JP5460069B2 - Semiconductor substrate, semiconductor package, and semiconductor substrate manufacturing method - Google Patents

Semiconductor substrate, semiconductor package, and semiconductor substrate manufacturing method Download PDF

Info

Publication number
JP5460069B2
JP5460069B2 JP2009032101A JP2009032101A JP5460069B2 JP 5460069 B2 JP5460069 B2 JP 5460069B2 JP 2009032101 A JP2009032101 A JP 2009032101A JP 2009032101 A JP2009032101 A JP 2009032101A JP 5460069 B2 JP5460069 B2 JP 5460069B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
opening
insulating layer
hole
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009032101A
Other languages
Japanese (ja)
Other versions
JP2010192481A (en
Inventor
武司 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009032101A priority Critical patent/JP5460069B2/en
Publication of JP2010192481A publication Critical patent/JP2010192481A/en
Application granted granted Critical
Publication of JP5460069B2 publication Critical patent/JP5460069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1418Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/14181On opposite sides of the body

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、貫通電極を有する半導体基板と半導体パッケージおよび半導体基板の製造方法に関する。   The present invention relates to a semiconductor substrate having a through electrode, a semiconductor package, and a method for manufacturing the semiconductor substrate.

貫通電極を有するこの種の半導体基板を内蔵した半導体パッケージの一例を図11に示す。
この半導体パッケージでは、半導体基板1にドライエッチング加工などで貫通孔21を形成し、貫通孔21の側壁にCVD法などにより絶縁膜を堆積する。この絶縁膜の上にシード層を形成し、めっき法などにより導電性物質を充填させることによって半導体基板を貫通する電極(貫通電極と呼ぶ)が形成されている。
An example of a semiconductor package incorporating this type of semiconductor substrate having a through electrode is shown in FIG.
In this semiconductor package, a through hole 21 is formed in the semiconductor substrate 1 by dry etching or the like, and an insulating film is deposited on the side wall of the through hole 21 by a CVD method or the like. An electrode penetrating the semiconductor substrate (called a penetrating electrode) is formed by forming a seed layer on the insulating film and filling a conductive material by plating or the like.

貫通孔21の形成後、或いは形成前に半導体基板1の上面に配線層5Aを形成して、半導体基板1に実装された、或いは半導体基板1自体に作り込まれた回路素子22と前記貫通電極とを電気的に接続している。   After or before the formation of the through-hole 21, the wiring layer 5A is formed on the upper surface of the semiconductor substrate 1, and the circuit element 22 mounted on the semiconductor substrate 1 or built in the semiconductor substrate 1 itself and the through-electrode And are electrically connected.

また、この貫通電極を有するこの種の半導体基板1は、半導体基板1の下面に配線層3Aを形成した後、樹脂基板等の基板17にフリップチップ接続し、アンダーフィル材18でその接続部を保護した後、基板全体を樹脂19で覆い、基板17に半田ボール等の導電部材20を搭載することにより半導体パッケージが作製され、導電部材20を介してプリント基板等の外部回路と電気的に接続されている。   Also, in this type of semiconductor substrate 1 having this through electrode, after forming the wiring layer 3A on the lower surface of the semiconductor substrate 1, it is flip-chip connected to a substrate 17 such as a resin substrate, and the connection portion is connected by an underfill material 18. After the protection, the entire substrate is covered with a resin 19, and a semiconductor package is manufactured by mounting a conductive member 20 such as a solder ball on the substrate 17, and is electrically connected to an external circuit such as a printed circuit board via the conductive member 20. Has been.

半導体基板1に回路素子が作り込まれている場合、半導体基板1の上面に絶縁層が形成されている場合が多い。半導体基板1の前記上面と下面の間に導通経路を形成するためには、半導体基板1に貫通孔21を形成後、前記絶縁層に開口部を形成して前記配線層3Aを露出させる必要がある。   When circuit elements are formed in the semiconductor substrate 1, an insulating layer is often formed on the upper surface of the semiconductor substrate 1. In order to form a conduction path between the upper surface and the lower surface of the semiconductor substrate 1, it is necessary to form the through hole 21 in the semiconductor substrate 1 and then form an opening in the insulating layer to expose the wiring layer 3A. is there.

特許文献1には、図12(a)〜(d)に示す第1の方法が記載されている。
図12(a)では、半導体基板1に貫通孔形成用のレジスト10を形成して、半導体基板1に貫通孔23を形成する。
Patent Document 1 describes a first method shown in FIGS. 12 (a) to 12 (d).
In FIG. 12A, a through hole forming resist 10 is formed in the semiconductor substrate 1, and the through hole 23 is formed in the semiconductor substrate 1.

図12(b)では、半導体基板1に形成されている第1絶縁層2を、レジスト10をマスクとしてエッチングして開口部24を形成して、半導体基板1に形成されている第1配線層3を貫通孔23に露出させる。   In FIG. 12B, the first insulating layer 2 formed on the semiconductor substrate 1 is etched using the resist 10 as a mask to form the opening 24, and the first wiring layer formed on the semiconductor substrate 1. 3 is exposed in the through hole 23.

図12(c)では、レジスト10を除去し、CVD法などにより半導体基板1の表面と貫通孔23の側壁および開口部24に第2絶縁層7を形成する。
図12(d)では、貫通孔23の底部のみ第2絶縁層7を除去したあと、スパッタ等によるシード層形成やメッキ法により第2配線層5を形成して貫通電極を形成している。15は充填された絶縁体である。
In FIG. 12C, the resist 10 is removed, and the second insulating layer 7 is formed on the surface of the semiconductor substrate 1, the side wall of the through hole 23, and the opening 24 by the CVD method or the like.
In FIG. 12D, after the second insulating layer 7 is removed only at the bottom of the through hole 23, the second wiring layer 5 is formed by the seed layer formation by sputtering or the plating method to form the through electrode. Reference numeral 15 denotes a filled insulator.

また、特許文献2には図13(a)〜(h)に示す第2の方法が記載されている。
図13(a)では、半導体基板1に貫通孔形成用のレジスト10を形成し、さらに、等方性エッチングによって貫通孔上部にすり鉢形状25を形成する。
Patent Document 2 describes a second method shown in FIGS. 13 (a) to 13 (h).
In FIG. 13A, a through hole forming resist 10 is formed on the semiconductor substrate 1, and a mortar shape 25 is formed above the through hole by isotropic etching.

図13(b)では、レジスト10をマスクにし、異方性エッチングによって貫通孔26を形成する。
図13(c)では、レジスト10を除去する。
In FIG. 13B, the through hole 26 is formed by anisotropic etching using the resist 10 as a mask.
In FIG. 13C, the resist 10 is removed.

図13(d)では、貫通孔26の底部の第1絶縁層2に開口部を形成するために、レジスト27を貫通孔26の全体に塗布する。
図13(e)では、露光現像することによってパターニングする。
In FIG. 13D, a resist 27 is applied to the entire through hole 26 in order to form an opening in the first insulating layer 2 at the bottom of the through hole 26.
In FIG. 13E, patterning is performed by exposure and development.

図13(f)では、レジスト27をマスクにして第1絶縁層2に開口部28を形成する。
図13(g)では、レジスト27を除去する。
In FIG. 13F, an opening 28 is formed in the first insulating layer 2 using the resist 27 as a mask.
In FIG. 13G, the resist 27 is removed.

図13(h)では、スパッタ等によるシード層形成やメッキ法により第1配線層3に達する第2配線層5を形成し、貫通電極を形成している。
特開2006−128171号公報 特開2007−53149号公報
In FIG. 13 (h), a second wiring layer 5 reaching the first wiring layer 3 is formed by a seed layer formation by sputtering or the like, or a plating method, and a through electrode is formed.
JP 2006-128171 A JP 2007-53149 A

しかしながら、第1の方法では、第1絶縁層2に開口部24を形成する際に下地の第1配線層3をエッチングしてしまうため、第1配線層3から飛び出した金属粒子が第1絶縁層2の開口部24の側壁に付着し、第1配線層3と半導体基板1とが導通してしまい、結果として、形成した貫通電極の信頼性が低くなる。   However, in the first method, when the opening 24 is formed in the first insulating layer 2, the underlying first wiring layer 3 is etched, so that the metal particles popping out from the first wiring layer 3 are in the first insulating layer. The first wiring layer 3 and the semiconductor substrate 1 are electrically connected to the side wall of the opening 24 of the layer 2, and as a result, the reliability of the formed through electrode is lowered.

