
JP5464722B2 true JP5464722B2 (en) 2014-04-09

Family

ID=43649764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012526669A Active JP5464722B2 (en) 2009-09-01 2010-08-31 Embedded copper foil for microcircuit formation

Country Status (4)

Country Link
JP (1) JP5464722B2 (en)
KR (1) KR101298999B1 (en)
CN (1) CN102577645A (en)
WO (1) WO2011028004A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723971B2 (en) * 2011-03-25 2015-05-27 Jx日鉱日石金属株式会社 Composite copper foil and method for producing the same
WO2012132574A1 (en) * 2011-03-25 2012-10-04 Jx日鉱日石金属株式会社 Composite copper foil and method for producing same
JP6403969B2 (en) * 2013-03-29 2018-10-10 Jx金属株式会社 Copper foil with carrier, printed wiring board, copper-clad laminate, electronic device, and method for manufacturing printed wiring board
JP6425401B2 (en) * 2013-04-26 2018-11-21 Jx金属株式会社 Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil with carrier for high frequency circuit, electronic device, and method of manufacturing printed wiring board
TWI633817B (en) * 2013-11-22 2018-08-21 三井金屬鑛業股份有限公司 Coreless assembly support substrate
JP5870148B2 (en) * 2013-11-27 2016-02-24 Jx金属株式会社 Copper foil with carrier, method for producing printed circuit board, copper-clad laminate, method for producing copper-clad laminate, and method for producing printed wiring board
KR101682555B1 (en) * 2015-08-07 2016-12-07 대덕전자 주식회사 Method of manufacturing a fine pattern printed circuit board
CN112055759B (en) 2018-04-24 2021-11-23 三菱瓦斯化学株式会社 Etching solution for copper foil and method for manufacturing printed wiring board using same, etching solution for electrolytic copper layer and method for manufacturing copper pillar using same
CN111491456A (en) * 2019-01-29 2020-08-04 上海美维科技有限公司 Manufacturing method of printed circuit board with buried circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081026B2 (en) * 1991-07-18 2000-08-28 古河サーキットフォイル株式会社 Electrolytic copper foil for printed wiring boards
JP2927968B2 (en) * 1995-02-16 1999-07-28 三井金属鉱業株式会社 Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
JP2000269637A (en) * 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk Copper foil for high-density ultrafine wiring board
KR100389061B1 (en) * 2002-11-14 2003-06-25 일진소재산업주식회사 Electrolytic copper foil and process producing the same
JP3977790B2 (en) * 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
US20050158574A1 (en) * 2003-11-11 2005-07-21 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP4570070B2 (en) * 2004-03-16 2010-10-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil provided with resin layer for forming insulating layer, copper-clad laminate, printed wiring board, method for producing multilayer copper-clad laminate, and method for producing printed wiring board
JP2007186797A (en) * 2007-02-15 2007-07-26 Furukawa Circuit Foil Kk Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
US20100084275A1 (en) * 2007-03-15 2010-04-08 Mikio Hanafusa Copper electrolytic solution and two-layer flexible substrate obtained using the same

Also Published As

Publication number Publication date
JP2013503965A (en) 2013-02-04
KR20110024055A (en) 2011-03-09
WO2011028004A3 (en) 2011-07-14
KR101298999B1 (en) 2013-08-23
WO2011028004A2 (en) 2011-03-10
CN102577645A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5464722B2 (en) Embedded copper foil for microcircuit formation
TWI645755B (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper-clad laminate, and printed wiring board manufacturing method
US8530749B2 (en) Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
TWI735651B (en) Copper foil and copper clad laminated board with the copper foil
JP2002292788A (en) Composite copper foil and method for manufacturing the same
JPH0373338A (en) Composite foil and manufacture thereof
JP2014139336A (en) Copper foil with carrier
JP2001308477A (en) Surface treated copper foil, electrolytic copper foil with carrier foil and method of production, and copper clad laminate plate
TWI569952B (en) Fabricated copper foil, copper clad laminate, printed wiring board, electronic machine, and printed wiring board manufacturing method
US6495022B2 (en) Method of producing copper foil for fine wiring
JPH0335394B2 (en)
JP5828333B2 (en) Manufacturing method of build-up multilayer substrate
TWI500824B (en) An electronic circuit and a method for forming the same, and a copper-clad laminate for forming an electronic circuit
JP4031328B2 (en) Additive for acidic copper plating bath, acidic copper plating bath containing the additive, and plating method using the plating bath
JP2003328179A (en) Additive for acidic copper plating bath, acidic copper plating bath containing the additive and plating method using the plating bath
JPWO2017141983A1 (en) Method for manufacturing printed wiring board
JP2014053636A (en) Electronic circuit and formation method therefor, and copper-clad laminate for electronic circuit formation
JP2009242860A (en) Pretreating agent for acidic copper and plating method using the same
JP2002069691A (en) Method for manufacturing copper foil for printed circuit board
JP2013093360A (en) Semiconductor chip mounting substrate and manufacturing method of the same
JP3709142B2 (en) Copper foil for printed wiring board and method for producing the same
KR102504286B1 (en) Surface treated copper foil and Method for producing the same
TWI850765B (en) Ultra-thin copper foil with carrier foil for allowing easy micro-hole processing, copper-clad laminate using same, and manufacturing method therefor
JP2014139337A (en) Copper foil with carrier
EP4322712A1 (en) Carrier-foil-attached ultra-thin copper foil and method for manufacturing embedded substrate using same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5464722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250