JP5445174B2 - Ultrasonic bonding method and apparatus for polymer material - Google Patents

Ultrasonic bonding method and apparatus for polymer material Download PDF

Info

Publication number
JP5445174B2
JP5445174B2 JP2010016202A JP2010016202A JP5445174B2 JP 5445174 B2 JP5445174 B2 JP 5445174B2 JP 2010016202 A JP2010016202 A JP 2010016202A JP 2010016202 A JP2010016202 A JP 2010016202A JP 5445174 B2 JP5445174 B2 JP 5445174B2
Authority
JP
Japan
Prior art keywords
infrared
bonding
temperature
ultrasonic bonding
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010016202A
Other languages
Japanese (ja)
Other versions
JP2011152725A (en
Inventor
諭 村尾
武広 細川
正史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2010016202A priority Critical patent/JP5445174B2/en
Publication of JP2011152725A publication Critical patent/JP2011152725A/en
Application granted granted Critical
Publication of JP5445174B2 publication Critical patent/JP5445174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9221Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、高分子材料の超音波接合方法およびその装置に関するものである。   The present invention relates to an ultrasonic bonding method and apparatus for polymer materials.

従来より、例えば樹脂フィルムなどの高分子材料同士を接合(溶着)する方法としては、超音波接合装置を用いて行う超音波接合方法が知られている。具体的には、例えば、超音波振動を与えるホーンとこのホーンに相対するアンビルとの間に高分子材料を挟んで加圧し、高分子材料同士の接触界面に超音波振動を与えることにより高分子材料同士をその接触界面で接合している。   Conventionally, as a method for bonding (welding) polymer materials such as resin films, for example, an ultrasonic bonding method performed using an ultrasonic bonding apparatus is known. Specifically, for example, a polymer material is pressed between a horn that imparts ultrasonic vibration and an anvil that is opposed to the horn, and pressure is applied to the polymer interface by applying ultrasonic vibration to the contact interface between the polymer materials. The materials are joined at the contact interface.

このとき、高分子材料同士の接合が確実に行われたか否かの判断は、例えば、超音波接合後に、その接合状態を見ることにより行うことができる。そして、この判断をもとに、超音波接合条件の良否を判断して、超音波接合条件を設定することができる。   At this time, it can be determined whether or not the bonding between the polymer materials has been reliably performed, for example, by observing the bonding state after the ultrasonic bonding. And based on this judgment, the quality of ultrasonic joining conditions can be judged and ultrasonic joining conditions can be set.

また、超音波溶接の良否を判別する方法としては、特許文献1にも開示されている。具体的には、アンビル上に載置された第1の被溶接部材とこの第1の被溶接部材上に重合されてホーンチップで押圧される第2の被溶接部材とをホーンチップから付与される超音波によって超音波溶接する工程において、放射温度計を用いて、測定部分に対し非接触の状態で溶接部の温度と載置部の温度とを測定し、これらをそれぞれ基準値と比較することで超音波溶接の良否を判別する方法が開示されている。   Further, Patent Document 1 discloses a method for determining the quality of ultrasonic welding. Specifically, a first welded member placed on the anvil and a second welded member that is superposed on the first welded member and pressed by the horn tip are applied from the horn tip. In the process of ultrasonic welding using ultrasonic waves, the temperature of the welded part and the temperature of the mounting part are measured with a radiation thermometer in a non-contact state with respect to the measurement part, and these are compared with reference values, respectively. Thus, a method for discriminating the quality of ultrasonic welding is disclosed.

特開2000−202644号公報JP 2000-202644 A

超音波接合後の接合状態を見て超音波接合条件を設定する方法は、繰返し超音波接合を行ってもホーンやアンビルの劣化が生じない場合には有効であるが、実際には、高分子材料に接触するホーンの先端表面や高分子材料を載置するアンビルの表面は摩耗等により劣化する。ホーンやアンビルの表面が摩耗してくると、超音波接合時における高分子材料同士の接触界面の温度は上がりにくくなるため、定期的に超音波接合条件を確認する必要がある。したがって、この方法では、作業が繁雑になる。また、その確認するタイミングは分かりにくいため、接合不良のものを生産するおそれがあり、接合物の品質が安定しないおそれがある。   The method of setting the ultrasonic bonding conditions by looking at the bonding state after ultrasonic bonding is effective when the horn or anvil does not deteriorate even after repeated ultrasonic bonding, The tip surface of the horn in contact with the material and the surface of the anvil on which the polymer material is placed deteriorate due to wear or the like. When the surface of the horn or anvil starts to wear, the temperature of the contact interface between the polymer materials during ultrasonic bonding becomes difficult to rise, so it is necessary to periodically check the ultrasonic bonding conditions. Therefore, this method is complicated. Moreover, since the timing to confirm is difficult to understand, there is a risk of producing a poorly bonded product, and the quality of the bonded product may not be stable.

また、特許文献1に記載の方法では、超音波接合時には接合界面はホーンおよびアンビルによって覆われており、超音波接合時に接合界面の温度を測定することは困難である。そして、接合界面の近傍の温度を測定する場合には、接合界面の温度を測定する方法に比べて測定精度が落ちるため、接合界面の近傍の温度に基づいて接合の良否を判断することは困難である。そうすると、接合不良のものを生産するおそれがあり、接合物の品質が安定しないおそれがある。   In the method described in Patent Document 1, the bonding interface is covered with a horn and an anvil at the time of ultrasonic bonding, and it is difficult to measure the temperature of the bonding interface at the time of ultrasonic bonding. And, when measuring the temperature near the bonding interface, the measurement accuracy is lower than the method of measuring the temperature at the bonding interface, so it is difficult to judge whether the bonding is good or bad based on the temperature near the bonding interface. It is. If it does so, there exists a possibility that the thing of a joining failure may be produced and there exists a possibility that the quality of a joined thing may not be stabilized.

超音波接合時における接合界面の温度は、接合の良否を判断する重要な因子である。そして、超音波接合時に接合界面の温度をモニタできれば、超音波接合を行う高分子材料の全数について超音波接合時に精度良く接合の良否を判断できるため、超音波接合された高分子材料の品質は安定する。したがって、超音波接合時における接合界面の温度を測定する方法が望まれる。   The temperature of the bonding interface at the time of ultrasonic bonding is an important factor for determining the quality of bonding. And if the temperature of the bonding interface can be monitored during ultrasonic bonding, the quality of the ultrasonically bonded polymer material can be determined because it is possible to accurately determine the quality of the bonding with respect to the total number of polymer materials to be ultrasonic bonded. Stabilize. Therefore, a method for measuring the temperature of the bonding interface during ultrasonic bonding is desired.

本発明が解決しようとする課題は、超音波接合を行う高分子材料の全数について超音波接合時に精度良く接合の良否を判断できる高分子材料の超音波接合方法およびその装置を提供することにある。   The problem to be solved by the present invention is to provide an ultrasonic bonding method and apparatus for a polymer material capable of accurately judging the quality of bonding for ultrasonic bonding with respect to the total number of polymer materials to be ultrasonic bonded. .

上記課題を解決するため本発明に係る高分子材料の超音波接合方法は、超音波接合する高分子材料を載置するアンビルの少なくとも一部に赤外線透過体を用い、前記高分子材料の超音波接合時にその接合界面から放射された赤外線を該赤外線透過体を介して検知して、前記超音波接合時における接合界面の温度を測定することを要旨とするものである。   In order to solve the above-described problems, an ultrasonic bonding method for a polymer material according to the present invention uses an infrared transmitting body for at least a part of an anvil on which a polymer material to be ultrasonically bonded is placed, The gist of the invention is to detect the infrared ray radiated from the bonding interface at the time of bonding through the infrared transmitting body and measure the temperature of the bonding interface at the time of the ultrasonic bonding.

この際、前記超音波接合時における接合界面の温度を測定するための赤外線は、前記高分子材料の接合界面に直交する方向に放射された赤外線であることが望ましい。   At this time, it is desirable that the infrared rays for measuring the temperature of the bonding interface at the time of ultrasonic bonding are infrared rays radiated in a direction orthogonal to the bonding interface of the polymer material.

そして、前記超音波接合時における接合界面の温度は、前記高分子材料および前記赤外線透過体を介して赤外線放射温度計により測定された被測定物の測定温度と、前記被測定物の実温度と、の関係式を用いて算出すると良い。   And the temperature of the bonding interface at the time of the ultrasonic bonding is the measurement temperature of the measured object measured by the infrared radiation thermometer via the polymer material and the infrared transmitting body, and the actual temperature of the measured object. It is good to calculate using the relational expression.