また、第2の方法では、図13(e)〜(f)において、半導体基板1に形成した貫通孔26の底面の一部に第1絶縁層2の開口部28を形成するため、図13(g)に示すように貫通孔26と開口部28との接続部分に段部29が形成されており、第1絶縁層2の開口部28の側壁に金属粒子が付着しても半導体基板1との導通経路が形成されない。   In the second method, the opening 28 of the first insulating layer 2 is formed in a part of the bottom surface of the through hole 26 formed in the semiconductor substrate 1 in FIGS. As shown in (g), a stepped portion 29 is formed at the connection portion between the through hole 26 and the opening 28, and the semiconductor substrate 1 even if metal particles adhere to the side wall of the opening 28 of the first insulating layer 2. No conduction path is formed.

しかし、図13(h)において第1絶縁層2の上に第2配線層5が形成されるため、それらの熱膨張係数の違いから、リフロー等の後工程で熱ストレスがかかった際に膜の密着力が低くなり貫通電極の信頼性が低くなる。また、レジスト形成とレジスト除去工程が2回必要なため処理工程数が多くなり、貫通電極の作製リードタイムが長くなる。さらに、アスペクト比が高い貫通電極を作製する場合、図13(e)に示すように、開口部にすり鉢形状を形成させても、貫通孔26の底部まで光が入りにくいため露光が不十分になり、また貫通孔26が深いため孔底部まで現像液が入り込まず現像も困難であるため、第1絶縁層2に開口部28を形成する際のレジスト形成が困難になるという課題を有している。   However, since the second wiring layer 5 is formed on the first insulating layer 2 in FIG. 13 (h), a film is formed when thermal stress is applied in a subsequent process such as reflow due to the difference in thermal expansion coefficient thereof. As a result, the through-electrode reliability is lowered. Further, since the resist formation and resist removal steps are required twice, the number of processing steps is increased, and the lead time for manufacturing the through electrode is increased. Further, when a through electrode having a high aspect ratio is produced, as shown in FIG. 13E, even if a mortar shape is formed in the opening, light does not easily enter the bottom of the through hole 26, so that exposure is insufficient. In addition, since the through hole 26 is deep and the developer does not enter the bottom of the hole and development is difficult, it is difficult to form a resist when forming the opening 28 in the first insulating layer 2. Yes.

本発明は、高信頼性の貫通電極を有する半導体基板と半導体パッケージおよび半導体基板の製造方法を提供することを目的とする。   An object of the present invention is to provide a semiconductor substrate having a highly reliable through electrode, a semiconductor package, and a method for manufacturing the semiconductor substrate.

本発明の請求項1記載の半導体基板は、半導体基板の一方の面に第1絶縁層を介して第1配線層が形成され、前記半導体基板を貫通する貫通孔の内周に第2配線層を形成した貫通電極を有する半導体基板であって、前記貫通孔は、前記半導体基板の他方の面から前記第1絶縁層に向かって形成された第1開口部と、前記第1開口部よりも開口面積が小さく前記第1開口部の底部から前記第1絶縁層を貫通して前記第1配線層に達する第2開口部と、前記第1開口部の内周と前記第2開口部の間に位置する前記第1絶縁層の面に形成された凹部と、前記凹部と前記第2開口部との間に存在する前記第1絶縁層で形成する側壁部と、を有しており、前記第2配線層が、前記第1開口部の内周面と前記凹部と前記第1絶縁層で構成する前記側壁部および前記第2開口部を経て前記第1配線層に電気接続されていることを特徴とする。 According to a first aspect of the present invention, there is provided the semiconductor substrate, wherein the first wiring layer is formed on one surface of the semiconductor substrate via the first insulating layer, and the second wiring layer is formed on the inner periphery of the through hole penetrating the semiconductor substrate. A through-hole formed in the semiconductor substrate, wherein the through-hole has a first opening formed from the other surface of the semiconductor substrate toward the first insulating layer, and more than the first opening. A second opening having a small opening area and penetrating from the bottom of the first opening through the first insulating layer to the first wiring layer; and between the inner periphery of the first opening and the second opening. A recess formed on the surface of the first insulating layer located at the side, and a sidewall formed by the first insulating layer existing between the recess and the second opening, and a second wiring layer, wherein the side wall portion contact constituted by the first insulating layer and the inner peripheral surface and the concave portion of the first opening Characterized in that it is electrically connected to said first wiring layer through a fine second opening.

本発明の請求項2記載の半導体基板は、請求項1において、前記凹部の周面から前記貫通孔の前記第1開口部の周面にわたって第2絶縁層が形成され、前記第2配線層と前記半導体基板の間に前記第2絶縁層が介在していることを特徴とする。 The semiconductor substrate according to claim 2 of the present invention, in claim 1, the second insulating layer is formed over the peripheral surface of the first opening in the said through hole from the circumferential surface of said recess, said second wiring layer The second insulating layer is interposed between the semiconductor substrate and the semiconductor substrate.

本発明の請求項3記載の半導体基板は、請求項2において、前記第2配線層の材料は、Ti、W、Cu、Cr、Au、Al、Ag、Ni等の金属材料やTiN等の金属化合物、またはそれらを含有した導電性材料、ポリシリコン等のSi系材料であり、前記第2配線層は単層または2層以上の多層膜であることを特徴とする。   The semiconductor substrate according to claim 3 of the present invention is the semiconductor substrate according to claim 2, wherein the material of the second wiring layer is a metal material such as Ti, W, Cu, Cr, Au, Al, Ag, Ni, or a metal such as TiN. It is a compound, or a conductive material containing them, or a Si-based material such as polysilicon, and the second wiring layer is a single layer or a multilayer film of two or more layers.

本発明の請求項4記載の半導体基板は、請求項2において、前記第2絶縁層の材料は、SiN、SiO、BPSG、熱酸化膜等のSi化合物やAl等の金属化合物、またはポリイミド樹脂等の有機化合物であり、前記第2絶縁層は単層または2層以上の多層膜であることを特徴とする。 A semiconductor substrate according to a fourth aspect of the present invention is the semiconductor substrate according to the second aspect, wherein the material of the second insulating layer is a Si compound such as SiN, SiO 2 , BPSG, or a thermal oxide film, or a metal compound such as Al 2 O 3 , Or it is organic compounds, such as a polyimide resin, The said 2nd insulating layer is a single layer or a multilayer film of two or more layers, It is characterized by the above-mentioned.

本発明の請求項5記載の半導体基板は、請求項1において、前記第2配線層上にその表面の一部を露出するように形成された保護膜と、前記第2配線層上に外部回路と電気的に接続するための導電部材とを備えることを特徴とする。   According to a fifth aspect of the present invention, there is provided the semiconductor substrate according to the first aspect, wherein the protective film is formed on the second wiring layer so as to expose a part of the surface thereof, and the external circuit is formed on the second wiring layer. And a conductive member for electrical connection.

本発明の請求項6記載の半導体基板は、請求項1において、前記貫通孔の内部に形成された空隙部の一部、または全体に絶縁材料が充填されていることを特徴とする。
本発明の請求項7記載の半導体基板は、請求項1において、前記第1開口部の半導体基板1の他方の面1bの孔径は、前記凹部の底部の孔径より大きいことを特徴とする。
A semiconductor substrate according to a sixth aspect of the present invention is characterized in that, in the first aspect, an insulating material is filled in a part or the whole of the void formed inside the through hole.
The semiconductor substrate according to claim 7 of the present invention, in claim 1, pore size of the first opening in the other surface 1b of the semiconductor substrate 1 may be greater than the diameter of the bottom of the recess.

本発明の請求項8記載の半導体基板は、請求項1において、前記半導体基板が、シリコン、シリカゲルマニウム等のシリコン系半導体、あるいはガリウムヒ素、ガリウムナイトライド、インジウムリン等の化合物半導体であることを特徴とする。   According to an eighth aspect of the present invention, there is provided the semiconductor substrate according to the first aspect, wherein the semiconductor substrate is a silicon-based semiconductor such as silicon or silica gelmanium or a compound semiconductor such as gallium arsenide, gallium nitride, or indium phosphide. Features.

