JP2016155319A - Laser resin deposition method and device - Google Patents

Laser resin deposition method and device Download PDF

Info

Publication number
JP2016155319A
JP2016155319A JP2015035111A JP2015035111A JP2016155319A JP 2016155319 A JP2016155319 A JP 2016155319A JP 2015035111 A JP2015035111 A JP 2015035111A JP 2015035111 A JP2015035111 A JP 2015035111A JP 2016155319 A JP2016155319 A JP 2016155319A
Authority
JP
Japan
Prior art keywords
resin
laser
laser beam
wavelength
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015035111A
Other languages
Japanese (ja)
Inventor
勇治 越路
Yuji Koshiji
勇治 越路
和翊 鄭
Wayoku Tei
和翊 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Eyetec Co Ltd
Original Assignee
Tokai University
Eyetec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Eyetec Co Ltd filed Critical Tokai University
Priority to JP2015035111A priority Critical patent/JP2016155319A/en
Publication of JP2016155319A publication Critical patent/JP2016155319A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To monitor a processing state or processing quality of resin deposition, in a non-contact and non-destructive manner.SOLUTION: A laser resin deposition device comprises: a laser oscillation part 10 for oscillation outputting laser beam LB whose wavelength is 0.4-1.1 μm; a laser optical system 14 for collecting and radiating the laser beam LB to a workpiece (processed object) W mounted on a processing stage 12; a control part 16 for controlling respective parts in the device; and a monitor part 18 for monitoring the processing state or processing quality of the resin deposition in a non-contact and a non-destructive manner. A radiation thermometer 26 on the monitor part 18 receives a near infrared radiation NR whose wavelength is 1.8-2.5 μm radiated from a deposited part Wof the workpiece W during radiation of the laser beam LB on an optical axis of a condenser lens 22 on the laser optical system 14, and measures temperature of the deposited part Won the basis of light intensity of the near infrared radiation NR.SELECTED DRAWING: Figure 1

Description

本発明は、光透過性の樹脂と光吸収性の樹脂とをレーザによって溶着するレーザ樹脂溶着方法および装置に関する。   The present invention relates to a laser resin welding method and apparatus for welding a light-transmitting resin and a light-absorbing resin with a laser.

近年、光透過性の樹脂と光吸収性の樹脂とを接着剤を用いずに接合する方法として、溶着の熱源にレーザを用いるレーザ樹脂溶着法が注目を集めている。   In recent years, a laser resin welding method using a laser as a heat source for welding has attracted attention as a method for bonding a light-transmitting resin and a light-absorbing resin without using an adhesive.

レーザ樹脂溶着法においては、光透過性樹脂と光吸収性樹脂とが重ね合わされ、光透過性樹脂側から両樹脂の接触界面付近にレーザビームが集光照射される。そうすると、光透過性樹脂を透過したレーザビームは光吸収性樹脂で吸収され、光吸収性樹脂が発熱して溶融し、その熱が光透過性樹脂に伝わって、光透過性樹脂も溶融する。こうして、両樹脂の接触界面付近に溶融池が形成され、レーザビームの照射が止むと溶融池が凝固して、両樹脂が溶着される。   In the laser resin welding method, a light-transmitting resin and a light-absorbing resin are overlapped, and a laser beam is focused and irradiated from the light-transmitting resin side to the vicinity of the contact interface between the two resins. If it does so, the laser beam which permeate | transmitted the light transmissive resin will be absorbed by the light absorptive resin, the light absorptive resin will generate | occur | produce and fuse | melt, the heat | fever will be transmitted to the light transmissive resin, and a light transmissive resin will also fuse | melt. Thus, a molten pool is formed in the vicinity of the contact interface between the two resins, and when irradiation with the laser beam stops, the molten pool solidifies and the two resins are welded.

一般に、光吸収性の樹脂は、着色した樹脂である。着色材料には、顔料系吸収色素と染料系吸収色素の2種類がある。たとえば、黒色の顔料系吸収色素にはカーボンブラックが用いられている。   Generally, the light absorbing resin is a colored resin. There are two types of coloring materials: pigment-based absorbing dyes and dye-based absorbing dyes. For example, carbon black is used as a black pigment-based absorbing dye.

特開2005−246692号公報JP 2005-246692 A 特開2005−281522号公報JP 2005-281522 A 特開2014−177051号公報JP 2014-177051 A

レーザ樹脂溶着法は、接着剤を不要とし、さらには振動溶着法や超音波溶着法と比べても、バリや騒音・粉塵が発生しないことや、局所的な急熱急冷により周辺部への熱影響が少ないこと等の優位性を有している。   The laser resin welding method does not require an adhesive, and even compared to the vibration welding method and ultrasonic welding method, there is no generation of burrs, noise and dust, and local rapid heating and cooling causes heat to the surrounding area. It has advantages such as little impact.

しかしながら、従来のレーザ樹脂溶着方法においては、製品の外観が綺麗である反面、溶着部が製品の内部(樹脂境界面)に隠れるため、破壊検査を用いて樹脂溶着加工の品質管理を行っている。非接触・非破壊式で樹脂溶着の加工状況ないし加工品質をモニタする技術が確立されていない。   However, in the conventional laser resin welding method, the appearance of the product is beautiful, but since the welded part is hidden inside the product (resin boundary surface), quality control of the resin welding process is performed using a destructive inspection. . The technology to monitor the processing status or processing quality of non-contact and non-destructive resin welding has not been established.

本発明は、かかる従来技術の問題点に鑑みてなされたもので、非接触・非破壊式で樹脂溶着の加工状況ないし加工品質をモニタできるようにしたレーザ樹脂溶着法およびレーザ樹脂溶着装置を提供する。   The present invention has been made in view of the problems of the prior art, and provides a laser resin welding method and a laser resin welding apparatus that can monitor the processing state or processing quality of resin welding in a non-contact / non-destructive manner. To do.

本発明のレーザ樹脂溶着方法は、0.4〜1.1μmの範囲内の波長を有するレーザビームを透過させる第1の樹脂と前記レーザビームを吸収する第2の樹脂とを重ね合わせる第1の工程と、前記第1の樹脂と前記第2の樹脂との接触界面に設定された被溶着部に前記第1の樹脂側から集光レンズを介して前記レーザビームを集光照射する第2の工程と、前記被溶着部より放射される1.8〜2.5μmの範囲内の波長を有する近赤外線を前記集光レンズの光軸上で受光して、前記近赤外線の光強度から前記被溶着部の温度を測定する第3の工程とを有する。   In the laser resin welding method of the present invention, a first resin that transmits a laser beam having a wavelength in the range of 0.4 to 1.1 μm and a second resin that absorbs the laser beam are overlapped. And a second step of condensing and irradiating the laser beam from the first resin side via a condenser lens to a welded portion set at a contact interface between the first resin and the second resin. And receiving near-infrared rays having a wavelength in the range of 1.8 to 2.5 μm radiated from the welded portion on the optical axis of the condenser lens, and from the near-infrared light intensity, And a third step of measuring the temperature of the welded portion.

本発明のレーザ樹脂溶着装置は、0.4〜1.1μmの範囲内の波長を有するレーザビームを透過させる第1の樹脂と前記レーザビームを吸収する第2の樹脂とを重ね合わせて溶着するためのレーザ樹脂溶着装置であって、前記レーザビームを発振出力するレーザ発振部と、前記第1の樹脂と対向して前記レーザビームの光路上に配置され、前記レーザ発振部からの前記レーザビームを前記第1の樹脂と前記第2の樹脂との接触界面に設定された被溶着部に集光させる集光レンズと、前記集光レンズの光軸上に配置され、前記被溶着部より放射される1.8〜2.5μmの範囲内の波長を有する近赤外線を受光して、前記近赤外線の光強度から前記被溶着部の温度を測定する放射温度計とを有する。   In the laser resin welding apparatus of the present invention, a first resin that transmits a laser beam having a wavelength in the range of 0.4 to 1.1 μm and a second resin that absorbs the laser beam are overlapped and welded. A laser resin welding apparatus for oscillating and outputting the laser beam, and disposed on an optical path of the laser beam so as to face the first resin, and the laser beam from the laser oscillation unit Is disposed on the welded portion set at the contact interface between the first resin and the second resin, and is disposed on the optical axis of the condensing lens, and radiates from the welded portion. A radiation thermometer that receives near-infrared light having a wavelength in the range of 1.8 to 2.5 μm and measures the temperature of the welded part from the light intensity of the near-infrared light.

本発明のレーザ樹脂溶着方法または装置においては、ワーク(重ね合わせられた第1および第2の樹脂)の被溶着部にレーザビームが集光照射されると、ワーク内部の被溶着部からその発熱温度に応じた光強度を有する赤外線が四方に放射される。この赤外線の中には、1.8〜2.5μmの範囲内の測定波長を有する近赤外線も含まれている。このワーク内部の被溶着部から放射された測定波長の近赤外線の一部は、光透過性樹脂を透過し、集光レンズを通って放射温度計の受光部に入射する。放射温度計は、測定波長の近赤外線の光強度から被溶着部の温度を測定する。現場関係者は、放射温度計より得られた被溶着部の測定温度から、被溶着部の溶け込み具合(加工状況)を推定または評価し、ひいては溶融池が凝固した後の溶着強度(加工品質)を推定または評価することができる。   In the laser resin welding method or apparatus of the present invention, when the laser beam is focused and irradiated on the welded portion of the workpiece (the first and second resins superimposed), the heat generated from the welded portion inside the workpiece. Infrared rays having light intensity corresponding to temperature are emitted in all directions. This infrared ray includes a near infrared ray having a measurement wavelength in the range of 1.8 to 2.5 μm. A part of the near infrared ray having a measurement wavelength radiated from the welded portion inside the workpiece is transmitted through the light-transmitting resin and enters the light receiving portion of the radiation thermometer through the condenser lens. The radiation thermometer measures the temperature of the welded part from the near-infrared light intensity of the measurement wavelength. Personnel involved in the field estimate or evaluate the welding condition (processing condition) of the welded part from the measured temperature of the welded part obtained from the radiation thermometer, and as a result, the welding strength after the weld pool solidifies (working quality) Can be estimated or evaluated.

本発明の好適な一態様においては、集光レンズのガラス材料にBK7が用いられる。また、被溶着部の測定温度が所定の基準温度に一致または近似するように、レーザビームの出力がオン・オフ制御方式で制御される。また、放射温度計は、その受光部が集光レンズの中心軸線上に位置するように、集光レンズの光軸上に配置される。   In a preferred embodiment of the present invention, BK7 is used for the glass material of the condenser lens. Further, the output of the laser beam is controlled by an on / off control method so that the measured temperature of the welded portion matches or approximates a predetermined reference temperature. Further, the radiation thermometer is arranged on the optical axis of the condenser lens so that the light receiving portion is located on the central axis of the condenser lens.

本発明のレーザ樹脂溶着方法またはレーザ樹脂溶着装置によれば、上記のような構成および作用により、接触・非破壊式で樹脂溶着の加工状況ないし加工品質をモニタすることが可能であり、レーザ樹脂溶着加工の品質および信頼性を向上させることができる。   According to the laser resin welding method or laser resin welding apparatus of the present invention, it is possible to monitor the processing status or processing quality of resin welding in a contact / non-destructive manner by the configuration and operation as described above. The quality and reliability of the welding process can be improved.

本発明の一実施形態におけるレーザ樹脂溶着装置の全体の構成を示す図である。It is a figure which shows the whole structure of the laser resin welding apparatus in one Embodiment of this invention. 代表的な樹脂における吸収係数の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the absorption coefficient in typical resin. 赤外線の波長をパラメータとしたときの低温度領域における発熱体の温度と該発熱体から放射される赤外線の光強度との相関関係(特性曲線)を示す図である。It is a figure which shows the correlation (characteristic curve) of the temperature of the heat generating body in the low temperature area | region when using the wavelength of infrared rays as a parameter, and the light intensity of the infrared rays radiated | emitted from this heat generating body. 赤外線の波長をパラメータとしたときの高温度領域における発熱体の温度と該発熱体から放射される赤外線の光強度との相関関係(特性曲線)を示す図である。It is a figure which shows the correlation (characteristic curve) of the temperature of the heat generating body in the high temperature area | region when using the wavelength of infrared rays as a parameter, and the light intensity of the infrared rays radiated | emitted from this heat generating body. BK7および合成石英における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in BK7 and synthetic quartz. 実施形態における一変形例の要部を示す図である。It is a figure which shows the principal part of the one modification in embodiment.

以下、図を参照して本発明の好適な実施形態を説明する。

[実施形態における装置構成]
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[Apparatus Configuration in the Embodiment]

図1に、本発明の一実施形態におけるレーザ樹脂溶着装置の全体の構成を示す。   In FIG. 1, the whole structure of the laser resin welding apparatus in one Embodiment of this invention is shown.

図1に示すように、このレーザ樹脂溶着装置は、樹脂溶着に適した波長のレーザビームLBを発振出力するレーザ発振部10と、このレーザ発振部10より発振出力されたレーザビームLBを加工ステージ12上のワーク(被加工物)Wに照射するためのレーザ光学系14と、装置内の各部を制御する制御部16と、樹脂溶着の加工状況ないし加工品質を非接触・非破壊式でモニタするためのモニタ部18とを備えている。   As shown in FIG. 1, the laser resin welding apparatus includes a laser oscillation unit 10 that oscillates and outputs a laser beam LB having a wavelength suitable for resin welding, and a laser beam LB that is oscillated and output from the laser oscillation unit 10. The laser optical system 14 for irradiating the workpiece (workpiece) W on the machine 12, the control unit 16 for controlling each part in the apparatus, and the non-contact / non-destructive monitoring of the processing status or quality of the resin welding And a monitor unit 18 for doing so.

レーザ発振部10は、0.4〜1.1μm(400〜1100nm)の範囲内の波長を有するレーザビームLBを生成するレーザ発振素子または発振器と、このレーザ発振素子または発振器に励起用の電力を供給するレーザ電源回路とを有している。該レーザ発振素子または発振器としては、たとえば、発振波長400nmの青色発光ダイオード、発振波長900〜980nmの半導体レーザ、発振波長1064nmのYAGレーザ、発振波長1030〜1070nmのファイバレーザ等を用いることができる。   The laser oscillation unit 10 includes a laser oscillation element or an oscillator that generates a laser beam LB having a wavelength within a range of 0.4 to 1.1 μm (400 to 1100 nm), and power for excitation to the laser oscillation element or the oscillator. And a laser power supply circuit to be supplied. As the laser oscillation element or oscillator, for example, a blue light emitting diode with an oscillation wavelength of 400 nm, a semiconductor laser with an oscillation wavelength of 900 to 980 nm, a YAG laser with an oscillation wavelength of 1064 nm, a fiber laser with an oscillation wavelength of 1030 to 1070 nm, or the like can be used.

レーザ光学系14は、レーザ発振部10からのレーザビームLBを加工ステージ12上のワークWに向けて所定の角度で折り返すためのベントミラー20と、このベントミラー20とワークWとの間のレーザ光路上に配置される集光レンズ22とを有する。ベントミラー20は、たとえばダイクロイックミラーであり、0.4〜1.1μmの範囲内の波長に対して高い反射性を示す膜と1.8〜2.5μmの範囲内の波長に対して高い透過性を示す膜とをコーティングしている。   The laser optical system 14 includes a vent mirror 20 for turning the laser beam LB from the laser oscillation unit 10 toward the workpiece W on the processing stage 12 at a predetermined angle, and a laser between the vent mirror 20 and the workpiece W. And a condenser lens 22 disposed on the optical path. The bent mirror 20 is, for example, a dichroic mirror, and has a high reflectivity with respect to a wavelength within a range of 0.4 to 1.1 μm and a high transmittance with respect to a wavelength within a range of 1.8 to 2.5 μm. It is coated with a film showing the property.

別の実施例として、ダイクロイックミラーに代えて、同様の機能を有する波長選択フィルタをベントミラー20に用いることも可能である。また、ベントミラー20として、0.4〜1.1μmの範囲内の波長に対してのみ高い反射性を示す膜と、その範囲外の波長をすべて透過させる膜とをコーティングしているミラーを使用し、このミラーと後述するモニタ部18(放射温度計26)との間に1.8〜2.5μmの範囲内の波長のみを選択的に透過させる光学フィルタを配置する構成も可能である。   As another example, a wavelength selective filter having the same function can be used for the bent mirror 20 instead of the dichroic mirror. Further, as the bent mirror 20, a mirror is used which is coated with a film showing high reflectivity only for wavelengths within the range of 0.4 to 1.1 μm and a film that transmits all wavelengths outside the range. In addition, an optical filter that selectively transmits only a wavelength within a range of 1.8 to 2.5 μm is also possible between the mirror and a monitor unit 18 (radiation thermometer 26) described later.

集光レンズ22は、加工ステージ12と平行に向かい合い、上方のベントミラー20でステージ12側(垂直下方)に折り返したレーザビームLBをワークWの被溶着部WTSに集光させるように適度の高さ位置に配置される。 Condensing lens 22, parallel to faces the working stages 12, above the stage 12 side bent mirror 20 (vertically downwards) to the folded laser beam LB to the workpiece W moderate so that is focused on the welded portion W TS Arranged at the height position.

この実施形態では、ベントミラー20および集光レンズ22の基材またはガラス材料にBK7を用いる。BK7は、ガラス材料として、安価なだけでなく、後述するように1.8〜2.5μmの波長領域に対する透過率が合成石英よりも安定している。   In this embodiment, BK7 is used for the base material or glass material of the vent mirror 20 and the condenser lens 22. BK7 is not only inexpensive as a glass material, but also has a more stable transmittance in the wavelength region of 1.8 to 2.5 μm than synthetic quartz as will be described later.

制御部16は、好ましくはマイクロコンピュータを含んで構成され、この実施形態におけるレーザ樹脂溶着方法を実施するのに必要な制御プログラム、条件設定値、換算表またはテーブル等を内部または外部のメモリ(図示せず)に格納している。   The control unit 16 is preferably configured to include a microcomputer, and stores control programs, condition set values, conversion tables, tables, and the like necessary for carrying out the laser resin welding method in this embodiment in an internal or external memory (FIG. (Not shown).

ワークWは、レーザビームLBの波長(0.4〜1.1μmの範囲内)に対して透過性の光透過性樹脂TPと吸収性の光吸収性樹脂APとからなり、板状の重ね継手を形成する。図示のように、ワークWは、光吸収性樹脂APの上に光透過性樹脂TPを重ね合わせて(光透過性樹脂TPを集光レンズ22側に向けて)ステージ12上に配置される。ワークWの被溶着部WTSは、板面方向では任意の位置に設定され、板厚方向では両樹脂TP,APの接触界面およびその近傍に設定される。好ましくは、レーザビームLBの照射中に板厚方向の加圧力を両樹脂TP,APに加える加圧装置(図示せず)が用いられる。 The workpiece W is composed of a light-transmitting resin TP that is transmissive to the wavelength of the laser beam LB (within a range of 0.4 to 1.1 μm) and an absorptive light-absorbing resin AP. Form. As illustrated, the workpiece W is disposed on the stage 12 with the light-transmitting resin TP superimposed on the light-absorbing resin AP (with the light-transmitting resin TP facing the condenser lens 22). The welded portion W TS of the workpiece W is set at an arbitrary position in the plate surface direction, a thickness direction both resins TP, is set on the contact surface and its vicinity of the AP. Preferably, a pressurizing device (not shown) that applies a pressing force in the thickness direction to both resins TP and AP during irradiation with the laser beam LB is used.

一般に、光透過性樹脂TPは無着色であり、光吸収性樹脂APは着色している。しかし、着色材料やフィラーに応じて、光吸収性樹脂APが着色している場合や、光吸収性樹脂TPが着色していない場合もある。   In general, the light-transmitting resin TP is uncolored and the light-absorbing resin AP is colored. However, the light absorbing resin AP may be colored or the light absorbing resin TP may not be colored depending on the coloring material or filler.

モニタ部18は、レーザ樹脂溶着の加工状況ないし品質を非接触・非破壊式でモニタリングするためのツールとして放射温度計26を有している。この放射温度計26は、レーザビームLBの照射中にワークWの被溶着部WTSから放射される1.8〜2.5μmの範囲内の波長を有する近赤外線NIRを受光して、その近赤外線NIRの光強度から被溶着部WTSの温度を計測するように構成されている。 The monitor unit 18 has a radiation thermometer 26 as a tool for monitoring the processing status or quality of laser resin welding in a non-contact / non-destructive manner. The radiation thermometer 26, by receiving the near infrared NIR having a wavelength in the range of 1.8~2.5μm emitted from the welded portion W TS of the workpiece W during the irradiation of the laser beam LB, the proximal It is configured to measure the temperature of the welded portion W TS from the light intensity of the infrared NIR.

より詳細には、放射温度計26は、1.8〜2.5μmの範囲内の波長に感度を有する光電変換素子または近赤外線センサ(フォトダイオード)と、この光電変換素子の出力信号に基づいて測定対象つまり被溶着部WTSの温度を求める演算回路あるいはテーブル等を有しており、ワークWからの近赤外線NIRを精度よく安定に受光できるように集光レンズ22の光軸上に配置される。 More specifically, the radiation thermometer 26 is based on a photoelectric conversion element or a near-infrared sensor (photodiode) having sensitivity to a wavelength in the range of 1.8 to 2.5 μm and an output signal of the photoelectric conversion element. has a measured that operation circuit or a table or the like determining the temperature of the welded portion W TS, is disposed on the optical axis of the condenser lens 22 so that it can be accurately and stably to receive near infrared NIR from the workpiece W The

図1の構成例において、放射温度計26は、その受光部26aが集光レンズ22の中心軸線上に位置するように、集光レンズ22の真上に配置される。受光部26aの内側または手前には、ワークWから集光レンズ22およびベントミラー20を通ってくる放射光(特に1.8〜2.5μmの範囲内の波長を有する近赤外線NIRを光電変換素子に集光入射させるための集光(入射)レンズ28が配置される。好ましくは、この集光(入射)レンズ28のガラス材料にもBK7が用いられる。

[実施形態における作用]
In the configuration example of FIG. 1, the radiation thermometer 26 is disposed directly above the condenser lens 22 such that the light receiving portion 26 a is located on the central axis of the condenser lens 22. Inside or in front of the light receiving portion 26a, radiated light (especially near-infrared NIR having a wavelength in the range of 1.8 to 2.5 μm) from the workpiece W passing through the condenser lens 22 and the vent mirror 20 is converted into a photoelectric conversion element. A condensing (incident) lens 28 for condensing and entering the light is placed on the glass material, and preferably BK7 is also used for the glass material of the condensing (incident) lens 28.

[Operation in Embodiment]

上記構成のレーザ樹脂溶着装置において、ステージ12上のワークWに対してレーザ樹脂溶着の加工を実施する場合は、水平方向(XY方向)においてワークWの被溶着部WTSを集光レンズ22の光軸上に位置決めし、鉛直方向(Z方向)において集光レンズ22の焦点がワークWの被溶着部WTS付近に位置するように焦点合わせ(高さ調整)を行ってから、制御部16の制御の下でレーザ発振部10がレーザ発振動作を行う。 In the laser resin welding apparatus having the above-described configuration, when the laser resin welding process is performed on the workpiece W on the stage 12, the welding portion W TS of the workpiece W is placed on the condenser lens 22 in the horizontal direction (XY direction). positioned on the optical axis, after performing the focus of the condensing lens 22 is focusing to be located in the vicinity of the welded portion W TS of the workpiece W (the height adjustment) in the vertical direction (Z-direction), the control unit 16 Under the control, the laser oscillation unit 10 performs a laser oscillation operation.

レーザ発振部10より所望のレーザ出力で発振出力されたレーザビームLBは、レーザ光学系14のベントミラー20および集光レンズ22を通って、ステージ12上のワークWに入射する。ワークWの中で、レーザビームLBは、上層の光透過性樹脂TPを透過し、下層の光吸収性樹脂APに入射して吸収される。光吸収性樹脂APは、レーザビームLBを吸収することにより、発熱して溶融する。そして、光吸収性樹脂APの発した熱が光透過性樹脂TPに伝わり、光透過性樹脂TPも溶融する。こうして、両樹脂TP,APの接触境界面付近つまり被溶着部WTSに溶融池が形成される。一定時間の経過後にレーザビームLBの発振出力または照射が止むと、この溶融池は凝固する。こうして、ワークWにおいて両樹脂TP,APが被溶着部WTSにて溶着される。 The laser beam LB oscillated and output from the laser oscillating unit 10 with a desired laser output is incident on the workpiece W on the stage 12 through the vent mirror 20 and the condenser lens 22 of the laser optical system 14. In the workpiece W, the laser beam LB passes through the upper light-transmitting resin TP, enters the lower light-absorbing resin AP, and is absorbed. The light absorbing resin AP generates heat and melts by absorbing the laser beam LB. Then, the heat generated by the light absorbing resin AP is transmitted to the light transmitting resin TP, and the light transmitting resin TP is also melted. Thus, both resins TP, the molten pool is formed in the vicinity of the contact interface of the AP that is the welded portion W TS. When the oscillation output or irradiation of the laser beam LB stops after a certain time has elapsed, the molten pool is solidified. Thus, the workpiece W both resin TP, AP is welded by the welded portion W TS.

上記のようにワークWの被溶着部WTSにレーザビームLBが集光照射されている時は、被溶着部WTSからその発熱温度に応じた光強度を有する赤外線が四方に放射される。この赤外線のスペクトルはおおよそ1〜10μmの広い範囲にわたっており、1.8〜2.5μmの範囲内の測定波長を有する近赤外線NIRもその中に含まれている。そして、ワークW内部の被溶着部WTSから垂直上方に放射される測定波長(1.8〜2.5μm)の近赤外線NIRは、光透過性樹脂TPを透過し、集光レンズ22、ベントミラー20および集光レンズ28を通って放射温度計26の受光部26aに入射する。 When the laser beam LB onto the welded portion W TS of the workpiece W as described above is condensed and irradiated is infrared having a light intensity corresponding to the heating temperature from the welded portion W TS is radiated in all directions. The infrared spectrum covers a wide range of approximately 1 to 10 μm, and a near infrared NIR having a measurement wavelength in the range of 1.8 to 2.5 μm is included therein. Then, the near infrared NIR measurement wavelength emitted from the welded portion W TS internal workpiece W vertically upward (1.8~2.5μm) is transmitted through the light transmitting resin TP, a condenser lens 22, the vent The light enters the light receiving portion 26 a of the radiation thermometer 26 through the mirror 20 and the condenser lens 28.

放射温度計26は、測定波長の近赤外線NIRを受光すると、光電変換素子より得られる光電変換信号に基づいて近赤外線NIRの光強度を表す光強度測定値を演算により求める。さらに、近赤外線NIRの光強度測定値から、近赤外線NIRの放出源であるワークWの被溶着部WTSの温度をテーブルまたは所定の換算(演算)処理により求める。放射温度計26より得られた被溶着部WTSの温度測定値は、制御部16に取り込まれ、当該レーザ樹脂溶着の加工状況ないし加工品質を表すモニタ値として表示部24に表示される。 When the radiation thermometer 26 receives near-infrared NIR having a measurement wavelength, it calculates a light intensity measurement value representing the light intensity of the near-infrared NIR by calculation based on a photoelectric conversion signal obtained from the photoelectric conversion element. Further, the light intensity measurements of the near infrared NIR, temperature tables or predetermined conversion of the welded portion W TS of the workpiece W which is emitting source in the near infrared NIR (operation) determined by the processing. Temperature measurements of the welded portion W TS obtained from the radiation thermometer 26 is received by the control unit 16, it is displayed on the display unit 24 as a monitor value representing the machining status or processing quality of the laser resin welding.

現場作業員等の関係者は、モニタ情報として提供されるワーク測定温度から、被溶着部WTSの溶け込み具合(加工状況)を推定または評価し、ひいては溶融池が凝固した後の溶着強度(加工品質)を推定または評価することができる。制御部16は、被溶着部WTSの測定温度の表示に加えて、その測定温度を所定の監視値またはウィンドウと比較して当該樹脂溶着加工の良否判定を行い、その良否判定の結果を表示部24上で表示することもできる。 Field workers such official, from the work measuring temperatures is provided as monitoring information, to estimate or assess the penetration degree of the welded portion W TS (machining status), and thus the welding strength after the molten pool has solidified (machining Quality) can be estimated or evaluated. Control unit 16, in addition to the display of the measured temperature of the welded portion W TS, performs quality determination of the resin fusion bonded by comparing the measured temperature with a predetermined monitoring value or window, displays the result of the quality determination It can also be displayed on the part 24.

さらに、制御部16は、レーザ樹脂溶着の加工中に、放射温度計26より得られる温度測定値が予め設定した基準値に一致または近似するように、レーザ発振部10を通じてレーザビームLBのレーザ出力をオン・オフ制御方式で制御することもできる。一般に、この種の温度制御にはPID(比例積分微分)制御方式が用いられている。しかしながら、PID制御方式は、ワークWの種類や特性(特に熱容量やレーザ光吸収特性)に応じて制御量ないし操作量を調整する必要がある。その点、オン・オフ制御方式は、ワークWの種類や特性が変わっても特に調整の必要はない。この実施形態においては、レーザ樹脂溶着加工の品質および信頼性を向上させることができる。   Furthermore, the control unit 16 outputs the laser beam LB through the laser oscillation unit 10 so that the temperature measurement value obtained from the radiation thermometer 26 matches or approximates a preset reference value during the laser resin welding process. Can be controlled by an on / off control method. In general, a PID (proportional integral derivative) control system is used for this type of temperature control. However, in the PID control method, it is necessary to adjust the control amount or the operation amount according to the type and characteristics (particularly, heat capacity and laser light absorption characteristics) of the workpiece W. In that respect, the on / off control method does not require any adjustment even if the type and characteristics of the workpiece W change. In this embodiment, the quality and reliability of the laser resin welding process can be improved.

上記のように、この実施形態においては、レーザ樹脂溶着の加工状況ないし品質を非接触・非破壊式でモニタリングするために、集光レンズ22の光軸上に放射温度計26を設け、ワークWの被溶着部WTSから放射される1.8〜2.5μmの範囲内の波長を有する近赤外線NIRの光強度を測定し、その光強度測定値から被溶着部WTSの温度を表す温度測定値をモニタ値として求めるようにしている。 As described above, in this embodiment, in order to monitor the processing state or quality of laser resin welding in a non-contact / non-destructive manner, the radiation thermometer 26 is provided on the optical axis of the condenser lens 22, and the workpiece W temperature measured light intensity of the near infrared NIR, representative of the temperature of the light intensity measurements from the welded portion W TS having a wavelength in the range of 1.8~2.5μm emitted from the welded portion W TS of The measured value is obtained as a monitor value.

ここで、この実施形態において測定波長を1.8〜2.5μmの範囲に限定するのは、次のような理由に基づいている。   Here, in this embodiment, the measurement wavelength is limited to the range of 1.8 to 2.5 μm based on the following reason.

第1に、上記のように、レーザビーム照射中は、ワークW内部の被溶着部WTSよりスペクトルが約1〜10μmの広い範囲に分布する赤外線が放射される。しかし、被溶着部WTSより放射される赤外線の光強度はレーザビームLBに比べて相当低いうえ、大部分のスペクトルが光透過性樹脂TPに吸収されて測定不能なレベルまで減衰してしまう。ところが、図2に示すように、PS(ポリスチレン)、PA(ポリアミド)、PE(ポリエチレン)、ABS樹脂、PP(ポリプロピレン)など多くの樹脂が1.8〜2.5μm(1800〜2500nm)の範囲内の波長に対しては低い吸収係数を示す。図2では省略しているが、2.5μm(2500nm)以上の波長に対しては、一般的に樹脂等の有機物は高い吸収性を示す。なお、図2のスペクトルは、1300nmにて正規化している。 First, as described above, during the laser beam irradiation, infrared spectrum from the welded portion W TS inside the workpiece W is distributed in a wide range of about 1~10μm is emitted. However, the light intensity of the infrared rays emitted from the welded portion W TS laser beam upon considerably lower compared to LB, is attenuated until most spectrum is absorbed by the light transmitting resin TP of unmeasurable levels. However, as shown in FIG. 2, many resins such as PS (polystyrene), PA (polyamide), PE (polyethylene), ABS resin, PP (polypropylene) are in the range of 1.8 to 2.5 μm (1800 to 2500 nm). It shows a low absorption coefficient for the inner wavelengths. Although omitted in FIG. 2, organic substances such as resins generally exhibit high absorptivity for wavelengths of 2.5 μm (2500 nm) or more. Note that the spectrum of FIG. 2 is normalized at 1300 nm.

したがって、測定対象の赤外線を1.8〜2.5μmの範囲内の波長に限定することで、ワークW内部の被溶着部WTSから光透過性樹脂TPの外に放出される赤外線の光強度を高感度で測定し、ひいてはワークWの被溶着部WTSの温度を高精度に測定することができる。 Accordingly, the infrared rays measured by limiting the wavelength in the range of 1.8~2.5Myuemu, the infrared rays emitted from the welded portion W TS internal work W out of the light transmitting resin TP intensity was measured with high sensitivity, it is possible to turn measures the temperature of the welded portion W TS of the workpiece W with high accuracy.

第2に、放射温度計は、受光した赤外線の光強度を一定の相関関係に基づいてその放射源の温度に換算するようにしている。ところが、この種のレーザ樹脂溶着加工においては、ワークWの被溶着部WTSが不定のプロファイルで溶けるため、特定方向(垂直上方)に放射される赤外線の光強度または光量がばらつきやすい。 Second, the radiation thermometer converts the intensity of received infrared light into the temperature of the radiation source based on a certain correlation. However, in the laser resin welding process of this kind, since the target welding portion W TS of the workpiece W is melted in some unspecified profile, infrared light intensity or light quantity tends to vary emitted in a specific direction (vertically upward).

一方で、図3に示すように、発熱体の温度と該発熱体から放射される赤外線の光強度との相関関係は赤外線の波長によって異なり、一般的なレーザ樹脂溶着の加工温度である300℃以下の比較的低い温度領域では1μm、2μm、3μm、6μmと波長が長いほど、光強度の変化に対する温度の変化(特性曲線の傾き)は大きい。なお、図3において、横軸は発熱体の温度を示し、縦軸は該発熱体から放射される赤外線の光強度を示す。   On the other hand, as shown in FIG. 3, the correlation between the temperature of the heating element and the intensity of the infrared light emitted from the heating element varies depending on the wavelength of the infrared ray, and is 300 ° C., which is a processing temperature for general laser resin welding. In the following relatively low temperature range, the longer the wavelength is 1 μm, 2 μm, 3 μm, and 6 μm, the greater the change in temperature (the slope of the characteristic curve) with respect to the change in light intensity. In FIG. 3, the horizontal axis indicates the temperature of the heating element, and the vertical axis indicates the intensity of infrared light emitted from the heating element.

つまり、ワークWの被溶着部WTSから放射される赤外線の光強度のばらつきの影響(相関関係から導出される温度測定値の誤差)は、波長が短いほど小さく、波長が長いほど大きい。もっとも、測定用の赤外線波長を1μmまたはその近くに選ぶと、加工用のレーザビームLBの波長と抵触(干渉)するおそれがあるだけでなく、光強度(光量)の絶対量が著しく低くなる。このことから、この実施形態では、測定波長を1.8〜2.5μmの範囲内に設定する。 That is, the influence of variations in the infrared light intensity emitted from the welded portion W TS of the workpiece W (the error of temperature measurements derived from correlation), the shorter wavelengths small and becomes larger as a longer wavelength. However, if the infrared wavelength for measurement is selected to be 1 μm or close to it, not only may there be a conflict (interference) with the wavelength of the laser beam LB for processing, but the absolute amount of light intensity (light quantity) will be significantly reduced. Therefore, in this embodiment, the measurement wavelength is set in the range of 1.8 to 2.5 μm.

なお、図4に示すように、高温の領域、特に約650℃以上では、赤外線の光強度と温度の相関関係は波長によってさほど違わなくなる。図4においても、横軸は発熱体の温度を示し、縦軸は該発熱体から放射される赤外線の光強度を示す。   As shown in FIG. 4, in the high temperature region, particularly at about 650 ° C. or higher, the correlation between the infrared light intensity and the temperature is not so different depending on the wavelength. Also in FIG. 4, the horizontal axis indicates the temperature of the heating element, and the vertical axis indicates the intensity of infrared light emitted from the heating element.

この実施形態では、上記のようにワークWより放出された測定波長の近赤外線NIRが放射温度計26まで伝播する途中に通過する集光レンズ22、ベントミラー20および集光レンズ28のガラス材料にBK7を用いていることも重要である。すなわち、図5に示すように、1.8〜2.5μmの波長領域では、合成石英の透過率は2.2μm近辺で急峻に落ち込むのに対して、BK7の透過率は単調に減少するだけであり、測定波長の近赤外線NIRを透過させるガラス材料としてBK7のほうが合成石英よりも安定している。もちろん、コスト的にもBK7は合成石英より有利である。   In this embodiment, the near-infrared NIR of the measurement wavelength emitted from the workpiece W as described above is used for the glass materials of the condenser lens 22, the vent mirror 20, and the condenser lens 28 that pass along the propagation to the radiation thermometer 26. It is also important to use BK7. That is, as shown in FIG. 5, in the wavelength region of 1.8 to 2.5 μm, the transmittance of synthetic quartz drops sharply around 2.2 μm, whereas the transmittance of BK7 only decreases monotonously. BK7 is more stable than synthetic quartz as a glass material that transmits near-infrared NIR of the measurement wavelength. Of course, BK7 is more advantageous than synthetic quartz in terms of cost.

もっとも、1.8〜2.5μmの波長領域では波長が長くなるほど上記のようにBK7の透過率が単調に減少する。したがって、測定波長の上限を下げるのも好ましく、たとえば1.8〜2.3μmの範囲内としてもよい。

[他の実施形態または変形例]
However, in the wavelength region of 1.8 to 2.5 μm, as the wavelength increases, the transmittance of BK7 decreases monotonously as described above. Therefore, it is also preferable to lower the upper limit of the measurement wavelength, and for example, it may be in the range of 1.8 to 2.3 μm.

[Other Embodiments or Modifications]

上記実施形態では、レーザビームLBが集光レンズ22の光軸上を通り、ワークWの被溶着部WTSは集光レンズ22の光軸上に設定された。しかし、レーザ光学系14にガルバノ・スキャナや3次元スキャナを搭載する構成も可能である。集光レンズ22はfθレンズであってもよい。 In the above embodiment, the laser beam LB passes through the optical axis of the condensing lens 22, the welded portion W TS of the workpiece W is set on the optical axis of the condensing lens 22. However, a configuration in which a galvano scanner or a three-dimensional scanner is mounted on the laser optical system 14 is also possible. The condensing lens 22 may be an fθ lens.

また、モニタ部18において、放射温度計26は、集光レンズ28の光軸上で測定波長の近赤外線NIRを受光すればよく、必ずしも空間的に集光レンズ22と同軸である必要はない。たとえば、図6に示すように、集光レンズ22の真上に折り返しミラー30を配置して、折り返しミラー30で水平方向に折り返された測定波長の近赤外線NIRを受光するように放射温度計26を横向きに配置してもよい。   Further, in the monitor unit 18, the radiation thermometer 26 only needs to receive the near-infrared NIR of the measurement wavelength on the optical axis of the condenser lens 28, and is not necessarily spatially coaxial with the condenser lens 22. For example, as shown in FIG. 6, a radiation thermometer 26 is arranged so that a folding mirror 30 is disposed right above the condenser lens 22 and near infrared NIR of a measurement wavelength folded in the horizontal direction by the folding mirror 30 is received. May be arranged sideways.

ベントミラー20に関する別の実施例として、ダイクロイックミラーに代えて、同様の機能を有する波長選択フィルタを用いることも可能である。また、ベントミラー20として、0.4〜1.1μmの範囲内の波長に対してのみ高い反射性を示す膜と、その範囲外の波長をすべて透過させる膜とをコーティングしているミラーを用いてもよい。この場合、ベントミラー20とモニタ部18の放射温度計26との間の光路上に、あるいは放射温度計26の中に、1.8〜2.5μmの範囲内の波長を選択的に透過させる光学フィルタを設けてよい。   As another example of the bent mirror 20, a wavelength selection filter having a similar function can be used instead of the dichroic mirror. Further, as the bent mirror 20, a mirror is used which is coated with a film showing high reflectivity only for wavelengths within the range of 0.4 to 1.1 μm and a film that transmits all wavelengths outside the range. May be. In this case, a wavelength within the range of 1.8 to 2.5 μm is selectively transmitted on the optical path between the vent mirror 20 and the radiation thermometer 26 of the monitor unit 18 or in the radiation thermometer 26. An optical filter may be provided.

上記実施例では、上記のように測定波長の近赤外線NIRを通す光学部品20,22,28のガラス材料にBK7を用いたが、それらの一部または全部に合成石英を用いることも可能であり、さらには製造コストの増大を招くが、無水合成石英を用いてもよい。   In the above embodiment, BK7 is used as the glass material of the optical parts 20, 22, and 28 that pass the near-infrared NIR of the measurement wavelength as described above, but it is also possible to use synthetic quartz for some or all of them. Further, anhydrous synthetic quartz may be used although the manufacturing cost increases.

本発明におけるレーザ樹脂溶着の形態は、スボット溶着に限定されず、シーム溶着等も可能である。   The form of laser resin welding in the present invention is not limited to sbot welding, and seam welding or the like is also possible.

10 レーザ発振部
14 レーザ光学系
16 制御部
18 モニタ部
20 ベントミラー(ダイクロイックミラー)
22 集光レンズ
26 放射温度計
28 集光(入射)レンズ
W ワーク(被加工物)
TP 光透過性樹脂
AP 光吸収性樹脂
DESCRIPTION OF SYMBOLS 10 Laser oscillation part 14 Laser optical system 16 Control part 18 Monitor part 20 Vent mirror (dichroic mirror)
22 Condensing lens 26 Radiation thermometer 28 Condensing (incident) lens W Workpiece (workpiece)
TP light-transmitting resin AP light-absorbing resin

Claims (7)

0.4〜1.1μmの範囲内の波長を有するレーザビームを透過させる第1の樹脂と前記レーザビームを吸収する第2の樹脂とを重ね合わせる第1の工程と、
前記第1の樹脂と前記第2の樹脂との接触界面に設定された被溶着部に前記第1の樹脂側から集光レンズを介して前記レーザビームを集光照射する第2の工程と、
前記被溶着部より放射される1.8〜2.5μmの範囲内の波長を有する近赤外線を前記集光レンズの光軸上で受光して、前記近赤外線の光強度から前記被溶着部の温度を測定する第3の工程と
を有するレーザ樹脂溶着方法。
A first step of superimposing a first resin that transmits a laser beam having a wavelength in the range of 0.4 to 1.1 μm and a second resin that absorbs the laser beam;
A second step of condensing and irradiating the laser beam from the first resin side to the welded portion set at the contact interface between the first resin and the second resin via a condenser lens;
Near infrared rays having a wavelength in the range of 1.8 to 2.5 μm radiated from the welded portion are received on the optical axis of the condenser lens, and from the near infrared light intensity, A laser resin welding method comprising: a third step of measuring temperature.
前記第3の工程における前記近赤外線の測定波長は1.8〜2.3μmの範囲内である、請求項1に記載のレーザ樹脂溶着方法。   The laser resin welding method according to claim 1, wherein the near infrared measurement wavelength in the third step is in a range of 1.8 to 2.3 μm. 前記集光レンズのガラス材料はBK7である、請求項1または請求項2に記載のレーザ樹脂溶着方法。   The laser resin welding method according to claim 1 or 2, wherein a glass material of the condensing lens is BK7. 前記被溶着部の測定温度が所定の基準温度に一致または近似するように、前記レーザビームの出力をオン・オフ制御方式で制御する第4の工程を更に有する、請求項1〜3のいずれか一項に記載のレーザ樹脂溶着方法。   4. The method according to claim 1, further comprising a fourth step of controlling the output of the laser beam by an on / off control method so that a measured temperature of the welded portion matches or approximates a predetermined reference temperature. The laser resin welding method according to one item. 0.4〜1.1μmの範囲内の波長を有するレーザビームを透過させる第1の樹脂と前記レーザビームを吸収する第2の樹脂とを重ね合わせて溶着するためのレーザ樹脂溶着装置であって、
前記レーザビームを発振出力するレーザ発振部と、
前記第1の樹脂と対向して前記レーザビームの光路上に配置され、前記レーザ発振部からの前記レーザビームを前記第1の樹脂と前記第2の樹脂との接触界面に設定された被溶着部に集光させる集光レンズと、
前記集光レンズの光軸上に配置され、前記被溶着部より放射される1.8〜2.5μmの範囲内の波長を有する近赤外線を受光して、前記近赤外線の光強度から前記被溶着部の温度を測定する放射温度計と
を有するレーザ樹脂溶着装置。
A laser resin welding apparatus for laminating and welding a first resin that transmits a laser beam having a wavelength in the range of 0.4 to 1.1 μm and a second resin that absorbs the laser beam. ,
A laser oscillation unit for oscillating and outputting the laser beam;
The welding is arranged on the optical path of the laser beam so as to face the first resin, and the laser beam from the laser oscillation unit is set at a contact interface between the first resin and the second resin. A condensing lens for condensing the light,
A near infrared ray disposed on the optical axis of the condenser lens and having a wavelength in the range of 1.8 to 2.5 μm emitted from the welded portion is received, and the near infrared light intensity is received from the near infrared light intensity. A laser resin welding apparatus comprising: a radiation thermometer for measuring a temperature of a welded portion.
前記放射温度計により求められる測定温度が所定の基準温度に一致または近似するように、前記レーザビームの出力をオン・オフ制御方式で制御する制御部を更に有する、請求項5に記載のレーザ樹脂溶着装置。   6. The laser resin according to claim 5, further comprising a control unit that controls the output of the laser beam by an on / off control method so that a measurement temperature obtained by the radiation thermometer matches or approximates a predetermined reference temperature. Welding equipment. 前記放射温度計の受光部は、前記集光レンズの中心軸線上に位置する、請求項5または請求項6に記載のレーザ樹脂溶着装置。   The laser resin welding apparatus according to claim 5 or 6, wherein the light receiving portion of the radiation thermometer is located on a central axis of the condenser lens.
JP2015035111A 2015-02-25 2015-02-25 Laser resin deposition method and device Pending JP2016155319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015035111A JP2016155319A (en) 2015-02-25 2015-02-25 Laser resin deposition method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035111A JP2016155319A (en) 2015-02-25 2015-02-25 Laser resin deposition method and device

Publications (1)

Publication Number Publication Date
JP2016155319A true JP2016155319A (en) 2016-09-01

Family

ID=56824715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035111A Pending JP2016155319A (en) 2015-02-25 2015-02-25 Laser resin deposition method and device

Country Status (1)

Country Link
JP (1) JP2016155319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353011A (en) * 2018-10-30 2019-02-19 大族激光科技产业集团股份有限公司 The monitoring method of plastic welding laser
KR20190071425A (en) * 2017-12-14 2019-06-24 조국환 Welding temperature control system reflecting emissivity of base material of laser welding machine and control method thereof
EP4074492A1 (en) * 2021-04-13 2022-10-19 Leister Technologies AG System for joining workpieces of thermoplastic material by through-transmission laser welding
JP7428529B2 (en) 2020-02-12 2024-02-06 日本アビオニクス株式会社 Resistance welding equipment and resistance welding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190071425A (en) * 2017-12-14 2019-06-24 조국환 Welding temperature control system reflecting emissivity of base material of laser welding machine and control method thereof
KR102019853B1 (en) 2017-12-14 2019-09-09 조국환 Welding temperature control system reflecting emissivity of base material of laser welding machine and control method thereof
CN109353011A (en) * 2018-10-30 2019-02-19 大族激光科技产业集团股份有限公司 The monitoring method of plastic welding laser
JP7428529B2 (en) 2020-02-12 2024-02-06 日本アビオニクス株式会社 Resistance welding equipment and resistance welding method
EP4074492A1 (en) * 2021-04-13 2022-10-19 Leister Technologies AG System for joining workpieces of thermoplastic material by through-transmission laser welding

Similar Documents

Publication Publication Date Title
JP4577103B2 (en) Laser welding quality determination method and apparatus
JP5042013B2 (en) Laser heating device
US7268866B2 (en) Method for inspecting a weld seam in a workpiece made of weldable plastic and device for carrying out this method
US7651264B2 (en) Laser processing device, laser processing temperature measuring device, laser processing method and laser processing temperature measuring method
JP5947741B2 (en) Welded part inspection device and inspection method
JP5947740B2 (en) Welded part inspection device and inspection method
JP2016155319A (en) Laser resin deposition method and device
KR102545441B1 (en) Method and Apparatus for Monitoring the Welding Process of Welding a Glass Workpiece
JP2015530251A (en) Workpiece processing apparatus using laser beam
JP6956328B2 (en) Laser processing equipment and laser processing method
JP2014215212A (en) Optical nondestructive inspection system and optical nondestructive inspection method
JP2005131645A (en) Laser beam machining method and machined state determination method
JP4825051B2 (en) Laser processing apparatus and laser processing method
JP6123460B2 (en) Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP4267286B2 (en) Resin material welding method and resin material welding apparatus
KR20160019176A (en) Laser welding machine having a temperature control function
JP3931817B2 (en) Laser welding method and welding apparatus
Dorsch et al. Online characterization of laser beam welds by NIR-camera observation
US20220324181A1 (en) System for joining thermoplastic workpieces by laser transmission welding
JP5020724B2 (en) Resin welding method and resin welding apparatus
US20230150055A1 (en) Method for monitoring a laser welding process for welding two workpieces with regard to a bridged gap
KR102019853B1 (en) Welding temperature control system reflecting emissivity of base material of laser welding machine and control method thereof
JP2006343158A (en) Temperature measuring instrument, and temperature measuring method
JP3997183B2 (en) Welding condition inspection method
JP2005067031A (en) Welding inspection device and welding inspection method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160927