JP3987458B2 - Electrical contact materials and switches - Google Patents

Electrical contact materials and switches Download PDF

Info

Publication number
JP3987458B2
JP3987458B2 JP2003148488A JP2003148488A JP3987458B2 JP 3987458 B2 JP3987458 B2 JP 3987458B2 JP 2003148488 A JP2003148488 A JP 2003148488A JP 2003148488 A JP2003148488 A JP 2003148488A JP 3987458 B2 JP3987458 B2 JP 3987458B2
Authority
JP
Japan
Prior art keywords
electrical contact
contact material
resistance
electrical
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003148488A
Other languages
Japanese (ja)
Other versions
JP2004353002A (en
Inventor
理 坂口
光弥 高橋
宣仁 柳原
俊哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2003148488A priority Critical patent/JP3987458B2/en
Priority to CN 200410045702 priority patent/CN1244939C/en
Publication of JP2004353002A publication Critical patent/JP2004353002A/en
Application granted granted Critical
Publication of JP3987458B2 publication Critical patent/JP3987458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Contacts (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、いわゆる家電製品内で使用されるスイッチに好適な電気接点材料に関するものである。特に、環境問題を指摘されているCdを含まないことを前提としつつ、スイッチの小型化に際しても耐溶着性、耐消耗性に優れ、かつ接触抵抗を低く抑えて、通電中の温度上昇を極力抑制することが可能な電気接点材料に関するものである。
【従来の技術】
【0002】
電気回路を機械的に開閉する電気接触子は、一般に電気接点と呼ばれる。この電気接点は、金属と金属とが接触することで、接点に流れる電流・信号を支障なく伝えることや、切り離した際に支障なく開離できるものでなければならない。
【0003】
電気接点は、構造自体は比較的簡単なものではあるが、その接点表面では、物理的或いは化学的な種々の現象を生じることが知られている。例えば、吸着、酸化、硫化、有機化合物の合成、さらには、放電を伴う溶融、蒸発、消耗、転移等が挙げられ、その現象は非常に複雑なものであり、学術的にも未解明な部分が多い。
【0004】
そして、硫化、酸化等の上記した現象が発生すると、電気接点の接触機能が阻害され、場合によっては接触機能が停止(例えば、導通不良)してしまい、電気接点を組み込んだ電気製品等の性能や寿命を決定する。これは、電気接点が電気製品等の寿命や性能を決定する重要な部品の一つであることを意味する。
【0005】
近年、電子・電気工学の著しい発展に伴い、電気接点の使用範囲は、電信電話や各種電子機器などの弱電分野から、大電流を遮断する電気機器などの強電分野に至るまでの広い範囲にわたっている。そのため、要求される機能も千差万別で、使用目的にあわせた特性を有する電気接点の開発が進められ、これまでも非常に多くの種類のものが市場に供給されている。
【0006】
これまで、電気接点材料として古くから知られているものの一つとしてAg−CdO系電気接点材料がある。この材料は、求められる特性をバランスよく満足したものとして、良く知られている。しかしながら、Cdは人体に有毒な元素であり、昨今の環境問題等も影響して、その製造及び使用は好まれていない。また、Cd系の材料は2006年7月より欧州での使用が禁止されることになっている。そこで、Cdを含有しない電気接点材料の開発が、今後、求められることになる。
【0007】
Cdを含有しない電気接点材料としては、例えば、Ag−SnO−In−NiO系の電気接点材料が知られている。この電気接点材料は、リレーに使用した場合には、耐溶着性や耐消耗性に優れ、リレー等では多数の実用化の実績があるものの、接触抵抗が不安定であるとの指摘がなされている。実際にこれらの電気接点材料をスイッチに適用した場合には、温度上昇が30℃以下であるというULの規格を満足できないことが明らかになっている。
【0008】
これに対し、接触抵抗が低く安定する電気接点材料として、Ag−CuO系の電気接点材料が知られている。この電気接点材料は、スイッチに使用したときには接触抵抗が低く安定し、温度上昇に関してはULの規格を満足できる優れた材料である。しかし、材料の耐溶着性や耐消耗性については十分に満足した特性を有していないために、耐溶着性、耐消耗性をいかに向上させるかが技術的な課題とされてきた。
【0009】
そこで、Ag−CuO系の電気接点材料の問題を解決する手段として、この電気接点材料に、更に第3の金属元素を添加する方法が提案されている。この第3の元素としては、例えば、特許文献1にあるように、InやSnを添加する方法や、特許文献2にあるように、Mn、SbやGe等を第3の金属元素として添加する方法がある。
【0010】
【特許文献1】
特開昭51−136171号公報
【特許文献2】
特開昭51−137873号公報
【0011】
しかしながら、これらの接点材料も近年求められているスイッチの小型化により、耐溶着性、耐消耗性のさらなる改善が求められるようになってきた。特に、いわゆる家電製品内で使用されるスイッチは、最近急速に小型化が進んでいるが、これまでの技術を用いた電気接点材料では、耐溶着特性、耐電圧特性、温度上昇の規格に対して明らかに限界が見えていた。
【0012】
【発明が解決しようとする課題】
本発明は、以上のような事情を背景としてなされたものであり、従来から用いられているAg−CdO系接点の環境問題、Ag−SnO−In−NiO系電気接点の欠点である接触抵抗の不安定性に起因する温度上昇の問題、更に、Ag−CuO系電気接点の欠点である耐溶着性、耐消耗性の問題、の全てを改善した電気接点材料を提供するものである。そして、その電気接点材料を用いることによって、従来よりもさらに小型化しても、優れた耐溶着性、耐消耗性、低接触抵抗等を有するスイッチを提供するものである。
【0013】
【課題を解決するための手段】
本発明者らは、Ag−CuO系電気接点材料の接触抵抗の安定性を維持しながら、耐溶着性、耐消耗性を向上させることについて鋭意研究を重ね、Ag−Cu合金にTe又はBiを添加した合金を内部酸化させて製造した電気接点材料が、Ag−Cu合金を内部酸化させて製造した電気接点材料に比べて耐溶着性、耐消耗性が飛躍的に向上することを見出した。
【0014】
しかし、本発明者等によれば、単にAg−Cu合金にTe又はBiを添加した合金を内部酸化させて製造した電気接点材料は、加工性が悪く、リベット接点のような実用的な電気接点(電気接触子)に容易に加工できない問題も同時に明らかになった。
【0015】
そこで、本発明者等は更なる研究を重ね、Ag−Cu−Te合金又はAg−Cu−Bi合金に、更にIn又はZnを添加することで、Te又はBiの添加に起因する加工性の劣化を防止する効果があることを見出し本発明に想到した。
【0016】
本発明に係る電気接点材料は、第1の系統としてAg−Cu−Te合金にIn又はZnを添加するものである。即ち、本発明は、0.5〜10.0重量%のCuと、0.01〜1.0重量%のTeと、0.5〜10.0重量%のInと、残部Agと、からなるAg−Cu−Te−In合金を内部酸化してなる電気接点材料、及び、0.5〜10.0重量%のCuと、0.01〜1.0重量%のTeと、0.5〜10.0重量%のZnと、残部Agと、からなるAg−Cu−Te−Zn合金を内部酸化してなる電気接点材料である。
【0017】
そして、本発明に係る接点材料は、第2の系統としてAg−Cu−Bi合金にIn又はZnを添加するものである。即ち、0.5〜10.0重量%のCuと、0.01〜1.0重量%のBiと、0.5〜10.0重量%のInと、残部Agと、からなるAg−Cu−Bi−In合金を内部酸化してなる電気接点材料、及び、0.5〜10.0重量%のCuと、0.01〜1.0重量%のBiと、0.5〜10.0重量%のZnと、残部Agと、からなるAg−Cu−Bi−Zn合金を内部酸化してなる電気接点材料である。
【0018】
本発明に係る4種の電気接点材料では、内部酸化処理によってCuOがAg中に分散するものであるが、耐溶着性と耐消耗性を向上させるためにTe又はBiを添加したこと、さらにTe又はBiを添加することにより引き起こされた加工性の劣化を改善するために、加えてIn又はZnをそれぞれ添加することで、電気接点材料をスイッチに適用した時に要求される特性を十分に満足できるものとしたことである。
【0019】
Ag−Cu合金中のCuは内部酸化処理によりCuOとなりAgマトリックス中に分散するが、CuOが他の酸化物と違うところは、酸化物が12重量%程度まで増えても接触抵抗が低い状態を維持している点である。そのために本発明の電気接点材料においては基本となる酸化物としている。そして、本発明に係る電気接点材料において、Cuが0.5〜10.0の範囲であることが必要であるが、実際には3.0〜8.0重量%の範囲であることが好ましい。Cuが0.5重量%未満であると実用的レベルの特性を有した電気接点材料にすることが難しくなり、10.0重量%を越えると、接触抵抗に対して影響の少ないCuOといえども、接触抵抗の上昇が顕著になり始め、また、実負荷での開閉中の消耗量も増加することにより、スイッチに使用した場合の絶縁劣化が顕著となる。
【0020】
Te又はBiは本発明の電気接点材料の耐溶着性、耐消耗性を向上させる主となる添加元素であるが、本発明に係る電気接点材料において、Te又はBiが0.01〜1.0の範囲であることが必要であるが、実際には0.2〜0.7重量%の範囲であることが好ましい。
【0021】
In又はZnは本発明の電気接点材料においてTe又はBiを添加した時に引き起こされた加工性の劣化を改善するために、さらに追加した添加元素であるが、本発明に係る電気接点材料において、In又はZnが0.5〜10.0の範囲であることが必要であるが、実際には2.0〜5.0重量%の範囲であることが好ましい。
【0022】
本発明に係る電気接点材料の製造に関しては、基本的に従来の電気接点材料の製造方法と同様である。つまり、目的組成の合金を溶解鋳造法等により製造し、これを酸素雰囲気下で加熱することにより内部酸化処理を行った後、所定の加工を行なう。ここで、本発明に係る電気接点材料において内部酸化処理の際の条件としては、いずれの合金でも酸素圧0.2〜10気圧、温度600〜850℃とし、加熱時間を12〜72時間とするのが好ましい。
【0023】
以上説明した本発明に係る電気接点材料は、いずれも、接触抵抗を低い状態で維持可能であると共に、かつ、耐消耗性、耐溶着性を有する。そして、本発明に係る電気接点材料を電気接触子として使用するスイッチは、上記特性を有しつつ小型化が可能であって、今後の家電製品の小型化に寄与することができる。
【0024】
【発明の実施の形態】
以下、本発明の好適な実施形態を比較例と共に説明する。本実施形態において、実施例1〜4は表1に示す組成の電気接点材料であり、表1〜表3に記載する比較例1〜3は、実施例との比較のための従来技術による電気接点材料を示している(単位は重量%)。
【0025】
【表1】

Figure 0003987458
【0026】
【表2】
Figure 0003987458
【0027】
【表3】
Figure 0003987458
【0028】
実施例1〜4及び比較例1〜3の電気接点材料の製造方法は、次のようなものとした。通常の高周波溶解炉により、表1〜3の各組成のAg合金を溶解後インゴットに鋳造した。次にそのインゴットを熱間押し出し法にてφ6mmの線材に加工した。続いて、その線材を焼鈍と伸線を繰り返しながらφ2mmまで加工を行い、長さ2mmで切断することで、φ2mm×2mmLのチップを作成した。そして、このチップを酸素圧5気圧、温度700℃で48時間、内部酸化処理を行い、内部酸化処理後のチップを集め、圧縮成形して、φ50mmの円柱ビレットを形成した。
【0029】
そして、この円柱ビレットを、円筒容器に納め、円柱長手方向から圧力を加えることで、円柱ビレットを圧縮加工した。この圧縮加工では、円柱ビレットの側面が円筒容器によって拘束されているため、円柱長手方向における変形は可能とされているが、それと垂直方向になる円柱側面方向への変形はできないようにされている。この圧縮加工に続いて、850℃、4時間の焼結処理を行った。この圧縮加工及び焼結処理は6回繰り返して行った。
【0030】
圧縮加工及び焼結処理を施したビレットは、再度、熱間押し出し法により、φ6mmの線材にした。続いて、線引き加工にて直径2.3mmの線材まで加工し、ヘッダー機によって、頭径3.5mm、頭厚1mmのリベット接点を作成した。
【0031】
次に、以上の工程を経て製造された、実施例1〜4及び比較例1〜3に係るリベット接点を以下の方法で評価した。
【0032】
温度上昇値の測定:リベット接点を接触力20gの開閉機構を有する温度上昇測定試験機に組み込み、AC125C、10Aの抵抗負荷で1万回の予備開閉を行った後、AC125V、10Aの抵抗負荷で連続通電中での温度上昇値を測定した。また、試験後のリベット接点の状態を観察し溶着の有無を検討した。尚、実際のスイッチでは接触力は100g以上の場合が多く、本試験条件の温度上昇については加速した試験となっているため、40℃以下が実用化可能レベルと考えている。
【0033】
耐溶着性の検討:それぞれのリベット接点について耐溶着性試験を行った。耐溶着性試験とは、接触力20gの開閉機構にリベット接点を組み込み、AC125Vで、突入電流78A、定常電流5AのTV−5規格のランプを負荷として1万5千回開閉させ、この開閉中に接点溶着の有無を調べる試験である。開閉中に一度でも溶着が発生すればNGとし、溶着が発生しなければOKとした。
【0034】
表4に温度上昇値の測定結果及び耐溶着性の評価結果を示す。この温度上昇値の測定結果から、実施例1〜4と比較例1、3は、実用化可能レベルであるが、比較例2は78℃と飛び抜けて温度上昇値が高くなった。このことは、Ag−SnO−In−NiO系電気接点材料では、スイッチに適用した場合に、温度上昇の規格を満足させることが難しいことを示している。
【0035】
【表4】
Figure 0003987458
【0036】
耐溶着性の試験結果では、すべての実施例と比較例2、3でOKとなったが、比較例1のみがNGとなった。添加元素の無いAg−CuO系電気接点材料の耐溶着性の低さが明らかとなった。以上の検討から、比較例1は、耐溶着性の観点から、比較例2は、通電中の温度上昇の観点から実用化に問題があることが確認された。また、比較例3は、耐溶着性、温度上昇の観点からは問題がないが、そもそも、Cdを含有する材料であることから今後の実用化に支障をきたすものと考えられる。
【0037】
材料組織の観察:最後に、金属断面組織(倍率400倍)を観察した結果について説明する。図1、2はそれぞれ実施例1、4の断面組織を、図3、4はそれぞれ比較例2、3の断面組織を示す。実施例1、4は、比較的大きい酸化物が分散しており、比較例3のAg−CdO系接点材料と同じような断面組織を有している。一方、比較例2の断面組織は、非常に微細な酸化物が分散している。一般に接点開閉中に発生するアークで接点表面が溶融した時に、酸化物が細かい方が酸化物の凝集が起こり易く、そのことが温度上昇引き起こすと言われているが、比較例3の接点材料は温度上昇値が高かったが、この点が断面組織観察からも裏付けられた。
【0038】
本発明に属する実施例1、4の電気接点材料は、大きい酸化物が分散していることから、通電に伴う温度上昇に対して有利である。そして、その上で耐溶着性の確保をTe又はBiの添加で補っている。更に、Te又はBiの添加により低下する加工性を、In又はZnを添加することで改善した画期的なものである。以上のことから、本発明の接点材料は、環境問題、温度上昇の問題、耐溶着性の問題とこれまでの接点材料では両立できなかった3つの課題を同時に満たすことができる非常に優れた接点材料である。
【0039】
【発明の効果】
本発明に係る電気接点材料は、接触抵抗を低く安定して維持でき、かつ、非常に優れた耐消耗性、耐溶着性を有し、耐環境性をも優れたものとなる。そして、本発明の電気接点材料により電気接触子を構成すると、従来よりも小型化したスイッチであっても、耐久性の向上や長寿命化を図ることが可能となる。
【図面の簡単な説明】
【図1】 実施例1に係る電気接点材料の断面組織写真。
【図2】 実施例4に係る電気接点材料の断面組織写真。
【図3】 比較例2に係る電気接点材料の断面組織写真。
【図4】 比較例3に係る電気接点材料の断面組織写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrical contact material suitable for a switch used in a so-called home appliance. In particular, assuming that it does not contain Cd, which has been pointed out as an environmental problem, it has excellent resistance to welding and wear even when miniaturizing the switch, and keeps the contact resistance low to minimize the temperature rise during energization. The present invention relates to an electric contact material that can be suppressed.
[Prior art]
[0002]
An electrical contact that mechanically opens and closes an electrical circuit is generally called an electrical contact. This electrical contact must be able to transmit the current / signal flowing through the contact without any trouble by contact between the metal and the metal, or to be opened without any trouble when disconnected.
[0003]
Although the electrical contact is relatively simple in structure, it is known that various physical and chemical phenomena occur on the contact surface. For example, adsorption, oxidation, sulfurization, synthesis of organic compounds, and melting, evaporation, consumption, transition, etc., accompanied by electric discharge. There are many.
[0004]
When the above-mentioned phenomenon such as sulfidation and oxidation occurs, the contact function of the electrical contact is disturbed, and in some cases, the contact function stops (for example, poor conduction), and the performance of an electrical product or the like incorporating the electrical contact And determine lifespan. This means that the electrical contact is one of the important components that determine the life and performance of an electrical product or the like.
[0005]
In recent years, with the remarkable development of electronic and electrical engineering, the range of use of electrical contacts has expanded from a weak electric field such as telegraph telephones and various electronic devices to a strong electric field such as electric devices that cut off a large current. . For this reason, the required functions vary widely, and the development of electrical contacts having characteristics tailored to the purpose of use has been promoted, and so far many types have been supplied to the market.
[0006]
Until now, there has been an Ag-CdO-based electrical contact material as one of the electrical contact materials that has been known for a long time. This material is well known as satisfying the required properties in a balanced manner. However, Cd is an element that is toxic to the human body, and its production and use are not preferred because of recent environmental problems. The use of Cd-based materials in Europe is prohibited from July 2006. Therefore, development of electrical contact materials that do not contain Cd will be required in the future.
[0007]
As an electrical contact material not containing Cd, for example, an Ag—SnO 2 —In 2 O 3 —NiO-based electrical contact material is known. When this electrical contact material is used for a relay, it has excellent welding resistance and wear resistance, and it has been pointed out that the contact resistance is unstable, although it has been used in many applications for relays. Yes. When these electrical contact materials are actually applied to a switch, it has become clear that the UL standard that the temperature rise is 30 ° C. or less cannot be satisfied.
[0008]
On the other hand, an Ag—CuO-based electrical contact material is known as an electrical contact material that has a low contact resistance and is stable. This electrical contact material has a low contact resistance when used in a switch and is stable, and is an excellent material that can satisfy UL standards with respect to temperature rise. However, since the material does not have sufficiently satisfactory characteristics regarding the welding resistance and wear resistance, how to improve the welding resistance and wear resistance has been a technical issue.
[0009]
Therefore, as a means for solving the problem of the Ag—CuO-based electrical contact material, a method of further adding a third metal element to the electrical contact material has been proposed. As this third element, for example, as disclosed in Patent Document 1, In or Sn is added, and as disclosed in Patent Document 2, Mn, Sb, Ge, or the like is added as a third metal element. There is a way.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 51-136171 [Patent Document 2]
JP-A-51-137873 [0011]
However, these contact materials have been required to be further improved in welding resistance and wear resistance due to the miniaturization of switches that have been required in recent years. In particular, switches used in so-called home appliances have recently been rapidly miniaturized. However, electrical contact materials using conventional technologies are not compatible with welding resistance, withstand voltage characteristics, and temperature rise standards. The limit was clearly visible.
[0012]
[Problems to be solved by the invention]
The present invention has been made against the background of the above circumstances, Ag-CdO-based contact environmental problems which has been conventionally used, in disadvantage of Ag-SnO 2 -In 2 O 3 -NiO -based electric contact It is an object of the present invention to provide an electrical contact material that improves all of the problems of temperature rise caused by instability of certain contact resistance, and further, the problems of welding resistance and wear resistance, which are disadvantages of Ag-CuO based electrical contacts. . By using the electrical contact material, a switch having excellent welding resistance, wear resistance, low contact resistance, etc., even if it is further reduced in size than the conventional one is provided.
[0013]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies on improving the welding resistance and wear resistance while maintaining the stability of the contact resistance of the Ag—CuO-based electric contact material, and adding Te or Bi to the Ag—Cu alloy. It has been found that an electrical contact material manufactured by internally oxidizing an added alloy has dramatically improved welding resistance and wear resistance compared to an electrical contact material manufactured by internally oxidizing an Ag-Cu alloy.
[0014]
However, according to the present inventors, an electrical contact material produced by simply oxidizing an alloy obtained by simply adding Te or Bi to an Ag—Cu alloy has poor workability and is a practical electrical contact such as a rivet contact. At the same time, problems that could not be easily processed into (electrical contacts) were also revealed.
[0015]
Therefore, the present inventors have further researched, and by further adding In or Zn to the Ag—Cu—Te alloy or Ag—Cu—Bi alloy, the workability is deteriorated due to the addition of Te or Bi. The inventors have found that there is an effect of preventing the occurrence of the problem and have arrived at the present invention.
[0016]
The electrical contact material according to the present invention is a first system in which In or Zn is added to an Ag—Cu—Te alloy. That is, the present invention comprises 0.5 to 10.0 wt% Cu, 0.01 to 1.0 wt% Te, 0.5 to 10.0 wt% In, and the balance Ag. An electrical contact material formed by internally oxidizing an Ag—Cu—Te—In alloy, 0.5 to 10.0 wt% Cu, 0.01 to 1.0 wt% Te, 0.5 It is an electrical contact material formed by internally oxidizing an Ag—Cu—Te—Zn alloy composed of ˜10.0 wt% Zn and the balance Ag.
[0017]
And the contact material which concerns on this invention adds In or Zn to an Ag-Cu-Bi alloy as a 2nd system | strain. That is, Ag—Cu composed of 0.5 to 10.0% by weight of Cu, 0.01 to 1.0% by weight of Bi, 0.5 to 10.0% by weight of In, and the balance Ag. -Electrical contact material formed by internal oxidation of Bi-In alloy, 0.5-10.0 wt% Cu, 0.01-1.0 wt% Bi, 0.5-10.0 It is an electrical contact material formed by internal oxidation of an Ag—Cu—Bi—Zn alloy comprising wt% Zn and the balance Ag.
[0018]
In the four types of electrical contact materials according to the present invention, CuO is dispersed in Ag by an internal oxidation treatment, but Te or Bi is added to improve welding resistance and wear resistance, and Te Alternatively, in order to improve the deterioration of workability caused by adding Bi, in addition to adding In or Zn respectively, the characteristics required when the electrical contact material is applied to the switch can be sufficiently satisfied. It was to be.
[0019]
Cu in the Ag-Cu alloy becomes CuO by the internal oxidation treatment and is dispersed in the Ag matrix. However, when CuO is different from other oxides, the contact resistance is low even when the oxide increases to about 12% by weight. It is a point that is maintained. Therefore, the basic oxide is used in the electrical contact material of the present invention. And, in the electrical contact material according to the present invention, it is necessary that Cu is in the range of 0.5 to 10.0, but actually it is preferably in the range of 3.0 to 8.0% by weight. . If Cu is less than 0.5% by weight, it is difficult to obtain an electric contact material having a practical level of characteristics, and if it exceeds 10.0% by weight, CuO has little influence on contact resistance. The increase in contact resistance starts to become significant, and the amount of wear during opening and closing at an actual load also increases, so that the insulation deterioration when used in a switch becomes significant.
[0020]
Te or Bi is a main additive element that improves the welding resistance and wear resistance of the electrical contact material of the present invention. In the electrical contact material according to the present invention, Te or Bi is 0.01 to 1.0. However, it is actually preferable to be in the range of 0.2 to 0.7% by weight.
[0021]
In or Zn is an additional element added to improve deterioration of workability caused when Te or Bi is added in the electrical contact material of the present invention. In the electrical contact material according to the present invention, In or Zn is added. Alternatively, it is necessary that Zn is in the range of 0.5 to 10.0, but actually it is preferably in the range of 2.0 to 5.0% by weight.
[0022]
The production of the electrical contact material according to the present invention is basically the same as the conventional method for producing an electrical contact material. That is, an alloy having a target composition is manufactured by a melt casting method or the like, and this is heated in an oxygen atmosphere to perform an internal oxidation treatment, followed by a predetermined processing. Here, in the electrical contact material according to the present invention, the conditions for the internal oxidation treatment include oxygen pressure of 0.2 to 10 atm, temperature of 600 to 850 ° C., and heating time of 12 to 72 hours in any alloy. Is preferred.
[0023]
Each of the electrical contact materials according to the present invention described above can maintain contact resistance in a low state, and has wear resistance and welding resistance. And the switch which uses the electrical contact material which concerns on this invention as an electrical contactor can be reduced in size, having the said characteristic, and can contribute to size reduction of future household appliances.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described together with comparative examples. In this embodiment, Examples 1 to 4 are electrical contact materials having the compositions shown in Table 1, and Comparative Examples 1 to 3 described in Tables 1 to 3 are conventional electric powers for comparison with Examples. The contact material is shown (unit: wt%).
[0025]
[Table 1]
Figure 0003987458
[0026]
[Table 2]
Figure 0003987458
[0027]
[Table 3]
Figure 0003987458
[0028]
The manufacturing method of the electrical contact material of Examples 1-4 and Comparative Examples 1-3 was as follows. In an ordinary high-frequency melting furnace, Ag alloys having respective compositions shown in Tables 1 to 3 were melted and cast into ingots. Next, the ingot was processed into a wire with a diameter of 6 mm by a hot extrusion method. Subsequently, the wire was processed to φ2 mm while being repeatedly annealed and drawn, and was cut at a length of 2 mm to produce a chip of φ2 mm × 2 mmL. This chip was subjected to internal oxidation treatment at an oxygen pressure of 5 atm and a temperature of 700 ° C. for 48 hours, and the chips after the internal oxidation treatment were collected and compression-molded to form a φ50 mm cylindrical billet.
[0029]
And this cylindrical billet was stored in the cylindrical container, and the cylindrical billet was compression-processed by applying a pressure from a cylinder longitudinal direction. In this compression processing, since the side surface of the column billet is constrained by the cylindrical container, deformation in the longitudinal direction of the column is possible, but deformation in the direction of the column side that is perpendicular to the column is prevented. . Subsequent to this compression processing, sintering was performed at 850 ° C. for 4 hours. This compression process and sintering process were repeated 6 times.
[0030]
The billet subjected to the compression processing and the sintering treatment was again made into a wire with a diameter of 6 mm by a hot extrusion method. Subsequently, a wire rod having a diameter of 2.3 mm was processed by wire drawing, and a rivet contact having a head diameter of 3.5 mm and a head thickness of 1 mm was created by a header machine.
[0031]