本発明の請求項9記載の半導体基板は、請求項1において、複数の前記第2開口部を前記第1絶縁層に形成したことを特徴とする。
本発明の請求項10記載の半導体基板の製造方法は、半導体基板の一方の面に第1絶縁層を介して第1配線層が形成され、前記半導体基板を前記一方の面から他方の面に貫通する貫通孔の内周に第2配線層を形成した貫通電極を有する半導体基板を作成するに際し、マスクを介して前記半導体基板の前記他方の面から前記第1配線層に向かって第1貫通孔と前記第1貫通孔を取り囲む第2貫通孔を同時に形成し、前記第1貫通孔を前記第1絶縁層に達するまで前記半導体基板をエッチングするとともに前記第2貫通孔を前記第1絶縁層に凹部が形成されるまでエッチングすることによって、第1開口部と前記第1開口部よりも開口面積が小さい第2開口部と、前記第1開口部の内周と前記第2開口部の間に位置する前記第1絶縁層の面に凹部と、前記凹部と前記第2開口部との間に存在する前記第1絶縁層で形成する側壁部と、を形成し、前記第1開口部の内周面と前記凹部と前記第1絶縁層で構成する前記側壁部および前記第2開口部を経て前記第1配線層に第2配線層を形成して電気接続することを特徴とする。
A semiconductor substrate according to a ninth aspect of the present invention is the semiconductor substrate according to the first aspect, wherein a plurality of the second openings are formed in the first insulating layer.
According to a tenth aspect of the present invention, there is provided the semiconductor substrate manufacturing method, wherein the first wiring layer is formed on one surface of the semiconductor substrate via the first insulating layer, and the semiconductor substrate is moved from the one surface to the other surface. When forming a semiconductor substrate having a through electrode in which a second wiring layer is formed on the inner periphery of a through hole penetrating therethrough, a first penetration is made from the other surface of the semiconductor substrate to the first wiring layer through a mask. Forming a hole and a second through hole surrounding the first through hole simultaneously, etching the semiconductor substrate until the first through hole reaches the first insulating layer, and forming the second through hole in the first insulating layer; Etching until a recess is formed in the first opening, the second opening having a smaller opening area than the first opening, and the inner periphery of the first opening and the second opening. A recess in the surface of the first insulating layer located at , In the first side wall portion formed of an insulating layer, is formed, the first insulating layer and the inner peripheral surface and the concave portion of the first opening that exists between said concave second opening A second wiring layer is formed on the first wiring layer through the side wall portion and the second opening portion, and is electrically connected.

本発明の請求項11記載の半導体パッケージは、請求項1〜請求項9の何れかに記載の半導体基板を内蔵したことを特徴とする。   A semiconductor package according to an eleventh aspect of the present invention includes the semiconductor substrate according to any one of the first to ninth aspects.

本発明によれば、第1開口部と、前記第1開口部よりも開口面積が小さい第2開口部と、前記第1開口部の内周と前記第2開口部の間に位置する前記第1絶縁層の面に形成された凹部とを経由して、その上に前記第2配線層が形成して電気接続しているので、前記凹部により前記半導体基板と第1配線層間の絶縁性が向上し、さらに第2配線層と第1絶縁層との密着力が向上し、貫通電極の信頼性を向上させることができる。 According to the present invention, a first open mouth, said a first open mouth part second opening mouth opening area is smaller than between the inner peripheral and the second opening in the first open mouth Since the second wiring layer is formed on and electrically connected to the concave portion formed on the surface of the first insulating layer located at the first insulating layer, the semiconductor substrate and the first wiring are formed by the concave portion. The insulation between the layers is improved, the adhesion between the second wiring layer and the first insulating layer is improved, and the reliability of the through electrode can be improved.

以下、本発明の各実施の形態を図1〜図10に基づいて説明する。
(実施の形態1)
図1〜図5は本発明の実施の形態1を示す。
Embodiments of the present invention will be described below with reference to FIGS.
(Embodiment 1)
1 to 5 show Embodiment 1 of the present invention.

図1は貫通電極を有する半導体基板を示している。
半導体基板1の一方の面1aに第1絶縁層2を介して第1配線層3が形成され、半導体基板1を貫通する貫通孔4の内周に第2配線層7を形成した貫通電極を有する半導体パッケージであって、半導体基板1の厚さ方向にドライエッチングによって形成された貫通孔4は開口径が5μmから200μm程度で、孔深さは10μmから400μm程度の大きさである。
FIG. 1 shows a semiconductor substrate having through electrodes.
A through electrode in which a first wiring layer 3 is formed on one surface 1 a of the semiconductor substrate 1 via a first insulating layer 2 and a second wiring layer 7 is formed on the inner periphery of a through hole 4 penetrating the semiconductor substrate 1. The through hole 4 formed by dry etching in the thickness direction of the semiconductor substrate 1 has an opening diameter of about 5 μm to 200 μm and a hole depth of about 10 μm to 400 μm.

貫通孔4は、半導体基板1に形成された第1の開口部としての大径部4aと、大径部4aの底部から第1絶縁層2を貫通して第1配線層3に達する第2の開口部としての小径部4bを有している。第1絶縁層2の非開口部、具体的には、大径部4aの内周と小径部4bの間に位置する第1絶縁層2の面に幅2〜10μm程度で、深さ数μm以下の凹部6が形成されている。7は第2絶縁層である。8は保護膜、9は半導体パッケージの回路素子を外部回路との接続に使用される導電部材である。なお、半導体基板1の内部または表面上には回路素子が構築されている。   The through hole 4 has a large diameter portion 4a as a first opening formed in the semiconductor substrate 1, and a second hole that reaches the first wiring layer 3 through the first insulating layer 2 from the bottom of the large diameter portion 4a. The small-diameter portion 4b is provided as an opening. The non-opening portion of the first insulating layer 2, specifically, the surface of the first insulating layer 2 located between the inner periphery of the large diameter portion 4 a and the small diameter portion 4 b has a width of about 2 to 10 μm and a depth of several μm. The following recesses 6 are formed. Reference numeral 7 denotes a second insulating layer. Reference numeral 8 denotes a protective film, and 9 denotes a conductive member used for connecting the circuit element of the semiconductor package to an external circuit. A circuit element is constructed inside or on the surface of the semiconductor substrate 1.

この貫通電極は、図2〜図5に示す貫通電極形成プロセスによって作成されている。
図2(a)では、半導体基板1にスピンコーティングによりフォトレジスト10を塗布し、フォトリソグラフィ工法により開口部11,12を形成する。開口部11,12の平面形状を図2(b)に示す。開口部11の直径D1は3μm〜200μm程度、開口部12の幅D2は0.5μm〜10μm程度であり、D1はD2より十分に大きいことが望ましい。
This penetration electrode is produced by the penetration electrode formation process shown in FIGS.
In FIG. 2A, a photoresist 10 is applied to the semiconductor substrate 1 by spin coating, and openings 11 and 12 are formed by photolithography. The planar shape of the openings 11 and 12 is shown in FIG. The diameter D1 of the opening 11 is about 3 μm to 200 μm, the width D2 of the opening 12 is about 0.5 μm to 10 μm, and D1 is preferably sufficiently larger than D2.

図2(c)では、フォトレジスト10をマスクにして半導体基板2をドライエッチングして直径D1の第1貫通孔13と、幅D2のリング状の第2貫通孔14を形成する。エッチングガスとしてはSFガス(50〜500sccm)に同程度以下のOガスを混合することによりSFへの分圧を低下させ、半導体基板エッチングに作用するFラジカルの発生を抑制することによって、イオン性の高いプラズマを生成した。さらに、圧力を1〜15Paと高真空条件にし、基板バイアスを20〜200W程度印加することにより、そのイオンを半導体基板に引き込むことが可能になるため、開口幅の小さい第2貫通孔14を形成することができる。このときD1はD2よりも十分に大きいので、第1貫通孔13,14の部分の形成速度は、半導体基板1の第1貫通孔13の部分に引き込まれるイオンやラジカルの量が第1貫通孔13のほうが第2貫通孔14よりも多く、第1貫通孔13のほうが第2貫通孔14よりもエッチングレートが速い。よって、第1貫通孔13が先に第1配線層3に到達する。 In FIG. 2C, the semiconductor substrate 2 is dry etched using the photoresist 10 as a mask to form a first through hole 13 having a diameter D1 and a ring-shaped second through hole 14 having a width D2. As an etching gas, SF 6 gas (50 to 500 sccm) is mixed with O 2 gas of the same degree or less to reduce the partial pressure to SF 6 , thereby suppressing generation of F radicals acting on semiconductor substrate etching. A highly ionic plasma was generated. Furthermore, by setting the pressure to a high vacuum of 1 to 15 Pa and applying a substrate bias of about 20 to 200 W, the ions can be drawn into the semiconductor substrate, so that the second through hole 14 having a small opening width is formed. can do. At this time, since D1 is sufficiently larger than D2, the formation speed of the first through holes 13 and 14 is such that the amount of ions and radicals drawn into the first through holes 13 of the semiconductor substrate 1 is the first through holes. 13 is higher than the second through hole 14, and the first through hole 13 has a higher etching rate than the second through hole 14. Therefore, the first through hole 13 reaches the first wiring layer 3 first.