また、本発明に係る高分子材料の超音波接合装置は、超音波振動を与えるホーンと該ホーンに相対するアンビルとの間に高分子材料を挟んで加圧し、前記高分子材料の接触界面に超音波振動を与えることにより前記高分子材料をその接触界面で接合する高分子材料の超音波接合装置において、前記アンビルの少なくとも一部を赤外線透過体で構成するとともに、前記高分子材料の超音波接合時にその接合界面から放射された赤外線を該赤外線透過体を介して検知する赤外線放射温度計を設けたことを要旨とするものである。   Further, the ultrasonic bonding apparatus of the polymer material according to the present invention pressurizes the polymer material sandwiched between a horn that imparts ultrasonic vibration and an anvil that is opposed to the horn, and is applied to the contact interface of the polymer material. In an ultrasonic bonding apparatus for a polymer material for bonding the polymer material at its contact interface by applying ultrasonic vibration, at least a part of the anvil is constituted by an infrared transmitting body, and an ultrasonic wave of the polymer material The gist of the invention is that an infrared radiation thermometer is provided for detecting infrared rays radiated from the joining interface at the time of joining through the infrared transmitting body.

この際、前記赤外線透過体は、前記アンビルの前記ホーンに相対する部分に用いられており、前記ホーンおよび前記赤外線透過体を通る直線上に前記赤外線放射温度計が配置されている、あるいは、前記ホーンおよび前記赤外線透過体を通る直線上に赤外線反射ミラーが配置されるとともにその赤外線反射ミラーの反射先に前記赤外線放射温度計が配置されていると良い。   At this time, the infrared transmission body is used in a portion of the anvil facing the horn, and the infrared radiation thermometer is arranged on a straight line passing through the horn and the infrared transmission body, or It is preferable that an infrared reflection mirror is disposed on a straight line passing through a horn and the infrared transmission body, and the infrared radiation thermometer is disposed at a reflection destination of the infrared reflection mirror.

本発明に係る高分子材料の超音波接合方法によれば、超音波接合する高分子材料を載置するアンビルの少なくとも一部に赤外線透過体を用いており、超音波接合時にその接合界面から放射された赤外線は高分子材料および赤外線透過体を透過する。そして、この赤外線透過体を透過した赤外線により、超音波接合時における接合界面の温度を測定するので、超音波接合時に接合界面の温度をモニタできる。これにより、超音波接合を行う高分子材料の全数について超音波接合時に精度良く接合の良否を判断できるため、超音波接合された高分子材料の品質が安定する。   According to the ultrasonic bonding method for a polymer material according to the present invention, an infrared transmitting body is used for at least a part of the anvil on which the polymer material to be ultrasonic bonded is placed, and the ultrasonic wave is radiated from the bonding interface during the ultrasonic bonding. The infrared rays transmitted through the polymer material and the infrared transmission body. And since the temperature of the joining interface at the time of ultrasonic joining is measured with the infrared rays which permeate | transmitted this infrared transmitting body, the temperature of a joining interface can be monitored at the time of ultrasonic joining. As a result, the quality of the polymer material subjected to ultrasonic bonding can be stabilized because it is possible to accurately determine the quality of the bonding with respect to the total number of polymer materials to be ultrasonically bonded.

この際、高分子材料の接合界面に直交する方向に放射された赤外線により超音波接合時における接合界面の温度を測定するようにすれば、赤外線の強度が大きいため、精度良く温度測定ができる。測定温度の精度が上がれば、より精度良く接合の良否を判断できる。   At this time, if the temperature of the bonding interface at the time of ultrasonic bonding is measured by infrared rays radiated in a direction orthogonal to the bonding interface of the polymer material, the temperature of the infrared rays is high, so that the temperature can be measured with high accuracy. If the accuracy of the measurement temperature is improved, it is possible to determine the quality of the bonding with higher accuracy.

そして、上記特定の関係式を用いて超音波接合時における接合界面の温度を算出するようにすれば、接合界面から放射された赤外線が高分子材料を透過することによる測定温度への影響を除くことができるため、より精度良く温度測定ができる。測定温度の精度が上がれば、より精度良く接合の良否を判断できる。   And, if the temperature of the bonding interface at the time of ultrasonic bonding is calculated using the above specific relational expression, the influence on the measurement temperature due to the infrared rays radiated from the bonding interface passing through the polymer material is excluded. Therefore, the temperature can be measured with higher accuracy. If the accuracy of the measurement temperature is improved, it is possible to determine the quality of the bonding with higher accuracy.

また、本発明に係る高分子材料の超音波接合装置によれば、アンビルの少なくとも一部を赤外線透過体で構成するとともにこの赤外線透過体を透過した赤外線を検知する赤外線放射温度計を設けたことから、高分子材料の超音波接合時にその接合界面から放射される赤外線を赤外線透過体を介して赤外線放射温度計で検知できるため、超音波接合時における接合界面の温度をモニタできる。これにより、超音波接合を行う高分子材料の全数について超音波接合時に精度良く接合の良否を判断できるため、超音波接合された高分子材料の品質が安定する。   Further, according to the ultrasonic bonding apparatus of the polymer material according to the present invention, an infrared radiation thermometer for detecting infrared rays transmitted through the infrared transmission body and at least a part of the anvil is provided. Therefore, since the infrared radiation radiated from the bonding interface at the time of ultrasonic bonding of the polymer material can be detected by the infrared radiation thermometer through the infrared transmission body, the temperature of the bonding interface at the time of ultrasonic bonding can be monitored. As a result, the quality of the polymer material subjected to ultrasonic bonding can be stabilized because it is possible to accurately determine the quality of the bonding with respect to the total number of polymer materials to be ultrasonically bonded.

この際、アンビルのホーンに相対する部分に上記赤外線透過体が用いられ、ホーンおよび赤外線透過体を通る直線上に赤外線放射温度計が配置されているか、あるいは、ホーンおよび赤外線透過体を通る直線上に赤外線反射ミラーが配置されるとともにその赤外線反射ミラーの反射先に赤外線放射温度計が配置されている場合には、高分子材料の接合界面に直交する方向に放射された赤外線により超音波接合時における接合界面の温度をモニタできる。そして、接合界面に直交する方向に放射された赤外線は放射率が高いため、精度良く接合界面の温度をモニタできる。これにより、より精度良く接合の良否を判断できる。   At this time, the infrared transmitting body is used in a portion facing the horn of the anvil, and an infrared radiation thermometer is arranged on a straight line passing through the horn and the infrared transmitting body, or on a straight line passing through the horn and the infrared transmitting body. If an infrared radiation thermometer is placed at the reflection destination of the infrared reflection mirror and the infrared reflection mirror is placed at the reflection destination of the infrared reflection mirror during ultrasonic joining with infrared rays emitted in a direction perpendicular to the bonding interface of the polymer material The temperature of the bonding interface at can be monitored. And since the infrared rays radiated in the direction orthogonal to the bonding interface have a high emissivity, the temperature of the bonding interface can be monitored with high accuracy. Thereby, the quality of joining can be judged more accurately.

本発明の第一実施形態に係る超音波接合装置を表す模式図である。It is a schematic diagram showing the ultrasonic bonding apparatus which concerns on 1st embodiment of this invention. 超音波接合装置10の作用・効果を説明する模式図である。FIG. 3 is a schematic diagram for explaining the operation and effect of the ultrasonic bonding apparatus 10. 本発明の第二実施形態に係る超音波接合装置を表す模式図である。It is a schematic diagram showing the ultrasonic bonding apparatus which concerns on 2nd embodiment of this invention. 高分子材料および赤外線透過体を介して赤外線放射温度計により測定された測定温度と接合強度との関係を模式的に表したグラフである。It is the graph which represented typically the relationship between the measurement temperature measured with the infrared radiation thermometer via the high molecular material and the infrared transmitting body, and joining strength. 高分子材料および赤外線透過体を介して赤外線放射温度計により測定された測定温度と実温度との関係を模式的に表したグラフである。It is the graph which represented typically the relationship between the measurement temperature measured with the infrared radiation thermometer through the polymeric material and the infrared transmitting body, and the actual temperature. 高分子材料および赤外線透過体を介して赤外線放射温度計により測定された測定温度と実温度との関係を求めるための装置を表す模式図である。It is a schematic diagram showing the apparatus for calculating | requiring the relationship between the measurement temperature measured with the infrared radiation thermometer and the actual temperature via the polymeric material and the infrared transmitting body. 高分子材料および赤外線透過体を介して赤外線放射温度計により測定された測定温度と実温度との関係を求めるための装置を表す模式図である。It is a schematic diagram showing the apparatus for calculating | requiring the relationship between the measurement temperature measured with the infrared radiation thermometer and the actual temperature via the polymeric material and the infrared transmitting body. 高分子材料および赤外線透過体を介して赤外線放射温度計により測定された測定温度と実温度との関係を示すグラフである。It is a graph which shows the relationship between the measurement temperature measured by the infrared radiation thermometer through the polymeric material and the infrared transmitting body, and the actual temperature. 実施例1における接合経過時間と上昇温度との関係を示すグラフである。It is a graph which shows the relationship between joining elapsed time in Example 1, and a raise temperature. 実施例2における接合経過時間と上昇温度との関係を示すグラフである。It is a graph which shows the relationship between joining elapsed time in Example 2, and a raise temperature. 実施例3、4における接合経過時間と上昇温度との関係を示すグラフである。It is a graph which shows the relationship between the joining elapsed time in Example 3, 4 and a raise temperature.

次に、本発明の実施形態について詳細に説明する。   Next, an embodiment of the present invention will be described in detail.

まず、本発明に係る高分子材料の超音波接合方法を実施するのに好適な、本発明に係る高分子材料の超音波接合装置の実施形態について説明する。なお、本発明において、上下方向は図中のW方向とする。   First, an embodiment of an ultrasonic bonding apparatus for polymer materials according to the present invention, which is suitable for carrying out the ultrasonic bonding method for polymer materials according to the present invention, will be described. In the present invention, the vertical direction is the W direction in the figure.

本発明の第一実施形態に係る高分子材料の超音波接合装置10(以下、超音波接合装置10ということがある。)は、図1に示すように、発振器12と、この発振器12に接続され、発振器12により振動する振動子14と、この振動子14に連接され、振動子14の振動が伝達されて振動するホーン16と、このホーン16に相対する位置(図1では、ホーン16の下方位置)に配置され、超音波接合する高分子材料を載置するステージとなるアンビル18と、振動子14の上方に配置され、振動子14および振動子14に連接されたホーン16を振動子14の上方から押圧してこれらを下方に押し下げる押圧部20と、からなる基本的構成を備えている。   As shown in FIG. 1, an ultrasonic bonding apparatus 10 for polymer materials according to the first embodiment of the present invention (hereinafter also referred to as an ultrasonic bonding apparatus 10) is connected to an oscillator 12 and the oscillator 12. The vibrator 14 that is vibrated by the oscillator 12, the horn 16 that is connected to the vibrator 14 and vibrates when the vibration of the vibrator 14 is transmitted, and the position opposite to the horn 16 (in FIG. An anvil 18 which is a stage on which a polymer material to be ultrasonically bonded is placed, and a vibrator 14 and a horn 16 connected to the vibrator 14 and connected to the vibrator 14. 14 and a pressing portion 20 that presses down from above and presses them downward.

これらの基本的構成を備える超音波接合装置10の基本的動作としては次の通りである。すなわち、互いに相対配置されたホーン16とアンビル18との間に超音波接合する高分子材料を配置し、押圧部20によりホーン16を押し下げてホーン16により高分子材料を加圧しながら所定の周波数で超音波振動させる。超音波振動は、図示しない電源により発振器12が作動し、発振器12により振動子14が上下方向に振動され、この振動子14の振動がホーン16に伝達されてホーン16が上下方向に振動することにより、高分子材料に伝達される。この超音波振動により、高分子材料はその接触界面で超音波接合される。   The basic operation of the ultrasonic bonding apparatus 10 having these basic configurations is as follows. That is, a polymer material that is ultrasonically bonded is disposed between the horn 16 and the anvil 18 that are disposed relative to each other, and the horn 16 is pushed down by the pressing unit 20 and the polymer material is pressed by the horn 16 at a predetermined frequency. Use ultrasonic vibration. In the ultrasonic vibration, the oscillator 12 is operated by a power source (not shown), the vibrator 14 is vibrated in the vertical direction by the oscillator 12, and the vibration of the vibrator 14 is transmitted to the horn 16 so that the horn 16 vibrates in the vertical direction. Is transmitted to the polymer material. By this ultrasonic vibration, the polymer material is ultrasonically bonded at the contact interface.

そして、超音波接合装置10においては、アンビル18の一部を、赤外線が透過できる赤外線透過体22で構成している。より具体的には、アンビル18は、高分子材料が載置される載置面24aを有する板状の載置部24と、この載置部24を支える支持部26とにより構成されている。載置部24のホーン16に相対する中央位置には、載置部24を上下方向に貫通する貫通孔28が穿設されており、この貫通孔28を塞ぐ窓となるように、アンビル18の載置部24に板状の赤外線透過体22が取り付けられている。すなわち、アンビル18の載置部24は、その上下方向に赤外線が透過できる赤外線透過窓を備えている。   In the ultrasonic bonding apparatus 10, a part of the anvil 18 is constituted by an infrared transmission body 22 that can transmit infrared rays. More specifically, the anvil 18 includes a plate-like placement portion 24 having a placement surface 24 a on which a polymer material is placed, and a support portion 26 that supports the placement portion 24. A through hole 28 penetrating the mounting portion 24 in the vertical direction is formed at a central position of the mounting portion 24 opposite to the horn 16, and the anvil 18 has a window that closes the through hole 28. A plate-like infrared transmitting body 22 is attached to the mounting portion 24. That is, the mounting portion 24 of the anvil 18 includes an infrared transmission window that can transmit infrared rays in the vertical direction.

支持部26は、載置部24のホーン16に相対する位置を外した載置部24の周辺位置で載置部24を支えており、載置部24のホーン16に相対する中央位置の下方には空間部30が形成されている。そして、この空間部30が存在することにより、載置部24の上下方向に赤外線が赤外線透過体22を透過できるようになっている。この空間部30内において、ホーン16および赤外線透過体22を通る直線上には、赤外線を反射する赤外線反射ミラー32が、ホーン16および赤外線透過体22を通る直線に対してそのミラー面32aを45°傾けた状態にして設置されている。さらに、その赤外線の反射先には、反射された赤外線が空間部30からアンビル18の外に放出されるための赤外線通路34が設けられており、この赤外線通路34によって空間部30と外部とがつながっている。そして、赤外線反射ミラー32から見て赤外線通路34の先には、赤外線反射ミラー32により反射されてアンビル18の外に放出された赤外線を検知するための赤外線放射温度計36の赤外線検知部36aが配置されている。   The support portion 26 supports the placement portion 24 at a peripheral position of the placement portion 24 that is away from the position of the placement portion 24 that is opposite to the horn 16, and is below the center position of the placement portion 24 that is opposite to the horn 16. The space part 30 is formed in. The presence of the space 30 allows infrared rays to pass through the infrared transmitting body 22 in the vertical direction of the mounting portion 24. In this space portion 30, an infrared reflecting mirror 32 that reflects infrared rays is arranged on a straight line passing through the horn 16 and the infrared transmitting body 22, and its mirror surface 32 a is 45 with respect to a straight line passing through the horn 16 and the infrared transmitting body 22. ° Installed at an angle. Furthermore, an infrared path 34 is provided at the infrared reflection destination for the reflected infrared light to be emitted from the space 30 to the outside of the anvil 18. The infrared path 34 allows the space 30 and the outside to be connected. linked. An infrared detection unit 36a of an infrared radiation thermometer 36 for detecting infrared rays reflected from the infrared reflection mirror 32 and emitted to the outside of the anvil 18 is seen at the tip of the infrared passage 34 when viewed from the infrared reflection mirror 32. Has been placed.

このような構成のアンビル18の支持部26は、ロードセル38上に固定されており、アンビル18は上下方向に移動可能になっている。これにより、上下方向の位置合わせが可能になっている。   The support portion 26 of the anvil 18 having such a configuration is fixed on the load cell 38, and the anvil 18 is movable in the vertical direction. Thereby, the vertical alignment is possible.

赤外線透過体22を構成する材料としては、特に限定されるものではなく、使用する赤外線放射温度計の検知波長域を透過しやすい材料であれば良い。一般的な赤外線放射温度計の検知波長域である0.7〜14μm域を透過しやすい材料としては、例えば、NaCl・KBr・KCl・CsI等のアルカリハライド類、BaF、ZnS、ZnSe、Geなどを挙げることができる。これらは、特に、板状のものが好ましい。 The material constituting the infrared transmissive body 22 is not particularly limited as long as the material easily transmits the detection wavelength region of the infrared radiation thermometer to be used. Examples of materials that can easily pass through a detection wavelength range of 0.7 to 14 μm of a general infrared radiation thermometer include alkali halides such as NaCl · KBr · KCl · CsI, BaF 2 , ZnS, ZnSe, Ge And so on. These are particularly preferably plate-shaped ones.

赤外線反射ミラー32のミラー面32aを構成する材料としては、特に限定されるものではなく、赤外線を反射しやすい材料であれば良い。このような材料としては、例えば、Ag、Au、Cuなどを挙げることができる。また、通常の光学用Al蒸着ミラーを用いても良い。   The material constituting the mirror surface 32a of the infrared reflecting mirror 32 is not particularly limited as long as it is a material that easily reflects infrared rays. Examples of such materials include Ag, Au, and Cu. Moreover, you may use a normal optical Al vapor deposition mirror.

超音波接合可能な高分子材料としては、特に限定されるものではないが、赤外線を透過しやすい材料が好ましい。その形状としては、フィルム状が好ましい。より具体的には、例えば、PETフィルムなどを挙げることができる。   The polymer material that can be ultrasonically bonded is not particularly limited, but a material that easily transmits infrared rays is preferable. The shape is preferably a film. More specifically, a PET film etc. can be mentioned, for example.

高分子材料として、例えば樹脂フィルムを例に挙げて、超音波接合時における超音波接合装置10の作用・効果について説明する。図2に示すように、アンビル18の載置部24内の赤外線透過体22とホーン16との間に重ね合わされた2枚の樹脂フィルム40a,40bを超音波振動させると、その接触界面40cの温度が上昇し、その接触界面40cで樹脂フィルム40a,40bの樹脂が溶着され、2枚の樹脂フィルム40a,40bが接合される。その超音波接合時には、2枚の樹脂フィルム40a,40bの接合界面40dからその温度に基づく赤外線Rが放射される。放射された赤外線Rは、下側の樹脂フィルム40bおよび赤外線透過体22を通過し、空間部30内の赤外線反射ミラー32のミラー面32aに到達する。到達した赤外線Rはミラー面32aで反射され、空間部30から赤外線通路34を通ってアンビル18の外に放出される。そして、赤外線反射ミラー32から見て赤外線通路34の先に設置された赤外線放射温度計36の赤外線検知部36aにより、アンビル18の外に放出された赤外線Rを検知する。この検知した赤外線Rにより、超音波接合時における樹脂フィルム40a,40bの接合界面40dの温度を測定(モニタ)できる。   As a polymer material, for example, a resin film is taken as an example, and operations and effects of the ultrasonic bonding apparatus 10 during ultrasonic bonding will be described. As shown in FIG. 2, when the two resin films 40a and 40b superimposed between the infrared transmitting body 22 and the horn 16 in the mounting portion 24 of the anvil 18 are ultrasonically vibrated, the contact interface 40c The temperature rises, the resin of the resin films 40a and 40b is welded at the contact interface 40c, and the two resin films 40a and 40b are joined. During the ultrasonic bonding, an infrared ray R based on the temperature is radiated from the bonding interface 40d between the two resin films 40a and 40b. The emitted infrared ray R passes through the lower resin film 40 b and the infrared transmissive body 22 and reaches the mirror surface 32 a of the infrared reflecting mirror 32 in the space 30. The reached infrared ray R is reflected by the mirror surface 32 a and is emitted from the space 30 through the infrared passage 34 to the outside of the anvil 18. Then, the infrared ray R emitted outside the anvil 18 is detected by the infrared detector 36 a of the infrared radiation thermometer 36 installed at the tip of the infrared passage 34 when viewed from the infrared reflection mirror 32. With this detected infrared ray R, the temperature of the bonding interface 40d of the resin films 40a and 40b during ultrasonic bonding can be measured (monitored).

また、超音波接合装置10においては、アンビル18のホーン16に相対する部分に赤外線透過体22が用いられており、ホーン16および赤外線透過体22を通る直線上に赤外線反射ミラー32が配置されるとともにその赤外線反射ミラー32の反射先に赤外線放射温度計36が配置されているため、樹脂フィルム40a,40bの接合界面40dに直交する方向に放射された赤外線Rにより超音波接合時における樹脂フィルム40a,40bの接合界面40dの温度をモニタできる。そして、この接合界面40dに直交する方向に放射された赤外線Rは強度が大きいため、精度良く接合界面40dの温度をモニタできる。   Further, in the ultrasonic bonding apparatus 10, the infrared transmitting body 22 is used in a portion of the anvil 18 facing the horn 16, and the infrared reflecting mirror 32 is arranged on a straight line passing through the horn 16 and the infrared transmitting body 22. In addition, since the infrared radiation thermometer 36 is disposed at the reflection destination of the infrared reflection mirror 32, the resin film 40a at the time of ultrasonic bonding by the infrared ray R radiated in the direction orthogonal to the bonding interface 40d of the resin films 40a and 40b. , 40b can be monitored. Since the infrared ray R radiated in the direction orthogonal to the bonding interface 40d has a high intensity, the temperature of the bonding interface 40d can be monitored with high accuracy.

次に、本発明の第二実施形態に係る高分子材料の超音波接合装置について説明する。第二実施形態に係る高分子材料の超音波接合装置110(以下、超音波接合装置110ということがある。)は第一実施形態に係る超音波接合装置10と同様の基本的構成を備えている。具体的には、図3に示すように、発振器12と、振動子14と、ホーン16と、アンビル18と、押圧部20と、からなる基本的構成を備えている。   Next, an ultrasonic bonding apparatus for polymer materials according to a second embodiment of the present invention will be described. The polymer material ultrasonic bonding apparatus 110 according to the second embodiment (hereinafter also referred to as the ultrasonic bonding apparatus 110) has the same basic configuration as the ultrasonic bonding apparatus 10 according to the first embodiment. Yes. Specifically, as shown in FIG. 3, a basic configuration including an oscillator 12, a vibrator 14, a horn 16, an anvil 18, and a pressing portion 20 is provided.

また、第二実施形態に係る超音波接合装置110は、第一実施形態に係る超音波接合装置10と同様にアンビル18の一部を赤外線透過体22で構成している。第二実施形態に係る超音波接合装置110は、第一実施形態に係る超音波接合装置10と比較して、ホーン16および赤外線透過体22を通る直線上に、赤外線反射ミラーに代えて赤外線放射温度計36が配置されている点が異なっている。この赤外線放射温度計36の赤外線検知部36aは、赤外線透過体22を介してホーン16の先端面16aに向けられており、赤外線透過体22を介して赤外線放射温度計36により、超音波接合時における高分子材料の接合界面の温度を測定(モニタ)できるようになっている。すなわち、赤外線反射ミラーを介さないで赤外線放射温度計36により直接温度測定するものである。   In addition, the ultrasonic bonding apparatus 110 according to the second embodiment includes a part of the anvil 18 composed of the infrared transmitting body 22 in the same manner as the ultrasonic bonding apparatus 10 according to the first embodiment. Compared with the ultrasonic bonding apparatus 10 according to the first embodiment, the ultrasonic bonding apparatus 110 according to the second embodiment has an infrared radiation instead of an infrared reflection mirror on a straight line passing through the horn 16 and the infrared transmission body 22. The difference is that a thermometer 36 is arranged. The infrared detector 36 a of the infrared radiation thermometer 36 is directed to the tip surface 16 a of the horn 16 through the infrared transmission body 22, and the infrared radiation thermometer 36 passes through the infrared transmission body 22 to perform ultrasonic bonding. It is possible to measure (monitor) the temperature of the bonding interface of the polymer material. That is, the temperature is directly measured by the infrared radiation thermometer 36 without using the infrared reflection mirror.

また、第二実施形態に係る超音波接合装置110によれば、高分子材料の接合界面に直交する方向に放射された赤外線により超音波接合時における接合界面の温度をモニタできる。そして、接合界面に直交する方向に放射された赤外線は強度が大きいため、精度良く接合界面の温度をモニタできる。   Moreover, according to the ultrasonic bonding apparatus 110 according to the second embodiment, the temperature of the bonding interface at the time of ultrasonic bonding can be monitored by infrared rays radiated in a direction orthogonal to the bonding interface of the polymer material. And since the infrared rays radiated in the direction orthogonal to the bonding interface have a high intensity, the temperature of the bonding interface can be monitored with high accuracy.

次に、本発明に係る高分子材料の超音波接合方法(以下、本超音波接合方法ということがある。)について、第一実施形態に係る超音波接合装置10を用いて(図1および図2を用いて)説明する。なお、本発明に係る高分子材料の超音波接合方法は、第二実施形態に係る超音波接合装置110を用いて行うこともできる。   Next, an ultrasonic bonding method for polymer materials according to the present invention (hereinafter sometimes referred to as the present ultrasonic bonding method) is performed using the ultrasonic bonding apparatus 10 according to the first embodiment (FIGS. 1 and 1). 2). The ultrasonic bonding method of the polymer material according to the present invention can also be performed using the ultrasonic bonding apparatus 110 according to the second embodiment.

まず、超音波接合する高分子材料40a,40bを超音波接合装置10のアンビル18の載置部24の載置面24a上に載置する。次いで、ホーン16の先端面16aとアンビル18の載置部24の載置面24aとで高分子材料40a,40bを挟み加圧した状態で高分子材料40a,40bに超音波振動を付与して、高分子材料40a,40bをその接触界面40cで接合する。   First, the polymer materials 40 a and 40 b to be ultrasonically bonded are placed on the mounting surface 24 a of the mounting portion 24 of the anvil 18 of the ultrasonic bonding apparatus 10. Next, ultrasonic vibration is applied to the polymer materials 40a and 40b while the polymer materials 40a and 40b are sandwiched and pressed between the tip surface 16a of the horn 16 and the placement surface 24a of the placement portion 24 of the anvil 18. The polymer materials 40a and 40b are joined at the contact interface 40c.

そして、本超音波接合方法においては、この超音波接合時における高分子材料40a,40bの接合界面40dの温度を測定することに特徴がある。すなわち、この接合界面40dの温度をモニタしながら高分子材料40a,40bの超音波接合を行う。高分子材料40a,40bの超音波接合においては、超音波振動によって高分子材料40a,40bが溶着されることによりその接触界面40cで高分子材料40a,40bが接合されることから、超音波接合時における高分子材料40a,40bの接合界面40dの温度は、その接合界面40dの接合の良否を判断する指標にできる。したがって、超音波接合時における接合界面40dの温度からその接合界面40dの接合の良否を判断することにより、安定した品質の接合物(超音波接合された高分子材料)を得ることができる。   The ultrasonic bonding method is characterized in that the temperature of the bonding interface 40d between the polymer materials 40a and 40b during the ultrasonic bonding is measured. That is, ultrasonic bonding of the polymer materials 40a and 40b is performed while monitoring the temperature of the bonding interface 40d. In the ultrasonic bonding of the polymer materials 40a and 40b, the polymer materials 40a and 40b are bonded at the contact interface 40c by welding the polymer materials 40a and 40b by ultrasonic vibration. The temperature of the bonding interface 40d between the polymer materials 40a and 40b at that time can be used as an index for determining whether or not the bonding interface 40d is bonded. Therefore, by determining whether the bonding interface 40d is bonded or not based on the temperature of the bonding interface 40d at the time of ultrasonic bonding, it is possible to obtain a bonded product (polymer material subjected to ultrasonic bonding) with stable quality.

この際、超音波接合する高分子材料40a,40bを載置するアンビル18の少なくとも一部に赤外線透過体22を用いる。より具体的には、例えば、アンビル18の高分子材料40a,40bを載置する載置部24の載置面24aから載置部24の下方に形成された空間部30まで赤外線透過体22が連続する赤外線透過窓をアンビル18の載置部24内に設ける。これにより、高分子材料40a,40bの超音波接合時にその接合界面40dから放射された赤外線Rは、高分子材料40bおよび赤外線透過体22を透過して、アンビル24内の空間部30に到達する。そして、この空間部30内に設けられた赤外線反射ミラー32を介して赤外線反射ミラー32の反射先に設けられた赤外線放射温度計36により、赤外線透過体22を透過した赤外線Rを検知する。これにより、超音波接合時における接合界面40dの温度が測定できる。この測定温度に基づいてその接合界面40dの接合の良否を判断する。   At this time, the infrared transmitting body 22 is used for at least a part of the anvil 18 on which the polymer materials 40a and 40b to be ultrasonically bonded are placed. More specifically, for example, the infrared transmission body 22 extends from the placement surface 24a of the placement portion 24 on which the polymer materials 40a and 40b of the anvil 18 are placed to the space portion 30 formed below the placement portion 24. A continuous infrared transmission window is provided in the mounting portion 24 of the anvil 18. Thereby, the infrared rays R radiated from the bonding interface 40d during the ultrasonic bonding of the polymer materials 40a and 40b are transmitted through the polymer material 40b and the infrared transmitting body 22 and reach the space 30 in the anvil 24. . The infrared radiation R transmitted through the infrared transmissive body 22 is detected by the infrared radiation thermometer 36 provided at the reflection destination of the infrared reflection mirror 32 via the infrared reflection mirror 32 provided in the space 30. Thereby, the temperature of the bonding interface 40d at the time of ultrasonic bonding can be measured. Based on this measured temperature, the quality of the bonding at the bonding interface 40d is determined.

このとき、ホーン16および赤外線透過体22を通る直線上に赤外線反射ミラー36を配置し、高分子材料40a,40bの接合界面40dに直交する方向の赤外線Rを赤外線反射ミラー36で反射させて、この反射された赤外線Rを検知するようにすると、赤外線の強度が大きいため、精度良く温度測定ができる。   At this time, the infrared reflecting mirror 36 is arranged on a straight line passing through the horn 16 and the infrared transmitting body 22, and the infrared ray R in the direction orthogonal to the bonding interface 40d of the polymer materials 40a and 40b is reflected by the infrared reflecting mirror 36. If the reflected infrared ray R is detected, the intensity of the infrared ray is high, and therefore the temperature can be measured with high accuracy.

ここで、高分子材料40a,40bの超音波接合時にその接合界面40dから放射された赤外線Rは、赤外線放射温度計36に到達する前に、高分子材料40bおよび赤外線透過体22を透過する。したがって、赤外線Rは赤外線放射温度計36に到達する前に高分子材料40bおよび赤外線透過体22により吸収されて減衰する。また、接合界面40dの材料の赤外線放射率で接合界面40dから赤外線Rは放射される。そのため、この方法においては、超音波接合時における接合界面40dの実温度と、その放射赤外線Rによる測定温度との間にずれが生じている。   Here, the infrared ray R emitted from the bonding interface 40d during ultrasonic bonding of the polymer materials 40a and 40b passes through the polymer material 40b and the infrared transmission body 22 before reaching the infrared radiation thermometer 36. Therefore, before the infrared ray R reaches the infrared radiation thermometer 36, it is absorbed and attenuated by the polymer material 40b and the infrared transmission body 22. Further, the infrared ray R is radiated from the bonding interface 40d with the infrared emissivity of the material of the bonding interface 40d. Therefore, in this method, there is a difference between the actual temperature of the bonding interface 40d at the time of ultrasonic bonding and the measurement temperature by the radiated infrared ray R.

この測定温度をもとに、温度のずれを補正しないで、その接合界面40dの接合の良否を判断することもできるが、この温度のずれを補正して、実温度に近い温度をもとに、その接合界面40dの接合の良否を判断する場合には、測定温度の精度が上がるため、より精度良く接合の良否を判断できる。   Based on this measured temperature, it is possible to determine whether or not the bonding interface 40d is bonded without correcting the temperature shift. However, the temperature shift is corrected and a temperature close to the actual temperature is corrected. When determining whether or not the bonding interface 40d is bonded, the accuracy of the measurement temperature is increased, so that the bonding quality can be determined with higher accuracy.

この測定温度をもとに、温度のずれを補正しないで、その接合界面40dの接合の良否を判断する方法としては、例えば、図4に示すように、予め、高分子材料40bおよび赤外線透過体22を透過した赤外線による測定温度と高分子材料40a,40bの接合強度(例えば接合界面40dの剥離強度など)との関係を求めておき、この関係と測定温度とにより、その接合界面の接合の良否を判断する方法を挙げることができる。例えば超音波接合時における接合界面40dの赤外線放射温度計36による測定温度がA℃であったとすると、図4のグラフから、超音波接合時における接合界面40dの接合強度をXと算出することができる。例えばこのXの値が閾値Yを超えていれば、十分に接合されたと判断できる。   For example, as shown in FIG. 4, a polymer material 40b and an infrared transmitting body are preliminarily determined as a method for determining whether or not the bonding interface 40d is bonded without correcting the temperature deviation based on the measured temperature. 22, the relationship between the measurement temperature by the infrared ray transmitted through 22 and the bonding strength of the polymer materials 40a and 40b (for example, the peel strength of the bonding interface 40d) is obtained, and the bonding of the bonding interface is determined by this relationship and the measurement temperature. A method for judging pass / fail can be mentioned. For example, assuming that the temperature measured by the infrared radiation thermometer 36 at the bonding interface 40d at the time of ultrasonic bonding is A ° C., the bonding strength of the bonding interface 40d at the time of ultrasonic bonding can be calculated as X from the graph of FIG. it can. For example, if the value of X exceeds the threshold Y, it can be determined that the joint has been sufficiently performed.

これに対し、温度のずれを補正して、実温度に近い温度をもとに、その接合界面40dの接合の良否を判断する場合、図5に示すように、予め、高分子材料40bおよび赤外線透過体22を透過した赤外線による測定温度と実温度との関係を求めておき、この関係と測定温度とにより、その接合界面40dの実温度を算出する方法を採用することが好ましい。例えば超音波接合時における接合界面40dの赤外線放射温度計36による測定温度がA℃であったとすると、図5のグラフから、接合界面40dの実温度をA’℃と算出することができる。例えば算出した実温度A’℃が高分子材料40a,40bの溶着温度を超えていれば、十分に接合されたと判断できる。   On the other hand, when correcting the temperature deviation and determining whether or not the bonding interface 40d is bonded based on a temperature close to the actual temperature, as shown in FIG. It is preferable to employ a method in which the relationship between the measured temperature and the actual temperature by infrared rays transmitted through the transmissive body 22 is calculated and the actual temperature of the bonding interface 40d is calculated based on this relationship and the measured temperature. For example, if the temperature measured by the infrared radiation thermometer 36 at the bonding interface 40d at the time of ultrasonic bonding is A ° C., the actual temperature of the bonding interface 40d can be calculated as A ′ ° C. from the graph of FIG. For example, if the calculated actual temperature A ′ ° C. exceeds the welding temperature of the polymer materials 40a and 40b, it can be determined that the bonding is sufficiently performed.

図5に示す関係は、例えば図6に示す装置を用いて求めることができる。具体的には、赤外線透過体22の上に、超音波接合する高分子材料と同じ(厚さ・材質の)高分子材料40bを載置し、この高分子材料40bの上に、赤外線を通さない十分厚いシリコンゴム42を載置し、このシリコンゴム42の上にアルミブロック44を載置し、このアルミブロック44の上にブロックヒーター46を載置する。アルミブロック44はシリコンゴム42を均一に加熱するものである。赤外線透過体22の下方には赤外線放射温度計36を配置し、その赤外線検知部36aを高分子材料40bに向ける。次いで、高分子材料40bとシリコンゴム42との間の、赤外線放射温度計36により温度検知する領域外に、熱電対48を挿入する。   The relationship shown in FIG. 5 can be obtained using, for example, the apparatus shown in FIG. Specifically, the same polymer material 40b (thickness and material) as the polymer material to be ultrasonically bonded is placed on the infrared transmitting body 22, and infrared rays are passed through the polymer material 40b. A sufficiently thick silicon rubber 42 is placed, an aluminum block 44 is placed on the silicon rubber 42, and a block heater 46 is placed on the aluminum block 44. The aluminum block 44 heats the silicon rubber 42 uniformly. An infrared radiation thermometer 36 is disposed below the infrared transmitting body 22, and the infrared detecting portion 36a faces the polymer material 40b. Next, a thermocouple 48 is inserted outside the region where the temperature is detected by the infrared radiation thermometer 36 between the polymer material 40 b and the silicon rubber 42.

次いで、アルミブロック44を介してブロックヒーター46でシリコンゴム42を所定温度に加熱し、温度が安定したところで、高分子材料40bとシリコンゴム42との間のシリコンゴム42の表面の温度を熱電対48で測定するとともに、シリコンゴム42の表面から放射され、高分子材料40bおよび赤外線透過体22を透過した赤外線Rを赤外線放射温度計36で検知する。いくつかの加熱温度において、このような操作を行えば、熱電対48で測定した温度と赤外線放射温度計36で測定した温度との関係をグラフに表すことができる。これにより、図5に示す関係を求めることができる。   Next, the silicon rubber 42 is heated to a predetermined temperature by the block heater 46 through the aluminum block 44, and when the temperature is stabilized, the surface temperature of the silicon rubber 42 between the polymer material 40b and the silicon rubber 42 is changed to a thermocouple. In addition to the measurement at 48, the infrared radiation thermometer 36 detects the infrared radiation R emitted from the surface of the silicon rubber 42 and transmitted through the polymer material 40 b and the infrared transmission body 22. If such an operation is performed at several heating temperatures, the relationship between the temperature measured by the thermocouple 48 and the temperature measured by the infrared radiation thermometer 36 can be represented in a graph. As a result, the relationship shown in FIG. 5 can be obtained.

以上の本発明に係る高分子材料の超音波接合方法によれば、超音波接合時における接合界面の温度をモニタできる。これにより、超音波接合を行う高分子材料の全数について超音波接合時に精度良く接合の良否を判断できるため、超音波接合された高分子材料の品質が安定する。   According to the ultrasonic bonding method for polymer materials according to the present invention described above, the temperature at the bonding interface during ultrasonic bonding can be monitored. As a result, the quality of the polymer material subjected to ultrasonic bonding can be stabilized because it is possible to accurately determine the quality of the bonding with respect to the total number of polymer materials to be ultrasonically bonded.

また、超音波接合を繰り返し行うと、ホーンやアンビルの表面が摩耗して高分子材料への超音波振動の伝達が悪くなる。そうすると、一定の接合条件(超音波の振幅やホーン荷重など)においては、超音波接合時における接合界面の温度が低下する。これにより、接合不良が生じやすくなる。この問題に対し、本発明に係る高分子材料の超音波接合方法によれば、超音波接合時に接合界面の温度をモニタするため、超音波接合時における接合界面の温度低下により、ホーンやアンビルの表面の摩耗などの影響で超音波振動の伝達が悪くなっていることが把握できる。これにより、接合条件の変更のタイミング、あるいは、ホーンやアンビルを交換するタイミングを把握できる。そして、これにより、高分子材料の接合不良品の産出を防止できる。   In addition, when ultrasonic bonding is repeatedly performed, the surface of the horn or anvil is worn and transmission of ultrasonic vibration to the polymer material is deteriorated. As a result, under certain bonding conditions (such as ultrasonic amplitude and horn load), the temperature at the bonding interface during ultrasonic bonding decreases. As a result, poor bonding is likely to occur. With respect to this problem, according to the ultrasonic bonding method of the polymer material according to the present invention, the temperature of the bonding interface is monitored during ultrasonic bonding. It can be understood that the transmission of ultrasonic vibration has deteriorated due to the influence of surface wear and the like. Thereby, it is possible to grasp the timing of changing the joining conditions or the timing of replacing the horn or anvil. As a result, it is possible to prevent the production of defective bonding of the polymer material.

さらに、接合界面の温度をモニタできるので、これに基づいて、接合条件を決定することもできる。   Furthermore, since the temperature of the bonding interface can be monitored, the bonding conditions can be determined based on this.

以下に本発明を実施例により具体的に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

<放射赤外線に基づく測定温度と実温度との関係の算出>
図7に示すように、厚さ5mmのNaCl板(22)の上に厚さ188μmのPETフィルム(40b)を載置し、このPETフィルム(40b)の上に厚さ10mmの赤外線を通さない板状のシリコンゴム(42)を載置し、このシリコンゴム(42)の上にアルミブロック(44)を載置し、このアルミブロック(44)の上にブロックヒーター(46)を載置した。次いで、PETフィルム(40b)とシリコンゴム(42)との間の、赤外線放射温度計(36)により温度検知する領域外に、熱電対(48)を挿入し、シリコンゴム(42)の表面にポリイミドテープを用いて熱電対(48)を貼り付けた。次いで、アルミブロック(44)を介してブロックヒーター(46)でシリコンゴム(42)を所定温度に加熱した。なお、アルミブロック(44)はシリコンゴム(42)を均一に加熱するために設置している。
<Calculation of relationship between measured temperature and actual temperature based on radiant infrared>
As shown in FIG. 7, a PET film (40b) having a thickness of 188 μm is placed on a NaCl plate (22) having a thickness of 5 mm, and an infrared ray having a thickness of 10 mm is not allowed to pass through the PET film (40b). A plate-shaped silicon rubber (42) was placed, an aluminum block (44) was placed on the silicon rubber (42), and a block heater (46) was placed on the aluminum block (44). . Next, a thermocouple (48) is inserted between the PET film (40b) and the silicon rubber (42) outside the region where the temperature is detected by the infrared radiation thermometer (36), and the surface of the silicon rubber (42) is inserted. The thermocouple (48) was affixed using the polyimide tape. Next, the silicon rubber (42) was heated to a predetermined temperature by the block heater (46) through the aluminum block (44). The aluminum block (44) is installed to uniformly heat the silicon rubber (42).

温度が安定したところで、PETフィルム(40b)とシリコンゴム(42)との間のシリコンゴム(42)の表面の温度を熱電対(48)で測定するとともに、シリコンゴム(42)の表面から放射され、PETフィルム(40b)とNaCl板(22)を透過し、赤外線を反射する銀ミラー(32)で反射された赤外線(R)に基づいて、赤外線放射温度計(36)を用いて温度を測定した。この際、プラスチックの赤外線放射率は0.90であり、厚さ5mmのNaCl板(22)の赤外線透過率は0.95であり、銀ミラー(32)による赤外線反射率は100%であるとして測定した。   When the temperature is stabilized, the surface temperature of the silicon rubber (42) between the PET film (40b) and the silicon rubber (42) is measured with a thermocouple (48) and radiated from the surface of the silicon rubber (42). Based on the infrared (R) reflected by the silver mirror (32) that passes through the PET film (40b) and the NaCl plate (22) and reflects the infrared, the temperature is measured using an infrared radiation thermometer (36). It was measured. At this time, the infrared emissivity of the plastic is 0.90, the infrared transmittance of the 5 mm thick NaCl plate (22) is 0.95, and the infrared reflectivity by the silver mirror (32) is 100%. It was measured.

シリコンゴム(42)は赤外線(R)を通さないことから、図7において赤外線放射温度計(36)を用いて測定できるのは、PETフィルム(40b)とシリコンゴム(42)との間のシリコンゴム(42)の表面までであり、この範囲内において最も温度の高いところはシリコンゴム(42)の表面である。したがって、赤外線放射温度計(36)は、このシリコンゴム(42)の表面から放射され、PETフィルム(40b)とNaCl板(22)を透過する赤外線(R)の放射量を測定している。   Since the silicon rubber (42) does not pass infrared rays (R), in FIG. 7, it is possible to measure the silicon between the PET film (40b) and the silicone rubber (42) using the infrared radiation thermometer (36). Up to the surface of the rubber (42), the highest temperature in this range is the surface of the silicon rubber (42). Therefore, the infrared radiation thermometer (36) measures the radiation amount of infrared rays (R) emitted from the surface of the silicon rubber (42) and transmitted through the PET film (40b) and the NaCl plate (22).

各温度についてそれぞれ3回測定した。その結果を表1に示した。また、熱電対による測定値と赤外線放射温度計による測定値との関係を図8(グラフ1)に表した。   Each temperature was measured three times. The results are shown in Table 1. Moreover, the relationship between the measured value by a thermocouple and the measured value by an infrared radiation thermometer is shown in FIG. 8 (graph 1).

図8(グラフ1)によれば、熱電対による測定値と赤外線放射温度計による測定値とが比例関係にあることが確認できた。そこで、この関係と赤外線放射温度計による測定値とからシリコンゴム表面の実温度を算出できることが確認できた。   According to FIG. 8 (graph 1), it was confirmed that the measured value by the thermocouple and the measured value by the infrared radiation thermometer are in a proportional relationship. Therefore, it was confirmed that the actual temperature of the silicon rubber surface can be calculated from this relationship and the measured value by the infrared radiation thermometer.

これによれば、赤外線透過率が不明な高分子材料について、予め熱電対による測定値と赤外線放射温度計による測定値との関係を求めておけば、超音波接合時における接合界面の温度を全数モニターできることが確認できた。   According to this, regarding the polymer material whose infrared transmittance is unknown, if the relationship between the measured value by the thermocouple and the measured value by the infrared radiation thermometer is obtained in advance, the temperature of the bonding interface at the time of ultrasonic bonding It was confirmed that monitoring was possible.

なお、厚さ188μmのPETフィルムの赤外線透過率の影響により、熱電対による測定値と赤外線放射温度計による測定値との関係を表すグラフ1(図8)は、所定の傾きと切片を有するものになっている。   Graph 1 (FIG. 8) showing the relationship between the measured value by the thermocouple and the measured value by the infrared radiation thermometer due to the influence of the infrared transmittance of the PET film having a thickness of 188 μm has a predetermined slope and intercept. It has become.

<超音波接合>
(実施例1)
図1に示す構成の超音波接合装置を用い、上記PETフィルムと同じPETフィルム(厚さ188μm)の超音波接合を行った。具体的には、図2に示すように、赤外線透過体であるNaCl板(厚さ5mm)上にPETフィルムを2枚重ねて載置した。次いで、振幅14μm、ホーン荷重23Nの条件下で10秒間超音波接合を行った。この際、赤外線放射温度計により、超音波接合時における接合界面の温度を測定した。より具体的には、超音波接合時に接合界面から放射され、PETフィルムおよびNaCl板を透過し、赤外線反射ミラーにより反射された赤外線を赤外線放射温度計で検出することにより、超音波接合時における接合界面の温度を測定した。次いで、図8のグラフをもとにこの測定温度を実温度に変換し、さらに、室温(23℃)との温度差(上昇温度ΔT℃)に変換して、経過時間(Time)と上昇温度ΔTとの関係を求めた。その結果を図9(グラフ2)に示した。
<Ultrasonic bonding>
Example 1
Using the ultrasonic bonding apparatus having the configuration shown in FIG. 1, ultrasonic bonding of the same PET film (thickness: 188 μm) as the PET film was performed. Specifically, as shown in FIG. 2, two PET films were placed on a NaCl plate (thickness: 5 mm), which is an infrared ray transmitting member, so as to overlap. Subsequently, ultrasonic bonding was performed for 10 seconds under conditions of an amplitude of 14 μm and a horn load of 23N. Under the present circumstances, the temperature of the joining interface at the time of ultrasonic joining was measured with the infrared radiation thermometer. More specifically, bonding at the time of ultrasonic bonding is detected by detecting infrared rays emitted from the bonding interface during ultrasonic bonding, transmitted through the PET film and NaCl plate, and reflected by the infrared reflecting mirror with an infrared radiation thermometer. The interface temperature was measured. Next, this measured temperature is converted into an actual temperature based on the graph of FIG. 8, and further converted into a temperature difference (increased temperature ΔT ° C.) from room temperature (23 ° C.). The relationship with ΔT was determined. The results are shown in FIG. 9 (Graph 2).

(実施例2〜4)
超音波接合条件(振幅、ホーン荷重)を変更した以外は、実施例1と同様にして超音波接合を行い、このときの経過時間(Time)と上昇温度ΔTとの関係を求めた。その結果を図10(グラフ3)、図11(グラフ4)に示した。
(Examples 2 to 4)
Except for changing the ultrasonic bonding conditions (amplitude, horn load), ultrasonic bonding was performed in the same manner as in Example 1, and the relationship between the elapsed time (Time) and the rising temperature ΔT was obtained. The results are shown in FIG. 10 (Graph 3) and FIG. 11 (Graph 4).

実施例1〜2の接合条件では、超音波接合時に接合界面の温度が十分に上昇しており、超音波接合が適切に行われたことが分かる。実際、超音波接合後のPETフィルムは十分に接合されていた。これに対し、実施例3〜4の接合条件では、超音波接合時に接合界面の温度があまり上昇しておらず、超音波接合が適切に行われていないことが分かる。実際、超音波接合後のPETフィルムは接合されていなかった。   Under the bonding conditions of Examples 1 and 2, the temperature at the bonding interface was sufficiently increased during ultrasonic bonding, indicating that ultrasonic bonding was appropriately performed. Actually, the PET film after ultrasonic bonding was sufficiently bonded. On the other hand, under the bonding conditions of Examples 3 to 4, it can be seen that the temperature of the bonding interface does not increase so much during ultrasonic bonding, and ultrasonic bonding is not properly performed. Actually, the PET film after ultrasonic bonding was not bonded.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

例えば、本超音波接合方法において、第二実施形態に係る超音波接合装置110を用いる場合には、空間部30内には赤外線放射温度計36が設けられていることから、空間部30内に設けられた赤外線放射温度計により、赤外線透過体を透過した赤外線を検知することにより、超音波接合時における接合界面の温度が測定できる。そして、空間部30内に赤外線放射温度計36を設ける場合には、ホーン16および赤外線透過体22を通る直線上に赤外線放射温度計36を配置し、高分子材料の接合界面に直交する方向の赤外線を検知するようにすると、赤外線の強度が大きいため、精度良く温度測定ができる。   For example, in the ultrasonic bonding method, when the ultrasonic bonding apparatus 110 according to the second embodiment is used, the infrared radiation thermometer 36 is provided in the space 30, and therefore, in the space 30. The temperature of the bonding interface at the time of ultrasonic bonding can be measured by detecting the infrared light transmitted through the infrared transmitting body with the provided infrared radiation thermometer. And when providing the infrared radiation thermometer 36 in the space part 30, the infrared radiation thermometer 36 is arrange | positioned on the straight line which passes along the horn 16 and the infrared-transmitting body 22, and it is the direction orthogonal to the joining interface of a polymeric material. If infrared rays are detected, the intensity of infrared rays is large, and therefore temperature measurement can be performed with high accuracy.

10 超音波接合装置
12 発振器
14 振動子
16 ホーン
18 アンビル
20 押圧部
22 赤外線透過体
32 赤外線反射ミラー
36 赤外線放射温度計
40a、40b 高分子材料
40c 接触界面
40d 接合界面
R 赤外線
DESCRIPTION OF SYMBOLS 10 Ultrasonic bonding apparatus 12 Oscillator 14 Oscillator 16 Horn 18 Anvil 20 Press part 22 Infrared transmitting body 32 Infrared reflecting mirror 36 Infrared radiation thermometer 40a, 40b Polymer material 40c Contact interface 40d Bonding interface R Infrared

Claims (5)

超音波接合する高分子材料を載置するアンビルの少なくとも一部に赤外線透過体を用い、前記高分子材料の超音波接合時にその接合界面から放射された赤外線を該赤外線透過体を介して検知して、前記超音波接合時における接合界面の温度を測定することを特徴とする高分子材料の超音波接合方法。   An infrared transmitting body is used for at least a part of the anvil on which the polymer material to be ultrasonically bonded is placed, and infrared rays emitted from the bonding interface during ultrasonic bonding of the polymeric material are detected via the infrared transmitting body. Then, the temperature of the bonding interface at the time of ultrasonic bonding is measured. 前記超音波接合時における接合界面の温度を測定するための赤外線は、前記高分子材料の接合界面に直交する方向に放射された赤外線であることを特徴とする請求項1に記載の高分子材料の超音波接合方法。   2. The polymer material according to claim 1, wherein the infrared rays for measuring the temperature of the bonding interface during the ultrasonic bonding are infrared rays radiated in a direction orthogonal to the bonding interface of the polymer material. Ultrasonic bonding method. 前記超音波接合時における接合界面の温度は、前記高分子材料および前記赤外線透過体を介して赤外線放射温度計により測定された被測定物の測定温度と、前記被測定物の実温度と、の関係式を用いて算出することを特徴とする請求項1または2に記載の高分子材料の超音波接合方法。   The temperature of the bonding interface at the time of ultrasonic bonding is the measurement temperature of the object measured by an infrared radiation thermometer via the polymer material and the infrared transmission body, and the actual temperature of the object to be measured. 3. The ultrasonic bonding method for polymer materials according to claim 1, wherein the calculation is performed using a relational expression. 超音波振動を与えるホーンと該ホーンに相対するアンビルとの間に高分子材料を挟んで加圧し、前記高分子材料の接触界面に超音波振動を与えることにより前記高分子材料をその接触界面で接合する高分子材料の超音波接合装置において、
前記アンビルの少なくとも一部を赤外線透過体で構成するとともに、前記高分子材料の超音波接合時にその接合界面から放射された赤外線を該赤外線透過体を介して検知する赤外線放射温度計を設けたことを特徴とする高分子材料の超音波接合装置。
The polymer material is pressed at the contact interface by applying ultrasonic vibration to the contact interface of the polymer material by pressing the polymer material between the horn that imparts ultrasonic vibration and the anvil opposite to the horn. In ultrasonic bonding equipment for polymer materials to be joined,
An infrared radiation thermometer for detecting at least a part of the anvil with an infrared transmitting body and detecting infrared rays emitted from the bonding interface during ultrasonic bonding of the polymer material through the infrared transmitting body is provided. An ultrasonic bonding apparatus for polymer materials.
前記赤外線透過体は、前記アンビルの前記ホーンに相対する部分に用いられており、前記ホーンおよび前記赤外線透過体を通る直線上に前記赤外線放射温度計が配置されている、あるいは、前記ホーンおよび前記赤外線透過体を通る直線上に赤外線反射ミラーが配置されるとともにその赤外線反射ミラーの反射先に前記赤外線放射温度計が配置されていることを特徴とする請求項4に記載の高分子材料の超音波接合装置。   The infrared transmitting body is used in a portion of the anvil facing the horn, and the infrared radiation thermometer is arranged on a straight line passing through the horn and the infrared transmitting body, or the horn and the horn 5. The super-polymer material according to claim 4, wherein an infrared reflecting mirror is disposed on a straight line passing through the infrared transmitting body, and the infrared radiation thermometer is disposed at a reflection destination of the infrared reflecting mirror. Sonic bonding device.
JP2010016202A 2010-01-28 2010-01-28 Ultrasonic bonding method and apparatus for polymer material Expired - Fee Related JP5445174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016202A JP5445174B2 (en) 2010-01-28 2010-01-28 Ultrasonic bonding method and apparatus for polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016202A JP5445174B2 (en) 2010-01-28 2010-01-28 Ultrasonic bonding method and apparatus for polymer material

Publications (2)

Publication Number Publication Date
JP2011152725A JP2011152725A (en) 2011-08-11
JP5445174B2 true JP5445174B2 (en) 2014-03-19

Family

ID=44539013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016202A Expired - Fee Related JP5445174B2 (en) 2010-01-28 2010-01-28 Ultrasonic bonding method and apparatus for polymer material

Country Status (1)

Country Link
JP (1) JP5445174B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805012B2 (en) * 2017-02-03 2020-12-23 日本アビオニクス株式会社 Ultrasonic bonding device and its horn replacement notification device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202644A (en) * 1999-01-19 2000-07-25 Sumitomo Wiring Syst Ltd Method for judging quality of ultrasonic welding
JP3748430B2 (en) * 2002-11-26 2006-02-22 島根県 Visualization method of ultrasonic vibration heating
JP2004345178A (en) * 2003-05-21 2004-12-09 Sanko Gosei Ltd Welded processed product and method for inspecting welded part thereof

Also Published As

Publication number Publication date
JP2011152725A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
EP3069132B1 (en) Structural bond inspection
US8541746B2 (en) Process and system for the nondestructive quality determination of a weld seam, and a welding device
JP5911903B2 (en) Beam profiler, laser oscillator, and laser processing apparatus for measuring intensity distribution of laser light
US7705292B2 (en) Method and apparatus for detecting a condition of an optical element
US9448208B2 (en) System and apparatus for dual transducer ultrasonic testing of package seals
JP6824056B2 (en) Ultrasonic bonding device
JP2014211340A (en) Optical nondestructive inspection device and optical nondestructive inspection method
JP6364353B2 (en) Apparatus and method for detecting defects during sealing of packages having foils
JP5445174B2 (en) Ultrasonic bonding method and apparatus for polymer material
JP3747266B2 (en) Focused longitudinal wave ultrasonic probe for polymer material inspection
CA2822173C (en) Method for ensuring the quality of welded plastics components
JP5133108B2 (en) Temperature measuring device and temperature measuring method
JP6620499B2 (en) Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP6604210B2 (en) Optical nondestructive inspection method and optical nondestructive inspection apparatus
JP2016155319A (en) Laser resin deposition method and device
JP6805012B2 (en) Ultrasonic bonding device and its horn replacement notification device
JP2004122560A (en) Method for welding resin material and welding device for resin material
KR101519594B1 (en) Calibration test piece unit and nondestructive infrared thermography system and method using thereof
JP6805011B2 (en) Ultrasonic bonding device and heat flow sensor mounting structure
CN109416332B (en) Thermal diffusivity measuring device, thermal diffusivity measuring method, and program
JP2019188405A (en) Ultrasonic jointing device
US20220266522A1 (en) In situ thermo acoustic non-destructive testing during three-dimensional printing
JP6231894B2 (en) Inspection method and apparatus for spot welding
JP6890051B2 (en) Ultrasonic bonding device
JP3968443B2 (en) Health diagnosis method and system for equipment subjected to thermal shock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5445174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees