JP2010093273A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2010093273A
JP2010093273A JP2009259414A JP2009259414A JP2010093273A JP 2010093273 A JP2010093273 A JP 2010093273A JP 2009259414 A JP2009259414 A JP 2009259414A JP 2009259414 A JP2009259414 A JP 2009259414A JP 2010093273 A JP2010093273 A JP 2010093273A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
wiring
dielectric constant
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009259414A
Other languages
Japanese (ja)
Inventor
Shinji Wakizaka
伸治 脇坂
Norihiko Kaneko
紀彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2009259414A priority Critical patent/JP2010093273A/en
Publication of JP2010093273A publication Critical patent/JP2010093273A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Laser Beam Processing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Dicing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a missing article from being produced from a removal surface when parts corresponding to a dicing street among a layered structure of a low-permittivity film and wiring formed on a semiconductor wafer, and a passivation film are removed by irradiation of a laser beam. <P>SOLUTION: Four layers of low-permittivity films 4 and the same number of layers of wiring 5 are alternately formed on the upper surface of a semiconductor wafer 21, and a passivation film 7 formed of silicon nitride or the like is formed on top of it. Then, the passivation film 7, the low-permittivity film 4 and the wiring 5 in a region corresponding to dicing streets 23 are removed by irradiation of a laser beam to form grooves 26. Then, a protective film 9 formed of a polyimide resin or the like is formed on them including the insides of the grooves 26. Accordingly, since the removal surfaces by the irradiation of the laser beam of the passivation film 7, the low-permittivity film 4 and the wiring 5 are covered with the protective film 9, a missing article is reliably prevented from being produced from the removal surfaces in an early stage as much as possible. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device.

携帯型電子機器等に代表される小型の電子機器に搭載される半導体装置として、半導体基板とほぼ同じ大きさ(サイズ&ディメンション)を有するCSP(Chip Size Package)が知られている。CSPの中でも、ウエハ状態でパッケージングを完成させ、ダイシングにより個々の半導体装置に分離されたものは、WLP(Wafer Level Package)とも言われている。   A CSP (Chip Size Package) having almost the same size (size & dimension) as a semiconductor substrate is known as a semiconductor device mounted on a small electronic device typified by a portable electronic device. Among CSPs, those that have been packaged in a wafer state and separated into individual semiconductor devices by dicing are also referred to as WLP (Wafer Level Package).

従来のこのような半導体装置には、半導体基板上に設けられた絶縁膜の上面に配線が設けられ、配線の接続パッド部上面に柱状電極が設けられ、配線を含む絶縁膜の上面に封止膜がその上面が柱状電極の上面と面一となるように設けられ、柱状電極の上面に半田ボールが設けられたものがある(例えば、特許文献1参照)。   In such a conventional semiconductor device, wiring is provided on the upper surface of the insulating film provided on the semiconductor substrate, a columnar electrode is provided on the upper surface of the connection pad portion of the wiring, and sealing is performed on the upper surface of the insulating film including the wiring. There is a film in which a top surface thereof is flush with a top surface of a columnar electrode, and a solder ball is disposed on the top surface of the columnar electrode (see, for example, Patent Document 1).

特開2004−349461号公報JP 2004-349461 A

ところで、上記のような半導体装置には、半導体基板と絶縁膜との間に、層間絶縁膜と配線との積層構造からなる層間絶縁膜配線積層構造部を設けたものがある。この場合、微細化に伴って層間絶縁膜配線積層構造部の配線間の間隔が小さくなると、当該配線間の容量が大きくなり、当該配線を伝わる信号の遅延が増大してしまう。   By the way, some semiconductor devices as described above are provided with an interlayer insulating film wiring laminated structure portion having a laminated structure of an interlayer insulating film and wiring between a semiconductor substrate and an insulating film. In this case, when the interval between the wirings of the interlayer insulating film wiring laminated structure portion is reduced with the miniaturization, the capacitance between the wirings is increased, and the delay of the signal transmitted through the wirings is increased.

この点を改善するために、層間絶縁膜の材料として、誘電率が層間絶縁膜の材料として一般的に用いられている酸化シリコンの誘電率4.2〜4.0よりも低いlow−k材料と言われる等の低誘電率材料が注目されている。low−k材料としては、酸化シリコン(SiO2)に炭素(C)をドープしたSiOCやさらにHを含むSiOCH等が挙げられる。また、誘電率をさらに低くするため、空気を含んだポーラス(多孔性)型の低誘電率膜の検討も行われている。ところで、層間絶縁膜としての低誘電率膜と配線との積層構造からなる低誘電率膜配線積層構造部を有する半導体装置の製造方法では、ウエハ状態の半導体基板上に低誘電率膜と配線とを積層して形成し、その上に絶縁膜、上層配線、柱状電極、封止膜および半田ボールを形成し、この後に、ダイシングにより個々の半導体装置に分離することになる。 In order to improve this point, as a material for the interlayer insulating film, a low-k material having a dielectric constant lower than that of silicon oxide 4.2 to 4.0 generally used as a material for the interlayer insulating film Low dielectric constant materials such as those mentioned are attracting attention. Examples of the low-k material include SiOC in which carbon (C) is doped into silicon oxide (SiO 2 ), SiOCH containing H, and the like. Further, in order to further lower the dielectric constant, a porous (porous) low dielectric constant film containing air has been studied. By the way, in a method of manufacturing a semiconductor device having a low dielectric constant film wiring laminated structure portion composed of a laminated structure of a low dielectric constant film and wiring as an interlayer insulating film, a low dielectric constant film and wiring are formed on a semiconductor substrate in a wafer state. Then, an insulating film, an upper layer wiring, a columnar electrode, a sealing film, and a solder ball are formed thereon, and then separated into individual semiconductor devices by dicing.

しかしながら、低誘電率膜をダイシングブレードで切断すると、低誘電率膜が脆いため、低誘電率膜の切断面に多数の切欠け、破損が生じてしまう。そこで、ウエハ状態の半導体基板上に形成された低誘電率膜のうちダイシングストリートに対応する部分をその上に形成された窒化シリコン等の無機材料からなるパッシベーション膜と共に比較的早い段階でレーザビームの照射により除去する検討も行われている。   However, when the low dielectric constant film is cut with a dicing blade, the low dielectric constant film is fragile, and a large number of notches and breaks occur on the cut surface of the low dielectric constant film. Therefore, the portion of the low dielectric constant film formed on the semiconductor substrate in the wafer state corresponds to the dicing street together with the passivation film made of an inorganic material such as silicon nitride formed thereon, at a relatively early stage. Consideration of removal by irradiation has also been made.

しかしながら、ウエハ状態の半導体基板上に形成された低誘電率膜のうちダイシングストリートに対応する部分をその上に形成されたパッシベーション膜と共に比較的早い段階でレーザビームの照射により除去するような半導体装置の製造方法では、レーザビームの照射による除去面における低誘電率膜とパッシベーション膜との間の密着強度が低く、当該除去面から欠落物が生じることがある。このような欠落物は、その後の工程において何らかの支障を来す原因となってしまう。   However, a semiconductor device in which a portion corresponding to a dicing street in a low dielectric constant film formed on a semiconductor substrate in a wafer state is removed together with a passivation film formed thereon by laser beam irradiation at a relatively early stage. In this manufacturing method, the adhesion strength between the low dielectric constant film and the passivation film on the surface to be removed by the laser beam irradiation is low, and a missing part may be generated from the surface to be removed. Such missing parts cause some trouble in the subsequent processes.

そこで、この発明は、低誘電率膜等のレーザビームの照射による除去面から欠落物が生じにくいようにすることができる半導体装置の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device, which can make it difficult for missing parts to be generated from a surface removed by laser beam irradiation such as a low dielectric constant film.

請求項1に記載の発明は、半導体基板上に低誘電率膜と配線とが積層された低誘電率膜配線積層構造部、無機材料からなるパッシベーション膜および有機材料からなる保護膜が設けられ、前記保護膜上に前記配線に接続される上層配線が設けられた半導体装置の製造方法において、必要半導体装置形成領域と不必要半導体装置形成領域とからなる複数の半導体装置形成領域を有する半導体ウエハの一面上に前記低誘電率膜と前記配線とが積層して形成され、その上に前記パッシベーション膜が形成されたものを準備する工程と、少なくともダイシングストリートの一部に対応する領域における前記パッシベーション膜、前記配線および前記低誘電率膜をレーザビームの照射により除去して溝を形成する工程と、前記半導体ウエハの必要半導体装置形成領域の前記溝内の除去面が露出するように、前記半導体ウエハの不必要半導体装置形成領域の溝内及び前記パッシベーション膜上に前記保護膜を形成する工程と、前記保護膜上に前記上層配線を前記配線に接続させて形成する工程と、少なくとも前記保護膜および前記半導体ウエハを前記ダイシングストリートに沿って切断する工程と、を含むことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載の発明において、前記半導体ウエハの不必要半導体装置形成領域は前記ダイシングストリートと重なり合う領域を有することを特徴とするものである。
請求項3に記載の発明は、請求項2に記載の発明において、前記準備されたものにおいて、前記半導体ウエハの不必要半導体装置形成領域の前記ダイシングストリートと重なり合う領域の一部には、前記低誘電率膜および前記配線が形成されていることを特徴とするものである。
請求項4に記載の発明は、請求項3に記載の発明において、前記準備されたものにおいて、前記半導体ウエハの必要半導体装置形成領域の周囲における前記ダイシングストリートに対応する領域には、前記低誘電率膜は形成されているが、前記配線は形成されていないことを特徴とするものである。
請求項5に記載の発明は、請求項4に記載の発明において、少なくとも前記ダイシングストリートの一部に対応する領域における前記パッシベーション膜、前記配線および前記低誘電率膜をレーザビームの照射により除去して溝を形成する工程は、前記半導体ウエハの必要半導体装置形成領域の周囲における前記ダイシングストリートに対応する領域における前記パッシベーション膜をフォトリソグラフィ法により除去して第1の溝を形成し、前記第1の溝を介して露出された前記低誘電率膜をレーザビームの照射により除去して第2の溝を形成し、且つ、それ以外の前記ダイシングストリートに対応する領域における前記パッシベーション膜、前記配線および前記低誘電率膜をレーザビームの照射により除去して溝を形成する工程であることを特徴とするものである。
請求項6に記載の発明は、請求項5に記載の発明において、前記溝内の少なくとも一部を含む前記パッシベーション膜上に前記保護膜を形成する工程は、前記第1、第2の溝以外の前記溝内を含む前記パッシベーション膜上に前記保護膜を形成する工程であることを特徴とするものである。
請求項7に記載の発明は、請求項5に記載の発明において、前記溝内の少なくとも一部を含む前記パッシベーション膜上に前記保護膜を形成する工程は、前記第1、第2の溝を含むすべての前記溝内を含む前記パッシベーション膜上に前記保護膜を形成する工程であることを特徴とするものである。
請求項8に記載の発明は、請求項1に記載の発明において、前記上層配線を形成した後に、前記上層配線の接続パッド部上に柱状電極を形成し、前記柱状電極の周囲に封止膜を形成し、前記柱状電極上に半田ボールを形成し、前記封止膜、前記保護膜および前記半導体ウエハを前記ダイシングストリートに沿って切断することを特徴とするものである。
請求項9に記載の発明は、請求項1に記載の発明において、前記低誘電率膜は、Si−O結合とSi−H結合を有するポリシロキサン系材料、Si−O結合とSi−CH3結合を有するポリシロキサン系材料、炭素添加酸化シリコン、有機ポリマー系のlow−k材料のいずれかを含み、あるいは、フッ素添加酸化シリコン、ボロン添加酸化シリコン、酸化シリコンのいずれかであってポーラス型のものを含むことを特徴とするものである。
請求項10に記載の発明は、請求項1に記載の発明において、前記低誘電率膜のガラス転移温度は400℃以上であることを特徴とするものである。
The invention according to claim 1 is provided with a low dielectric constant film wiring laminated structure in which a low dielectric constant film and wiring are laminated on a semiconductor substrate, a passivation film made of an inorganic material, and a protective film made of an organic material, In a method of manufacturing a semiconductor device in which an upper layer wiring connected to the wiring is provided on the protective film, a semiconductor wafer having a plurality of semiconductor device forming regions each including a necessary semiconductor device forming region and an unnecessary semiconductor device forming region A step of preparing the low dielectric constant film and the wiring on one surface and forming the passivation film thereon; and the passivation film in a region corresponding to at least a part of the dicing street Removing the wiring and the low dielectric constant film by irradiating a laser beam to form a groove; and a semiconductor required for the semiconductor wafer Forming the protective film in the groove of the unnecessary semiconductor device forming region of the semiconductor wafer and on the passivation film so that the removal surface in the groove of the device forming region is exposed, and on the protective film, The method includes a step of forming an upper layer wiring by connecting to the wiring, and a step of cutting at least the protective film and the semiconductor wafer along the dicing street.
According to a second aspect of the present invention, in the first aspect of the present invention, the unnecessary semiconductor device formation region of the semiconductor wafer has a region overlapping the dicing street.
According to a third aspect of the present invention, in the invention according to the second aspect of the present invention, in the prepared one, a part of the region overlapping the dicing street of the unnecessary semiconductor device forming region of the semiconductor wafer is not included in the low-level region. A dielectric film and the wiring are formed.
According to a fourth aspect of the present invention, in the invention according to the third aspect, in the prepared one, the region corresponding to the dicing street around the necessary semiconductor device formation region of the semiconductor wafer is provided with the low dielectric constant. The rate film is formed, but the wiring is not formed.
According to a fifth aspect of the present invention, in the invention of the fourth aspect, at least the passivation film, the wiring, and the low dielectric constant film in a region corresponding to a part of the dicing street are removed by laser beam irradiation. Forming the first groove by removing the passivation film in the region corresponding to the dicing street around the necessary semiconductor device formation region of the semiconductor wafer by photolithography, and forming the first groove. The low dielectric constant film exposed through the groove is removed by laser beam irradiation to form a second groove, and the passivation film, the wiring, and the other region corresponding to the dicing street are formed. The step of removing the low dielectric constant film by laser beam irradiation to form a groove. The one in which the features.
According to a sixth aspect of the invention, in the fifth aspect of the invention, the step of forming the protective film on the passivation film including at least a part of the groove is other than the first and second grooves. The protective film is formed on the passivation film including the inside of the groove.
According to a seventh aspect of the present invention, in the fifth aspect of the invention, the step of forming the protective film on the passivation film including at least a part of the groove includes the first and second grooves. In this step, the protective film is formed on the passivation film including all the grooves.
The invention according to claim 8 is the invention according to claim 1, wherein after forming the upper layer wiring, a columnar electrode is formed on a connection pad portion of the upper layer wiring, and a sealing film is formed around the columnar electrode. , Forming solder balls on the columnar electrodes, and cutting the sealing film, the protective film, and the semiconductor wafer along the dicing street.
According to a ninth aspect of the present invention, in the first aspect of the present invention, the low dielectric constant film includes a polysiloxane-based material having a Si-O bond and a Si-H bond, a Si-O bond, and a Si-CH 3. Any one of a polysiloxane-based material having a bond, carbon-added silicon oxide, and an organic polymer-based low-k material, or a fluorine-type silicon oxide, boron-added silicon oxide, or silicon oxide, which is a porous type It is characterized by including things.
The invention described in claim 10 is the invention described in claim 1, characterized in that the glass transition temperature of the low dielectric constant film is 400 ° C. or higher.

この発明によれば、少なくともダイシングストリートの一部に対応する領域におけるパッシベーション膜、配線および低誘電率膜をレーザビームの照射により除去して溝を形成し、溝内の少なくとも一部を含むパッシベーション膜上に保護膜を形成しているので、低誘電率膜等のレーザビームの照射による除去面の少なくとも一部が保護膜によって覆われ、したがって当該除去面から欠落物が生じにくいようにすることができる。   According to the present invention, the passivation film, the wiring, and the low dielectric constant film in the region corresponding to at least a part of the dicing street are removed by laser beam irradiation to form a groove, and the passivation film includes at least a part of the groove. Since the protective film is formed on the surface, at least a part of the surface to be removed by the laser beam irradiation such as a low dielectric constant film is covered with the protective film, and therefore it is possible to prevent the removal surface from being easily lost. it can.

この発明の第1実施形態としての製造方法により製造された半導体装置の一例の断面図。Sectional drawing of an example of the semiconductor device manufactured by the manufacturing method as 1st Embodiment of this invention. 試作用の半導体ウエハの一部の平面状態を説明するために示す平面図。The top view shown in order to demonstrate the one part planar state of the semiconductor wafer for trial manufacture. 図2に示す半導体ウエハに対するダイシングストリートを説明するために示す平面図。The top view shown in order to demonstrate the dicing street with respect to the semiconductor wafer shown in FIG. 図1に示す半導体装置の製造に際し、当初準備したものの断面図を示し、(A)は図3のIVA−IVA線に沿う部分における必要半導体装置形成領域の部分の断面図、(B)は図3のIVB−IVB線に沿う部分における不必要半導体装置形成領域の部分の断面図。1A and 1B are cross-sectional views of what was initially prepared in manufacturing the semiconductor device shown in FIG. 1, wherein FIG. 1A is a cross-sectional view of a necessary semiconductor device formation region along a line IVA-IVA in FIG. Sectional drawing of the part of the unnecessary semiconductor device formation area in the part in alignment with the IVB-IVB line of 3. FIG. 図4に続く工程の断面図。Sectional drawing of the process following FIG. 図5に続く工程の断面図。Sectional drawing of the process following FIG. 図6に続く工程の断面図。Sectional drawing of the process following FIG. 図7に続く工程の断面図。Sectional drawing of the process following FIG. 図8に続く工程の断面図。FIG. 9 is a cross-sectional view of the process following FIG. 8. 図9に続く工程の断面図。Sectional drawing of the process following FIG. 図10に続く工程の断面図。Sectional drawing of the process following FIG. 図11に続く工程の断面図。Sectional drawing of the process following FIG. 図12に続く工程の断面図。Sectional drawing of the process following FIG. 図13に続く工程の断面図。Sectional drawing of the process following FIG. 図14に続く工程の断面図。FIG. 15 is a sectional view of a step following FIG. 14. この発明の第2実施形態としての製造方法により製造された半導体装置の一例の断面図。Sectional drawing of an example of the semiconductor device manufactured by the manufacturing method as 2nd Embodiment of this invention. 図16に示す半導体装置の製造に際し、所定の工程の図4同様の断面図。FIG. 17 is a cross-sectional view of a predetermined process similar to FIG. 4 in manufacturing the semiconductor device shown in FIG. 16. 図17に続く工程の断面図。FIG. 18 is a cross-sectional view of the process following FIG. 17. 図18に続く工程の断面図。FIG. 19 is a cross-sectional view of the process following FIG. 18. 図19に続く工程の断面図。FIG. 20 is a cross-sectional view of the process following FIG. 19. この発明の第3実施形態としての製造方法により製造された半導体装置の一例の断面図。Sectional drawing of an example of the semiconductor device manufactured by the manufacturing method as 3rd Embodiment of this invention.

(第1実施形態)
図1はこの発明の第1実施形態としての製造方法により製造された半導体装置の一例の断面図を示す。この半導体装置はシリコン基板(半導体基板)1を備えている。シリコン基板1の上面には所定の機能の集積回路(図示せず)が設けられ、上面周辺部には、2個のみを図示するが実際には多数の、アルミニウム系金属等からなる接続パッド2が集積回路に接続されて設けられている。
(First embodiment)
FIG. 1 shows a cross-sectional view of an example of a semiconductor device manufactured by the manufacturing method as the first embodiment of the present invention. This semiconductor device includes a silicon substrate (semiconductor substrate) 1. An integrated circuit (not shown) having a predetermined function is provided on the upper surface of the silicon substrate 1, and only two of them are shown in the periphery of the upper surface, but a large number of connection pads 2 made of aluminum metal or the like are actually shown. Are connected to the integrated circuit.

シリコン基板1の上面には低誘電率膜配線積層構造部3が設けられている。低誘電率膜配線積層構造部3は、複数層例えば4層の低誘電率膜4と同数層のアルミニウム系金属等からなる配線5とが交互に積層された構造となっている。この場合、各層の配線5は層間で互いに接続されている。最下層の配線5の一端部は、最下層の低誘電率膜4に設けられた開口部6を介して接続パッド2に接続されている。最上層の配線5の接続パッド部5aは最上層の低誘電率膜4の上面周辺部に配置されている。   On the upper surface of the silicon substrate 1, a low dielectric constant film wiring laminated structure 3 is provided. The low dielectric constant film wiring laminated structure 3 has a structure in which a plurality of layers, for example, four low dielectric constant films 4 and the same number of wirings 5 made of an aluminum metal or the like are alternately laminated. In this case, the wiring 5 of each layer is mutually connected between layers. One end of the lowermost wiring 5 is connected to the connection pad 2 through an opening 6 provided in the lower dielectric constant film 4. The connection pad portion 5 a of the uppermost layer wiring 5 is arranged in the periphery of the upper surface of the uppermost low dielectric constant film 4.

低誘電率膜4の材料としては、Si−O結合とSi−H結合を有するポリシロキサン系材料(HSQ:Hydrogen silsesquioxane、比誘電率3.0)、Si−O結合とSi−CH3結合を有するポリシロキサン系材料(MSQ:Methyl silsesquioxane、比誘電率2.7〜2.9)、炭素添加酸化シリコン(SiOC:Carbon doped silicon oxide、比誘電率2.7〜2.9)、有機ポリマー系のlow−k材料等が挙げられ、比誘電率が3.0以下でガラス転移温度が400℃以上であるものを用いることができる。 As a material of the low dielectric constant film 4, a polysiloxane-based material (HSQ: Hydrogen silsesquioxane, relative dielectric constant 3.0) having Si—O bond and Si—H bond, Si—O bond and Si—CH 3 bond are used. Polysiloxane material (MSQ: Methyl silsesquioxane, relative dielectric constant 2.7 to 2.9), carbon doped silicon oxide (SiOC: Carbon dioxide, 2.7 to 2.9), organic polymer system Low-k materials and the like, and those having a relative dielectric constant of 3.0 or less and a glass transition temperature of 400 ° C. or more can be used.

有機ポリマー系のlow−k材料としては、Dow Chemical社製の「SiLK(比誘電率2.6)」、Honeywell Electronic Materials社製の「FLARE(比誘電率2.8)」等が挙げられる。ここで、ガラス転移温度が400℃以上であるということは、後述する製造工程における温度に十分に耐え得るようにするためである。なお、上記各材料のポーラス型も用いることができる。   Examples of the organic polymer low-k material include “SiLK (relative permittivity: 2.6)” manufactured by Dow Chemical, “FLARE (relative permittivity: 2.8)” manufactured by Honeywell Electronic Materials, and the like. Here, the glass transition temperature being 400 ° C. or more is to sufficiently withstand the temperature in the manufacturing process described later. In addition, the porous type | mold of said each material can also be used.

また、低誘電率膜4の材料としては、以上のほかに、通常の状態における比誘電率が3.0よりも大きいが、ポーラス型とすることにより、比誘電率が3.0以下でガラス転移温度が400℃以上であるものを用いることができる。例えば、フッ素添加酸化シリコン(FSG:Fluorinated Silicate Glass、比誘電率3.5〜3.7)、ボロン添加酸化シリコン(BSG:Boron-doped Silicate Glass、比誘電率3.5)、酸化シリコン(比誘電率4.0〜4.2)である。   In addition to the above, the material of the low dielectric constant film 4 has a relative dielectric constant of greater than 3.0 in a normal state. Those having a transition temperature of 400 ° C. or higher can be used. For example, fluorine-doped silicon oxide (FSG: Fluorinated Silicate Glass, relative dielectric constant: 3.5 to 3.7), boron-doped silicon oxide (BSG: Boron-doped Silicate Glass, relative dielectric constant: 3.5), silicon oxide (ratio) The dielectric constant is 4.0 to 4.2).

最上層の配線5を含む最上層の低誘電率膜4の上面には窒化シリコン等の無機材料からなるパッシベーション膜7が設けられている。最上層の配線5の接続パッド部5aに対応する部分におけるパッシベーション膜7には開口部8が設けられている。パッシベーション膜7の上面にはポリイミド系樹脂等の有機材料からなる保護膜9が設けられている。パッシベーション膜7の開口部8に対応する部分における保護膜9には開口部10が設けられている。   A passivation film 7 made of an inorganic material such as silicon nitride is provided on the upper surface of the uppermost low dielectric constant film 4 including the uppermost wiring 5. An opening 8 is provided in the passivation film 7 in a portion corresponding to the connection pad portion 5 a of the uppermost wiring 5. A protective film 9 made of an organic material such as polyimide resin is provided on the upper surface of the passivation film 7. An opening 10 is provided in the protective film 9 in a portion corresponding to the opening 8 of the passivation film 7.

保護膜9の上面には上層配線11が設けられている。上層配線11は、保護膜9の上面に設けられた銅等からなる下地金属層12と、下地金属層12の上面に設けられた銅からなる上部金属層13との2層構造となっている。上層配線11の一端部は、パッシベーション膜7および保護膜9の開口部8、10を介して最上層の配線5の接続パッド部5aに接続されている。   An upper wiring 11 is provided on the upper surface of the protective film 9. The upper layer wiring 11 has a two-layer structure of a base metal layer 12 made of copper or the like provided on the upper surface of the protective film 9 and an upper metal layer 13 made of copper provided on the upper surface of the base metal layer 12. . One end of the upper wiring 11 is connected to the connection pad 5 a of the uppermost wiring 5 through the openings 8 and 10 of the passivation film 7 and the protective film 9.

上層配線11の接続パッド部上面には銅からなる柱状電極14が設けられている。上層配線11を含む保護膜9の上面にはエポキシ系樹脂等の有機材料からなる封止膜15がその上面が柱状電極14の上面と面一となるように設けられている。柱状電極14の上面には半田ボール16が設けられている。   A columnar electrode 14 made of copper is provided on the upper surface of the connection pad portion of the upper layer wiring 11. A sealing film 15 made of an organic material such as an epoxy resin is provided on the upper surface of the protective film 9 including the upper layer wiring 11 so that the upper surface is flush with the upper surface of the columnar electrode 14. A solder ball 16 is provided on the upper surface of the columnar electrode 14.

次に、この半導体装置の製造方法の一例について説明する。この場合、図2に示すように、ウエハ状態のシリコン基板(以下、半導体ウエハ21という)の一部の長方形状の領域22内は、平面形状(正方形状あるいは長方形状)およびサイズが異なる複数の必要半導体装置形成領域22a、不必要半導体装置形成領域22bおよびそれ以外の余剰領域22cとなっている。   Next, an example of a method for manufacturing this semiconductor device will be described. In this case, as shown in FIG. 2, a part of the rectangular region 22 of the silicon substrate in the wafer state (hereinafter referred to as the semiconductor wafer 21) has a plurality of plane shapes (square shape or rectangular shape) and different sizes. A necessary semiconductor device forming region 22a, an unnecessary semiconductor device forming region 22b, and other surplus regions 22c are formed.

そして、半導体ウエハ21の上面において各半導体装置形成領域22a、22bには種々の集積回路(図示せず)が形成されている。このことについて付言すると、この半導体ウエハ21は、少量生産用あるいは試作用の半導体装置を製造するために、1枚の半導体ウエハ21に多種類の集積回路を形成したものであり、必要な集積回路のみを半導体装置にして取り出すものである。ここで、符号22aで示す2つの必要半導体装置形成領域は、今回、必要とされ、この半導体ウエハ21から、取り出そうとする集積回路が形成された領域であり、それ以外の符号22bで示す不必要半導体装置形成領域は、今回は集積回路装置として取り出す必要がない集積回路が形成された領域であるとする。   Various integrated circuits (not shown) are formed in the semiconductor device formation regions 22 a and 22 b on the upper surface of the semiconductor wafer 21. In this regard, the semiconductor wafer 21 is obtained by forming a large number of types of integrated circuits on a single semiconductor wafer 21 in order to manufacture a semiconductor device for small-scale production or trial manufacture. Only the semiconductor device is taken out. Here, the two necessary semiconductor device formation regions indicated by reference numeral 22a are regions that are required this time and are formed with integrated circuits to be taken out from the semiconductor wafer 21, and other unnecessary reference points indicated by reference numeral 22b. It is assumed that the semiconductor device forming region is a region where an integrated circuit that does not need to be taken out as an integrated circuit device is formed this time.

このような条件下では、最終的には、符号22aで示す2つの必要半導体装置形成領域を個片化して分離し、それ以外の符号22bで示す不必要半導体装置形成領域および余剰領域22cは無視することになる。この結果、図3において二点鎖線で示すように、直線状のダイシングストリート23は、2つの必要半導体装置形成領域22aの各4辺に沿った領域とし、不必要半導体装置形成領域22bおよび余剰領域22cと重なり合っても別に支障はない。   Under such conditions, the two necessary semiconductor device formation regions indicated by reference numeral 22a are finally separated into pieces, and the unnecessary semiconductor device formation region and surplus region 22c indicated by reference numeral 22b are ignored. Will do. As a result, as indicated by a two-dot chain line in FIG. 3, the linear dicing street 23 is a region along each of the four sides of the two necessary semiconductor device forming regions 22a, and the unnecessary semiconductor device forming region 22b and the surplus region are formed. There is no problem even if it overlaps with 22c.

さて、半導体ウエハ21の必要半導体装置形成領域22aから図1に示す半導体装置を製造する場合には、まず、図4(A)、(B)に示すものを準備する。この場合、図4(A)は図3のIVA−IVA線に沿う部分における必要半導体装置形成領域22aの部分の断面図であり、図4(B)は図3のIVB−IVB線に沿う部分における不必要半導体装置形成領域22bの部分の断面図である。   When manufacturing the semiconductor device shown in FIG. 1 from the necessary semiconductor device formation region 22a of the semiconductor wafer 21, the one shown in FIGS. 4A and 4B is first prepared. In this case, FIG. 4A is a cross-sectional view of the necessary semiconductor device formation region 22a in the portion along the line IVA-IVA in FIG. 3, and FIG. 4B is the portion along the line IVB-IVB in FIG. It is sectional drawing of the part of the unnecessary semiconductor device formation area 22b in FIG.

この準備したものでは、必要半導体装置形成領域22aの部分および不必要半導体装置形成領域22bの部分のいずれにおいても、半導体ウエハ21上に、接続パッド2と、各4層の低誘電率膜4および配線5と、パッシベーション膜7とが形成され、最上層の配線5の接続パッド部5aの中央部がパッシベーション膜7に形成された開口部8を介して露出されている。   In this preparation, in both the necessary semiconductor device formation region 22a and the unnecessary semiconductor device formation region 22b, the connection pad 2, the low dielectric constant film 4 of each of the four layers, A wiring 5 and a passivation film 7 are formed, and a central portion of the connection pad portion 5 a of the uppermost wiring 5 is exposed through an opening 8 formed in the passivation film 7.

低誘電率膜4の材料としては、上記のようなものが挙げられ、ポーラス型となったものを含めて、比誘電率が3.0でガラス転移温度が400℃以上であるものを用いることができる。なお、図4(A)、(B)において、符号23で示す領域はダイシングストリートに対応する領域である。   Examples of the material for the low dielectric constant film 4 include those described above, including those having a porous type, those having a relative dielectric constant of 3.0 and a glass transition temperature of 400 ° C. or higher. Can do. In FIGS. 4A and 4B, an area indicated by reference numeral 23 is an area corresponding to dicing street.

ここで、図3のIVA−IVA線に沿う部分における必要半導体装置形成領域22aでは、その4辺に沿った領域がダイシングストリート23に対応する領域となっている。図3のIVB−IVB線に沿う部分における不必要半導体装置形成領域22bでは、その右辺に沿った領域のみがダイシングストリート23に対応する領域となっているが、その左辺部および上辺部がダイシングストリート23と重なり合った領域となっている。   Here, in the necessary semiconductor device formation region 22 a in the portion along the line IVA-IVA in FIG. 3, the region along the four sides is a region corresponding to the dicing street 23. In the unnecessary semiconductor device forming region 22b along the IVB-IVB line in FIG. 3, only the region along the right side corresponds to the dicing street 23, but the left side and the upper side are the dicing street. 23 overlaps with the area.

したがって、図4(A)に示す必要半導体装置形成領域22aの部分では、接続パッド2および配線5はダイシングストリート23の内側に配置されている。一方、図4(B)に示す不必要半導体装置形成領域22bの部分では、右側の接続パッド2がダイシングストリート23の内側に配置されているが、左側の接続パッド2がダイシングストリート23の外側(左側)に配置され、且つ、配線5の一部がダイシングストリート23と重なり合っている。   Therefore, the connection pad 2 and the wiring 5 are disposed inside the dicing street 23 in the necessary semiconductor device formation region 22a shown in FIG. On the other hand, in the unnecessary semiconductor device formation region 22b shown in FIG. 4B, the right connection pad 2 is arranged inside the dicing street 23, but the left connection pad 2 is outside the dicing street 23 ( The wiring 5 is partly overlapped with the dicing street 23.

さて、図4(A)、(B)に示すものを準備したら、次に、図5(A)に示すように、必要半導体装置形成領域22aの4辺に沿ったダイシングストリート23に対応する領域におけるパッシベーション膜7に、フォトリソグラフィ法により、第1の溝24を形成する。この場合、図5(B)に示すように、不必要半導体装置形成領域22bにおいては、パッシベーション膜7にそのような溝は形成しない。   4A and 4B, the region corresponding to the dicing street 23 along the four sides of the necessary semiconductor device formation region 22a is next prepared as shown in FIG. 5A. A first groove 24 is formed in the passivation film 7 by using a photolithography method. In this case, as shown in FIG. 5B, such a groove is not formed in the passivation film 7 in the unnecessary semiconductor device formation region 22b.

次に、図6(A)に示すように、必要半導体装置形成領域22aの部分において、レーザビームを照射するレーザ加工により、パッシベーション膜7の第1の溝24(つまりダイシングストリート23)に対応する領域における4層の低誘電率膜4に第2の溝25を形成する。この状態では、ダイシングストリート23上における半導体ウエハ21の上面は第1、第2の溝24、25を介して露出されている。また、半導体ウエハ21上に積層された4層の低誘電率膜4およびパッシベーション膜7が第1、第2の溝24、25により分離されることにより、図1に示す低誘電率膜配線積層構造部3が形成されている。   Next, as shown in FIG. 6A, in the necessary semiconductor device formation region 22a, the first groove 24 (that is, the dicing street 23) of the passivation film 7 is dealt with by laser processing with laser beam irradiation. A second groove 25 is formed in the four-layer low dielectric constant film 4 in the region. In this state, the upper surface of the semiconductor wafer 21 on the dicing street 23 is exposed through the first and second grooves 24 and 25. Further, the four layers of the low dielectric constant film 4 and the passivation film 7 laminated on the semiconductor wafer 21 are separated by the first and second grooves 24 and 25, whereby the low dielectric constant film wiring laminate shown in FIG. The structure part 3 is formed.

また、図6(B)に示すように、不必要半導体装置形成領域22bの部分において、レーザビームを照射するレーザ加工により、ダイシングストリート23上におけるパッシベーション膜7および4層の低誘電率膜4に溝26を形成する。この場合、不必要半導体装置形成領域22bでは、配線5の一部がダイシングストリート23と重なり合っているため、この重なり合った部分における配線5は除去される。また、この状態では、ダイシングストリート23上における半導体ウエハ21の上面は溝26を介して露出されている。   Further, as shown in FIG. 6B, the passivation film 7 on the dicing street 23 and the four layers of the low dielectric constant film 4 are formed on the dicing street 23 by laser processing that irradiates a laser beam in the unnecessary semiconductor device formation region 22b. A groove 26 is formed. In this case, in the unnecessary semiconductor device formation region 22b, a part of the wiring 5 overlaps with the dicing street 23, so the wiring 5 in the overlapping part is removed. In this state, the upper surface of the semiconductor wafer 21 on the dicing street 23 is exposed through the groove 26.

ここで、レーザビームの照射により第2の溝25および溝26を加工する場合、レーザビームが半導体ウエハ21の上面に照射されると半導体ウエハ21の上面が溶融し、半導体ウエハ21から跳ね上がってから半導体ウエハ21上に落下するため、第2の溝25および溝26の底面は凹凸となる。   Here, when the second groove 25 and the groove 26 are processed by laser beam irradiation, when the upper surface of the semiconductor wafer 21 is irradiated with the laser beam, the upper surface of the semiconductor wafer 21 melts and jumps up from the semiconductor wafer 21. Since it falls on the semiconductor wafer 21, the bottom surfaces of the second groove 25 and the groove 26 are uneven.

ところで、不必要半導体装置形成領域22bの部分では、ダイシングストリート23上の一部において、レーザビームの照射によりパッシベーション膜7、低誘電率膜4および配線5を除去して溝26を形成しているので、これらの除去面が露出される。この場合、低誘電率膜4とパッシベーション膜7および配線5との間の密着強度が低く、当該除去面から欠落物が生じることがある。ダイシングストリート23上の残りの部分においては、例えば図6(B)の右側に示すように、パッシベーション膜7および低誘電率膜4の除去面が露出され、当該除去面から欠落物が生じることがある。   By the way, in the part of the unnecessary semiconductor device formation region 22b, the passivation film 7, the low dielectric constant film 4 and the wiring 5 are removed by irradiation with a laser beam in a part on the dicing street 23 to form the groove 26. Therefore, these removal surfaces are exposed. In this case, the adhesion strength between the low dielectric constant film 4 and the passivation film 7 and the wiring 5 is low, and a missing part may be generated from the removal surface. In the remaining portion on the dicing street 23, for example, as shown on the right side of FIG. 6B, the removal surface of the passivation film 7 and the low dielectric constant film 4 is exposed, and a missing part may be generated from the removal surface. is there.

一方、必要半導体装置形成領域22aの部分では、その4辺に沿ったダイシングストリート23において、パッシベーション膜7にフォトリソグラフィ法により第1の溝24を形成した後に、レーザビームの照射により4層の低誘電率膜4のみを除去して第2の溝25を形成しているので、4層の低誘電率膜4の除去面相互間の密着強度が上記の異種材料間の密着強度よりも高く、当該除去面から欠落物が比較的生じにくい。   On the other hand, in the necessary semiconductor device formation region 22a, on the dicing street 23 along the four sides, the first groove 24 is formed in the passivation film 7 by the photolithography method, and then the four layers are formed by laser beam irradiation. Since only the dielectric constant film 4 is removed to form the second groove 25, the adhesion strength between the removed surfaces of the four layers of the low dielectric constant film 4 is higher than the adhesion strength between the different materials. Loss is relatively less likely to occur from the removal surface.

そこで、次に、図7(A)、(B)に示すように、スクリーン印刷法、スピンコート法等により、必要半導体装置形成領域22aのパッシベーション膜7の開口部8を介して露出された最上層の配線5の接続パッド部5aの上面、第1、第2の溝24、25を介して露出された半導体ウエハ21の上面および溝26を介して露出された半導体ウエハ21の上面を含むパッシベーション膜7の上面にポリイミド系樹脂等の有機材料からなる保護膜9を形成する。   Therefore, next, as shown in FIGS. 7A and 7B, the top surface exposed through the opening 8 of the passivation film 7 in the necessary semiconductor device formation region 22a by screen printing, spin coating, or the like. Passivation including the upper surface of the connection pad portion 5a of the upper wiring 5, the upper surface of the semiconductor wafer 21 exposed through the first and second grooves 24 and 25, and the upper surface of the semiconductor wafer 21 exposed through the groove 26. A protective film 9 made of an organic material such as polyimide resin is formed on the upper surface of the film 7.

次に、図8(A)に示すように、必要半導体装置形成領域22aの部分において、フォトリソグラフィ法により、最上層の配線5の接続パッド部5aに対応する部分における保護膜9およびパッシベーション膜7に開口部10、8を形成し、且つ、必要半導体装置形成領域22aの4辺に沿ったダイシングストリート23上のみにおける保護膜9、パッシベーション膜7および4層の低誘電率膜4に溝27を形成し、それ以外の領域におけるダイシングストリート23上には、例えば図8(B)に示すように、そのような溝は形成しない。   Next, as shown in FIG. 8A, in the portion of the necessary semiconductor device formation region 22a, the protective film 9 and the passivation film 7 in the portion corresponding to the connection pad portion 5a of the uppermost wiring 5 are formed by photolithography. And the grooves 27 are formed in the protective film 9, the passivation film 7 and the four layers of the low dielectric constant film 4 only on the dicing street 23 along the four sides of the necessary semiconductor device formation region 22a. As shown in FIG. 8B, for example, such a groove is not formed on the dicing street 23 in the other region.

したがって、この状態では、例えば図8(B)の左側に示すように、パッシベーション膜7、低誘電率膜4および配線5のレーザビームの照射による除去面が保護膜9によって覆われているので、当該除去面から欠落物が生じるのを可及的に早い段階で確実に防止することができる。また、例えば図8(B)の右側に示すように、パッシベーション膜7および低誘電率膜4のレーザビームの照射による除去面が保護膜9によって覆われているので、当該除去面から欠落物が生じるのを可及的に早い段階で確実に防止することができる。   Therefore, in this state, as shown on the left side of FIG. 8B, for example, the removal surface of the passivation film 7, the low dielectric constant film 4 and the wiring 5 by the laser beam irradiation is covered with the protective film 9. It is possible to reliably prevent the occurrence of missing parts from the removal surface as early as possible. Further, for example, as shown on the right side of FIG. 8B, the removal surfaces of the passivation film 7 and the low dielectric constant film 4 that are irradiated with the laser beam are covered with the protective film 9, so that there are missing objects from the removal surfaces. It can be surely prevented from occurring as early as possible.

一方、図8(A)に示すように、必要半導体装置形成領域22aの部分では、低誘電率膜4のレーザビームの照射による除去面が溝27を介して露出されているが、上述の如く、当該除去面から欠落物が比較的生じにくいので、このままでも大きな支障はない。なお、図8(A)に示す工程において、開口部8、10のみを形成し、溝27を形成しないようにしてもよい。このようにした場合には、当該除去面から欠落物が生じるのを確実に防止することができる。   On the other hand, as shown in FIG. 8A, in the portion of the necessary semiconductor device formation region 22a, the removal surface of the low dielectric constant film 4 by the laser beam irradiation is exposed through the groove 27, but as described above. Since missing parts are relatively unlikely to be generated from the removal surface, there is no major problem even if it remains as it is. In the step shown in FIG. 8A, only the openings 8 and 10 may be formed and the groove 27 may not be formed. In such a case, it is possible to reliably prevent the missing material from being generated from the removal surface.

次に、図9(A)、(B)に示すように、必要半導体装置形成領域22aのパッシベーション膜7および保護膜9の開口部8、10を介して露出された最上層の配線5の接続パッド部5aの上面および溝27を介して露出された半導体ウエハ21の上面を含む保護膜9の上面全体に下地金属層12を形成する。この場合、下地金属層12は、無電解メッキにより形成された銅層のみであってもよく、またスパッタにより形成された銅層のみであってもよく、さらにスパッタにより形成されたチタン等の薄膜層上にスパッタにより銅層を形成したものであってもよい。   Next, as shown in FIGS. 9A and 9B, connection of the uppermost wiring 5 exposed through the openings 8 and 10 of the passivation film 7 and the protective film 9 in the necessary semiconductor device formation region 22a. A base metal layer 12 is formed on the entire upper surface of the protective film 9 including the upper surface of the pad portion 5 a and the upper surface of the semiconductor wafer 21 exposed through the groove 27. In this case, the base metal layer 12 may be only a copper layer formed by electroless plating, or may be only a copper layer formed by sputtering, and a thin film such as titanium formed by sputtering. A copper layer may be formed on the layer by sputtering.

次に、下地金属層12の上面にメッキレジスト膜28をパターン形成する。この場合、必要半導体装置形成領域22aの上部金属層13形成領域に対応する部分におけるメッキレジスト膜28には開口部29が形成されている。次に、下地金属層12をメッキ電流路とした銅の電解メッキを行なうことにより、メッキレジスト膜28の開口部29内の下地金属層12の上面に上部金属層13を形成する。次に、メッキレジスト膜28を剥離する。   Next, a plating resist film 28 is patterned on the upper surface of the base metal layer 12. In this case, an opening 29 is formed in the plating resist film 28 in a portion corresponding to the upper metal layer 13 formation region of the necessary semiconductor device formation region 22a. Next, the upper metal layer 13 is formed on the upper surface of the base metal layer 12 in the opening 29 of the plating resist film 28 by performing electrolytic plating of copper using the base metal layer 12 as a plating current path. Next, the plating resist film 28 is peeled off.

次に、図10(A)、(B)に示すように、上部金属層13を含む下地金属層12の上面にメッキレジスト膜30をパターン形成する。この場合、上部金属層13の接続パッド部(柱状電極14形成領域)に対応する部分におけるメッキレジスト膜30には開口部31が形成されている。次に、下地金属層12をメッキ電流路とした銅の電解メッキを行うことにより、メッキレジスト膜30の開口部31内の上部金属層13の接続パッド部上面に高さ50〜150μmの柱状電極14を形成する。   Next, as shown in FIGS. 10A and 10B, a plating resist film 30 is patterned on the upper surface of the base metal layer 12 including the upper metal layer 13. In this case, an opening 31 is formed in the plating resist film 30 in a portion corresponding to the connection pad portion (columnar electrode 14 formation region) of the upper metal layer 13. Next, a columnar electrode having a height of 50 to 150 μm is formed on the upper surface of the connection pad portion of the upper metal layer 13 in the opening 31 of the plating resist film 30 by performing electrolytic plating of copper using the base metal layer 12 as a plating current path. 14 is formed.

次に、メッキレジスト膜30を剥離し、次いで、上部金属層13をマスクとして下地金属層12の不要な部分をエッチングして除去すると、図11(A)に示すように、上部金属層13下にのみ下地金属層12が残存される。この状態では、下地金属層12および上部金属層13により2層構造の上層配線11が形成されている。ここで、図11(B)に示すように、不必要半導体装置形成領域22bでは、不要領域であるので、上層配線および柱状電極は形成されていない。   Next, the plating resist film 30 is peeled off, and then unnecessary portions of the base metal layer 12 are removed by etching using the upper metal layer 13 as a mask. As shown in FIG. Only the base metal layer 12 remains. In this state, the upper layer wiring 11 having a two-layer structure is formed by the base metal layer 12 and the upper metal layer 13. Here, as shown in FIG. 11B, the unnecessary semiconductor device formation region 22b is an unnecessary region, and therefore, the upper layer wiring and the columnar electrode are not formed.

次に、図12(A)、(B)に示すように、スクリーン印刷法、スピンコート法等により、上層配線11、柱状電極14を含む保護膜9の上面および溝27を介して露出された半導体ウエハ21の上面にエポキシ系樹脂等の有機材料からなる封止膜15をその厚さが柱状電極14の高さよりも厚くなるように形成する。したがって、この状態では、柱状電極14の上面は封止膜15によって覆われている。   Next, as shown in FIGS. 12A and 12B, the upper layer wiring 11 and the upper surface of the protective film 9 including the columnar electrode 14 and the groove 27 are exposed by a screen printing method, a spin coating method, or the like. A sealing film 15 made of an organic material such as epoxy resin is formed on the upper surface of the semiconductor wafer 21 so that the thickness thereof is greater than the height of the columnar electrode 14. Therefore, in this state, the upper surface of the columnar electrode 14 is covered with the sealing film 15.

次に、封止膜15の上面側を適宜に研削し、図13(A)、(B)に示すように、柱状電極14の上面を露出させ、且つ、この露出された柱状電極14の上面を含む封止膜15の上面を平坦化する。この封止膜15の上面の平坦化に際し、封止膜15と共に柱状電極14の上面部を数μm〜十数μm研削してもよい。   Next, the upper surface side of the sealing film 15 is appropriately ground to expose the upper surface of the columnar electrode 14 as shown in FIGS. 13A and 13B, and the exposed upper surface of the columnar electrode 14. The upper surface of the sealing film 15 containing is flattened. When planarizing the upper surface of the sealing film 15, the upper surface portion of the columnar electrode 14 may be ground together with the sealing film 15 by several μm to several tens of μm.

次に、図14(A)、(B)に示すように、柱状電極14の上面に半田ボール16を形成する。次に、図15(A)、(B)に示すように、封止膜15、保護膜9および半導体ウエハ21をダイシングストリート23に沿って切断する。すると、必要半導体装置形成領域22aの部分から図1に示す半導体装置が得られ、不必要半導体装置形成領域22bの部分からは不要な半導体装置が得られる。   Next, as shown in FIGS. 14A and 14B, solder balls 16 are formed on the upper surfaces of the columnar electrodes 14. Next, as shown in FIGS. 15A and 15B, the sealing film 15, the protective film 9, and the semiconductor wafer 21 are cut along the dicing street 23. Then, the semiconductor device shown in FIG. 1 is obtained from the necessary semiconductor device formation region 22a, and an unnecessary semiconductor device is obtained from the unnecessary semiconductor device formation region 22b.

(第2実施形態)
図16はこの発明の第2実施形態としての製造方法により製造された半導体装置の一例の断面図を示す。この半導体装置において、図1に示す半導体装置と異なる点は、シリコン基板1の上面において接続パッド2の外側の周辺部を除く領域に低誘電率膜配線積層構造部3を設け、低誘電率膜配線積層構造部3の外側におけるシリコン基板1の周辺部上面に封止膜15を設けた点である。
(Second Embodiment)
FIG. 16 is a sectional view showing an example of a semiconductor device manufactured by the manufacturing method according to the second embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that a low dielectric constant film wiring laminated structure portion 3 is provided in a region excluding the peripheral portion outside the connection pad 2 on the upper surface of the silicon substrate 1. The sealing film 15 is provided on the upper surface of the peripheral part of the silicon substrate 1 outside the wiring laminated structure part 3.

次に、この半導体装置の製造方法の一例について説明する。この場合、図4(A)、(B)に示すものを準備した後に、図17(A)に示すように、必要半導体装置形成領域22aの4辺に沿ったダイシングストリート23上およびその両側の領域におけるパッシベーション膜7に、フォトリソグラフィ法により、第1の溝41を形成する。この場合も、図17(B)に示すように、不必要半導体装置形成領域22bにおいては、パッシベーション膜7にそのような溝は形成しない。   Next, an example of a method for manufacturing this semiconductor device will be described. In this case, after preparing what is shown in FIGS. 4A and 4B, as shown in FIG. 17A, on the dicing street 23 along the four sides of the necessary semiconductor device formation region 22a and on both sides thereof. A first groove 41 is formed in the passivation film 7 in the region by photolithography. Also in this case, as shown in FIG. 17B, such a groove is not formed in the passivation film 7 in the unnecessary semiconductor device formation region 22b.

次に、図18(A)に示すように、必要半導体装置形成領域22aの部分において、レーザビームを照射するレーザ加工により、パッシベーション膜7の第1の溝41(つまりダイシングストリート23上およびその両側の領域)に対応する領域における4層の低誘電率膜4に第2の溝42を形成する。この状態では、ダイシングストリート23上およびその両側の領域における半導体ウエハ21の上面は第1、第2の溝41、42を介して露出されている。   Next, as shown in FIG. 18A, in the necessary semiconductor device formation region 22a, the first groove 41 (that is, on the dicing street 23 and on both sides thereof) of the passivation film 7 is formed by laser processing with laser beam irradiation. The second groove 42 is formed in the four-layer low dielectric constant film 4 in the region corresponding to the region (1). In this state, the upper surface of the semiconductor wafer 21 on the dicing street 23 and on both sides thereof is exposed through the first and second grooves 41 and 42.

また、図18(B)に示すように、不必要半導体装置形成領域22bの部分において、レーザビームを照射するレーザ加工により、ダイシングストリート23およびその両側の領域におけるパッシベーション膜7および4層の低誘電率膜4に溝43を形成する。この場合も、不必要半導体装置形成領域22bでは、配線5の一部がダイシングストリート23と重なり合っているため、この重なり合った部分における配線5は除去される。また、この状態では、ダイシングストリート23上およびその両側の領域における半導体ウエハ21の上面は溝43を介して露出されている。   Further, as shown in FIG. 18B, in the unnecessary semiconductor device formation region 22b, the low-dielectric of the passivation film 7 and the four layers in the dicing street 23 and the regions on both sides of the dicing street 23 by laser processing with laser beam irradiation. Grooves 43 are formed in the rate film 4. Also in this case, in the unnecessary semiconductor device formation region 22b, a part of the wiring 5 overlaps with the dicing street 23, so the wiring 5 in the overlapping part is removed. In this state, the upper surface of the semiconductor wafer 21 on the dicing street 23 and the regions on both sides thereof is exposed through the grooves 43.

次に、図19(A)、(B)に示すように、スクリーン印刷法、スピンコート法等により、必要半導体装置形成領域22aのパッシベーション膜7の開口部8を介して露出された最上層の配線5の接続パッド部5aの上面、第1、第2の溝41、42を介して露出された半導体ウエハ21の上面および溝43を介して露出された半導体ウエハ21の上面を含むパッシベーション膜7の上面にポリイミド系樹脂等の有機材料からなる保護膜9を形成する。   Next, as shown in FIGS. 19A and 19B, the uppermost layer exposed through the opening 8 of the passivation film 7 in the required semiconductor device formation region 22a by screen printing, spin coating, or the like. The passivation film 7 includes the upper surface of the connection pad portion 5 a of the wiring 5, the upper surface of the semiconductor wafer 21 exposed through the first and second grooves 41 and 42, and the upper surface of the semiconductor wafer 21 exposed through the groove 43. A protective film 9 made of an organic material such as polyimide resin is formed on the upper surface of the substrate.

次に、図20(A)に示すように、必要半導体装置形成領域22aの部分において、フォトリソグラフィ法により、最上層の配線5の接続パッド部5aに対応する部分における保護膜9およびパッシベーション膜7に開口部10、8を形成し、且つ、必要半導体装置形成領域22aの4辺に沿ったダイシングストリート23上およびその両側の領域のみにおける保護膜9、パッシベーション膜7および4層の低誘電率膜4に溝44を形成し、それ以外の領域におけるダイシングストリート23およびその両側の領域上には、例えば図20(B)に示すように、そのような溝は形成しない。   Next, as shown in FIG. 20A, the protective film 9 and the passivation film 7 in the portion corresponding to the connection pad portion 5a of the uppermost wiring 5 are formed by photolithography in the necessary semiconductor device formation region 22a. Are formed on the dicing street 23 along the four sides of the necessary semiconductor device formation region 22a and only in the regions on both sides thereof, the passivation film 7 and the four layers of low dielectric constant films. A groove 44 is formed in the groove 4, and such a groove is not formed on the dicing street 23 in the other region and regions on both sides thereof, as shown in FIG. 20B, for example.

以下、上記第1実施形態の場合と同様の工程を経ると、必要半導体装置形成領域22aの部分から図16に示す半導体装置が得られ、不必要半導体装置形成領域22bの部分からは不要な半導体装置が得られる。ところで、必要半導体装置形成領域22aの部分から得られた図16に示す半導体装置では、完成した状態において、シリコン基板1上の周辺部を除く領域に低誘電率膜配線積層構造部3が設けられ、低誘電率膜配線積層構造部3、パッシベーション膜7および保護膜9の側面が封止膜15によって覆われているので、シリコン基板1から低誘電率膜配線積層構造部3が剥離しにくい構造とすることができる。   Thereafter, through the same steps as in the first embodiment, the semiconductor device shown in FIG. 16 is obtained from the portion of the necessary semiconductor device formation region 22a, and an unnecessary semiconductor is formed from the portion of the unnecessary semiconductor device formation region 22b. A device is obtained. By the way, in the semiconductor device shown in FIG. 16 obtained from the necessary semiconductor device formation region 22a, the low dielectric constant film wiring laminated structure portion 3 is provided in a region excluding the peripheral portion on the silicon substrate 1 in a completed state. Since the side surfaces of the low dielectric constant film wiring multilayer structure portion 3, the passivation film 7 and the protective film 9 are covered with the sealing film 15, the low dielectric constant film wiring multilayer structure portion 3 is difficult to peel off from the silicon substrate 1. It can be.

(第3実施形態)
図21はこの発明の第3実施形態としての製造方法により製造された半導体装置の一例の断面図を示す。この半導体装置において、図1に示す半導体装置と異なる点は、シリコン基板1の上面において接続パッド2の外側の周辺部を除く領域に低誘電率膜配線積層構造部3を設け、低誘電率膜配線積層構造部3の外側におけるシリコン基板1の周辺部上面に保護膜9を設けた点である。
(Third embodiment)
FIG. 21 is a sectional view showing an example of a semiconductor device manufactured by the manufacturing method according to the third embodiment of the present invention. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that a low dielectric constant film wiring laminated structure portion 3 is provided in a region excluding the peripheral portion outside the connection pad 2 on the upper surface of the silicon substrate 1. The protective film 9 is provided on the upper surface of the peripheral part of the silicon substrate 1 outside the wiring laminated structure part 3.

次に、この半導体装置の製造方法の一例について説明する。この場合、図20に示す工程において、開口部8、10のみを形成し、溝44を形成しない。以下、上記第1実施形態の場合と同様の工程を経ると、必要半導体装置形成領域22aの部分から図21に示す半導体装置が得られ、不必要半導体装置形成領域22bの部分からは不要な半導体装置が得られる。ところで、必要半導体装置形成領域22aの部分から得られた図21に示す半導体装置では、完成した状態において、シリコン基板1上の周辺部を除く領域に低誘電率膜配線積層構造部3が設けられ、低誘電率膜配線積層構造部3およびパッシベーション膜7の側面が保護膜9によって覆われているので、シリコン基板1から低誘電率膜配線積層構造部3が剥離しにくい構造とすることができる。   Next, an example of a method for manufacturing this semiconductor device will be described. In this case, in the step shown in FIG. 20, only the openings 8 and 10 are formed, and the groove 44 is not formed. Thereafter, through the same steps as in the first embodiment, the semiconductor device shown in FIG. 21 is obtained from the necessary semiconductor device formation region 22a, and an unnecessary semiconductor device is obtained from the unnecessary semiconductor device formation region 22b. A device is obtained. By the way, in the semiconductor device shown in FIG. 21 obtained from the necessary semiconductor device forming region 22a, the low dielectric constant film wiring laminated structure portion 3 is provided in a region excluding the peripheral portion on the silicon substrate 1 in a completed state. Since the side surfaces of the low dielectric constant film wiring laminated structure 3 and the passivation film 7 are covered with the protective film 9, the low dielectric constant film wiring laminated structure 3 can be made difficult to peel off from the silicon substrate 1. .

(その他の実施形態)
上記各実施形態では、保護膜9上に上層配線11を形成し、この上層配線11の接続パッド部上に柱状電極14を形成した構造を有するものであるが、この発明は、保護膜9上に接続パッド部のみからなる上層配線を形成し、この接続パッド部のみからなる上層配線上に半田ボール16等の外部接続用バンプ電極を形成する構造に適用することもできる。
(Other embodiments)
Each of the above embodiments has a structure in which the upper layer wiring 11 is formed on the protective film 9 and the columnar electrode 14 is formed on the connection pad portion of the upper layer wiring 11. The present invention can also be applied to a structure in which an upper layer wiring composed only of a connection pad portion is formed and an external connection bump electrode such as a solder ball 16 is formed on the upper layer wiring composed only of the connection pad portion.

1 シリコン基板
2 接続パッド
3 低誘電率膜配線積層構造部
4 低誘電率膜
5 配線
7 パッシベーション膜
9 保護膜
11 上層配線
14 柱状電極
15 封止膜
16 半田ボール
21 半導体ウエハ
22a 必要半導体装置形成領域
22b 不必要半導体装置形成領域
22c 余剰領域
23 ダイシングストリート
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Connection pad 3 Low dielectric constant film wiring laminated structure part 4 Low dielectric constant film 5 Wiring 7 Passivation film 9 Protective film 11 Upper layer wiring 14 Columnar electrode 15 Sealing film 16 Solder ball 21 Semiconductor wafer 22a Necessary semiconductor device formation region 22b Unnecessary semiconductor device formation region 22c Surplus region 23 Dicing street

Claims (10)

半導体基板上に低誘電率膜と配線とが積層された低誘電率膜配線積層構造部、無機材料からなるパッシベーション膜および有機材料からなる保護膜が設けられ、前記保護膜上に前記配線に接続される上層配線が設けられた半導体装置の製造方法において、
必要半導体装置形成領域と不必要半導体装置形成領域とからなる複数の半導体装置形成領域を有する半導体ウエハの一面上に前記低誘電率膜と前記配線とが積層して形成され、その上に前記パッシベーション膜が形成されたものを準備する工程と、
少なくともダイシングストリートの一部に対応する領域における前記パッシベーション膜、前記配線および前記低誘電率膜をレーザビームの照射により除去して溝を形成する工程と、
前記半導体ウエハの必要半導体装置形成領域の前記溝内の除去面が露出するように、前記半導体ウエハの不必要半導体装置形成領域の溝内及び前記パッシベーション膜上に前記保護膜を形成する工程と、
前記保護膜上に前記上層配線を前記配線に接続させて形成する工程と、
少なくとも前記保護膜および前記半導体ウエハを前記ダイシングストリートに沿って切断する工程と、
を含むことを特徴とする半導体装置の製造方法。
Low dielectric constant film wiring laminated structure in which a low dielectric constant film and wiring are laminated on a semiconductor substrate, a passivation film made of an inorganic material, and a protective film made of an organic material are provided and connected to the wiring on the protective film In the manufacturing method of the semiconductor device provided with the upper layer wiring to be performed,
The low dielectric constant film and the wiring are stacked on one surface of a semiconductor wafer having a plurality of semiconductor device forming regions each including a necessary semiconductor device forming region and an unnecessary semiconductor device forming region, and the passivation is formed thereon. Preparing a film-formed one;
Removing the passivation film, the wiring, and the low dielectric constant film in a region corresponding to at least a part of the dicing street by laser beam irradiation to form a groove;
Forming the protective film in the groove of the unnecessary semiconductor device formation region of the semiconductor wafer and on the passivation film so that the removal surface in the groove of the semiconductor device formation region of the semiconductor wafer is exposed;
Forming the upper wiring on the protective film by connecting to the wiring;
Cutting at least the protective film and the semiconductor wafer along the dicing street;
A method for manufacturing a semiconductor device, comprising:
請求項1に記載の発明において、前記半導体ウエハの不必要半導体装置形成領域は前記ダイシングストリートと重なり合う領域を有することを特徴とする半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein an unnecessary semiconductor device formation region of the semiconductor wafer has a region overlapping with the dicing street. 請求項2に記載の発明において、前記準備されたものにおいて、前記半導体ウエハの不必要半導体装置形成領域の前記ダイシングストリートと重なり合う領域の一部には、前記低誘電率膜および前記配線が形成されていることを特徴とする半導体装置の製造方法。   The low dielectric constant film and the wiring are formed in a part of the prepared semiconductor device where the unnecessary semiconductor device formation region of the semiconductor wafer overlaps the dicing street. A method for manufacturing a semiconductor device. 請求項3に記載の発明において、前記準備されたものにおいて、前記半導体ウエハの必要半導体装置形成領域の周囲における前記ダイシングストリートに対応する領域には、前記低誘電率膜は形成されているが、前記配線は形成されていないことを特徴とする半導体装置の製造方法。   In the invention according to claim 3, in the prepared one, the low dielectric constant film is formed in a region corresponding to the dicing street around the necessary semiconductor device formation region of the semiconductor wafer. A method of manufacturing a semiconductor device, wherein the wiring is not formed. 請求項4に記載の発明において、少なくとも前記ダイシングストリートの一部に対応する領域における前記パッシベーション膜、前記配線および前記低誘電率膜をレーザビームの照射により除去して溝を形成する工程は、前記半導体ウエハの必要半導体装置形成領域の周囲における前記ダイシングストリートに対応する領域における前記パッシベーション膜をフォトリソグラフィ法により除去して第1の溝を形成し、前記第1の溝を介して露出された前記低誘電率膜をレーザビームの照射により除去して第2の溝を形成し、且つ、それ以外の前記ダイシングストリートに対応する領域における前記パッシベーション膜、前記配線および前記低誘電率膜をレーザビームの照射により除去して溝を形成する工程であることを特徴とする半導体装置の製造方法。   In the invention according to claim 4, the step of forming the groove by removing the passivation film, the wiring and the low dielectric constant film in a region corresponding to at least a part of the dicing street by irradiation with a laser beam, The passivation film in a region corresponding to the dicing street around the necessary semiconductor device formation region of the semiconductor wafer is removed by photolithography to form a first groove, and the first groove exposed through the first groove The low dielectric constant film is removed by irradiation with a laser beam to form a second groove, and the passivation film, the wiring, and the low dielectric constant film in a region corresponding to the other dicing street are removed from the laser beam. A semiconductor device characterized in that it is a step of forming a groove by removal by irradiation Manufacturing method. 請求項5に記載の発明において、前記溝内の少なくとも一部を含む前記パッシベーション膜上に前記保護膜を形成する工程は、前記第1、第2の溝以外の前記溝内を含む前記パッシベーション膜上に前記保護膜を形成する工程であることを特徴とする半導体装置の製造方法。   6. The passivation film according to claim 5, wherein the step of forming the protective film on the passivation film including at least a part of the groove includes the inside of the groove other than the first and second grooves. A method for manufacturing a semiconductor device, comprising the step of forming the protective film thereon. 請求項5に記載の発明において、前記溝内の少なくとも一部を含む前記パッシベーション膜上に前記保護膜を形成する工程は、前記第1、第2の溝を含むすべての前記溝内を含む前記パッシベーション膜上に前記保護膜を形成する工程であることを特徴とする半導体装置の製造方法。   6. The method of claim 5, wherein the step of forming the protective film on the passivation film including at least a part of the groove includes all of the grooves including the first and second grooves. A method for manufacturing a semiconductor device, comprising forming the protective film on a passivation film. 請求項1に記載の発明において、前記上層配線を形成した後に、前記上層配線の接続パッド部上に柱状電極を形成し、前記柱状電極の周囲に封止膜を形成し、前記柱状電極上に半田ボールを形成し、前記封止膜、前記保護膜および前記半導体ウエハを前記ダイシングストリートに沿って切断することを特徴とする半導体装置の製造方法。   In the invention according to claim 1, after forming the upper layer wiring, a columnar electrode is formed on a connection pad portion of the upper layer wiring, a sealing film is formed around the columnar electrode, and the columnar electrode is formed on the columnar electrode. A method of manufacturing a semiconductor device, comprising: forming a solder ball, and cutting the sealing film, the protective film, and the semiconductor wafer along the dicing street. 請求項1に記載の発明において、前記低誘電率膜は、Si−O結合とSi−H結合を有するポリシロキサン系材料、Si−O結合とSi−CH3結合を有するポリシロキサン系材料、炭素添加酸化シリコン、有機ポリマー系のlow−k材料のいずれかを含み、あるいは、フッ素添加酸化シリコン、ボロン添加酸化シリコン、酸化シリコンのいずれかであってポーラス型のものを含むことを特徴とする半導体装置の製造方法。 3. The low dielectric constant film according to claim 1, wherein the low dielectric constant film is a polysiloxane material having Si—O bonds and Si—H bonds, a polysiloxane material having Si—O bonds and Si—CH 3 bonds, and carbon. A semiconductor characterized in that it contains any one of added silicon oxide and organic polymer-based low-k materials, or includes fluorine-type silicon oxide, boron-added silicon oxide, and silicon oxide that is porous. Device manufacturing method. 請求項1に記載の発明において、前記低誘電率膜のガラス転移温度は400℃以上であることを特徴とする半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the low dielectric constant film has a glass transition temperature of 400 ° C. or higher.
JP2009259414A 2009-11-13 2009-11-13 Method of manufacturing semiconductor device Pending JP2010093273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259414A JP2010093273A (en) 2009-11-13 2009-11-13 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259414A JP2010093273A (en) 2009-11-13 2009-11-13 Method of manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007320303A Division JP4596001B2 (en) 2007-12-12 2007-12-12 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2010093273A true JP2010093273A (en) 2010-04-22

Family

ID=42255643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259414A Pending JP2010093273A (en) 2009-11-13 2009-11-13 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2010093273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138449A (en) * 2010-12-27 2012-07-19 Teramikros Inc Semiconductor device manufacturing method
KR101209474B1 (en) 2011-04-13 2012-12-07 앰코 테크놀로지 코리아 주식회사 Method for manufacturing through silicon via of semiconductor device
US8518745B2 (en) 2011-02-15 2013-08-27 Nitto Denko Corporation Method of manufacturing semiconductor device having a bumped wafer and protective layer
US9279064B2 (en) 2011-02-15 2016-03-08 Nitto Denko Corporation Manufacturing semiconductor device with film for forming protective layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228892A (en) * 2004-02-12 2005-08-25 Toshiba Corp Semiconductor wafer, semiconductor element and its manufacturing method
JP2006173548A (en) * 2004-11-16 2006-06-29 Rohm Co Ltd Semiconductor apparatus and manufacturing method thereof
JP2006269837A (en) * 2005-03-24 2006-10-05 Consortium For Advanced Semiconductor Materials & Related Technologies Semiconductor element assembly, semiconductor element manufacturing method, and semiconductor element
JP2006339382A (en) * 2005-06-01 2006-12-14 Renesas Technology Corp Manufacturing method of semiconductor device
JP2007258381A (en) * 2006-03-22 2007-10-04 Toshiba Corp Semiconductor apparatus and manufacturing method thereof
JP2007317692A (en) * 2006-05-23 2007-12-06 Casio Comput Co Ltd Semiconductor device, and its manufacturing process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228892A (en) * 2004-02-12 2005-08-25 Toshiba Corp Semiconductor wafer, semiconductor element and its manufacturing method
JP2006173548A (en) * 2004-11-16 2006-06-29 Rohm Co Ltd Semiconductor apparatus and manufacturing method thereof
JP2006269837A (en) * 2005-03-24 2006-10-05 Consortium For Advanced Semiconductor Materials & Related Technologies Semiconductor element assembly, semiconductor element manufacturing method, and semiconductor element
JP2006339382A (en) * 2005-06-01 2006-12-14 Renesas Technology Corp Manufacturing method of semiconductor device
JP2007258381A (en) * 2006-03-22 2007-10-04 Toshiba Corp Semiconductor apparatus and manufacturing method thereof
JP2007317692A (en) * 2006-05-23 2007-12-06 Casio Comput Co Ltd Semiconductor device, and its manufacturing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138449A (en) * 2010-12-27 2012-07-19 Teramikros Inc Semiconductor device manufacturing method
US8518745B2 (en) 2011-02-15 2013-08-27 Nitto Denko Corporation Method of manufacturing semiconductor device having a bumped wafer and protective layer
US9279064B2 (en) 2011-02-15 2016-03-08 Nitto Denko Corporation Manufacturing semiconductor device with film for forming protective layer
KR101209474B1 (en) 2011-04-13 2012-12-07 앰코 테크놀로지 코리아 주식회사 Method for manufacturing through silicon via of semiconductor device

Similar Documents

Publication Publication Date Title
JP4596001B2 (en) Manufacturing method of semiconductor device
KR101117505B1 (en) Semiconductor device and manufacturing method thereof
JP4193897B2 (en) Semiconductor device and manufacturing method thereof
JP5393722B2 (en) Semiconductor device
US8871627B2 (en) Semiconductor device having low dielectric insulating film and manufacturing method of the same
JP2010283367A (en) Method for manufacturing semiconductor device
JP4974384B2 (en) Manufacturing method of semiconductor device
JP4645863B2 (en) Manufacturing method of semiconductor device
JP4956465B2 (en) Manufacturing method of semiconductor device
JP2008130886A (en) Manufacturing method of semiconductor device
JP2010093273A (en) Method of manufacturing semiconductor device
JP4913563B2 (en) Manufacturing method of semiconductor device
JP5004907B2 (en) Manufacturing method of semiconductor device
US20090079072A1 (en) Semiconductor device having low dielectric insulating film and manufacturing method of the same
JP2012138449A (en) Semiconductor device manufacturing method
JP2012023259A (en) Semiconductor device and method for manufacturing the same
JP2007317692A (en) Semiconductor device, and its manufacturing process
JP5001884B2 (en) Semiconductor device and manufacturing method thereof
JP2009135421A (en) Semiconductor device and its manufacturing method
JP4770892B2 (en) Manufacturing method of semiconductor device
JP2009135420A (en) Semiconductor device and method of manufacturing the same
JP2011211040A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612