図2(d)では、第1貫通孔13が第1絶縁層2に到達してからも引き続きエッチングし、第2貫通孔14が第1絶縁層2に到達した時には、第1貫通孔13の底部はオーバーエッチングになって、第1貫通孔13の底部の第1絶縁層2が若干エッチングされている。   In FIG. 2 (d), etching continues after the first through hole 13 reaches the first insulating layer 2, and when the second through hole 14 reaches the first insulating layer 2, The bottom is over-etched, and the first insulating layer 2 at the bottom of the first through hole 13 is slightly etched.

第2貫通孔14の底部において、第1絶縁層2の上に半導体基板が残った場合には電流リークが発生する。そのため図3(a)では、さらに十分にオーバーエッチングすることによって、第2貫通孔14の底部に存在する半導体基板1ができるだけ少なくなるように除去する。その際のオーバーエッチング時間を制御して、第2貫通孔14の底部の第1絶縁層2の表面に凹部6を形成する。 When the semiconductor substrate 1 remains on the first insulating layer 2 at the bottom of the second through hole 14, current leakage occurs. Therefore, in FIG. 3A, the semiconductor substrate 1 existing at the bottom of the second through-hole 14 is removed as much as possible by overetching more sufficiently. The overetching time at that time is controlled to form the recess 6 on the surface of the first insulating layer 2 at the bottom of the second through hole 14.

なお、図4に示すように大径部4aの半導体基板1の他方の面1bの孔径D41は、凹部6の底部の孔径D42より大きいことが望ましい。この点については以下の各実施の形態においても同様である。理由は後工程で絶縁膜や金属膜等の成膜を実施する際に、カバレッジ性をよくするためである。   As shown in FIG. 4, the hole diameter D41 of the other surface 1b of the semiconductor substrate 1 of the large diameter portion 4a is preferably larger than the hole diameter D42 of the bottom portion of the recess 6. This also applies to each of the following embodiments. The reason is to improve the coverage when forming an insulating film or a metal film in a later process.

図3(b)では、残っているフォトレジスト10をマスクにして第1絶縁層2をエッチングし、第1絶縁層2に第1配線層6に達する小径部4bを形成して第1配線層3の一部を、小径部1bを介して第1貫通孔13の底部に露出させる。これは、最終的に貫通電極を形成する場合に、第1配線層3と後工程で形成する第2配線層5(図5(c)を参照)との導通を十分に確保するためである。絶縁層材質がSiOの場合、エッチングガスとしてはCHFガスやCFガス、Cガス、Arガス等の混合ガスを使用した。第1絶縁層2をエッチングする場合も、図2(c)で説明した半導体基板のエッチングと同様、開口径が広い第1貫通孔13の底部の第1絶縁層2が第2貫通孔14の底部の第1絶縁層2よりもエッチングレートが速い。よって、第1貫通孔13の底部のほうが先に第1配線層3に到達する。また、凹6の深さも若干深くなる。 In FIG. 3B, the first insulating layer 2 is etched using the remaining photoresist 10 as a mask to form a small-diameter portion 4b reaching the first wiring layer 6 in the first insulating layer 2 to form the first wiring layer. 3 is exposed to the bottom of the first through hole 13 through the small diameter portion 1b. This is to ensure sufficient conduction between the first wiring layer 3 and the second wiring layer 5 (see FIG. 5C) formed in a later process when the through electrode is finally formed. . When the insulating layer material is SiO 2 , a mixed gas such as CHF 3 gas, CF 4 gas, C 4 F 8 gas, Ar gas or the like is used as the etching gas. When the first insulating layer 2 is etched, the first insulating layer 2 at the bottom of the first through hole 13 having a wide opening diameter is formed in the second through hole 14 as in the etching of the semiconductor substrate described with reference to FIG. The etching rate is faster than that of the first insulating layer 2 at the bottom. Therefore, the bottom of the first through hole 13 reaches the first wiring layer 3 first. Further, the depth of the recess 6 is slightly deepened.

第1絶縁層2に小径部4bを形成する加工方法として、ドライエッチング法のほかに、フッ酸などを用いたウェットエッチング法でもよい。
また、特に図示はしないが、小径部4bの作製方法として、第1絶縁層2をエッチングしてからフォトレジスト10を除去する方法を説明したが、先にフォトレジスト10を除去してから最後に第1貫通孔13の底部の第1絶縁層2をエッチングしても構わない。その場合、第1貫通孔13の側壁部(第1貫通孔13と第2貫通孔14の間に存在する半導体基板1)と第2貫通孔14の外側の半導体基板2をマスクにして、第1絶縁層2を再度ドライエッチして小径部4bを形成する。また、エッチング加工用のマスクとしてフォトレジスト10を使用する説明をしたが、マスク材料としてSiOやSiN等のハードマスクやAlやNi等のメタルマスクでもよい。
As a processing method for forming the small diameter portion 4b in the first insulating layer 2, a wet etching method using hydrofluoric acid or the like may be used in addition to the dry etching method.
Although not shown in the drawings, the method for removing the photoresist 10 after etching the first insulating layer 2 has been described as a method for producing the small-diameter portion 4b. The first insulating layer 2 at the bottom of the first through hole 13 may be etched. In that case, the side wall portion of the first through hole 13 (the semiconductor substrate 1 existing between the first through hole 13 and the second through hole 14) and the semiconductor substrate 2 outside the second through hole 14 are used as masks. 1 The insulating layer 2 is dry-etched again to form the small diameter portion 4b. Further, although the description has been given of using the photoresist 10 as a mask for etching processing, a hard mask such as SiO 2 or SiN or a metal mask such as Al or Ni may be used as a mask material.

図3(c)では、アッシングや有機溶剤によってフォトレジスト10を除去する。
次に、図3(d)に示すように、第1貫通孔13の側壁部を等方性ドライエッチング法により除去して大径部4aを形成する。このとき、エッチングガスとしてはSFガス等を使用した。図2(c)〜(d),図3(a)の貫通電極の形成方法では、半導体基板1の厚み方向に加工するため、イオン性の高いプラズマを生成して異方性エッチングをしている。しかし本工程では、主に半導体基板1の厚み方向ではなく平面方向に加工するため、圧力は20〜50Paで前記基板バイアスはほとんど印加せずにラジカル性の高いプラズマを生成することにより、等方性エッチングをしている。当然、半導体基板1の表面もエッチングされるため半導体基板1の厚みは薄くなる。また、第2貫通孔14の側壁部も当然エッチングされるが、D1の方がD2よりも大きいため、貫通孔1の形成時の異方性ドライエッチングと同様、第2貫通孔14へのイオンやラジカル流入量が第1貫通孔13よりもかなり少ないため、第2貫通孔14の側壁部のエッチング量は少なく、第1貫通孔13の側壁が主にエッチングされる。
In FIG. 3C, the photoresist 10 is removed by ashing or an organic solvent.
Next, as shown in FIG. 3 (d), the sidewall portion of the first through hole 13 is removed by an isotropic dry etching method to form the large diameter portion 4a. At this time, SF 6 gas or the like was used as an etching gas. 2 (c) to 2 (d) and FIG. 3 (a), in order to process in the thickness direction of the semiconductor substrate 1, a highly ionic plasma is generated and anisotropic etching is performed. Yes. However, in this step, processing is mainly performed in the plane direction rather than in the thickness direction of the semiconductor substrate 1, so that the pressure is 20 to 50 Pa, and the substrate bias is hardly applied to generate plasma with high radicality, so that it is isotropic. Etching is performed. Of course, since the surface of the semiconductor substrate 1 is also etched, the thickness of the semiconductor substrate 1 is reduced. The side wall portion of the second through hole 14 is naturally etched, but since D1 is larger than D2, ions to the second through hole 14 are the same as in anisotropic dry etching when forming the through hole 1. Since the amount of radical inflow is much smaller than that of the first through hole 13, the etching amount of the side wall portion of the second through hole 14 is small, and the side wall of the first through hole 13 is mainly etched.

第1貫通孔13の側壁部の除去方法は、ドライエッチング法の他に、KOHやNaOH、NHOHあるいはフッ酸と硝酸の混酸等を用いたウェットエッチング法でもよい。
次に、図5(a)に示すように、半導体基板2の前記他方の面1bから大径部4aの内壁や凹部6と小径部4bの内側に掛けて、CVD法により第2絶縁層7を形成する。絶縁膜材料としてはSiN、SiO、BPSG、熱酸化膜等のSi酸化物やAl等の金属酸化物、またはポリイミド樹脂等のカーボン系ポリマーなどでもよい。また、第2絶縁層7は単層であったが2層以上の多層膜でも構わない。絶縁膜形成方法として、スパッタや熱酸化、ゾルゲル法により形成してもよい。
The method for removing the side wall portion of the first through-hole 13 may be a wet etching method using KOH, NaOH, NH 4 OH, or a mixed acid of hydrofluoric acid and nitric acid, in addition to the dry etching method.
Next, as shown in FIG. 5A, the second insulating layer 7 is formed by the CVD method from the other surface 1b of the semiconductor substrate 2 to the inner wall of the large diameter portion 4a and the inside of the concave portion 6 and the small diameter portion 4b. Form. As the insulating film material, Si oxide such as SiN, SiO 2 , BPSG, and thermal oxide film, metal oxide such as Al 2 O 3 , or carbon-based polymer such as polyimide resin may be used. The second insulating layer 7 is a single layer, but may be a multilayer film having two or more layers. As an insulating film forming method, it may be formed by sputtering, thermal oxidation, or sol-gel method.

図5(b)では、凹部6の底部と、大径部4aの底部で第1絶縁層2の上と、小径部4bの底部とに形成されていた第2絶縁層7の膜をドライエッチング法により除去する。
この場合も大径部4aの形成時と同様、異方性ドライエッチングを用いるため、大径部1aの内部にある第2絶縁層7の上面(半導体基板1の一方の面1aの側)のみエッチングされ、大径部4a,凹部6,小径部4bの側壁部に形成された第2絶縁層7は、ほとんどエッチングされないため残る。
In FIG. 5B, the film of the second insulating layer 7 formed on the bottom of the recess 6 and on the first insulating layer 2 at the bottom of the large diameter portion 4a and on the bottom of the small diameter portion 4b is dry-etched. Remove by law.
In this case as well, since anisotropic dry etching is used as in the formation of the large-diameter portion 4a, only the upper surface of the second insulating layer 7 inside the large-diameter portion 1a (on the one surface 1a side of the semiconductor substrate 1). The second insulating layer 7 etched and formed on the side walls of the large-diameter portion 4a, the concave portion 6, and the small-diameter portion 4b remains because it is hardly etched.

図5(c)では、第2配線層5を、半導体基板1の他方の面1bの上の第2絶縁層7の上と、大径部4aの内周の第2絶縁層7の上と、凹部6の内周の第2絶縁層7の上と、凹部6の底部の第1絶縁層2の上と、大径部4aの底部の第2絶縁層7と第1絶縁層2の上とに、スパッタ法やメッキ法により形成し、半導体基板2の他方の面1bの側から第1配線層3に達する貫通電極を形成する。   In FIG. 5C, the second wiring layer 5 is formed on the second insulating layer 7 on the other surface 1b of the semiconductor substrate 1 and on the second insulating layer 7 on the inner periphery of the large diameter portion 4a. On the second insulating layer 7 on the inner periphery of the recess 6, on the first insulating layer 2 on the bottom of the recess 6, and on the second insulating layer 7 and the first insulating layer 2 on the bottom of the large diameter portion 4a Then, a through electrode reaching the first wiring layer 3 from the other surface 1b side of the semiconductor substrate 2 is formed by sputtering or plating.

図5(d)では、第2配線層5をパターニングし、貫通孔4の内部に絶縁体15を充填する。第2配線層5を保護するため、第2配線層5の上に保護膜8が形成する。その後、その保護層もパターニングして第2配線層5の一部を露出させ、その部分に外部回路と電気的に接続するための半田ボール等の導電部材9を形成して図1の状態になる。   In FIG. 5D, the second wiring layer 5 is patterned, and the insulator 15 is filled into the through hole 4. In order to protect the second wiring layer 5, a protective film 8 is formed on the second wiring layer 5. Thereafter, the protective layer is also patterned to expose a part of the second wiring layer 5, and a conductive member 9 such as a solder ball for electrically connecting to the external circuit is formed in the part, and the state shown in FIG. Become.

第2配線層5の形成方法は、スパッタ法やめっき法の他に印刷法やインクジェットによる塗布等でもよい。その場合は、シード層はなくてもよい。第2配線層5の材料は、Ti、W、Cu、Cr、Au、Al、Ag、Ni等の金属材料やTiN等の金属化合物、又はそれらを含有した導電性材料、ポリシリコン等のSi系材料でもよい。また、前記配線層は単層又は2層以上の多層膜でも構わない。さらに錫、錫を含む合金やインジウム、インジウムを含む合金からなる低融点金属でもよい。   The formation method of the second wiring layer 5 may be a printing method, an inkjet coating method, or the like in addition to a sputtering method or a plating method. In that case, the seed layer may be omitted. The material of the second wiring layer 5 is a metal material such as Ti, W, Cu, Cr, Au, Al, Ag, or Ni, a metal compound such as TiN, or a conductive material containing them, or a Si-based material such as polysilicon. It may be a material. The wiring layer may be a single layer or a multilayer film of two or more layers. Further, a low melting point metal made of tin, an alloy containing tin, indium, or an alloy containing indium may be used.

銅などのシード層と第1絶縁層2との間には、チタンやチタンタングステン、チタンナイトライド、タンタルナイトライドからなる拡散防止膜(図示せず)が形成されていてもよいし、形成されていなくてもよい。   A diffusion prevention film (not shown) made of titanium, titanium tungsten, titanium nitride, or tantalum nitride may be formed or formed between the seed layer such as copper and the first insulating layer 2. It does not have to be.

また、第1貫通孔13,第2貫通孔14の断面形状が真円であったが、楕円や四角形等の多角形でもよい。
この構成によれば、半導体基板1に形成された貫通孔4において、第1絶縁層2に大径部4aの底部の面積より小さな面積の小径部4bを備え、大径部4aの内周と小径部1bの間に位置する第1絶縁層2の面に凹部6を形成しているため、半導体基板1と第1配線層3と間の絶縁性が向上する。さらに、第2配線層5と第1絶縁層2との密着力が向上し、貫通電極およびそれを設けた半導体パッケージの信頼性を向上させることができる。
Moreover, although the cross-sectional shape of the 1st through-hole 13 and the 2nd through-hole 14 was a perfect circle, polygons, such as an ellipse and a rectangle, may be sufficient.
According to this configuration, in the through hole 4 formed in the semiconductor substrate 1, the first insulating layer 2 includes the small diameter portion 4b having an area smaller than the area of the bottom of the large diameter portion 4a, and the inner periphery of the large diameter portion 4a. Since the recess 6 is formed on the surface of the first insulating layer 2 located between the small diameter portions 1b, the insulation between the semiconductor substrate 1 and the first wiring layer 3 is improved. Furthermore, the adhesion between the second wiring layer 5 and the first insulating layer 2 is improved, and the reliability of the through electrode and the semiconductor package provided with the through electrode can be improved.

