JP2006287211A - Semiconductor device, stacked semiconductor device and method of fabricating the devices - Google Patents

Semiconductor device, stacked semiconductor device and method of fabricating the devices Download PDF

Info

Publication number
JP2006287211A
JP2006287211A JP2006057978A JP2006057978A JP2006287211A JP 2006287211 A JP2006287211 A JP 2006287211A JP 2006057978 A JP2006057978 A JP 2006057978A JP 2006057978 A JP2006057978 A JP 2006057978A JP 2006287211 A JP2006287211 A JP 2006287211A
Authority
JP
Japan
Prior art keywords
hole
semiconductor device
insulating film
wiring layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057978A
Other languages
Japanese (ja)
Inventor
Shingo Hamazaki
慎吾 濱崎
Kenichi Azuma
賢一 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006057978A priority Critical patent/JP2006287211A/en
Publication of JP2006287211A publication Critical patent/JP2006287211A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Abstract

<P>PROBLEM TO BE SOLVED: To provide semiconductor devices improved to enable reducing a resistance rise and a contact failure. <P>SOLUTION: In the semiconductor devices 150a, 150b and 150c having wiring layers 106, there exists a through-hole 110 that reaches the reverse surface from the upper surface of the semiconductor devices, and on an inner wall of the through-hole 110, each of the wiring layers exposes a part of its side wall. A conductive material 112 is placed inside the through-hole 110. The conductive material 112 is electrically connected to the part of the side wall of each wiring layer 106 inside the through-hole 110. According to the present invention, since it is enabled in stacking the semiconductor devices 150a, 150b, and 150c to make an arrangement without making any increase in the number of masks for forming the through-hole to be made by an increase in the number of stacked layers and since it is also enabled to form all the semiconductor devices through the use of a through-hole 110 of the same design size, down-sizing of the areas of the semiconductors is also feasible. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一般に半導体装置に関し、より特定的には高機能化と小型化を図った積層半導体装置を与える半導体装置に関する。本発明はまたそのような半導体装置および積層半導体装置の製造方法に関する。   The present invention generally relates to semiconductor devices, and more particularly to a semiconductor device that provides a stacked semiconductor device that is highly functional and miniaturized. The present invention also relates to a method for manufacturing such a semiconductor device and a stacked semiconductor device.

電子機器の高機能化と小型化に伴って、複数の半導体装置を積層し、同一パッケージ内に設置する事で、半導体装置の高機能化と小型化を図った積層半導体装置が提案されている。   Along with the higher functionality and smaller size of electronic devices, a stacked semiconductor device has been proposed in which a plurality of semiconductor devices are stacked and installed in the same package, thereby improving the functionality and size of the semiconductor device. .

図11は、例えば特許文献1に記載されている従来の積層半導体装置の断面図である。   FIG. 11 is a cross-sectional view of a conventional stacked semiconductor device described in Patent Document 1, for example.

図11を参照して、従来の積層半導体装置は、上層ほど下層に比べ面積の小さい半導体装置201a.201b,201cが絶縁膜202を介して積層されてなる。各層の表面の露出する領域に電極203が設けられ、それぞれの半導体装置201a,201b,201cがワイヤ配線204により接続されている。   Referring to FIG. 11, the conventional stacked semiconductor device includes a semiconductor device 201 a. 201 b and 201 c are stacked with an insulating film 202 interposed therebetween. An electrode 203 is provided in the exposed region of the surface of each layer, and the respective semiconductor devices 201 a, 201 b, 201 c are connected by wire wiring 204.

しかし、このような接続構造では、積層数が増加すると、上下間での半導体装置の接続構造により、上層側の半導体装置の面積が減少する。このような積層方法では、同一面積を有する同一構造の半導体装置の積層はできない、また、半導体装置の積層構造やワイヤ配線204の引き回しが複雑になる。さらに、上層側の半導体装置の面積が減少する事によって、上下の半導体装置を接続するワイヤの本数に制限が発生し、ワイヤ配線204の間隔も狭くなり、ワイヤ配線204間の短絡の恐れがある。   However, in such a connection structure, when the number of stacked layers increases, the area of the semiconductor device on the upper layer side decreases due to the connection structure of the semiconductor devices between the upper and lower sides. With such a lamination method, semiconductor devices having the same area and the same structure cannot be laminated, and the lamination structure of the semiconductor device and the routing of the wire wiring 204 become complicated. Further, since the area of the upper semiconductor device is reduced, the number of wires connecting the upper and lower semiconductor devices is limited, the interval between the wire wirings 204 is narrowed, and there is a risk of a short circuit between the wire wirings 204. .

そこで、上記積層半導体装置での積層する上層側半導体装置の面積減少や、ワイヤ配線間の短絡の問題点を克服すべく、例えば特許文献2に開示されているような、半導体装置内に形成された貫通孔を用いる配線により、半導体装置を接続する方法が提案されている。   Therefore, in order to overcome the problems of the area reduction of the upper-layer side semiconductor device to be stacked in the above-described stacked semiconductor device and the problem of short-circuiting between the wire wirings, for example, it is formed in the semiconductor device as disclosed in Patent Document 2. There has been proposed a method of connecting a semiconductor device by wiring using a through hole.

図12は、特許文献2に開示されている積層半導体装置の断面図である。   FIG. 12 is a cross-sectional view of the stacked semiconductor device disclosed in Patent Document 2.

図12を参照して、この方法では、複数の半導体装置301a,301b,301cを第1の絶縁膜302を介して積層後、第1のマスクパターン(図示せず)で最上層の半導体装置301aに第1の貫通孔306aを形成し、配線電極303bを露出させる。第1のマスクパターン除去後、第2のマスクパターン(図示せず)で先に開口した第1の貫通孔より小さい第2の貫通孔306bを形成し、配線電極303cを露出させる。3層以上の場合は同様な手順で、第3の貫通孔306c、第4の貫通孔を形成する。この場合、形成する貫通孔の大きさは、下層になるほど小さくなる。貫通孔306a,306b,306cの側壁に第2の絶縁膜304を形成する。   Referring to FIG. 12, in this method, after stacking a plurality of semiconductor devices 301a, 301b, 301c via a first insulating film 302, the uppermost semiconductor device 301a is formed with a first mask pattern (not shown). A first through hole 306a is formed in the wiring electrode 303b to expose the wiring electrode 303b. After the removal of the first mask pattern, a second through hole 306b smaller than the first through hole previously opened with a second mask pattern (not shown) is formed, and the wiring electrode 303c is exposed. In the case of three or more layers, the third through hole 306c and the fourth through hole are formed in the same procedure. In this case, the size of the through hole to be formed becomes smaller as the lower layer is formed. A second insulating film 304 is formed on the side walls of the through holes 306a, 306b, and 306c.

次に、上記工程により形成した貫通孔306a,306b,306c内に導電材料を充填し、各層の半導体装置301a,301b,301cを電気的に接続する。本手法によれば、貫通孔306a.306b,306cへの導電材料の充填を一度に行うことができ、工程数の低減も同時に実現できる。   Next, the through holes 306a, 306b, and 306c formed by the above process are filled with a conductive material, and the semiconductor devices 301a, 301b, and 301c in each layer are electrically connected. According to the present technique, the through holes 306a. The conductive material can be filled into 306b and 306c at the same time, and the number of processes can be reduced at the same time.

特開平6−37250号公報JP-A-6-37250

特開2001−44357号公報JP 2001-44357 A

しかし、特許文献2に記載の半導体装置の形成方法では、半導体装置を積層する際に、上層側の半導体装置は下層側の半導体装置より広い貫通孔を有している必要があるために、半導体装置301a,301b,301cを製造する際に、各層毎に異なった径の貫通孔を開口する必要があり、開口径の異なったマスクが必要になるという問題点があった。また接続孔を形成する配線電極303a,303b,303cの露出面積は、積層半導体装置の最上段の貫通孔306aの径で規定されるため、これを大きくすると半導体装置面積の縮小化に問題が生じる。   However, in the method for forming a semiconductor device described in Patent Document 2, when the semiconductor devices are stacked, the upper semiconductor device needs to have a wider through hole than the lower semiconductor device. When manufacturing the devices 301a, 301b, and 301c, it is necessary to open through holes having different diameters for each layer, and there is a problem that masks having different opening diameters are required. Further, since the exposed areas of the wiring electrodes 303a, 303b, and 303c that form the connection holes are defined by the diameter of the uppermost through hole 306a of the stacked semiconductor device, there is a problem in reducing the area of the semiconductor device if this is increased. .

この発明は上記のような問題点を解決するためになされたもので、半導体装置面積の縮小化を図った積層半導体装置を得ることの出来る、貫通孔を有する半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device having a through-hole that can provide a stacked semiconductor device with a reduced semiconductor device area. To do.

この発明の他の目的は、高抵抗化や接触不良の低減が可能になるように改良された半導体装置を提供することにある。   Another object of the present invention is to provide an improved semiconductor device so as to increase resistance and reduce contact failure.

この発明は、そのような半導体装置を積層してなる積層半導体装置を提供することを目的とする。   An object of the present invention is to provide a stacked semiconductor device formed by stacking such semiconductor devices.

この発明の他の目的は、そのような半導体装置および積層半導体装置の製造方法を提供することにある。   Another object of the present invention is to provide a method for manufacturing such a semiconductor device and a stacked semiconductor device.

この発明に従う半導体装置は、配線層を持つ半導体装置において、その表面から裏面に達する貫通孔が存在し、前記貫通孔の内壁には、前記半導体装置を構成する配線層の側壁の一部が露出し、前記貫通孔内部には導電材料が存在し、該貫通孔内で、前記配線層の側壁の一部と、該導電材料が電気的に接続されていることを特徴とする。   In the semiconductor device according to the present invention, in the semiconductor device having a wiring layer, there is a through hole reaching from the front surface to the back surface, and a part of the side wall of the wiring layer constituting the semiconductor device is exposed on the inner wall of the through hole. A conductive material exists in the through hole, and the conductive material is electrically connected to a part of the side wall of the wiring layer in the through hole.

この発明によれば、貫通孔の内壁に配線層の側壁を露出させているので、同一設計寸法の半導体装置を互いに貫通孔を繋げて積層し、この貫通孔に一括してプラグを形成して複数の半導体装置を簡易に接続する事が出来、高抵抗化や接触不良の低減が可能となる。また、半導体装置を積層する際の、積層段数増加による貫通孔形成用マスク数の増加がない。さらに、同一設計寸法の貫通孔で全ての半導体装置を形成できる為、半導体装置面積の縮小もできる。   According to the present invention, since the side wall of the wiring layer is exposed on the inner wall of the through hole, semiconductor devices having the same design dimensions are stacked with the through holes connected to each other, and a plug is collectively formed in the through hole. A plurality of semiconductor devices can be easily connected, and high resistance and contact failure can be reduced. Further, there is no increase in the number of through-hole forming masks due to an increase in the number of stacked layers when stacking semiconductor devices. Furthermore, since all semiconductor devices can be formed with through holes having the same design dimensions, the area of the semiconductor device can be reduced.

この発明の好ましい実施態様によれば、前記貫通孔の内壁で側壁を露出する配線層が、複数、層を成して形成されていることを特徴とする。この場合、前記貫通孔の上端の開口径が、下層の配線層の側壁を露出させる部分の開口径より大きくされているのが好ましい。   According to a preferred embodiment of the present invention, a plurality of wiring layers exposing the side wall at the inner wall of the through hole are formed in layers. In this case, it is preferable that the opening diameter of the upper end of the through hole is larger than the opening diameter of the portion exposing the side wall of the lower wiring layer.

この発明の好ましい実施態様にかかる積層半導体装置は、上述の積層半導体装置と、基板表面に接続用の配線層の一部が露出し、且つ、貫通孔の無い半導体装置とを積層した半導体装置に係り、前記貫通孔の無い半導体装置は当該積層半導体の最下層に位置し、前記導電材料が該最下層の半導体装置の前記接続用の配線層にまで延びて形成され、各層の半導体装置が電気的に接続されていることを特徴とする。   A laminated semiconductor device according to a preferred embodiment of the present invention is a semiconductor device obtained by laminating the above-described laminated semiconductor device and a semiconductor device in which a part of a wiring layer for connection is exposed on the substrate surface and there is no through hole. Therefore, the semiconductor device without the through hole is located in the lowermost layer of the stacked semiconductor, and the conductive material is formed to extend to the connection wiring layer of the lowermost semiconductor device. It is characterized by being connected.

この発明の他の局面に従う方法は、配線層の側壁を露出させる、表面から裏面にかけて形成された、貫通孔に導電材料が充填された半導体装置の製造方法にかかる。まず、基板表面に第1の絶縁膜を形成する。前記第1の絶縁膜を、配線用溝を形成するためのパターンと前記貫通孔を形成するための貫通孔形成部のパターンとを有する第1のマスクパターンを用いて、選択的にエッチングし、配線用溝を形成する。前記配線用溝に導電体を埋め込み、第1の配線層を形成する。前記第1の配線層を覆うように第2の絶縁膜を全面に形成する。前記第2の絶縁膜の上に、前記貫通孔形成部の上方に該貫通孔形成部よりも径が0.1〜20%大きい開口部を有する第2のマスクパターンを形成する。前記第2のマスクパターンを用い、選択エッチングにより、第2の絶縁膜を第1の配線の表面が露出するまで除去する。さらに前記第2のマスクパターンと、露出した前記第1の配線層をマスクにして、前記第1の絶縁膜の前記貫通孔形成部をエッチングし、前記第1の配線層の側壁の一部を露出させ、さらに、前記基板を裏面までエッチングし、前記貫通孔を形成する。前記貫通孔内を含む全面に第3の絶縁膜を形成する。表面側をエッチバックし、前記第1の配線層の側壁を被覆していた第3の絶縁膜を除去する。前記基板の裏面に第4の絶縁膜を形成する。前記貫通孔内に導電材料を充填し、前記貫通孔内に露出した前記第1の配線層の側壁の一部と、貫通孔内に充填した導電材料とを電気的に接続する。   A method according to another aspect of the present invention relates to a method for manufacturing a semiconductor device in which a side wall of a wiring layer is exposed and is formed from a front surface to a back surface and a through hole is filled with a conductive material. First, a first insulating film is formed on the substrate surface. The first insulating film is selectively etched using a first mask pattern having a pattern for forming a wiring groove and a pattern of a through hole forming portion for forming the through hole, A wiring groove is formed. A conductor is embedded in the wiring groove to form a first wiring layer. A second insulating film is formed on the entire surface so as to cover the first wiring layer. A second mask pattern having an opening that is 0.1 to 20% larger in diameter than the through-hole forming portion is formed on the second insulating film above the through-hole forming portion. Using the second mask pattern, the second insulating film is removed by selective etching until the surface of the first wiring is exposed. Further, using the second mask pattern and the exposed first wiring layer as a mask, the through hole forming portion of the first insulating film is etched, and a part of the side wall of the first wiring layer is etched. Then, the substrate is etched to the back surface to form the through hole. A third insulating film is formed on the entire surface including the inside of the through hole. The surface side is etched back, and the third insulating film covering the side wall of the first wiring layer is removed. A fourth insulating film is formed on the back surface of the substrate. The through hole is filled with a conductive material, and a part of the side wall of the first wiring layer exposed in the through hole is electrically connected to the conductive material filled in the through hole.

この発明にかかる方法によれば、半導体装置を積層する際の、積層段数増加による貫通孔形成用マスク数の増加が無い。また、同一設計寸法の貫通孔で全ての半導体装置を形成できる為、半導体装置面積の縮小もできる。さらに、上記第2のマスクパターンの上記開口部は、上記貫通孔形成部より0.1〜20%大きくすることにより、第1の配線層の上表面の一部分を露出させることができる。   According to the method of the present invention, there is no increase in the number of through-hole forming masks due to an increase in the number of stacked layers when stacking semiconductor devices. Further, since all semiconductor devices can be formed with through holes having the same design dimensions, the area of the semiconductor device can be reduced. Furthermore, by making the opening of the second mask pattern 0.1 to 20% larger than the through hole forming portion, a part of the upper surface of the first wiring layer can be exposed.

この発明のさらに他の局面に従う方法は、配線層の側壁を露出させる、表面から裏面にかけて形成された、貫通孔に導電材料が充填された半導体装置の製造方法であって、まず、基板表面に第1の絶縁膜を形成する。前記第1の絶縁膜上に第1の導電膜を形成する。前記第1の導電膜上に、配線層を形成するためパターンと前記貫通孔を形成するための貫通孔形成部のパターンとを有する第1のマスクパターンを形成する。前記第1のマスクパターンを用い、第1の導電膜を選択エッチングすることにより第1の配線層を形成する。前記第1のマスクパターンを除去した後に、前記第1の配線層を覆うように第2の絶縁膜を全面に形成する。前記第2の絶縁膜の上に、前記貫通孔形成部の上方に該貫通孔形成部よりも径が0.1〜20%大きい開口部を有する第2のマスクパターンを形成する。前記第2のマスクパターンを用い、選択エッチングにより、第2の絶縁膜を第1の配線層の表面が露出するまで除去する。さらに前記第2のマスクパターンと、露出した前記第1の配線層をマスクにして、前記第1の絶縁膜の前記貫通孔形成部をエッチングし、前記第1の配線層の側壁の一部を露出させ、さらに、前記基板をエッチングし、前記貫通孔を形成する。前記貫通孔内を含む全面に第3の絶縁膜を形成する。表面側をエッチバックし、前記第1の配線層の側壁を被覆していた第3の絶縁膜を除去する。前記基板の裏面に第4の絶縁膜を形成する。前記貫通孔内に導電材料を充填し、前記貫通孔内に露出した第1の配線層の側壁の一部と、貫通孔内に充填した導電材料とを電気的に接続する。   A method according to still another aspect of the present invention is a method of manufacturing a semiconductor device in which a side wall of a wiring layer is exposed and formed from a front surface to a back surface and a through hole is filled with a conductive material. A first insulating film is formed. A first conductive film is formed on the first insulating film. A first mask pattern having a pattern for forming a wiring layer and a pattern of a through hole forming portion for forming the through hole is formed on the first conductive film. The first wiring layer is formed by selectively etching the first conductive film using the first mask pattern. After removing the first mask pattern, a second insulating film is formed on the entire surface so as to cover the first wiring layer. A second mask pattern having an opening that is 0.1 to 20% larger in diameter than the through-hole forming portion is formed on the second insulating film above the through-hole forming portion. Using the second mask pattern, the second insulating film is removed by selective etching until the surface of the first wiring layer is exposed. Further, using the second mask pattern and the exposed first wiring layer as a mask, the through hole forming portion of the first insulating film is etched, and a part of the side wall of the first wiring layer is etched. Then, the substrate is etched to form the through hole. A third insulating film is formed on the entire surface including the inside of the through hole. The surface side is etched back, and the third insulating film covering the side wall of the first wiring layer is removed. A fourth insulating film is formed on the back surface of the substrate. The through hole is filled with a conductive material, and a part of the side wall of the first wiring layer exposed in the through hole is electrically connected to the conductive material filled in the through hole.

上記2種類の製造方法において、前記第1の絶縁膜の上に前記第1の配線層を形成する工程と同じ工程を繰り返し、2層以上の配線層を形成し、貫通孔の内壁に、複数層の配線層の側壁を露出させるのが好ましい。この発明によれば、製造工程内で貫通孔内の配線側壁を複数層設置する事により導電材料との接触面積を増加させる事が可能であり、貫通孔径の縮小に応じる事が出来る。この場合、上層配線部の貫通孔開口径を下層配線部の貫通孔開口径より大きくするのが好ましい。   In the above two types of manufacturing methods, the same step as the step of forming the first wiring layer on the first insulating film is repeated to form two or more wiring layers, and a plurality of wiring layers are formed on the inner wall of the through hole. It is preferable to expose the side wall of the wiring layer. According to this invention, it is possible to increase the contact area with the conductive material by installing a plurality of wiring sidewalls in the through hole in the manufacturing process, and it is possible to respond to the reduction of the diameter of the through hole. In this case, it is preferable to make the through hole opening diameter of the upper wiring portion larger than the through hole opening diameter of the lower wiring portion.

また、上記方法において、前記貫通孔の形成は、前記第1の配線層をマスクにする基板のエッチングを、孔の深さが前記基板膜厚の0.1〜95%の範囲になるところで終了し、前記第3の絶縁膜の形成工程および前記第3の絶縁膜の除去工程の後、基板裏面より前記孔が露出するまで研磨することによって行ってもよい。   Further, in the above method, the formation of the through hole is completed by etching the substrate using the first wiring layer as a mask when the depth of the hole falls within a range of 0.1 to 95% of the substrate film thickness. Then, after the step of forming the third insulating film and the step of removing the third insulating film, polishing may be performed from the back surface of the substrate until the holes are exposed.

さらに、上記方法において、前記貫通孔内に導電材料を充填する工程の前に、複数の半導体基板装置を、同一設計の貫通孔を重ね合わせて積層し、繋がった貫通孔内に一括して導電材料を充填し、前記貫通孔内に露出した配線層の側壁と貫通孔内に充填した導電材料とを電気的に接続してもよい。   Further, in the above method, prior to the step of filling the through hole with a conductive material, a plurality of semiconductor substrate devices are stacked by stacking through holes of the same design, and are collectively conducted into the connected through holes. The material may be filled and the side wall of the wiring layer exposed in the through hole may be electrically connected to the conductive material filled in the through hole.

前記貫通孔内に導電性材料を充填する手法は、該貫通孔内に導電性材料を挿入し、貫通孔内で導電性材料を溶融させて充填するのが好ましい。   In the method of filling the through hole with the conductive material, it is preferable to insert the conductive material into the through hole and melt the conductive material in the through hole.

他の好ましい実施態様によれば、前記貫通孔内に導電材料を充填する工程の前に、基板表面に接続用の配線層の一部が露出し、且つ、貫通孔の無い最下層用の半導体装置を別途準備する。該最下層用の半導体装置の上に、同一設計の前記貫通孔を有する複数の半導体装置を重ね合わせて、積層し、前記貫通孔内に導電材料を溶融させて充填し、前記導電材料が前記最下層用の半導体装置の前記接続用の配線層と、各層の半導体装置を電気的に接続させる。   According to another preferred embodiment, before the step of filling the through hole with a conductive material, a part of the wiring layer for connection is exposed on the substrate surface, and the semiconductor for the bottom layer without the through hole Prepare the equipment separately. On the semiconductor device for the lowermost layer, a plurality of semiconductor devices having the through holes of the same design are overlaid and stacked, and the conductive material is melted and filled in the through holes. The wiring layer for connection of the semiconductor device for the lowermost layer is electrically connected to the semiconductor device of each layer.

本発明によれば、貫通孔内壁の側壁に配線を露出したことにより、同一設計寸法の貫通孔を積層し、一括して貫通孔プラグを形成して複数の半導体装置を簡易に接続する事が出来、工程簡略化が出来る。また、半導体装置毎に貫通孔径を変える必要が無い為、作成マスクの枚数を削減し、且つ、半導体装置面積の縮小も出来る。また、貫通孔内に露出させる配線側壁を複数層設置する事で、貫通孔径の縮小化による導電性材料との接触面積の低下を抑えることが可能である。さらに、Si基板エッチング時に基板に対し選択比の高い金属(Cu、W、Au等)をマスクに用いる事で、絶縁膜マスクを用いるより、深い貫通孔形成が容易に出来る。   According to the present invention, by exposing the wiring to the side wall of the inner wall of the through hole, it is possible to stack the through holes of the same design dimensions and collectively form the through hole plugs to easily connect a plurality of semiconductor devices. And process simplification. Further, since there is no need to change the through-hole diameter for each semiconductor device, the number of masks to be created can be reduced and the area of the semiconductor device can be reduced. Further, by providing a plurality of wiring sidewalls exposed in the through hole, it is possible to suppress a decrease in contact area with the conductive material due to a reduction in the diameter of the through hole. Further, by using a metal (Cu, W, Au, etc.) having a high selectivity with respect to the substrate at the time of etching the Si substrate as a mask, deep through-holes can be formed more easily than using an insulating film mask.

図1は、本発明の実施の形態に係る半導体装置の断面図である。   FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention.

図1を参照して、半導体装置150は、半導体基板101を備える。半導体基板101の上に設けられた素子(図示せず)を覆うように、半導体基板101の上に絶縁膜102,107が設けられている。絶縁膜102の表面に形成された配線溝104の中に配線層106が形成されている。当該半導体装置には、表面から裏面にかけて上記配線層の側壁106aを露出させるように貫通孔110が設けられている。半導体基板101の、貫通孔110によって露出した露出壁面は、サイドウオール絶縁膜109で被覆されている。貫通孔110の内壁に配線層106の壁面106aを露出させたことにより、後述するように、同一設計寸法の貫通孔を有する半導体装置を積層し、貫通孔110内に一括してプラグを形成することにより、複数の半導体装置を簡易に接続する事が出来る。   With reference to FIG. 1, a semiconductor device 150 includes a semiconductor substrate 101. Insulating films 102 and 107 are provided on the semiconductor substrate 101 so as to cover elements (not shown) provided on the semiconductor substrate 101. A wiring layer 106 is formed in a wiring groove 104 formed on the surface of the insulating film 102. In the semiconductor device, a through hole 110 is provided so as to expose the side wall 106a of the wiring layer from the front surface to the back surface. An exposed wall surface of the semiconductor substrate 101 exposed by the through hole 110 is covered with a sidewall insulating film 109. By exposing the wall surface 106a of the wiring layer 106 to the inner wall of the through hole 110, as will be described later, semiconductor devices having through holes of the same design dimension are stacked, and plugs are collectively formed in the through hole 110. Thus, a plurality of semiconductor devices can be easily connected.

以下、実施例にかかる半導体装置の製造方法について図を用いて説明する。   A method for manufacturing a semiconductor device according to an example will be described below with reference to the drawings.

図2(A)に示すように、半導体基板101上の素子(図示せず)を覆うように第1の絶縁膜102を堆積し、その上に、配線溝を形成するための第1のマスクパターン103を形成する。第1のマスクパターン103を用いて、第1の絶縁膜102をドライエッチングすることにより、第1の絶縁膜102の表面に第1の配線溝104を形成する。   As shown in FIG. 2A, a first insulating film 102 is deposited so as to cover an element (not shown) on the semiconductor substrate 101, and a first mask for forming a wiring groove thereon is formed. A pattern 103 is formed. By using the first mask pattern 103 to dry-etch the first insulating film 102, a first wiring groove 104 is formed on the surface of the first insulating film 102.

第1の絶縁膜102はTEOSに由来する酸化膜で、厚さ100〜1000nmの範囲内で、CVD法により形成する。本実施例では、第1の絶縁膜102を、成膜温度は50〜100℃で、ガスはTEOS/O2で、供給量は680mg/650ccで、圧力は8.5Torrで、Powerは800Wで、800nm堆積した。第1の配線溝104の深さは、100〜1000nmの範囲内(本実施例では400nm)である。 The first insulating film 102 is an oxide film derived from TEOS and is formed by a CVD method within a thickness range of 100 to 1000 nm. In this embodiment, the first insulating film 102 is formed at a temperature of 50 to 100 ° C., a gas is TEOS / O 2 , a supply amount is 680 mg / 650 cc, a pressure is 8.5 Torr, and a power is 800 W. , 800 nm deposited. The depth of the first wiring groove 104 is in the range of 100 to 1000 nm (400 nm in this embodiment).

後工程で配線部となる貫通孔が形成される領域には、上面より図示する図2(a)と図2(A)を参照して、後にエッチング除去されて配線開口部になる部分の絶縁膜105を残す。絶縁膜105は後述するように、後工程の貫通孔加工時に、配線層がマスクとなって、エッチング除去される。絶縁膜105の寸法は10〜100μmの範囲内(本実施例では50μm四方)である。   In a region where a through-hole serving as a wiring portion is formed in a later process, with reference to FIGS. 2A and 2A illustrated from above, insulation of a portion that is later etched away to become a wiring opening portion The film 105 is left. As will be described later, the insulating film 105 is removed by etching using the wiring layer as a mask at the time of later through-hole processing. The size of the insulating film 105 is in the range of 10 to 100 μm (in this embodiment, 50 μm square).

図2(A)と(B)を参照して、第1のマスクパターン103を除去し、全面に導電性材料を堆積し、第1の配線溝104に埋め込み、CMP法やエッチバック法等の手段を用いて第1の絶縁膜102の表面が露出するまで導電性材料を除去し、第1の配線溝104内に第1の配線層106を形成する。   Referring to FIGS. 2A and 2B, the first mask pattern 103 is removed, a conductive material is deposited on the entire surface, embedded in the first wiring groove 104, and a CMP method, an etch back method, or the like. The conductive material is removed by using means until the surface of the first insulating film 102 is exposed, and the first wiring layer 106 is formed in the first wiring groove 104.

第1の配線層106となる導電性材料として、本実施例では、半導体基板(シリコン基板)をエッチングする時の選択比を考慮してCuを使用しているが、WやAu、Agを用いても良い。次に、図2(B)およびその平面図である図2(b)に示すように、第2の絶縁膜107を堆積し、貫通孔を形成するための開口部108aを有する第2のマスクパターン108を、開口部108aが絶縁膜105の領域に重なるように形成する。   In this embodiment, Cu is used as the conductive material for the first wiring layer 106 in consideration of the selection ratio when the semiconductor substrate (silicon substrate) is etched. However, W, Au, or Ag is used. May be. Next, as shown in FIG. 2B and a plan view thereof, FIG. 2B, a second mask having an opening 108a for depositing a second insulating film 107 and forming a through hole is deposited. The pattern 108 is formed so that the opening 108 a overlaps the region of the insulating film 105.

第2の絶縁膜107は、第1の絶縁膜102と同じ条件にて、厚さ100〜5000nmの範囲内(本実施例では4000nm堆積)で形成する。第2のレジストマスク108の開口部108aの寸法は、絶縁膜105の範囲(本実施例では51μm四方)より大きいサイズで形成する。   The second insulating film 107 is formed in a thickness range of 100 to 5000 nm (in this embodiment, 4000 nm deposition) under the same conditions as the first insulating film 102. The size of the opening 108a of the second resist mask 108 is larger than the range of the insulating film 105 (51 μm square in this embodiment).

次に、図2(B)および(C)を参照して、第2のマスクパターン108を用いて第2の絶縁膜107を第1の配線層106の上表面が露出するまで除去し、続けて第2のマスクパターン108と第1の配線層106をマスクにして、絶縁膜105をドライエッチングし、第1の配線層106の側壁の一部106aを露出させ、且つ、半導体基板101の表面を露出させる。その後、第2のマスクパターン108を除去する。   Next, referring to FIGS. 2B and 2C, the second insulating film 107 is removed using the second mask pattern 108 until the upper surface of the first wiring layer 106 is exposed. Then, using the second mask pattern 108 and the first wiring layer 106 as a mask, the insulating film 105 is dry-etched to expose a part 106a of the sidewall of the first wiring layer 106, and the surface of the semiconductor substrate 101 To expose. Thereafter, the second mask pattern 108 is removed.

第2の絶縁膜107のドライエッチングは、ガスはC58/O2/Arで、供給量はそれぞれ16/16/800sccmで、圧力は30mmTorrで、RF−Powerは1800Wの条件で行った。 Dry etching of the second insulating film 107 was performed under the conditions of gas C 5 F 8 / O 2 / Ar, supply amounts 16/16/800 sccm, pressure 30 mmTorr, and RF-Power 1800 W, respectively. .

次に、図3(D)を参照して、第2の絶縁膜107と第1の配線層106をマスクにして、半導体基板101の表面をドライエッチングして深さ10〜100μmの孔101aを形成し、孔101aの壁面を含む全面に第3の絶縁膜109を形成し、その後、第3の絶縁膜109を、第1の配線層106の側壁の一部106aを露出させるように全面ドライエッチングし、第3の絶縁膜のサイドウォール109を形成する。ここでは、このドライエッチングは、半導体基板101を貫通しないように、条件を選んでいるが、貫通させてもよい。   Next, referring to FIG. 3D, using the second insulating film 107 and the first wiring layer 106 as a mask, the surface of the semiconductor substrate 101 is dry-etched to form a hole 101a having a depth of 10 to 100 μm. The third insulating film 109 is formed over the entire surface including the wall surface of the hole 101a, and then the third insulating film 109 is completely dried so as to expose a part 106a of the side wall of the first wiring layer 106. Etching is performed to form a sidewall 109 of the third insulating film. Here, conditions are selected so that this dry etching does not penetrate the semiconductor substrate 101, but may be penetrated.

半導体基板101の表面のエッチングは、SF6/O2系のガスを用いて行う。例えば、本実施例にかかる条件は、温度が50〜100℃であり、ガスはSF6/O2で150cc、圧力は100〜300mTorrであり、RF−Powerは100〜500Wである。孔101aの深さは、本実施例では80μmである。 Etching of the surface of the semiconductor substrate 101 is performed using SF 6 / O 2 gas. For example, the conditions according to the present embodiment are that the temperature is 50 to 100 ° C., the gas is SF 6 / O 2 , 150 cc, the pressure is 100 to 300 mTorr, and the RF-Power is 100 to 500 W. The depth of the hole 101a is 80 μm in this embodiment.

第3の絶縁膜109は第1の絶縁膜102と同じ条件にて厚さ50〜500nmの範囲内(本実施例では、250nm堆積)で形成する。第3の絶縁膜のサイドウォール109を形成するための全面ドライエッチングの条件として、本実施例中の第2の絶縁膜107のエッチングと同じ条件を使用する。   The third insulating film 109 is formed in a thickness range of 50 to 500 nm (in this embodiment, 250 nm deposition) under the same conditions as the first insulating film 102. As the conditions for the entire surface dry etching for forming the sidewall 109 of the third insulating film, the same conditions as the etching of the second insulating film 107 in this embodiment are used.

次に、図3(D)(E)を参照して、半導体基板101の裏面を孔101aが露出するまで化学的機械的研磨(CMP)により研磨して、貫通孔110を形成する。半導体基板101の裏面側に第4の絶縁膜111を堆積し、半導体装置150を形成する。   Next, with reference to FIGS. 3D and 3E, the back surface of the semiconductor substrate 101 is polished by chemical mechanical polishing (CMP) until the hole 101a is exposed, thereby forming the through hole 110. A fourth insulating film 111 is deposited on the back side of the semiconductor substrate 101 to form a semiconductor device 150.

上記実施例では裏面への孔の露出にCMPを用いる加工を例示したが、本発明はこれに限られるものでなく、例えば、研削や研磨、プラズマエッチング、またはガスエッチングまたはその組み合わせを用いて加工してもよい。   In the above-described embodiment, the processing using CMP for exposing the hole on the back surface is illustrated. However, the present invention is not limited to this, for example, processing using grinding, polishing, plasma etching, gas etching, or a combination thereof. May be.

第4の絶縁膜111はTEOSを用いた酸化膜で、厚さ100〜1000nmの範囲内でCVD法により形成する。本実施例では、第4の絶縁膜111を、成膜温度は50〜100℃で、ガスはTEOS/O2で、供給量は680mg/650ccで、圧力は8.5Torrで、Powerは800Wで、100nm堆積した。 The fourth insulating film 111 is an oxide film using TEOS and is formed by a CVD method within a thickness range of 100 to 1000 nm. In this embodiment, the fourth insulating film 111 is formed at a temperature of 50 to 100 ° C., a gas is TEOS / O 2 , a supply amount is 680 mg / 650 cc, a pressure is 8.5 Torr, and a power is 800 W. , 100 nm deposited.

次に、図4(F)に示すように、上述のように形成された同一設計の複数個の半導体装置150a,150bを、貫通孔110を重ね合わせて積層し、最下層部分には、別途作成した、貫通孔は無いが、接続用の配線の一部を露出させる開口部151aを有する半導体装置151を、貫通孔110と開口部151aが重なるように積層する。本実施例では、半導体装置150a,150bを積層する方法として、下層に配置の貫通孔と上層貫通孔を上面からの目視観察により重ね合わせ、貫通孔のずれ量を補正して最下層の半導体装置151に載せて固定する。   Next, as shown in FIG. 4F, a plurality of semiconductor devices 150a and 150b of the same design formed as described above are stacked with the through-holes 110 overlapped, and the lowermost layer portion is separately provided. The prepared semiconductor device 151 having no through hole but having an opening 151a exposing a part of the connection wiring is stacked so that the through hole 110 and the opening 151a overlap. In the present embodiment, as a method of laminating the semiconductor devices 150a and 150b, the through hole and the upper layer through hole arranged in the lower layer are overlapped by visual observation from the upper surface, and the shift amount of the through hole is corrected to correct the lower layer semiconductor device. 151 and fix it.

次に、図4(G)に示すように、貫通孔110、開口部151a内へ導電性材料のハンダ性ワイヤ112を挿入し、最下層の半導体装置151の配線部分106へボンディングすると共に、貫通孔110内でハンダ性ワイヤ112を溶融して、貫通孔110内を充填し、貫通孔110内に露出した第1の配線層106の側壁106aと貫通孔110内に充填した導電材料とを電気的に接続する。   Next, as shown in FIG. 4G, a soldering wire 112 made of a conductive material is inserted into the through hole 110 and the opening 151a, bonded to the wiring portion 106 of the lowermost semiconductor device 151, and penetrated. The solder wire 112 is melted in the hole 110 to fill the through hole 110, and the side wall 106 a of the first wiring layer 106 exposed in the through hole 110 and the conductive material filled in the through hole 110 are electrically connected. Connect.

本実施例では、ワイヤの溶融物が、積層する半導体装置の隙間を介し、隣接する貫通孔内の導電材と接触する事の無いように、貫通孔110は、その間隔を100μm離して設けられている。   In this embodiment, the through-holes 110 are provided with an interval of 100 μm so that the melt of the wire does not come into contact with the conductive material in the adjacent through-holes through the gap between the stacked semiconductor devices. ing.

実施例1では埋め込み配線構造の第1の配線層を例示したが、図5(A)に示すように第1の絶縁膜102を堆積後に導電膜106を堆積し、第3のマスクパターン113によって、導電膜106をドライエッチングして第1の配線層106を形成し、その後の工程を、上記実施例と同様にする事で、図3(E)の装置に相当する図5(B)に示すような半導体装置を形成できる。図5(B)に示す半導体装置において、図3(E)に示す半導体装置と同一または相当する部分には同一の参照番号を付し、その説明を繰り返さない。なお、この場合でも、第1の配線層106を形成するためのマスクパターン113には、上記実施例と同様に、図2(B)に示す様な開口部108aに相当する、貫通孔を形成するための開口部113aが設けられている。   In the first embodiment, the first wiring layer having the embedded wiring structure is illustrated. However, as shown in FIG. 5A, the first insulating film 102 is deposited and then the conductive film 106 is deposited, and the third mask pattern 113 is used. The conductive film 106 is dry-etched to form the first wiring layer 106, and the subsequent steps are the same as in the above embodiment, so that FIG. 5B corresponding to the apparatus of FIG. A semiconductor device as shown can be formed. In the semiconductor device illustrated in FIG. 5B, the same or corresponding portions as those in the semiconductor device illustrated in FIG. 3E are denoted by the same reference numerals, and description thereof is not repeated. Even in this case, in the mask pattern 113 for forming the first wiring layer 106, a through hole corresponding to the opening 108a as shown in FIG. An opening 113a is provided for this purpose.

上記実施例では、積層半導体装置の形成において最下層に貫通孔を持たない半導体装置151を用いる場合を例示したが、図6に示すように、実施例1にかかる貫通孔110をもつ半導体装置150a,150b,150cのみを積層し、貫通孔110内へ導電性材料のワイヤ112を挿入し、ワイヤ112を溶融して貫通孔110内を充填し、貫通孔110内に露出した第1の配線層106の側壁106aと貫通孔110内に充填した導電材料とを電気的に接続して積層半導体装置を構成してもよい。   In the above embodiment, the case where the semiconductor device 151 having no through hole in the lowermost layer is used in the formation of the stacked semiconductor device is illustrated. However, as shown in FIG. 6, the semiconductor device 150a having the through hole 110 according to the first embodiment. , 150b, and 150c, a conductive material wire 112 is inserted into the through hole 110, the wire 112 is melted to fill the through hole 110, and the first wiring layer exposed in the through hole 110 is exposed. The stacked semiconductor device may be configured by electrically connecting the side wall 106a of 106 and the conductive material filled in the through hole 110.

なお、図中では、積層半導体装置が3層の場合について表示したが、本実施例の積層半導体構造であれば、4層以上の半導体装置の使用しても同様にして接続できる。   In the figure, the case where the laminated semiconductor device has three layers is shown. However, if the laminated semiconductor structure of this embodiment is used, the connection can be made in the same manner even when four or more layers of semiconductor devices are used.

上記実施例では、配線層が1層の場合を用いて例示したが、2層以上の複数層の配線を形成しても良い。図7は、実施例4に係る半導体装置の断面図である。貫通孔411の内壁で、側壁を露出する配線層が、複数、層407,403を成して形成されている。貫通孔411内の配線側壁を複数層設置する事により、貫通孔411内に充填される導電材料との接触面積を増加させる事が可能となる。   In the above embodiment, the case where the number of wiring layers is one is exemplified, but a plurality of layers of two or more layers may be formed. FIG. 7 is a cross-sectional view of the semiconductor device according to the fourth embodiment. A plurality of wiring layers 407 and 403 are formed on the inner wall of the through hole 411 to expose the side wall. By providing a plurality of wiring sidewalls in the through hole 411, the contact area with the conductive material filled in the through hole 411 can be increased.

次に製造方法について説明する。   Next, a manufacturing method will be described.

図8(A)を参照して、半導体基板401の上に設けられた素子を覆うように第1の絶縁膜402を形成し、第1の絶縁膜402の表面に配線溝を設け、第1の配線層403を形成する。第1の配線層403には、後工程で貫通孔を形成するための開口部である貫通孔形成部404を設ける。ここまでは、実施例1と同様である。次に、第1の絶縁膜402の上に、第2の絶縁膜405を堆積し、図示しない第2のマスクパターンを用いて第2の配線溝を形成し、第2の配線407を形成する、また第2の配線407には、後工程で貫通孔を形成するための開口部である貫通孔形成部408を設ける。貫通孔形成部404は貫通孔形成部404に重ね合わせた構造としている。   Referring to FIG. 8A, a first insulating film 402 is formed so as to cover an element provided on a semiconductor substrate 401, and a wiring groove is provided on the surface of the first insulating film 402. The wiring layer 403 is formed. The first wiring layer 403 is provided with a through hole forming portion 404 that is an opening for forming a through hole in a later process. The process up to this point is the same as in the first embodiment. Next, a second insulating film 405 is deposited on the first insulating film 402, a second wiring groove is formed using a second mask pattern (not shown), and a second wiring 407 is formed. In addition, the second wiring 407 is provided with a through hole forming portion 408 which is an opening for forming a through hole in a later process. The through-hole forming portion 404 is superposed on the through-hole forming portion 404.

次に、第2の絶縁膜405の上に第3の絶縁膜409を堆積する。その後、貫通孔を形成する為の第3のマスクパターン410を、貫通孔形成部408の領域に重ね合わせて形成する。ここで、第2の絶縁膜405と第3の絶縁膜409は、第1の絶縁膜402と同じ条件にて厚さ100〜5000nmの範囲内(本実施例では4000nm堆積)で形成し、第3のマスクパターン410の開口部410aの寸法は、貫通孔形成部408より大きい範囲(本実施例では51μm四方)のサイズで形成する。   Next, a third insulating film 409 is deposited on the second insulating film 405. Thereafter, a third mask pattern 410 for forming a through hole is formed so as to overlap the region of the through hole forming portion 408. Here, the second insulating film 405 and the third insulating film 409 are formed in a thickness range of 100 to 5000 nm (in this embodiment, 4000 nm deposition) under the same conditions as the first insulating film 402. The size of the opening 410a of the third mask pattern 410 is formed in a size larger than the through-hole forming portion 408 (51 μm square in this embodiment).

次に、図8(A)と(B)を参照して、第3のマスクパターン410を用いて、第3の絶縁膜409を第2の配線407がの表面の一部が露出するまで除去し、続けて第3のマスクパターン410と第2の配線407をマスクにして、第2の絶縁膜405および第1の絶縁膜402の貫通孔形成部408,404をドライエッチングし、第2の配線層407の側壁と第1の配線層403の側壁の一部を露出させ、且つ、半導体基板401の表面を露出させる。第1〜第3の絶縁膜402,405,409のドライエッチング条件は、前記実施例での条件と同様である。   Next, referring to FIGS. 8A and 8B, the third insulating film 409 is removed using the third mask pattern 410 until a part of the surface of the second wiring 407 is exposed. Then, using the third mask pattern 410 and the second wiring 407 as a mask, the second insulating film 405 and the through-hole forming portions 408 and 404 of the first insulating film 402 are dry-etched, and the second mask The side wall of the wiring layer 407 and a part of the side wall of the first wiring layer 403 are exposed, and the surface of the semiconductor substrate 401 is exposed. The dry etching conditions for the first to third insulating films 402, 405, and 409 are the same as the conditions in the above embodiment.

その後、前述の図3(D)と(E)と同様の工程を経ることにより、図7に示すような、半導体基板401の裏面に第4の絶縁膜412が形成され、かつ貫通孔411における基板401の内壁がサイドウオール絶縁膜410で被覆され、さらに第2の配線層407の側壁と第1の配線層403の側壁の一部が貫通孔411内に露出した半導体装置450が完成する。   Thereafter, through the same steps as in FIGS. 3D and 3E described above, a fourth insulating film 412 is formed on the back surface of the semiconductor substrate 401 as shown in FIG. A semiconductor device 450 is completed in which the inner wall of the substrate 401 is covered with the sidewall insulating film 410 and the side wall of the second wiring layer 407 and a part of the side wall of the first wiring layer 403 are exposed in the through hole 411.

本実施例は、実施例4の改良にかかる。図9は、実施例5にかかる半導体装置の断面図である。図9を参照して、貫通孔411内に、2層以上の配線407,403の側壁が露出しており、上層配線407の開口部408を下層配線403の開口部404より広くすることで、多層配線形成で起こる重ね合わせズレによる後工程での配線側壁の露出障害を抑制している。   The present embodiment is related to the improvement of the fourth embodiment. FIG. 9 is a cross-sectional view of the semiconductor device according to the fifth embodiment. Referring to FIG. 9, the side walls of two or more layers of wirings 407 and 403 are exposed in the through hole 411, and the opening 408 of the upper layer wiring 407 is made wider than the opening 404 of the lower layer wiring 403. The exposure failure of the wiring side wall in the subsequent process due to the misalignment caused by the multilayer wiring formation is suppressed.

次に製造方法について説明する。   Next, a manufacturing method will be described.

図10(A)を参照して、半導体基板401の上に第1の絶縁膜402と第1の配線403を形成する。第1の配線403には後工程にて形成される貫通孔用に第1の配線開口部404を形成する。次に、第2の絶縁膜405を堆積し、第2のマスクパターン(図示せず)を用いて第2の配線溝を形成し、この配線溝に埋め込まれるように、第2の配線407を形成する。また第2の配線407には後工程にて形成される貫通孔用に第2の配線開口部408を形成する。第2の配線開口部408は第1の配線開口部404に重ね合わせるように形成される。第2の配線開口部408の寸法は、第1の配線開口部404より大きい範囲(本実施例では51μm四方)のサイズで形成する。   Referring to FIG. 10A, a first insulating film 402 and a first wiring 403 are formed over a semiconductor substrate 401. A first wiring opening 404 is formed in the first wiring 403 for a through hole formed in a later process. Next, a second insulating film 405 is deposited, a second wiring groove is formed using a second mask pattern (not shown), and the second wiring 407 is embedded in the wiring groove. Form. A second wiring opening 408 is formed in the second wiring 407 for a through hole formed in a later process. The second wiring opening 408 is formed so as to overlap the first wiring opening 404. The dimension of the second wiring opening 408 is formed in a size larger than the first wiring opening 404 (51 μm square in this embodiment).

次に、図10(B)を参照して、第2の絶縁膜405の上に第3の絶縁膜409を堆積し、貫通孔を形成する為のパターン孔410aを有する第3のマスクパターン410を、第2の配線開口部408の領域に重ね合わせて形成する。第2の絶縁膜405と第3の絶縁膜409は、第1の絶縁膜402と同じ条件にて、厚さ100〜5000nmの範囲内(本実施例では4000nm堆積)で形成する。第3のマスクパターン410の貫通孔形成のためのパターン孔410aの寸法は、第2の配線開口部408より大きい範囲(本実施例では52μm四方)のサイズで形成する。   Next, referring to FIG. 10B, a third insulating film 409 is deposited on the second insulating film 405, and a third mask pattern 410 having a pattern hole 410a for forming a through hole is formed. Are overlaid on the region of the second wiring opening 408. The second insulating film 405 and the third insulating film 409 are formed with a thickness of 100 to 5000 nm (in this embodiment, 4000 nm deposition) under the same conditions as the first insulating film 402. The dimension of the pattern hole 410 a for forming the through hole of the third mask pattern 410 is formed in a size larger than the second wiring opening 408 (52 μm square in this embodiment).

次に、図10(C)を参照して、第3のマスクパターン410を用いて第3の絶縁膜409を第2の配線407が露出するまで除去し、続けて第3のマスクパターン410と第2の配線407をマスクに第1の配線開口部404の第1の絶縁膜402をドライエッチングし、第2の配線407の側壁と第1の配線403の側壁の一部を露出し、且つ、半導体基板401の表面を露出する。第1〜第3の絶縁膜のドライエッチング条件は、前記実施例での条件と同様である。   Next, referring to FIG. 10C, the third insulating film 409 is removed using the third mask pattern 410 until the second wiring 407 is exposed. Using the second wiring 407 as a mask, the first insulating film 402 in the first wiring opening 404 is dry-etched to expose a side wall of the second wiring 407 and a part of the side wall of the first wiring 403, and Then, the surface of the semiconductor substrate 401 is exposed. The dry etching conditions for the first to third insulating films are the same as those in the above embodiment.

次に、前述の図3(D)(E)と同様の工程を経て、図9に示す半導体装置451を完成させる。   Next, the semiconductor device 451 shown in FIG. 9 is completed through steps similar to those shown in FIGS.

今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明によれば、半導体装置を積層する際、積層段数が増加しても、貫通孔を形成するためのマスクの数を増加させることがない。また、同一設計寸法の貫通孔を有する半導体装置を用いて積層半導体装置を形成できるため、半導体装置面積の縮小もできる。   According to the present invention, when the semiconductor devices are stacked, the number of masks for forming the through holes is not increased even if the number of stacked layers is increased. In addition, since a stacked semiconductor device can be formed using semiconductor devices having through holes with the same design dimensions, the area of the semiconductor device can be reduced.

本発明の実施の形態にかかる半導体装置の一部の断面図である。1 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present invention. (A) 実施例1にかかる半導体装置の製造方法の第1工程を説明する半導体装置の一部の断面図である。 (B) 実施例1にかかる半導体装置の製造方法の第2工程を説明する半導体装置の一部の断面図である。 (C) 実施例1にかかる半導体装置の製造方法の第3工程を説明する半導体装置の一部の断面図である。 (a) 図2(A)工程の平面図である。 (b) 図2(B)工程の平面図である。(A) It is a partial cross section figure of the semiconductor device explaining the 1st process of the manufacturing method of the semiconductor device concerning Example 1. FIG. (B) It is a partial cross section figure of the semiconductor device explaining the 2nd process of the manufacturing method of the semiconductor device concerning Example 1. FIG. (C) It is a partial cross section figure of the semiconductor device explaining the 3rd process of the manufacturing method of the semiconductor device concerning Example 1. FIG. (A) It is a top view of the process of FIG. 2 (A). FIG. 2B is a plan view of the step of FIG. (D) 実施例1にかかる半導体装置の製造方法の第4工程を説明する半導体装置の一部の断面図である。 (E) 実施例1にかかる半導体装置の製造方法の第5工程を説明する半導体装置の一部の断面図である。(D) It is a partial cross section figure of the semiconductor device explaining the 4th process of the manufacturing method of the semiconductor device concerning Example 1. FIG. (E) It is a partial cross section figure of the semiconductor device explaining the 5th process of the manufacturing method of the semiconductor device concerning Example 1. FIG. (F) 実施例1にかかる半導体装置の製造方法の第6工程を説明する半導体装置の一部の断面図である。 (G) 実施例1にかかる半導体装置の製造方法の第7工程を説明する半導体装置の一部の断面図である。(F) It is a partial cross section figure of the semiconductor device explaining the 6th process of the manufacturing method of the semiconductor device concerning Example 1. FIG. (G) It is a partial cross section figure of the semiconductor device explaining the 7th process of the manufacturing method of the semiconductor device concerning Example 1. FIG. (A) 実施例2にかかる半導体装置の製造方法の第1の工程にかかる半導体装置の断面図である。 (B) 実施例2にかかる半導体装置の断面図である。(A) It is sectional drawing of the semiconductor device concerning the 1st process of the manufacturing method of the semiconductor device concerning Example 2. FIG. (B) It is sectional drawing of the semiconductor device concerning Example 2. FIG. 実施例3にかかる積層半導体装置の断面図である。7 is a cross-sectional view of a laminated semiconductor device according to Example 3. FIG. 実施例4に係る半導体装置の断面図である。7 is a cross-sectional view of a semiconductor device according to Example 4. FIG. 実施例4に係る半導体装置の製造工程を示す断面図である。12 is a cross-sectional view showing a manufacturing process of a semiconductor device according to Example 4. FIG. 実施例5にかかる半導体装置の断面図である。7 is a cross-sectional view of a semiconductor device according to Example 5. FIG. 実施例5に係る半導体装置の製造工程を示す断面図である。FIG. 10 is a cross-sectional view showing the manufacturing process of the semiconductor device according to Example 5; 従来の半導体装置の断面図である。It is sectional drawing of the conventional semiconductor device. 他の従来例にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning another prior art example.

符号の説明Explanation of symbols

101:半導体基板
102:第1の絶縁膜
103,113:第1のマスクパターン
104:第1の配線溝
105:配線開口部の絶縁膜
106:第1の配線層
107:第2の絶縁膜
108:第2のマスクパターン
109:第3の絶縁膜のサイドウォール
110:貫通孔
111:第4の絶縁膜
112:ワイヤ
150a〜150c:本実施例で形成した半導体装置
151:貫通孔の無い半導体装置
201a,201b,201c:半導体装置
202:絶縁膜
203:電極
204:ワイヤ
301a,301b,301c:半導体装置
302:絶縁膜
303:電極
304:貫通孔絶縁膜
305:導電性材料
401:半導体基板
402:第1の絶縁膜
403:第1の配線層
404:第1の配線開口部
405:第2の絶縁膜
407:第2の配線層
408:第2の配線開口部
409:第3の絶縁膜
410:第3のマスクパターン
411:第4の絶縁膜
412:第5の絶縁膜
451:半導体装置
DESCRIPTION OF SYMBOLS 101: Semiconductor substrate 102: 1st insulating film 103,113: 1st mask pattern 104: 1st wiring groove 105: Insulating film of wiring opening part 106: 1st wiring layer 107: 2nd insulating film 108 : Second mask pattern 109: sidewall of third insulating film 110: through hole 111: fourth insulating film 112: wire 150 a to 150 c: semiconductor device formed in this example 151: semiconductor device without through hole 201a, 201b, 201c: Semiconductor device 202: Insulating film 203: Electrode 204: Wire 301a, 301b, 301c: Semiconductor device 302: Insulating film 303: Electrode 304: Through-hole insulating film 305: Conductive material 401: Semiconductor substrate 402: First insulating film 403: first wiring layer 404: first wiring opening 405: second insulating film 407: second Wiring layer 408: second wiring opening 409: third insulating film 410: third mask pattern 411: fourth insulating film 412: fifth insulating film 451: semiconductor device

Claims (13)

配線層を持つ半導体装置において、
その表面から裏面に達する貫通孔が存在し、
前記貫通孔の内壁には、前記半導体装置を構成する配線層の側壁の一部が露出し、
前記貫通孔内部には導電材料が存在し、該貫通孔内で、前記配線層の側壁の一部と、該導電材料が電気的に接続されていることを特徴とする半導体装置。
In a semiconductor device having a wiring layer,
There is a through-hole that reaches from the front surface to the back surface,
A part of the side wall of the wiring layer constituting the semiconductor device is exposed on the inner wall of the through hole,
A semiconductor device, wherein a conductive material exists in the through hole, and the conductive material is electrically connected to a part of the side wall of the wiring layer in the through hole.
請求項1に記載の半導体装置を複数、前記貫通孔同士が繋がるように積層した積層半導体装置であって、
お互いに接続される貫通孔の設計寸法が同一であることを特徴とする積層半導体装置。
A stacked semiconductor device in which a plurality of the semiconductor devices according to claim 1 are stacked so that the through holes are connected to each other,
A laminated semiconductor device, wherein the through holes connected to each other have the same design dimension.
請求項1に記載の半導体装置において、
前記貫通孔の内壁で側壁を露出する配線層が、複数、層を成して形成されていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
A semiconductor device, wherein a plurality of wiring layers exposing a side wall at an inner wall of the through hole are formed in layers.
請求項3に記載の半導体装置において、
前記貫通孔の上端の開口径が、下層の配線層の側壁を露出させる部分の開口径より大きくされていることを特徴とする半導体装置。
The semiconductor device according to claim 3.
An opening diameter at an upper end of the through hole is made larger than an opening diameter of a portion exposing a side wall of a lower wiring layer.
請求項2に記載の積層半導体装置と、基板表面に接続用の配線層の一部が露出し、且つ、貫通孔の無い半導体装置とを積層した半導体装置であって、
前記貫通孔の無い半導体装置は当該積層半導体の最下層に位置し、前記導電材料が該最下層の半導体装置の前記接続用の配線層にまで延びて形成され、各層の半導体装置が電気的に接続されていることを特徴とする積層半導体装置。
A laminated semiconductor device according to claim 2 and a semiconductor device in which a part of a wiring layer for connection is exposed on a substrate surface and a semiconductor device without a through hole is laminated,
The semiconductor device without the through hole is located in the lowermost layer of the stacked semiconductor, and the conductive material is formed to extend to the connection wiring layer of the lowermost semiconductor device. A stacked semiconductor device which is connected.
配線層の側壁を露出させる、表面から裏面にかけて形成された、貫通孔に導電材料が充填された半導体装置の製造方法であって、
基板表面に第1の絶縁膜を形成する工程と、
前記第1の絶縁膜を、配線用溝を形成するためのパターンと前記貫通孔を形成するための貫通孔形成部のパターンとを有する第1のマスクパターンを用いて、選択的にエッチングし、配線用溝を形成する工程と、
前記配線用溝に導電体を埋め込み、第1の配線層を形成する工程と、
前記第1の配線層を覆うように第2の絶縁膜を全面に形成する工程と、
前記第2の絶縁膜の上に、前記貫通孔形成部の上方に該貫通孔形成部よりも径が0.1〜20%大きい開口部を有する第2のマスクパターンを形成する工程と、
前記第2のマスクパターンを用い、選択エッチングにより、第2の絶縁膜を第1の配線の表面が露出するまで除去する工程と、
さらに前記第2のマスクパターンと、露出した前記第1の配線層をマスクにして、前記第1の絶縁膜の前記貫通孔形成部をエッチングし、前記第1の配線層の側壁の一部を露出させ、さらに、前記基板を裏面までエッチングし、前記貫通孔を形成する工程と、
前記貫通孔内を含む全面に第3の絶縁膜を形成する工程と、
表面側をエッチバックし、前記第1の配線層の側壁を被覆していた第3の絶縁膜を除去する工程と、
前記基板の裏面に第4の絶縁膜を形成する工程と、
前記貫通孔内に導電材料を充填し、前記貫通孔内に露出した前記第1の配線層の側壁の一部と、貫通孔内に充填した導電材料とを電気的に接続する工程と、を備えたことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a side wall of a wiring layer is exposed, formed from a front surface to a back surface, and a through hole is filled with a conductive material,
Forming a first insulating film on the substrate surface;
The first insulating film is selectively etched using a first mask pattern having a pattern for forming a wiring groove and a pattern of a through hole forming portion for forming the through hole, Forming a wiring groove;
Burying a conductor in the wiring groove and forming a first wiring layer;
Forming a second insulating film over the entire surface so as to cover the first wiring layer;
Forming a second mask pattern having an opening larger than the through hole forming part by 0.1 to 20% on the second insulating film above the through hole forming part;
Removing the second insulating film by selective etching until the surface of the first wiring is exposed, using the second mask pattern;
Further, using the second mask pattern and the exposed first wiring layer as a mask, the through hole forming portion of the first insulating film is etched, and a part of the side wall of the first wiring layer is etched. Exposing and further etching the substrate to the back surface to form the through hole; and
Forming a third insulating film on the entire surface including the inside of the through hole;
Etching back the surface side and removing the third insulating film covering the side walls of the first wiring layer;
Forming a fourth insulating film on the back surface of the substrate;
Filling the through hole with a conductive material, and electrically connecting a part of the side wall of the first wiring layer exposed in the through hole and the conductive material filled in the through hole; A method for manufacturing a semiconductor device, comprising:
配線層の側壁を露出させる、表面から裏面にかけて形成された、貫通孔に導電材料が充填された半導体装置の製造方法であって、
基板表面に第1の絶縁膜を形成する工程と、
前記第1の絶縁膜上に第1の導電膜を形成する工程と、
前記第1の導電膜上に、配線層を形成するためパターンと前記貫通孔を形成するための貫通孔形成部のパターンとを有する第1のマスクパターンを形成する工程と、
前記第1のマスクパターンを用い、第1の導電膜を選択エッチングすることにより第1の配線層を形成する工程と、
前記第1のマスクパターンを除去した後に、前記第1の配線層を覆うように第2の絶縁膜を全面に形成する工程と、
前記第2の絶縁膜の上に、前記貫通孔形成部の上方に該貫通孔形成部よりも径が0.1〜20%大きい開口部を有する第2のマスクパターンを形成する工程と
前記第2のマスクパターンを用い、選択エッチングにより、第2の絶縁膜を第1の配線層の表面が露出するまで除去する工程と、
さらに前記第2のマスクパターンと、露出した前記第1の配線層をマスクにして、前記第1の絶縁膜の前記貫通孔形成部をエッチングし、前記第1の配線層の側壁の一部を露出させ、さらに、前記基板をエッチングし、前記貫通孔を形成する工程と、
前記貫通孔内を含む全面に第3の絶縁膜を形成する工程と、
表面側をエッチバックし、前記第1の配線層の側壁を被覆していた第3の絶縁膜を除去する工程と、
前記基板の裏面に第4の絶縁膜を形成する工程と、
前記貫通孔内に導電材料を充填し、前記貫通孔内に露出した第1の配線層の側壁の一部と、貫通孔内に充填した導電材料とを電気的に接続する工程と、を備えたことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a side wall of a wiring layer is exposed, formed from a front surface to a back surface, and a through hole is filled with a conductive material,
Forming a first insulating film on the substrate surface;
Forming a first conductive film on the first insulating film;
Forming a first mask pattern having a pattern for forming a wiring layer and a pattern of a through hole forming portion for forming the through hole on the first conductive film;
Forming a first wiring layer by selectively etching the first conductive film using the first mask pattern;
Forming a second insulating film on the entire surface so as to cover the first wiring layer after removing the first mask pattern;
Forming on the second insulating film a second mask pattern having an opening that is 0.1 to 20% larger in diameter than the through-hole forming portion above the through-hole forming portion; Removing the second insulating film by selective etching using the mask pattern 2 until the surface of the first wiring layer is exposed;
Further, using the second mask pattern and the exposed first wiring layer as a mask, the through hole forming portion of the first insulating film is etched, and a part of the side wall of the first wiring layer is etched. Exposing and further etching the substrate to form the through hole; and
Forming a third insulating film on the entire surface including the inside of the through hole;
Etching back the surface side and removing the third insulating film covering the side walls of the first wiring layer;
Forming a fourth insulating film on the back surface of the substrate;
Filling the through hole with a conductive material, and electrically connecting a part of the side wall of the first wiring layer exposed in the through hole to the conductive material filled in the through hole. A method for manufacturing a semiconductor device.
請求項6〜7に記載の製造方法において、
前記第1の絶縁膜の上に前記第1の配線層を形成する工程と同じ工程を繰り返し、2層以上の配線層を形成し、
貫通孔の内壁に、複数層の配線層の側壁を露出させることを特徴とする半導体装置の製造方法。
In the manufacturing method of Claims 6-7,
Repeating the same step as the step of forming the first wiring layer on the first insulating film, forming two or more wiring layers;
A method of manufacturing a semiconductor device, comprising exposing a side wall of a plurality of wiring layers to an inner wall of a through hole.
請求項8に記載の製造方法において、
上層配線部の貫通孔開口径を下層配線部の貫通孔開口径より大きくすることを特徴とする半導体装置の製造方法。
In the manufacturing method of Claim 8,
A method of manufacturing a semiconductor device, wherein an opening diameter of a through hole in an upper wiring portion is larger than an opening diameter of a through hole in a lower wiring portion.
請求項6〜9に記載の製造方法において、
前記貫通孔の形成は、前記第1の配線層をマスクにする基板のエッチングを、孔の深さが前記基板膜厚の0.1〜95%の範囲になるところで終了し、
前記第3の絶縁膜の形成工程および前記第3の絶縁膜の除去工程の後、基板裏面より前記孔が露出するまで研磨することによって行うことを特徴とする半導体装置の製造方法。
In the manufacturing method of Claims 6-9,
The formation of the through hole is completed when etching the substrate using the first wiring layer as a mask when the depth of the hole is in the range of 0.1 to 95% of the substrate film thickness.
A method of manufacturing a semiconductor device, comprising: polishing after the step of forming the third insulating film and the step of removing the third insulating film until the hole is exposed from the back surface of the substrate.
請求項6〜10に記載の製造方法において、
前記貫通孔内に導電材料を充填する工程の前に、複数の半導体基板装置を、同一設計の貫通孔を重ね合わせて積層し、
繋がった貫通孔内に一括して導電材料を充填し、前記貫通孔内に露出した配線層の側壁と貫通孔内に充填した導電材料とを電気的に接続することを特徴とする半導体装置の製造方法。
In the manufacturing method of Claims 6-10,
Prior to the step of filling the through hole with a conductive material, a plurality of semiconductor substrate devices are stacked with the same design of through holes,
A conductive material is collectively filled in connected through-holes, and the side wall of the wiring layer exposed in the through-hole is electrically connected to the conductive material filled in the through-hole. Production method.
請求項6に記載の積層された半導体装置の製造方法において、
前記貫通孔内に導電性材料を充填する手法は、該貫通孔内に導電性材料を挿入し、貫通孔内で導電性材料を溶融させて充填することを特徴とする半導体装置の製造方法。
In the manufacturing method of the laminated semiconductor device according to claim 6,
The method of filling a conductive material into the through hole is a method of manufacturing a semiconductor device, wherein a conductive material is inserted into the through hole, and the conductive material is melted and filled in the through hole.
請求項6〜12に記載の製造方法において、
前記貫通孔内に導電材料を充填する工程の前に、基板表面に接続用の配線層の一部が露出し、且つ、貫通孔の無い最下層用の半導体装置を別途準備し、該最下層用の半導体装置の上に、同一設計の前記貫通孔を有する複数の半導体装置を重ね合わせて、積層し、
前記貫通孔内に導電材料を溶融させて充填し、前記導電材料が前記最下層用の半導体装置の前記接続用の配線層と、各層の半導体装置を電気的に接続させることを特徴とする半導体装置の製造方法。
In the manufacturing method of Claims 6-12,
Before the step of filling the through hole with a conductive material, a part of the wiring layer for connection is exposed on the substrate surface, and a semiconductor device for the lowermost layer having no through hole is separately prepared. A plurality of semiconductor devices having the through holes of the same design are stacked and stacked on the semiconductor device for
A semiconductor characterized in that a conductive material is melted and filled in the through-hole, and the conductive material electrically connects the wiring layer for connection of the semiconductor device for the lowermost layer and the semiconductor device of each layer. Device manufacturing method.
JP2006057978A 2005-03-08 2006-03-03 Semiconductor device, stacked semiconductor device and method of fabricating the devices Pending JP2006287211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057978A JP2006287211A (en) 2005-03-08 2006-03-03 Semiconductor device, stacked semiconductor device and method of fabricating the devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005063895 2005-03-08
JP2006057978A JP2006287211A (en) 2005-03-08 2006-03-03 Semiconductor device, stacked semiconductor device and method of fabricating the devices

Publications (1)

Publication Number Publication Date
JP2006287211A true JP2006287211A (en) 2006-10-19

Family

ID=37408717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057978A Pending JP2006287211A (en) 2005-03-08 2006-03-03 Semiconductor device, stacked semiconductor device and method of fabricating the devices

Country Status (1)

Country Link
JP (1) JP2006287211A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105326A (en) * 2007-10-25 2009-05-14 Shinko Electric Ind Co Ltd Manufacturing method of substrate having through-electrode
CN101877338A (en) * 2009-04-29 2010-11-03 海力士半导体有限公司 Semiconductor packages and manufacture method thereof
WO2011036819A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Method for manufacturing semiconductor device
JP2011146655A (en) * 2010-01-18 2011-07-28 Nikon Corp Semiconductor device manufacturing method and laminated semiconductor device
JP2012174892A (en) * 2011-02-22 2012-09-10 Toshiba Corp Semiconductor storage device and manufacturing method of the same
JP2013542610A (en) * 2010-11-02 2013-11-21 エンパイア テクノロジー ディベロップメント エルエルシー Semiconductor structure with insulated through silicon vias
JP2016046447A (en) * 2014-08-25 2016-04-04 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Semiconductor structure including through electrode, and method for forming the same
WO2020121491A1 (en) * 2018-12-13 2020-06-18 ウルトラメモリ株式会社 Semiconductor module and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270490A (en) * 1995-10-31 1997-10-14 Nkk Corp Connecting construction, connecting method, and semiconductor device and its manufacture
JP2000260934A (en) * 1999-03-05 2000-09-22 Seiko Epson Corp Manufacture for semiconductor device
JP2001060654A (en) * 1999-08-20 2001-03-06 Seiko Epson Corp Semiconductor device and manufacture thereof
JP2001094039A (en) * 1999-09-21 2001-04-06 Seiko Epson Corp Forming method of insulating film, connection method of semiconductor chip, manufacturing method of the semiconductor chip, semiconductor device, substrate for connection and electronic apparatus
JP2001177048A (en) * 1999-12-17 2001-06-29 Seiko Epson Corp Semiconductor device and method for manufacturing the same and electronics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270490A (en) * 1995-10-31 1997-10-14 Nkk Corp Connecting construction, connecting method, and semiconductor device and its manufacture
JP2000260934A (en) * 1999-03-05 2000-09-22 Seiko Epson Corp Manufacture for semiconductor device
JP2001060654A (en) * 1999-08-20 2001-03-06 Seiko Epson Corp Semiconductor device and manufacture thereof
JP2001094039A (en) * 1999-09-21 2001-04-06 Seiko Epson Corp Forming method of insulating film, connection method of semiconductor chip, manufacturing method of the semiconductor chip, semiconductor device, substrate for connection and electronic apparatus
JP2001177048A (en) * 1999-12-17 2001-06-29 Seiko Epson Corp Semiconductor device and method for manufacturing the same and electronics

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105326A (en) * 2007-10-25 2009-05-14 Shinko Electric Ind Co Ltd Manufacturing method of substrate having through-electrode
TWI479631B (en) * 2009-04-29 2015-04-01 Hynix Semiconductor Inc Semiconductor package and method for manufacturing the same
US8217434B2 (en) 2009-04-29 2012-07-10 Hynix Semiconductor Inc. Semiconductor package having through-electrodes which are electrically connected with internal circuit patterns formed in a semiconductor chip and method for manufacturing the same
CN101877338A (en) * 2009-04-29 2010-11-03 海力士半导体有限公司 Semiconductor packages and manufacture method thereof
KR101069287B1 (en) * 2009-04-29 2011-10-04 주식회사 하이닉스반도체 Semiconductor package and method of manufacturing the same
CN103855138A (en) * 2009-04-29 2014-06-11 爱思开海力士有限公司 Semiconductor package and method for manufacturing the same
US8535977B2 (en) 2009-09-28 2013-09-17 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
WO2011036819A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Method for manufacturing semiconductor device
JP5377657B2 (en) * 2009-09-28 2013-12-25 株式会社東芝 Manufacturing method of semiconductor device
JP2011146655A (en) * 2010-01-18 2011-07-28 Nikon Corp Semiconductor device manufacturing method and laminated semiconductor device
JP2013542610A (en) * 2010-11-02 2013-11-21 エンパイア テクノロジー ディベロップメント エルエルシー Semiconductor structure with insulated through silicon vias
US8871637B2 (en) 2010-11-02 2014-10-28 Empire Technology Development Llc Semiconductor structure with insulated through silicon via
JP2012174892A (en) * 2011-02-22 2012-09-10 Toshiba Corp Semiconductor storage device and manufacturing method of the same
JP2016046447A (en) * 2014-08-25 2016-04-04 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Semiconductor structure including through electrode, and method for forming the same
US9466533B2 (en) 2014-08-25 2016-10-11 International Business Machines Corporation Semiconductor structure including a through electrode, and method for forming the same
WO2020121491A1 (en) * 2018-12-13 2020-06-18 ウルトラメモリ株式会社 Semiconductor module and manufacturing method thereof
JPWO2020121491A1 (en) * 2018-12-13 2021-02-15 ウルトラメモリ株式会社 Semiconductor module and its manufacturing method

Similar Documents

Publication Publication Date Title
CN101924094B (en) The method of semiconductor device and manufacture semiconductor device
JP2006287211A (en) Semiconductor device, stacked semiconductor device and method of fabricating the devices
TW201230221A (en) Integration of shallow trench isolation and through-substrate vias into integrated circuit designs
JP2010258213A (en) Semiconductor device and method of manufacturing semiconductor device
JP4682964B2 (en) Semiconductor device and manufacturing method thereof
JP4338614B2 (en) Semiconductor device and manufacturing method thereof
JP4425707B2 (en) Semiconductor device and manufacturing method thereof
JP2000100938A (en) Multilayer wiring structure of semiconductor device
JP4001115B2 (en) Semiconductor device and manufacturing method thereof
JP4587604B2 (en) Manufacturing method of semiconductor device
JP2006041552A (en) Semiconductor device and its manufacturing method
KR100720518B1 (en) Semiconductor device and method for fabricating semiconductor device
US6599825B2 (en) Method for forming wiring in semiconductor device
JP2007027234A (en) Semiconductor device and its manufacturing method
KR100591175B1 (en) Manufacturing method for metal interconnection structure in semiconductor device
JP2007281197A (en) Semiconductor device and its manufacturing method
JP2005197694A (en) Process for forming interconnection of semiconductor integrated circuit
KR100857989B1 (en) Metal line formation method of semiconductor device
JP5364743B2 (en) Semiconductor device
KR100360152B1 (en) Method for forming metal line
JP2006073635A (en) Semiconductor device and its manufacturing method
KR100620159B1 (en) Method for forming interconnection between metal lines in semiconductor device fabrication process
KR100632041B1 (en) Method for forming a metal line of semiconductor device
KR20020086098A (en) a contact structure for interconnecting multi-level wires and a method for forming the same
TW201515148A (en) Method of fabricating interconnection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406