Next, the rivet contacts according to Examples 1 to 4 and Comparative Examples 1 to 3 manufactured through the above steps were evaluated by the following methods.
[0032]
Measurement of temperature rise value : A rivet contact is incorporated in a temperature rise measurement tester having an opening / closing mechanism with a contact force of 20 g, and after preliminary opening / closing 10,000 times with a resistance load of AC125C, 10A, with a resistance load of AC125V, 10A The temperature rise value during continuous energization was measured. In addition, the state of the rivet contact after the test was observed to examine the presence or absence of welding. In actual switches, the contact force is often 100 g or more, and the temperature rise under the test conditions is an accelerated test, so 40 ° C. or less is considered a practical level.
[0033]
Study of welding resistance was carried out the welding resistance test for each of the rivet contact. In the welding resistance test, a rivet contact is incorporated into an opening / closing mechanism with a contact force of 20 g, and the AC-5V is opened and closed 15,000 times using a TV-5 standard lamp with an inrush current of 78A and a steady current of 5A. This is a test for checking the presence or absence of contact welding. If welding occurred even once during opening and closing, it was judged as NG, and if welding did not occur, it was judged as OK.
[0034]
Table 4 shows the measurement result of the temperature rise value and the evaluation result of the welding resistance. From the measurement result of the temperature increase value, Examples 1 to 4 and Comparative Examples 1 and 3 were practically usable levels, but Comparative Example 2 jumped to 78 ° C. and the temperature increase value was high. This indicates that it is difficult for the Ag—SnO 2 —In 2 O 3 —NiO-based electrical contact material to satisfy the temperature rise standard when applied to a switch.
[0035]
[Table 4]
Figure 0003987458
[0036]
In the welding resistance test results, all Examples and Comparative Examples 2 and 3 were OK, but only Comparative Example 1 was NG. The low welding resistance of the Ag—CuO-based electrical contact material containing no additive element was revealed. From the above examination, it was confirmed that Comparative Example 1 had a problem in practical use from the viewpoint of welding resistance, and Comparative Example 2 had a problem in practical use from the viewpoint of temperature increase during energization. Further, Comparative Example 3 has no problem from the viewpoint of welding resistance and temperature rise, but it is considered that it will hinder future practical use because it is a material containing Cd in the first place.
[0037]
Observation of material structure : Finally, the result of observing a metal cross-sectional structure (magnification 400 times) will be described. 1 and 2 show the cross-sectional structures of Examples 1 and 4, respectively, and FIGS. 3 and 4 show the cross-sectional structures of Comparative Examples 2 and 3, respectively. In Examples 1 and 4, comparatively large oxides are dispersed and have the same cross-sectional structure as the Ag—CdO-based contact material of Comparative Example 3. On the other hand, in the cross-sectional structure of Comparative Example 2, very fine oxides are dispersed. In general, when the contact surface is melted by an arc generated during opening and closing of the contact, it is said that the finer the oxide, the easier the aggregation of the oxide occurs, which causes the temperature to rise. Although the temperature rise value was high, this point was supported by cross-sectional structure observation.
[0038]
In the electrical contact materials of Examples 1 and 4 belonging to the present invention, large oxides are dispersed, which is advantageous with respect to a temperature rise accompanying energization. On that basis, ensuring of welding resistance is supplemented by addition of Te or Bi. Furthermore, the workability that is lowered by the addition of Te or Bi is epoch-making improved by adding In or Zn. From the above, the contact material of the present invention is an excellent contact that can simultaneously satisfy the three problems that cannot be satisfied by the environmental problems, the temperature increase problem, the welding resistance problem and the conventional contact materials. Material.
[0039]
【The invention's effect】
The electrical contact material according to the present invention can stably maintain a low contact resistance, has excellent wear resistance and welding resistance, and has excellent environmental resistance. And if an electrical contact is comprised with the electrical contact material of this invention, even if it is a switch miniaturized rather than before, it will become possible to aim at an improvement in durability and long life.
[Brief description of the drawings]
1 is a cross-sectional structure photograph of an electrical contact material according to Example 1. FIG.
2 is a cross-sectional structure photograph of an electrical contact material according to Example 4. FIG.
3 is a cross-sectional structure photograph of an electrical contact material according to Comparative Example 2. FIG.
4 is a cross-sectional structure photograph of an electrical contact material according to Comparative Example 3. FIG.

Claims (3)

0.5〜10.0重量%のCuと、0.01〜1.0重量%のTeと、0.5〜10.0重量%のInと、残部Agと、からなるAg−Cu−Te−In合金を内部酸化してなる電気接点材料。  Ag—Cu—Te composed of 0.5 to 10.0% by weight of Cu, 0.01 to 1.0% by weight of Te, 0.5 to 10.0% by weight of In and the balance Ag. An electrical contact material formed by internal oxidation of an In alloy. 0.5〜10.0重量%のCuと、0.01〜1.0重量%のTeと、0.5〜10.0重量%のZnと、残部Agと、からなるAg−Cu−Te−Zn合金を内部酸化してなる電気接点材料。  Ag—Cu—Te composed of 0.5 to 10.0% by weight of Cu, 0.01 to 1.0% by weight of Te, 0.5 to 10.0% by weight of Zn, and the balance Ag. -Electrical contact material formed by internal oxidation of Zn alloy. 請求項1又は請求項2に記載の電気接点材料を電気接触子として使用するスイッチ。Switch using electrical contact material according as electrical contacts to claim 1 or claim 2.
JP2003148488A 2003-05-27 2003-05-27 Electrical contact materials and switches Expired - Lifetime JP3987458B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003148488A JP3987458B2 (en) 2003-05-27 2003-05-27 Electrical contact materials and switches
CN 200410045702 CN1244939C (en) 2003-05-27 2004-05-27 Electric contact material and switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148488A JP3987458B2 (en) 2003-05-27 2003-05-27 Electrical contact materials and switches

Publications (2)

Publication Number Publication Date
JP2004353002A JP2004353002A (en) 2004-12-16
JP3987458B2 true JP3987458B2 (en) 2007-10-10

Family

ID=34044838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148488A Expired - Lifetime JP3987458B2 (en) 2003-05-27 2003-05-27 Electrical contact materials and switches

Country Status (2)

Country Link
JP (1) JP3987458B2 (en)
CN (1) CN1244939C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867595B (en) * 2012-09-26 2015-12-09 江阴市电工合金有限公司 Wear-resistant copper copper silver alloy contact and production method thereof
CN115109963B (en) * 2022-06-29 2023-11-17 重庆科技学院 Silver bismuth copper alloy electrode of crystal oscillator and manufacturing process
CN115216665B (en) * 2022-06-29 2023-11-17 重庆科技学院 Crystal oscillator alloy electrode and process

Also Published As

Publication number Publication date
JP2004353002A (en) 2004-12-16
CN1244939C (en) 2006-03-08
CN1574135A (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP2005166683A (en) Silver-based contact material, use of such contact material in switching device for power and method for manufacturing the contact material
JP3280968B2 (en) Silver-based contact material for use in switches in the power industry and a method for producing contact pieces from this material
JP3987458B2 (en) Electrical contact materials and switches
JP2007012570A (en) Ag-OXIDE ELECTRIC CONTACT MATERIAL, AND RELAY, AC GENERAL-USE RELAY AND AUTOMOBILE RELAY USING THE SAME
JP2010100912A (en) Silver-oxide-based electric contact material
JPS6048578B2 (en) electrical contact materials
JP4994144B2 (en) Silver-oxide based electrical contact materials
JP5150429B2 (en) Combination structure of sliding contact members used in automotive DC switches
WO2002008481A1 (en) Make break contact material comprising ag-ni based alloy having ni metal particles dispersed and relay using the same
JP2001351451A (en) Contact element material and contact element
JP4359476B2 (en) High voltage load switchgear
CN114457253B (en) Silver nickel-bismuth oxide material for microswitch and manufacturing method thereof
JPS6021215B2 (en) electrical contact materials
JPS6120616B2 (en)
JP2006111956A (en) Electrical contact material and general-purpose switch obtained by using the same
JPS60258436A (en) Electrical contact material
JP2003288831A (en) Cadmium-free electric contact and breaker using it
WO2005124804A1 (en) RELAY FOR SEALED AC LOAD AND Ag-BASE CONTACT ELEMENT MATERIAL FOR USE THEREIN
KR100509699B1 (en) Electric contact material
JPH0127137B2 (en)
JPH0250975B2 (en)
JPS6252022B2 (en)
JPS6350413B2 (en)
JPS5931809B2 (en) Electrical contact material and its manufacturing method
Hu Powder Metallurgy Electrical Contact Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent or registration of utility model

Ref document number: 3987458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term