なお、実施の形態1において、絶縁体15は貫通孔4の内部を完全に充填したが、貫通孔4の内部の一部のみに充填しても構わないし、無くてもよい。
さらに、絶縁体15と保護膜8は別々だが、同一材料を用いて、絶縁体充填と保護層形成を同時に実施しても構わない。
In Embodiment 1, the insulator 15 completely fills the inside of the through hole 4, but it may or may not fill only a part of the inside of the through hole 4.
Furthermore, although the insulator 15 and the protective film 8 are separate, the same material may be used to simultaneously fill the insulator and form the protective layer.

(実施の形態2)
図6,図7(a)(b),図8(a)(b)は本発明の実施の形態2を示す。
実施の形態1の図3(d)では、半導体基板1に断面形状が真円の単一の小径部4bを形成していたのに対して、この図6と図7(a)(b)の例では、この小径部の形状が異なっている点だけが実施の形態1と異なっている。
(Embodiment 2)
6, 7 (a), 7 (b), 8 (a) and 8 (b) show a second embodiment of the present invention.
In FIG. 3D of the first embodiment, the single small-diameter portion 4b whose cross-sectional shape is a perfect circle is formed in the semiconductor substrate 1, whereas FIGS. 6A, 6B, 7A, and 7B. In this example, only the difference in the shape of the small diameter portion is different from the first embodiment.

図6は貫通電極を有する半導体基板を示している。
図7(a)は、図6の貫通電極を半導体基板2に形成する過程において、貫通孔4を形成した段階の断面図を示し、図7(b)は半導体基板1の他方の面1bから貫通孔4の底部を見た状態を示している。
FIG. 6 shows a semiconductor substrate having through electrodes.
FIG. 7A shows a cross-sectional view of the stage where the through hole 4 is formed in the process of forming the through electrode of FIG. 6 in the semiconductor substrate 2, and FIG. 7B shows from the other surface 1 b of the semiconductor substrate 1. The state which looked at the bottom part of the through-hole 4 is shown.

この実施の形態では貫通孔4が、大径部4aと2つの小径部4b1,4b2で構成されている。小径部4b1,4b2の形状は断面形状が半円に形成されている。
実施の形態1の場合、小径部4bが1箇所であったため、例えば、貫通孔形成後にパーティクル等が貫通孔底部に堆積してしまうと、第1配線層3と第2配線層5の密着力が低下し、配線抵抗が大きくなり、最悪膜剥がれが発生してしまう等、貫通電極としての信頼性が低くなることが予想される。
In this embodiment, the through hole 4 is composed of a large diameter portion 4a and two small diameter portions 4b1 and 4b2. The small diameter portions 4b1 and 4b2 have a semicircular cross section.
In the case of the first embodiment, since the small-diameter portion 4b is one place, for example, if particles or the like are deposited on the bottom of the through-hole after forming the through-hole, the adhesion between the first wiring layer 3 and the second wiring layer 5 It is expected that the reliability of the through electrode will be lowered, for example, the wiring resistance will increase and the worst film peeling will occur.

これに対して、実施の形態2では2つの小径部4b1,4b2で構成することにより、仮に1つの小径部において上記のような不具合が発生しても、他の小径部において導通経路を確保することができる。さらに、2つの小径部4b1,4b2を形成することにより、貫通孔4の底部の凸凹形状が小径部が1つの場合に比べてさらに複雑になるため、第1絶縁層2と第2配線層5との密着力が向上する。さらに第1配線層3と第2配線層5との導通経路を複数確保できるため、その後に形成される貫通電極およびそれを設けた半導体パッケージの信頼性を向上させることができる。   On the other hand, in the second embodiment, by configuring with two small diameter portions 4b1 and 4b2, even if the above-described problem occurs in one small diameter portion, a conduction path is secured in the other small diameter portions. be able to. Further, since the two small diameter portions 4b1 and 4b2 are formed, the uneven shape of the bottom portion of the through hole 4 becomes more complicated as compared with the case where there is one small diameter portion, so that the first insulating layer 2 and the second wiring layer 5 are formed. Adhesion with is improved. Further, since a plurality of conduction paths between the first wiring layer 3 and the second wiring layer 5 can be ensured, the reliability of the through electrode formed thereafter and the semiconductor package provided with the through electrode can be improved.

図8(a)(b)は別の例を示している。
図7(a)(b)では小径部の数が2つで、その形状が半円形状であったが、この例ではその形状が円形状の小径部4b1,4b2,4b3,4b4で構成されている点だけが異なっている。
FIGS. 8A and 8B show another example.
7A and 7B, the number of the small diameter portions is two and the shape thereof is a semicircular shape. However, in this example, the shape is configured by circular small diameter portions 4b1, 4b2, 4b3, and 4b4. The only difference is that

なお、実施の形態2において、複数の小径部の断面形状は、楕円や四角形等の多角形でもよい。また、円弧でなくても四角形等の多角形でもいい。
(実施の形態3)
図9は本発明の実施の形態3を示す。
In the second embodiment, the cross-sectional shape of the plurality of small diameter portions may be a polygon such as an ellipse or a quadrangle. Further, it may be a polygon such as a quadrangle instead of an arc.
(Embodiment 3)
FIG. 9 shows a third embodiment of the present invention.

実施の形態1では貫通孔4の内側には絶縁体15が一部または全部に充填されていたが、この実施の形態では、貫通孔4の内側にはメッキ等の導電材料16を埋め込んでしまい孔全体で第2配線層5と導電材料16とで実施の形態1の第2の配線層5を形成している点が大きく異なっている。導電部材9は、貫通孔4の内側に埋め込まれた導電材料16の上に設けられている。   In the first embodiment, the insulator 15 is partially or wholly filled inside the through hole 4. However, in this embodiment, a conductive material 16 such as plating is buried inside the through hole 4. The point that the second wiring layer 5 of the first embodiment is formed by the second wiring layer 5 and the conductive material 16 in the whole hole is greatly different. The conductive member 9 is provided on the conductive material 16 embedded inside the through hole 4.

この実施の形態3では、半導体基板1を2枚重ねて導電材料16を介して上下の半導体基板を電気接続している様子を示している。
図10は2枚重ねの半導体基板1を内蔵した半導体パッケージを示している。
In the third embodiment, two semiconductor substrates 1 are stacked and the upper and lower semiconductor substrates are electrically connected via the conductive material 16.
FIG. 10 shows a semiconductor package in which two semiconductor substrates 1 are built.

図10では、上記のように貫通電極を有している半導体基板1,1をダイボンド材等で積層したものを基板17にフリップチップ接合し、アンダーフィル材18で接続部を保護した後、基板17の半導体基板1,1の実装部分の全体を樹脂19で覆い、最後に半田ボール等の導電部材20を搭載することにより半導体パッケージが形成されている。   In FIG. 10, the semiconductor substrate 1, 1 having the through electrode as described above is laminated by die bonding material or the like, flip-chip bonded to the substrate 17, and the connection portion is protected by the underfill material 18. A semiconductor package is formed by covering the entire mounting portion of the 17 semiconductor substrates 1 and 1 with a resin 19 and finally mounting a conductive member 20 such as a solder ball.

複数の半導体基板の積層時に、あるいは積層基板を他の回路基板へ実装する時に貫通電極に衝撃が作用しても、貫通孔4は、第1の開口部としての大径部4aと、第2の開口部としての小径部4bとを有しており、第2配線層5と導電材料16が、大径部4aの内周面と凹部6および小径部4bを経て第1の配線層3に電気接続されているため、積層時の衝撃を分散吸収することが可能になるので、第1配線層3の破壊を防止でき、半導体パッケージの信頼性を向上させることができる。また、樹脂モールド形成時やこの半導体パッケージを別のプリント基板等にリフロー等で接続する場合、パッケージ全体が高温にさらされ、貫通電極部分に多くの熱エネルギーがかかることが予想されるが、半導体基板1に形成された貫通電極には、大径部4aと小径部4bと大径部4aと小径部4bの間に位置する第1絶縁層2の面に形成された凹部6を備えているため、熱による第1絶縁層2と第2配線層5の熱膨張を抑制させることができるため、半導体パッケージの信頼性を向上させることができる。   Even when an impact is applied to the through electrode when a plurality of semiconductor substrates are stacked or when the stacked substrate is mounted on another circuit board, the through hole 4 has a large diameter portion 4a as a first opening, and a second opening. The second wiring layer 5 and the conductive material 16 are transferred to the first wiring layer 3 through the inner peripheral surface of the large diameter portion 4a, the concave portion 6 and the small diameter portion 4b. Since it is electrically connected, it is possible to disperse and absorb the impact at the time of stacking, so that the destruction of the first wiring layer 3 can be prevented and the reliability of the semiconductor package can be improved. In addition, when resin molds are formed or when this semiconductor package is connected to another printed circuit board by reflow or the like, it is expected that the entire package will be exposed to high temperatures and a large amount of thermal energy will be applied to the through electrode portion. The through electrode formed on the substrate 1 includes a concave portion 6 formed on the surface of the first insulating layer 2 located between the large diameter portion 4a, the small diameter portion 4b, the large diameter portion 4a, and the small diameter portion 4b. Therefore, since the thermal expansion of the first insulating layer 2 and the second wiring layer 5 due to heat can be suppressed, the reliability of the semiconductor package can be improved.

なお、ここでは2枚の半導体基板1を積層した半導体パッケージの場合を説明したが、単数もしくは複数枚を基板17の上に平置きして樹脂パッケージした場合も同様である。
ここでは図9に示した貫通電極を有する半導体基板を積層して樹脂パッケージした半導体パッケージの場合を例に挙げて説明したが、実施の形態1または実施の形態2に示した貫通電極を有する半導体基板を単数もしくは複数枚を基板17の上に平置きまたは積層して樹脂パッケージした場合も同様である。
Here, the case of a semiconductor package in which two semiconductor substrates 1 are laminated has been described, but the same applies to the case where a single or a plurality of semiconductor substrates 1 are laid flat on a substrate 17 and resin packaged.
Here, the semiconductor package in which the semiconductor substrate having the through electrode shown in FIG. 9 is stacked and resin packaged is described as an example. However, the semiconductor having the through electrode shown in the first embodiment or the second embodiment is described. The same applies to the case where a single or a plurality of substrates are laid flat or laminated on the substrate 17 and resin packaged.

なお、上記の各実施の形態における半導体基板の材質はシリコン、シリカゲルマニウム等のシリコン系半導体、あるいはガリウムヒ素、ガリウムナイトライド、インジウムリン等の化合物半導体である。   In addition, the material of the semiconductor substrate in each of the above embodiments is a silicon semiconductor such as silicon or silica gel, or a compound semiconductor such as gallium arsenide, gallium nitride, or indium phosphide.

本発明は、貫通電極を用いた半導体デバイスの小型化、多段チップ積層技術の用途に有用であり、各種の集積回路の信頼性を向上に寄与できる。   INDUSTRIAL APPLICABILITY The present invention is useful for miniaturization of semiconductor devices using through electrodes and multi-stage chip stacking technology, and can contribute to improving the reliability of various integrated circuits.

本発明の実施の形態1の貫通電極が形成された半導体基板の断面図Sectional drawing of the semiconductor substrate in which the penetration electrode of Embodiment 1 of the present invention was formed 同実施の形態の製造過程の断面図と平面図Sectional view and plan view of the manufacturing process of the embodiment 同実施の形態の製造過程の断面図Sectional view of the manufacturing process of the embodiment 同実施の形態の製造過程の要部の断面図Sectional drawing of the principal part of the manufacturing process of the embodiment 同実施の形態の製造過程の断面図Sectional view of the manufacturing process of the embodiment 本発明の実施の形態2の貫通電極が形成された半導体基板の断面図Sectional drawing of the semiconductor substrate in which the penetration electrode of Embodiment 2 of this invention was formed 同実施の形態の製造過程の断面図と平面図Sectional view and plan view of the manufacturing process of the embodiment 同実施の形態の別の製造過程の断面図と平面図Sectional view and plan view of another manufacturing process of the embodiment 本発明の実施の形態3の貫通電極が形成された半導体基板の断面図Sectional drawing of the semiconductor substrate in which the penetration electrode of Embodiment 3 of this invention was formed 図9の半導体基板を積層してパッケージした半導体パッケージの断面図Sectional drawing of the semiconductor package which laminated and packaged the semiconductor substrate of FIG. 貫通電極を有する半導体基板をパッケージした半導体パッケージの断面図Cross-sectional view of a semiconductor package in which a semiconductor substrate having a through electrode is packaged 特許文献1の貫通電極形成の工程図Process drawing of forming through electrode of Patent Document 1 特許文献2の貫通電極形成の工程図Process drawing of forming through electrode of Patent Document 2

1 半導体基板
1a 半導体基板1の一方の面
1b 半導体基板1の他方の面
2 第1絶縁層
3 第1配線層
4 貫通孔
4a 大径部(第1の開口部)
4b 小径部(第2の開口部)
4b1,4b2,4b3,4b4 小径部
5 第2配線層
6 凹部
7 第2絶縁層
8 保護膜
9 導電部材
10 フォトレジスト
11,12 開口部
13 第1貫通孔
14 第2貫通孔
15 絶縁体
16 導電材料
17 基板
D1 開口部11の直径
D2 開口部12の幅
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 1a One surface of the semiconductor substrate 1 1b The other surface of the semiconductor substrate 1 2 1st insulating layer 3 1st wiring layer 4 Through-hole 4a Large diameter part (1st opening part)
4b Small diameter part (second opening)
4b1, 4b2, 4b3, 4b4 Small diameter portion 5 Second wiring layer 6 Recess 7 Second insulating layer 8 Protective film 9 Conductive member 10 Photoresist 11, 12 Opening portion 13 First through hole 14 Second through hole 15 Insulator 16 Conductive Material 17 Substrate D1 Diameter D2 of opening 11 Width of opening 12

Claims (11)

