JP5455674B2 - Materials for electrical and electronic fuses - Google Patents

Materials for electrical and electronic fuses Download PDF

Info

Publication number
JP5455674B2
JP5455674B2 JP2010012430A JP2010012430A JP5455674B2 JP 5455674 B2 JP5455674 B2 JP 5455674B2 JP 2010012430 A JP2010012430 A JP 2010012430A JP 2010012430 A JP2010012430 A JP 2010012430A JP 5455674 B2 JP5455674 B2 JP 5455674B2
Authority
JP
Japan
Prior art keywords
point
fuse
alloy
workability
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010012430A
Other languages
Japanese (ja)
Other versions
JP2011149068A (en
Inventor
浩康 谷口
兼一 宮崎
裕之 草森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2010012430A priority Critical patent/JP5455674B2/en
Publication of JP2011149068A publication Critical patent/JP2011149068A/en
Application granted granted Critical
Publication of JP5455674B2 publication Critical patent/JP5455674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明は、コンデンサー等の電気・電子部品に内蔵されるヒューズのエレメントを構成する材料に関する。詳しくは、その融点がヒューズ用途において好ましい範囲内にあり、更に溶断特性や加工性に優れたものに関する。   The present invention relates to a material constituting an element of a fuse built in an electric / electronic component such as a capacitor. More specifically, the present invention relates to a material having a melting point within a preferable range for fuse applications and having excellent fusing characteristics and workability.

コンデンサー等の電気・電子部品に内蔵されるヒューズは、過電流が流れた際にそのエレメントがジュール熱により溶断することで通電を遮断するようになっている。そして、このような機能を考慮して、エレメントを構成する材料には適切な範囲、具体的には融点が300〜360℃付近の範囲内にあることが求められる。エレメントの融点が高い場合、ヒューズの作動温度も高温となるが、それでは電子部品が実装された回路基板を損傷させることとなるため、ヒューズ本来の保護装置として作用が期待できなくなるからである。   When an overcurrent flows, a fuse built in an electric / electronic component such as a capacitor is cut off from energization by the element being blown by Joule heat. In consideration of such functions, the material constituting the element is required to have an appropriate range, specifically, a melting point in the range of about 300 to 360 ° C. This is because when the melting point of the element is high, the operating temperature of the fuse also becomes high, but this damages the circuit board on which the electronic component is mounted, so that it cannot be expected to function as the original protective device of the fuse.

従来、ヒューズ用の材料としては、Sn−Pb系合金が広く使用されてきたが、近年になってPbフリーの材料の適用が求められており、この要求に応える材料として、Au−20質量%Sn合金、Au−3.15質量%Si合金等の適用が検討されている。   Conventionally, Sn—Pb-based alloys have been widely used as materials for fuses, but in recent years, application of Pb-free materials has been demanded. Application of Sn alloy, Au-3.15 mass% Si alloy, etc. is being studied.

特開2001−28228号公報JP 2001-28228 A

しかしながら、Au−20質量%Sn合金は、融点については上記範囲内よりも低く、加工性に乏しいという問題がある。ヒューズのエレメントは、細線形状、薄板形状等の微小サイズへ加工することが必要となり、加工性に乏しい材料では断線、割れが生じ易く歩留まりが低下する。特に、最近の電子部材においては、小型化の要求が強く、これに追従するために実装されるヒューズについても細線化、薄肉化が必要であることから、加工性の良好な材料が望まれる。   However, the Au-20 mass% Sn alloy has a problem that the melting point is lower than the above range and the workability is poor. The fuse element needs to be processed into a fine size such as a thin wire shape or a thin plate shape, and a material with poor workability is liable to be disconnected or cracked, resulting in a decrease in yield. Particularly, in recent electronic members, there is a strong demand for downsizing, and a fuse mounted to follow this needs to be thinned and thinned. Therefore, a material with good workability is desired.

また、Au−3.15質量%Si合金は、実際には融点が上記範囲より若干高く、360℃をやや超えるものであり、積極的に使用できるものではない。更に、この合金は、電気抵抗が低いため、過電流が流れた際において溶断が遅れる傾向があり、ヒューズとしての機能に問題がある。   Further, the Au-3.15 mass% Si alloy actually has a slightly higher melting point than the above range and slightly exceeds 360 ° C., and cannot be used actively. Furthermore, since this alloy has low electric resistance, there is a tendency for fusing to be delayed when an overcurrent flows, and there is a problem in the function as a fuse.

以上のように、従来のヒューズ用の材料は、使用できない程の大きな問題はないものの、今後のニーズ等を考慮すれば改善が望まれている。そこで、本発明は、加工性、電気抵抗が改善され、特に溶断特性に優れるものであり、且つ、好適範囲(具体的には300〜360℃付近)の融点を有するヒューズ用の材料を提供する。   As described above, the conventional fuse material does not have such a serious problem that it cannot be used, but improvement is desired in consideration of future needs and the like. Accordingly, the present invention provides a material for a fuse that has improved workability and electrical resistance, is particularly excellent in fusing characteristics, and has a melting point in a suitable range (specifically, around 300 to 360 ° C.). .

本発明者等は、上記課題を解決すべく検討を行った。まず、Auを基本とし、種々の金属を添加したAu合金についての物性を評価したところ、Au、Ga、Inを含む三元系合金において、加工性や電気抵抗が、従来のものより改善されることがわかった。そして、Au−Ga−In合金のうち、所定の組成範囲を有する合金であれば、溶断特性に優れることを見出し、更に組成範囲を限定すれば、良好な溶断特性を維持しつつ、融点が低下することを見出し、本発明に想到した。   The present inventors have studied to solve the above problems. First, physical properties of an Au alloy based on Au and added with various metals were evaluated, and in a ternary alloy containing Au, Ga and In, workability and electrical resistance were improved as compared with the conventional one. I understood it. And if it is an alloy which has a predetermined composition range among Au-Ga-In alloys, it will discover that it is excellent in a fusing characteristic, and if a composition range is further limited, melting | fusing point will fall, maintaining a favorable fusing characteristic. As a result, the present invention has been conceived.

即ち、本発明は、Au−Ga−In三元系合金からなり、これらの元素の質量濃度は、三元系状態図におけるA点(Au:85%、Ga:14%、In:1%)、B点(Au:74%、Ga:11%、In:15%)、C点(Au:74%、Ga:6%、In:20%)、D点(Au:78%、Ga:2%、In:20%)、E点(Au:86%、Ga:2%、In:12%)を頂点とする多角形の領域内にあるヒューズ用の材料である。   That is, the present invention is made of an Au-Ga-In ternary alloy, and the mass concentration of these elements is point A in the ternary phase diagram (Au: 85%, Ga: 14%, In: 1%). , B point (Au: 74%, Ga: 11%, In: 15%), C point (Au: 74%, Ga: 6%, In: 20%), D point (Au: 78%, Ga: 2) %, In: 20%), and a material for a fuse in a polygonal region having apex at point E (Au: 86%, Ga: 2%, In: 12%).

本発明に係る材料の組成を示す三元系状態図を図1に示す。本発明で三元系合金を適用するのは、Ga、Inの2つの元素をAuに同時添加することで、従来のAu二元系合金よりも加工性や電気抵抗が改善されるからである。そして、Ga、Inの添加量を上記領域内の範囲にするのは、溶断特性が向上するからである。融点を調整する手法として、合金に添加する元素の含有率を上昇させることも考えられるが、その場合、加工性に影響を及ぼすおそれがある。本発明における添加元素であるGa、Inは、少ない添加量で融点を制御することができ、その上で加工性を確保している。   A ternary phase diagram showing the composition of the material according to the present invention is shown in FIG. The reason why the ternary alloy is applied in the present invention is that workability and electrical resistance are improved as compared to the conventional Au binary alloy by simultaneously adding two elements of Ga and In to Au. . The reason why the addition amount of Ga and In is set within the above range is because the fusing characteristics are improved. As a method for adjusting the melting point, it is conceivable to increase the content of the element added to the alloy, but in that case, the workability may be affected. Ga and In, which are additive elements in the present invention, can control the melting point with a small amount of addition, and ensure workability.

そして、本発明においてより好ましい組成は、上記範囲内においてGaが5〜13質量%、Inが5〜15質量%となる領域の組成である。具体的には、図1の三元系状態図において、A1点(Au:82%、Ga:13%、In:5%)、B1点(Au:77%、Ga:8%、In:15%)、C1点(Au:80%、Ga:5%、In:15%)、D1点(Au:85%、Ga:10%、In:5%)を頂点とする多角形の領域内の組成である。かかる組成とすることで、融点が低下し、ヒューズとしての性能を向上させることができるからである。   And a more preferable composition in this invention is a composition of the area | region where Ga is 5-13 mass% and In becomes 5-15 mass% in the said range. Specifically, in the ternary phase diagram of FIG. 1, point A1 (Au: 82%, Ga: 13%, In: 5%), point B1 (Au: 77%, Ga: 8%, In: 15) %), C1 point (Au: 80%, Ga: 5%, In: 15%), D1 point (Au: 85%, Ga: 10%, In: 5%) Composition. This is because with such a composition, the melting point is lowered and the performance as a fuse can be improved.

本発明に係る合金の製造においては、特段の困難性はなく、通常の合金(Au合金)と同様に溶解鋳造法により製造可能である。また、ヒューズへの加工についても、本発明に係る材料は加工性が良好であることから、押出し加工、線引き加工により任意のサイズに加工可能である。   In the production of the alloy according to the present invention, there is no particular difficulty, and it can be produced by a melt casting method in the same manner as a normal alloy (Au alloy). Also, with regard to processing into fuses, the material according to the present invention has good workability, and can be processed into an arbitrary size by extrusion processing or wire drawing processing.

以上説明したように、本発明に係る材料は、融点の範囲が300〜360℃付近にあり、ヒューズ用途の融点範囲として適正な温度範囲内にある。本発明に係る材料は加工性も良好であり、微小サイズのヒューズを製造するのにも好適である。更に、電気抵抗も適度に高く、この点もヒューズ用途として好適である。   As described above, the material according to the present invention has a melting point in the vicinity of 300 to 360 ° C., and is within an appropriate temperature range as a melting point range for fuse applications. The material according to the present invention has good processability and is suitable for manufacturing a micro fuse. Furthermore, the electrical resistance is reasonably high, and this point is also suitable for fuse applications.

本発明に係る材料の組成を示すAu−Ga−In三元系状態図。The Au-Ga-In ternary phase diagram which shows the composition of the material which concerns on this invention. 本発明の実施形態及び比較例のAu−Ga−In合金組成を示す図The figure which shows the Au-Ga-In alloy composition of embodiment of this invention and a comparative example

以下、本発明の実施形態及び比較例について説明する。本実施形態では各種組成のAu−Ga−In合金を製造し、それぞれの特性を評価・検討した。試料の製造においては、所定の組成となるように秤量した各金属を溶解・鋳造し、伸線加工してφ0.1mmの線材とした。   Hereinafter, embodiments of the present invention and comparative examples will be described. In this embodiment, Au—Ga—In alloys with various compositions were manufactured, and the characteristics of each were evaluated and studied. In the production of the sample, each metal weighed so as to have a predetermined composition was melted and cast, and the wire was drawn to obtain a wire having a diameter of 0.1 mm.

各試料の評価は、融点、電気抵抗(固有抵抗)、硬度、加工性、溶断特性について行なった。加工性については、伸線加工による断線、亀裂、バリの発生の有無を実態顕微鏡(10倍)で観察して評価した。また、溶断特性の評価は、試料線材に4Aの電流を印加したときの溶断時間を測定し、溶断時間0.5秒未満のものを良品とした。尚、融点については熱分析(TG−DTA)により測定し、電気抵抗はミリオムメーターにて固有抵抗を測定した。表1は、以上の評価結果を示す。   Each sample was evaluated for melting point, electrical resistance (specific resistance), hardness, workability, and fusing characteristics. About workability, the presence or absence of the generation | occurrence | production of the disconnection by a wire drawing process, a crack, and a burr | flash was observed and evaluated with the actual condition microscope (10 times). For the evaluation of the fusing characteristics, the fusing time when a current of 4 A was applied to the sample wire was measured, and those with a fusing time of less than 0.5 seconds were regarded as non-defective products. In addition, about melting | fusing point, it measured by thermal analysis (TG-DTA), and the electrical resistance measured the specific resistance with the milliohm meter. Table 1 shows the above evaluation results.

Figure 0005455674
Figure 0005455674

表1からわかるように、Au−Ga−In三元系合金の元素の質量濃度が、図2に示す三元系状態図におけるA点〜E点を頂点とする多角形の領域内にある材料は、融点が約300〜360℃の範囲にあり、また、加工性及び溶断特性も良好であった(実施例1〜5)。特に、質量濃度が、図2に示す三元系状態図におけるA1点〜D1点を頂点とする多角形の領域内にあれば、加工性や溶断特性に優れるだけでなく、融点も低くなるため、ヒューズ用の材料としては好適なものとなる(実施例3、4)。これに対し、材料の質量濃度が、図2に示す三元系状態図におけるA点〜E点を頂点とする多角形の領域から外れてしまうと、溶断特性に劣る結果となった。   As can be seen from Table 1, the material in which the mass concentration of the element of the Au—Ga—In ternary alloy is within a polygonal region having points A to E in the ternary phase diagram shown in FIG. The melting point was in the range of about 300 to 360 ° C., and the workability and fusing characteristics were also good (Examples 1 to 5). In particular, if the mass concentration is in a polygonal region having points A1 to D1 in the ternary phase diagram shown in FIG. 2, not only the workability and fusing characteristics are excellent, but also the melting point is lowered. As a material for the fuse, it becomes a suitable material (Examples 3 and 4). On the other hand, when the mass concentration of the material deviates from the polygonal region having points A to E in the ternary phase diagram shown in FIG.

本発明は、コンデンサー等の電気・電子部品に内蔵されるヒューズのエレメントを構成する材料に関するものである。本発明に係る材料を用いれば、溶断特性や加工性に優れた電流ヒューズを提供することが出来る。
The present invention relates to a material constituting a fuse element incorporated in an electric / electronic component such as a capacitor. By using the material according to the present invention, a current fuse excellent in fusing characteristics and workability can be provided.

Claims (3)

Au−Ga−In三元系合金からなり、これらの元素の質量濃度は、三元系状態図におけるA点(Au:85%、Ga:14%、In:1%)、B点(Au:74%、Ga:11%、In:15%)、C点(Au:74%、Ga:6%、In:20%)、D点(Au:78%、Ga:2%、In:20%)、E点(Au:86%、Ga:2%、In:12%)を頂点とする多角形の領域内にあるヒューズ用の材料。   It consists of an Au-Ga-In ternary alloy, and the mass concentration of these elements is point A (Au: 85%, Ga: 14%, In: 1%), point B (Au: Au: ternary phase diagram). 74%, Ga: 11%, In: 15%), C point (Au: 74%, Ga: 6%, In: 20%), D point (Au: 78%, Ga: 2%, In: 20%) ), A material for a fuse in a polygonal region having an E point (Au: 86%, Ga: 2%, In: 12%) as a vertex. Au、Ga、Inの質量濃度が、三元系状態図におけるA1点(Au:82%、Ga:13%、In:5%)、B1点(Au:77%、Ga:8%、In:15%)、C1点(Au:80%、Ga:5%、In:15%)、D1点(Au:85%、Ga:10%、In:5%)を頂点とする多角形の領域内にある請求項1記載のヒューズ用の材料。   The mass concentrations of Au, Ga and In are A1 point (Au: 82%, Ga: 13%, In: 5%) and B1 point (Au: 77%, Ga: 8%, In: in the ternary phase diagram. 15%), C1 point (Au: 80%, Ga: 5%, In: 15%), D1 point (Au: 85%, Ga: 10%, In: 5%) within the polygonal region The material for a fuse according to claim 1. 請求項1又は請求項2記載のヒューズ用の材料からなるエレメントを備える電流ヒューズ。   A current fuse comprising an element made of the fuse material according to claim 1.
JP2010012430A 2010-01-22 2010-01-22 Materials for electrical and electronic fuses Active JP5455674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012430A JP5455674B2 (en) 2010-01-22 2010-01-22 Materials for electrical and electronic fuses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012430A JP5455674B2 (en) 2010-01-22 2010-01-22 Materials for electrical and electronic fuses

Publications (2)

Publication Number Publication Date
JP2011149068A JP2011149068A (en) 2011-08-04
JP5455674B2 true JP5455674B2 (en) 2014-03-26

Family

ID=44536311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012430A Active JP5455674B2 (en) 2010-01-22 2010-01-22 Materials for electrical and electronic fuses

Country Status (1)

Country Link
JP (1) JP5455674B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575865B2 (en) * 1974-02-28 1982-02-02
JP2001028228A (en) * 1999-07-14 2001-01-30 Uchihashi Estec Co Ltd Current fuse element
JP2008156675A (en) * 2006-12-21 2008-07-10 Tanaka Kikinzoku Kogyo Kk Material for fuse of electric/electronic component

Also Published As

Publication number Publication date
JP2011149068A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
KR101561894B1 (en) High-temperature lead-free solder alloy
EP1930117B1 (en) Lead-free low-temperature solder
JP5054160B2 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP2006265731A (en) Copper alloy
JP2014073529A (en) Alloy wire
JP2011117055A (en) Copper alloy material
JP2011137198A (en) Electrode material and method for manufacturing the same
JP2003257295A (en) Alloy type thermal fuse
JP2020002439A (en) Copper alloy for fuse
KR20210062060A (en) Lead-free solder alloy
JP2007270305A (en) Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT
JP5455675B2 (en) Materials for electrical and electronic fuses
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP6015571B2 (en) Pb-free Zn-Al alloy fuse
JP5455674B2 (en) Materials for electrical and electronic fuses
JP2008156675A (en) Material for fuse of electric/electronic component
JP2529257B2 (en) Fuse conductor
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2001073050A (en) Conductor for fuse and tantalum chip capacitor
JP4348444B2 (en) Zinc alloy for fuse, fuse and manufacturing method thereof
JP2003034831A (en) Thermal fuse and fusible alloy therefor
KR101494798B1 (en) Cu-Ag-Zn-Ga BRAZING ALLOY
JP4692822B2 (en) Alloy for thermal fuse
JP2009019239A (en) Method for producing copper alloy material for electrical/electronic parts
JP2007031775A (en) Lead-free fusible alloy type thermal fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5455674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250