半導体基板の一方の面に第1絶縁層を介して第1配線層が形成され、前記半導体基板を貫通する貫通孔の内周に第2配線層を形成した貫通電極を有する半導体基板であって、
前記貫通孔は、
前記半導体基板の他方の面から前記第1絶縁層に向かって形成された第1開口部と、
前記第1開口部よりも開口面積が小さく前記第1開口部の底部から前記第1絶縁層を貫通して前記第1配線層に達する第2開口部と、
前記第1開口部の内周と前記第2開口部の間に位置する前記第1絶縁層の面に形成された凹部と、
前記凹部と前記第2開口部との間に存在する前記第1絶縁層で形成する側壁部と、
を有しており、前記第2配線層が、前記第1開口部の内周面と前記凹部と前記第1絶縁層で構成する前記側壁部および前記第2開口部を経て前記第1配線層に電気接続されている
半導体基板。
A semiconductor substrate having a through electrode in which a first wiring layer is formed on one surface of a semiconductor substrate via a first insulating layer, and a second wiring layer is formed on the inner periphery of a through hole penetrating the semiconductor substrate. ,
The through hole is
A first opening formed from the other surface of the semiconductor substrate toward the first insulating layer;
A second opening having a smaller opening area than the first opening and reaching the first wiring layer from the bottom of the first opening through the first insulating layer;
A recess formed in the surface of the first insulating layer located between the inner periphery of the first opening and the second opening;
A side wall formed by the first insulating layer existing between the recess and the second opening;
And the second wiring layer passes through the side wall portion and the second opening portion formed by the inner peripheral surface of the first opening portion, the concave portion, and the first insulating layer , and the first wiring layer. A semiconductor substrate that is electrically connected to the substrate.
前記凹部の周面から前記貫通孔の前記第1開口部の周面にわたって第2絶縁層が形成され、
前記第2配線層と前記半導体基板の間に前記第2絶縁層が介在している
請求項1記載の半導体基板。
A second insulating layer is formed from the peripheral surface of the recess to the peripheral surface of the first opening of the through hole,
The semiconductor substrate according to claim 1, wherein the second insulating layer is interposed between the second wiring layer and the semiconductor substrate.
前記第2配線層の材料は、Ti、W、Cu、Cr、Au、Al、Ag、Ni等の金属材料やTiN等の金属化合物、またはそれらを含有した導電性材料、ポリシリコン等のSi系材料であり、前記第2配線層は単層または2層以上の多層膜である
請求項2記載の半導体基板。
The material of the second wiring layer is a metal material such as Ti, W, Cu, Cr, Au, Al, Ag, Ni, a metal compound such as TiN, or a conductive material containing them, Si-based material such as polysilicon 3. The semiconductor substrate according to claim 2, wherein the second wiring layer is a single layer or a multilayer film of two or more layers.
前記第2絶縁層の材料は、SiN、SiO、BPSG、熱酸化膜等のSi化合物やAl等の金属化合物、またはポリイミド樹脂等の有機化合物であり、前記第2絶縁層は単層または2層以上の多層膜である
請求項2記載の半導体基板。
The material of the second insulating layer is a Si compound such as SiN, SiO 2 , BPSG, or a thermal oxide film, a metal compound such as Al 2 O 3 , or an organic compound such as polyimide resin. 3. The semiconductor substrate according to claim 2, wherein the semiconductor substrate is a multi-layer film having two or more layers.
前記第2配線層上にその表面の一部を露出するように形成された保護膜と、
前記第2配線層上に外部回路と電気的に接続するための導電部材とを備える
請求項1記載の半導体基板。
A protective film formed on the second wiring layer so as to expose a part of the surface thereof;
The semiconductor substrate according to claim 1, further comprising a conductive member electrically connected to an external circuit on the second wiring layer.
前記貫通孔の内部に形成された空隙部の一部、または全体に絶縁材料が充填されている請求項1記載の半導体基板。   The semiconductor substrate according to claim 1, wherein an insulating material is filled in a part or the whole of the gap formed inside the through hole. 前記第1開口部の半導体基板1の他方の面1bの孔径は、前記凹部の底部の孔径より大きい
請求項1記載の半導体基板。
2. The semiconductor substrate according to claim 1, wherein the hole diameter of the other surface 1 b of the semiconductor substrate 1 in the first opening is larger than the hole diameter of the bottom of the recess.
前記半導体基板が、シリコン、シリカゲルマニウム等のシリコン系半導体、あるいはガリウムヒ素、ガリウムナイトライド、インジウムリン等の化合物半導体である
請求項1記載の半導体基板。
The semiconductor substrate according to claim 1, wherein the semiconductor substrate is a silicon-based semiconductor such as silicon or silica gel-manium, or a compound semiconductor such as gallium arsenide, gallium nitride, or indium phosphide.
複数の前記第2開口部を前記第1絶縁層に形成した
請求項1記載の半導体基板。
The semiconductor substrate according to claim 1, wherein a plurality of the second openings are formed in the first insulating layer.
半導体基板の一方の面に第1絶縁層を介して第1配線層が形成され、前記半導体基板を前記一方の面から他方の面に貫通する貫通孔の内周に第2配線層を形成した貫通電極を有する半導体基板を作成するに際し、
マスクを介して前記半導体基板の前記他方の面から前記第1配線層に向かって第1貫通孔と前記第1貫通孔を取り囲む第2貫通孔を同時に形成し、
前記第1貫通孔を前記第1絶縁層に達するまで前記半導体基板をエッチングするとともに前記第2貫通孔を前記第1絶縁層に凹部が形成されるまでエッチングすることによって、第1開口部と前記第1開口部よりも開口面積が小さい第2開口部と、前記第1開口部の内周と前記第2開口部の間に位置する前記第1絶縁層の面に凹部と、前記凹部と前記第2開口部との間に存在する前記第1絶縁層で形成する側壁部と、を形成し、前記第1開口部の内周面と前記凹部と前記第1絶縁層で構成する前記側壁部および前記第2開口部を経て前記第1配線層に第2配線層を形成して電気接続する
半導体基板の製造方法。
A first wiring layer is formed on one surface of the semiconductor substrate via a first insulating layer, and a second wiring layer is formed on the inner periphery of a through hole penetrating the semiconductor substrate from the one surface to the other surface. When creating a semiconductor substrate having a through electrode,
Simultaneously forming a first through hole and a second through hole surrounding the first through hole from the other surface of the semiconductor substrate to the first wiring layer through a mask;
Etching the semiconductor substrate until the first through-hole reaches the first insulating layer and etching the second through-hole until a recess is formed in the first insulating layer. A second opening having a smaller opening area than the first opening; a recess on the surface of the first insulating layer located between the inner periphery of the first opening and the second opening; the recess; A side wall portion formed by the first insulating layer existing between the second opening portion and the side wall portion configured by an inner peripheral surface of the first opening portion, the concave portion, and the first insulating layer. And the manufacturing method of the semiconductor substrate which forms a 2nd wiring layer in the said 1st wiring layer through the said 2nd opening part, and is electrically connected.
請求項1〜請求項9の何れかに記載の半導体基板を内蔵した
半導体パッケージ。
A semiconductor package incorporating the semiconductor substrate according to claim 1.
JP2009032101A 2009-02-16 2009-02-16 Semiconductor substrate, semiconductor package, and semiconductor substrate manufacturing method Expired - Fee Related JP5460069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009032101A JP5460069B2 (en) 2009-02-16 2009-02-16 Semiconductor substrate, semiconductor package, and semiconductor substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032101A JP5460069B2 (en) 2009-02-16 2009-02-16 Semiconductor substrate, semiconductor package, and semiconductor substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2010192481A JP2010192481A (en) 2010-09-02
JP5460069B2 true JP5460069B2 (en) 2014-04-02

Family

ID=42818238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032101A Expired - Fee Related JP5460069B2 (en) 2009-02-16 2009-02-16 Semiconductor substrate, semiconductor package, and semiconductor substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP5460069B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232614B1 (en) * 2011-03-08 2012-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Package systems having a conductive element through a substrate thereof and manufacturing methods of the same
JP5810693B2 (en) * 2011-07-08 2015-11-11 富士通株式会社 Electronic device and manufacturing method thereof
JP6450296B2 (en) * 2015-10-05 2019-01-09 浜松ホトニクス株式会社 Wiring structure and manufacturing method of wiring structure
JP2021052025A (en) * 2019-09-20 2021-04-01 富士通株式会社 Semiconductor device, method for manufacturing semiconductor device and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327644B2 (en) * 2004-03-31 2009-09-09 Necエレクトロニクス株式会社 Manufacturing method of semiconductor device
TWI313914B (en) * 2005-01-31 2009-08-21 Sanyo Electric Co Semiconductor device and a method for manufacturing thereof
JP5242070B2 (en) * 2007-03-29 2013-07-24 株式会社フジクラ Through wiring board
JP2009021433A (en) * 2007-07-12 2009-01-29 Fujikura Ltd Wiring substrate, and manufacturing method thereof
JP4959538B2 (en) * 2007-12-17 2012-06-27 株式会社フジクラ Semiconductor device, method for manufacturing the same, and electronic device

Also Published As

Publication number Publication date
JP2010192481A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
TWI460836B (en) Conductive pillar for semiconductor substrate and method of manufacture
TWI551199B (en) Substrate with electrical interconnector structure and manufacturing method thereof
US8633107B2 (en) Method of producing a semiconductor device and semiconductor device having a through-wafer interconnect
KR20090076832A (en) Semiconductor apparatus and method for manufacturing the same
JP4765947B2 (en) Semiconductor device and manufacturing method thereof
TW201535551A (en) Chip package and method thereof
CN108666284A (en) The manufacturing method and semiconductor device of semiconductor device
JP2010109071A (en) Method for manufacturing semiconductor device and the semiconductor device
JP2010232400A (en) Semiconductor substrate, method of manufacturing semiconductor substrate, and semiconductor package
JP2009272490A (en) Semiconductor device and method of manufacturing semiconductor device
JP5460069B2 (en) Semiconductor substrate, semiconductor package, and semiconductor substrate manufacturing method
JP2008300718A (en) Semiconductor device, and manufacturing method of semiconductor device
JP2006287211A (en) Semiconductor device, stacked semiconductor device and method of fabricating the devices
JP2015223689A (en) Electronic component and manufacturing method of the same
JP2006100571A (en) Semiconductor device and its manufacturing method
JP2007221080A (en) Semiconductor device, and method for manufacturing same
US20070132101A1 (en) Semiconductor device and method of manufacturing a semiconductor device
JP4001115B2 (en) Semiconductor device and manufacturing method thereof
JP5091962B2 (en) Semiconductor device
CN105575880B (en) A kind of production method of semiconductor devices
TW202230619A (en) Semiconductor device including a through silicon via structure and method of fabricating the same
JP2002324797A (en) Semiconductor device and method of manufacturing the same
JP5834563B2 (en) Manufacturing method of semiconductor device
TWI405317B (en) Package substrate and fabrication method thereof
JP2007073808A (en) Method of manufacturing semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees