JP2006343158A - Temperature measuring instrument, and temperature measuring method - Google Patents

Temperature measuring instrument, and temperature measuring method Download PDF

Info

Publication number
JP2006343158A
JP2006343158A JP2005167597A JP2005167597A JP2006343158A JP 2006343158 A JP2006343158 A JP 2006343158A JP 2005167597 A JP2005167597 A JP 2005167597A JP 2005167597 A JP2005167597 A JP 2005167597A JP 2006343158 A JP2006343158 A JP 2006343158A
Authority
JP
Japan
Prior art keywords
resin member
light
wavelength range
temperature
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005167597A
Other languages
Japanese (ja)
Inventor
Seiji Kumazawa
誠二 熊澤
Izuru Nakai
出 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005167597A priority Critical patent/JP2006343158A/en
Publication of JP2006343158A publication Critical patent/JP2006343158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature measuring instrument that can reduce the influence of thermal radiation light reflecting the temperature near the surface of a permeable resin member, and can improve temperature measurement accuracy of the resin interface. <P>SOLUTION: The detected wavelength ranges of first and second photodetectors 8 and 9 are shifted, and during laser welding, the first photodetector 8 detects thermal radiation light 6 that is radiated from the resin interface and permeates the permeable resin member 3 and thermal radiation light 7 radiated from the surface of the permeable resin member 3, and generates a detection signal, and the photodetector 9 detects only the thermal radiation light 7 radiated from the surface of the permeable resin member 3, and generates a detection signal. A arithmetic section 10 performs calculation so as to reduce the influence of thermal radiation light 7 based on the detection signals from the first and second photodetectors 8 and 9, and measures the temperature on the resin interface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂部材同士を重ね合わせ、その重ね合わせた界面へ一定波長のレーザ光を照射して樹脂部材同士を溶着する際に、その界面の温度を測定する温度測定装置、および温度測定方法に関する。   The present invention relates to a temperature measuring device and a temperature measuring method for measuring the temperature of an interface between the resin members when the resin members are overlapped, and laser beams having a predetermined wavelength are irradiated to the overlapped interface to weld the resin members together. About.

従来より、レーザ光を透過する透過性樹脂部材とレーザ光を吸収する吸収性樹脂部材を重ね合わせ、その重ね合わせた界面(樹脂界面)に透過性樹脂部材側よりレーザ光を照射して、樹脂部材同士をレーザ溶着する樹脂溶着の技術が知られている。この樹脂溶着の技術は、例えば、キー(リモコン)等の自動車用部品などの製造に用いられる。   Conventionally, a transparent resin member that transmits laser light and an absorbent resin member that absorbs laser light are overlapped, and the overlapped interface (resin interface) is irradiated with laser light from the side of the transparent resin member. A resin welding technique for laser welding members is known. This resin welding technique is used, for example, in the manufacture of automobile parts such as keys (remote control).

このレーザ溶着では、一般に、レーザ光として波長が例えば810nmの赤外光を用いる。また、透過性樹脂部材としては、一般に、レーザ光は透過するが可視光は透過しない着色剤を混入したポリカーボネート等を用いる、しかしながら、この場合、十分な溶着が行われたか否かについての判断を目視にて行えないという問題があった。   In this laser welding, in general, infrared light having a wavelength of, for example, 810 nm is used as laser light. Further, as the transparent resin member, generally, polycarbonate or the like mixed with a colorant that transmits laser light but does not transmit visible light is used. However, in this case, it is determined whether or not sufficient welding has been performed. There was a problem that it could not be done visually.

そこで、レーザ溶着中に、樹脂部材から放射される熱輻射光を赤外線検出器により検出し、光電変換により電気信号に変換して、樹脂界面の溶着温度を算出する技術が提案されている(例えば、特許文献1参照。)。図4に従来の温度測定装置の概略構成を示す。   Therefore, a technique has been proposed in which heat radiation emitted from a resin member is detected by an infrared detector during laser welding and converted into an electrical signal by photoelectric conversion to calculate a welding temperature at the resin interface (for example, , See Patent Document 1). FIG. 4 shows a schematic configuration of a conventional temperature measuring apparatus.

図4において、半導体レーザ装置1は、透過性樹脂部材3と吸収性樹脂部材4を重ね合わせた樹脂界面へ、波長が810nmあるいは910nmのレーザ光2を照射する。赤外線検出器13は、検出波長範囲が1500nm〜2800nmであり、レーザ溶着中に、樹脂界面近傍から放射される熱輻射光6を検出して検出信号を生成する。演算部16は、赤外線検出器13からの検出信号を基に樹脂界面の温度測定を行う。   In FIG. 4, the semiconductor laser device 1 irradiates a laser beam 2 having a wavelength of 810 nm or 910 nm to a resin interface in which a transparent resin member 3 and an absorbent resin member 4 are overlapped. The infrared detector 13 has a detection wavelength range of 1500 nm to 2800 nm, and generates a detection signal by detecting the thermal radiation light 6 emitted from the vicinity of the resin interface during laser welding. The computing unit 16 measures the temperature of the resin interface based on the detection signal from the infrared detector 13.

また、半導体レーザ装置1が出射するレーザ光2には、赤外線検出器13の検出波長範囲に重なる1300nm〜2100nmの波長のノイズ光が混在するので、レーザ光2からこのノイズ光を除去する第1のフィルタ14を設けている。さらに、レーザ光2の発振波長の光を遮断する第2のフィルタ15を赤外線検出器13と樹脂部材との間に設け、レーザ光2の反射光の影響を受けないようにしている。   Further, since the laser light 2 emitted from the semiconductor laser device 1 includes noise light having a wavelength of 1300 nm to 2100 nm that overlaps the detection wavelength range of the infrared detector 13, first noise light is removed from the laser light 2. The filter 14 is provided. Further, a second filter 15 for blocking the light having the oscillation wavelength of the laser light 2 is provided between the infrared detector 13 and the resin member so as not to be affected by the reflected light of the laser light 2.

しかしながら、実際には、樹脂界面近傍からだけではなくレーザ光の照射側に配置された透過性樹脂部材の表面近傍からも熱輻射光は放射されており、従来の温度測定装置では、この透過性樹脂部材の表面近傍からの熱輻射光も同時に検出してしまい、そのためS/N比が低下して界面温度の測定精度が低下するという問題があった。
特開2004−17540号公報
However, in reality, thermal radiation is radiated not only from the vicinity of the resin interface but also from the vicinity of the surface of the transparent resin member disposed on the laser light irradiation side. Thermal radiation from the vicinity of the surface of the resin member is also detected at the same time, which causes a problem that the S / N ratio is lowered and the measurement accuracy of the interface temperature is lowered.
JP 2004-17540 A

本発明は、上記問題点に鑑み、吸収性樹脂部材(第一の樹脂部材)と透過性樹脂部材(第二の樹脂部材)とが重ね合わせられた樹脂部材に対し透過性樹脂部材側から所定の波長のレーザ光を照射し、樹脂部材からの放射光を第一の波長範囲で検出するとともに、第一の波長範囲と波長範囲が異なる第二の波長範囲で検出し、第一の波長範囲で検出した値と第二の波長範囲で検出した値に基づいて樹脂界面の温度を算出することにより、透過性樹脂部材の表面近傍の温度を反映した熱輻射光の影響を軽減することができ、樹脂界面の温度測定精度の向上を図ることができる温度測定装置、および温度測定方法を提供することを目的とする。   In view of the above problems, the present invention provides a predetermined resin member from the permeable resin member side with respect to a resin member in which an absorbent resin member (first resin member) and a permeable resin member (second resin member) are overlapped. The first wavelength range is detected by irradiating a laser beam having a wavelength of, and detecting the emitted light from the resin member in the first wavelength range and in the second wavelength range different from the first wavelength range. By calculating the temperature of the resin interface based on the value detected in step 2 and the value detected in the second wavelength range, it is possible to reduce the influence of heat radiation that reflects the temperature near the surface of the transparent resin member. An object of the present invention is to provide a temperature measuring device and a temperature measuring method capable of improving the accuracy of temperature measurement at the resin interface.

本発明の請求項1記載の温度測定装置は、第一の樹脂部材と所定の光透過性を有する第二の樹脂部材とが重ね合わせられた樹脂部材に対し前記第二の樹脂部材側から所定の波長のレーザ光を照射するレーザ照射部と、前記樹脂部材からの放射光を第一の波長範囲で検出する第一の検出部と、前記樹脂部材からの放射光を前記第一の波長範囲と波長範囲が異なる第二の波長範囲で検出する第二の検出部と、前記第一の検出部で検出された値と前記第二の検出部で検出された値とに基づいて前記第一の樹脂部材と前記第二の樹脂部材との界面の温度を算出する演算部と、を備えることを特徴とする。   According to a first aspect of the present invention, there is provided the temperature measuring apparatus according to the present invention, wherein the first resin member and the second resin member having a predetermined light transmittance are overlapped with each other from the second resin member side. A laser irradiation unit that irradiates a laser beam having a wavelength of 1, a first detection unit that detects radiation light from the resin member in a first wavelength range, and radiation light from the resin member in the first wavelength range Based on a second detection unit for detecting in a second wavelength range having a different wavelength range, a value detected by the first detection unit, and a value detected by the second detection unit And an arithmetic unit that calculates the temperature of the interface between the resin member and the second resin member.

また、本発明の請求項2記載の温度測定装置は、請求項1記載の温度測定装置であって、前記樹脂部材からの放射光を前記第一の波長範囲の放射光と前記第二の波長範囲の放射光とに分岐して前記第一の検出部と前記第二の検出部へ入射させる光学部を備えることを特徴とする。   Moreover, the temperature measuring device according to claim 2 of the present invention is the temperature measuring device according to claim 1, wherein the radiated light from the resin member is radiated in the first wavelength range and the second wavelength. An optical unit that branches into a range of emitted light and enters the first detection unit and the second detection unit is provided.

また、本発明の請求項3記載の温度測定装置は、請求項1もしくは2のいずれかに記載の温度測定装置であって、前記第二の波長範囲の下限値は、前記第一の波長範囲の上限値より大きいことを特徴とする。   The temperature measuring device according to claim 3 of the present invention is the temperature measuring device according to claim 1 or 2, wherein the lower limit of the second wavelength range is the first wavelength range. It is characterized by being larger than the upper limit value.

また、本発明の請求項4記載の温度測定装置は、請求項3記載の温度測定装置であって、前記第一の波長範囲は、900nm〜2600nmであり、前記第二の波長範囲は、3000nm〜14000nmであることを特徴とする。   Moreover, the temperature measuring device according to claim 4 of the present invention is the temperature measuring device according to claim 3, wherein the first wavelength range is 900 nm to 2600 nm, and the second wavelength range is 3000 nm. It is ˜14000 nm.

また、本発明の請求項5記載の温度測定方法は、第一の樹脂部材と所定の光透過性を有する第二の樹脂部材とが重ね合わせられた樹脂部材に対し前記第二の樹脂部材側から所定の波長のレーザ光を照射し、前記樹脂部材からの放射光を第一の波長範囲で検出するとともに、前記樹脂部材からの放射光を前記第一の波長範囲と波長範囲が異なる第二の波長範囲で検出し、前記第一の波長範囲で検出された値と前記第二の波長範囲で検出された値とに基づいて前記第一の樹脂部材と前記第二の樹脂部材との界面の温度を算出する、ことを特徴とする。   According to a fifth aspect of the present invention, there is provided the temperature measurement method according to the second resin member side with respect to the resin member in which the first resin member and the second resin member having a predetermined light transmittance are overlapped. And irradiating laser light of a predetermined wavelength from the resin member to detect the radiated light from the resin member in a first wavelength range, and the radiated light from the resin member is different from the first wavelength range in the second wavelength range. Of the first resin member and the second resin member based on the value detected in the first wavelength range and the value detected in the second wavelength range. The temperature is calculated.

また、本発明の請求項6記載の温度測定方法は、請求項5記載の温度測定方法であって、前記第二の波長範囲の下限値は、前記第一の波長範囲の上限値より大きいことを特徴とする。   The temperature measuring method according to claim 6 of the present invention is the temperature measuring method according to claim 5, wherein the lower limit value of the second wavelength range is larger than the upper limit value of the first wavelength range. It is characterized by.

また、本発明の請求項7記載の温度測定方法は、請求項5もしくは6のいずれかに記載の温度測定方法であって、前記レーザ光を複数回に分けて照射し、前記樹脂部材からの放射光の検出を前記レーザ光の照射を停止している際に行うことを特徴とする。   Moreover, the temperature measuring method according to claim 7 of the present invention is the temperature measuring method according to claim 5 or 6, wherein the laser beam is irradiated in a plurality of times, and the laser beam is emitted from the resin member. The detection of the emitted light is performed when the irradiation of the laser beam is stopped.

また、本発明の請求項8記載の温度測定方法は、請求項7記載の温度測定方法であって、前記レーザ光の照射を停止している期間が10μs以上であることを特徴とする。   The temperature measuring method according to claim 8 of the present invention is the temperature measuring method according to claim 7, characterized in that the period during which the laser beam irradiation is stopped is 10 μs or longer.

本発明によれば、レーザ光照射側の第二の樹脂部材表面近傍の温度を反映した熱輻射光の影響を軽減することができ、樹脂界面の温度測定精度の向上を図ることができる。   According to the present invention, it is possible to reduce the influence of heat radiation reflecting the temperature in the vicinity of the surface of the second resin member on the laser beam irradiation side, and to improve the temperature measurement accuracy at the resin interface.

以下、図面を参照して、本発明の実施の形態に係る温度測定装置、および温度測定方法について説明する。本実施の形態に係る温度測定装置、および温度測定方法は、吸収性樹脂部材(第一の樹脂部材)と所定の光透過性を有する透過性樹脂部材(第二の樹脂部材)とが重ね合わせられた樹脂部材に対し透過性樹脂部材側から所定の一定波長のレーザ光を照射して、吸収性樹脂部材と透過性樹脂部材を重ね合わせた界面(樹脂界面)を溶融し、樹脂部材同士をレーザ溶着するときの樹脂界面の温度を測定する装置、および方法である。   Hereinafter, a temperature measuring device and a temperature measuring method according to embodiments of the present invention will be described with reference to the drawings. In the temperature measurement device and the temperature measurement method according to the present embodiment, an absorbent resin member (first resin member) and a transparent resin member (second resin member) having a predetermined light transmittance are overlapped. The resin member is irradiated with laser light having a predetermined wavelength from the transparent resin member side, and the interface (resin interface) where the absorbent resin member and the transparent resin member are overlapped is melted. An apparatus and method for measuring the temperature of a resin interface during laser welding.

(実施の形態1)
図1は本実施の形態1に係る温度測定装置の概略構成を示す図である。
図1において、レーザ照射部である半導体レーザ装置1は、所定の一定波長のレーザ光(レーザパルス)2を出射する。このレーザ光2は、透過性樹脂部材3と吸収性樹脂部材4とが重ね合わせられた樹脂部材に対し透過性樹脂部材3側から照射され、透過性樹脂部材3と吸収性樹脂部材4をレーザ溶着する。
(Embodiment 1)
FIG. 1 is a diagram showing a schematic configuration of a temperature measuring apparatus according to the first embodiment.
In FIG. 1, a semiconductor laser device 1 as a laser irradiation unit emits laser light (laser pulse) 2 having a predetermined constant wavelength. The laser light 2 is irradiated from the side of the transparent resin member 3 to the resin member in which the transparent resin member 3 and the absorbent resin member 4 are overlapped, and the transparent resin member 3 and the absorbent resin member 4 are lasered. Weld.

一般に、レーザ光の照射側に配置される透過性樹脂部材3には、例えば700nm〜1600nmの波長の光は透過するが700nmより短い波長の光は透過しない着色剤(例えば、オリエント化学工業(株)の商品名“eBIND LTW−8300(PC用)”など)を混入したポリカーボネート等を用いる。ポリカーボネートに代えて、アクリル樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ塩化ビニル、ABS樹脂等の透明な樹脂を用いることもできる。700nm〜1600nmの波長の光を透過するポリプロピレンやポリスチレン等の樹脂を用いる場合もある。これらの透過性樹脂部材は、700nm〜1600nmの波長の光は透過するが700nmより短い波長の光は透過せず、1600nmよりも長い波長の光は吸収してその透過率は小さくなり、2600nm以上の波長の光はほぼ吸収し、3000nm以上の波長の光は全く透過しない、という光透過特性を有する。   Generally, the transparent resin member 3 disposed on the laser beam irradiation side transmits a colorant having a wavelength of, for example, 700 nm to 1600 nm, but does not transmit light having a wavelength shorter than 700 nm (for example, Orient Chemical Industries, Ltd. ), Etc., which is mixed with a product name such as “eBIND LTW-8300 (for PC)”. Instead of polycarbonate, transparent resins such as acrylic resin, polyethylene terephthalate, polybutylene terephthalate, polyvinyl chloride, and ABS resin can also be used. A resin such as polypropylene or polystyrene that transmits light having a wavelength of 700 nm to 1600 nm may be used. These transparent resin members transmit light having a wavelength of 700 nm to 1600 nm, but do not transmit light having a wavelength shorter than 700 nm, absorb light having a wavelength longer than 1600 nm, and reduce its transmittance to be 2600 nm or more. The light transmission characteristic is that the light having the wavelength of substantially absorbs and the light having the wavelength of 3000 nm or more is not transmitted at all.

よって、レーザ光2としては、700nm〜1600nmの波長のものを用いるのが好ましい。ここではレーザ光2の波長が810nmの場合について説明するが、700nm〜1600nmの範囲内であれば他の波長のレーザ光であってもよい。また、半導体レーザを例に説明するがYAGレーザ等の他のレーザ光であってもよい。   Therefore, it is preferable to use a laser beam having a wavelength of 700 nm to 1600 nm. Although the case where the wavelength of the laser beam 2 is 810 nm will be described here, laser beams having other wavelengths may be used as long as they are in the range of 700 nm to 1600 nm. Although a semiconductor laser will be described as an example, other laser light such as a YAG laser may be used.

透過性樹脂部材3の下側に配置する吸収性樹脂部材4には、一般に、700nm〜1600nmの波長の光を吸収するカーボンブラック等の着色剤を混入したポリカーボネート等を用いる。700nm〜1600nmの波長の光を吸収するポリフタルアミドや、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の樹脂を用いる場合もある。   For the absorbent resin member 4 disposed on the lower side of the transmissive resin member 3, generally, polycarbonate or the like mixed with a colorant such as carbon black that absorbs light having a wavelength of 700 nm to 1600 nm is used. A resin such as polyphthalamide that absorbs light having a wavelength of 700 nm to 1600 nm, polyethylene terephthalate, or polybutylene terephthalate may be used.

照射されたレーザ光2は吸収性樹脂部材4の界面近傍で吸収され、その界面近傍は温度上昇して溶融する。このとき透過性樹脂部材3の界面近傍も吸収性樹脂部材4の温度上昇により加熱され溶融する。その結果、樹脂界面に溶融プール5が発生する。レーザ光2の出射を停止すると、溶融プール5の温度が低下し、固化して透過性樹脂部材3と吸収性樹脂部材4は溶着する。   The irradiated laser beam 2 is absorbed in the vicinity of the interface of the absorbent resin member 4, and the vicinity of the interface rises in temperature and melts. At this time, the vicinity of the interface of the permeable resin member 3 is also heated and melted by the temperature increase of the absorbent resin member 4. As a result, a molten pool 5 is generated at the resin interface. When the emission of the laser beam 2 is stopped, the temperature of the molten pool 5 is lowered and solidified, and the permeable resin member 3 and the absorbent resin member 4 are welded.

このレーザ溶着の過程において、樹脂界面近傍の温度上昇とともに樹脂界面近傍から熱輻射光6が放射され、溶融プール5が形成されるとその放射強度は強くなる。また、レーザ光2は透過性樹脂部材3の表面近傍でも僅かに吸収され、レーザ光2の照射中、透過性樹脂部材3の表面近傍は温度上昇し、微弱な熱輻射光7が放射される。さらに、樹脂界面近傍の温度が上昇するとその温度が熱伝導して透過性樹脂部材3の表面近傍の温度も上昇し、透過性樹脂部材3の表面近傍から放射される熱輻射光7の放射強度は強くなる。   In the process of laser welding, when the temperature near the resin interface rises, the heat radiation 6 is emitted from the vicinity of the resin interface, and when the molten pool 5 is formed, the radiation intensity becomes strong. Further, the laser beam 2 is slightly absorbed even near the surface of the transmissive resin member 3, and during irradiation with the laser beam 2, the temperature near the surface of the transmissive resin member 3 rises and weak heat radiation light 7 is emitted. . Further, when the temperature in the vicinity of the resin interface rises, the temperature conducts and the temperature in the vicinity of the surface of the transparent resin member 3 also increases, and the radiation intensity of the heat radiation 7 emitted from the vicinity of the surface of the transparent resin member 3. Become stronger.

通常、樹脂溶着で用いられる温度範囲は150〜500°Cであり、900nm〜14000nmの波長の熱輻射光が放射されるが、上記した透過性樹脂部材3の光透過特性により、樹脂界面近傍から放射される2600nm以上の波長の熱輻射光はその殆どが透過性樹脂部材3に吸収される。よって、樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6の波長はほぼ900nm〜2600nmとなる。   Usually, the temperature range used for resin welding is 150 to 500 ° C., and heat radiation light having a wavelength of 900 nm to 14000 nm is emitted, but due to the light transmission characteristics of the transparent resin member 3 described above, from the vicinity of the resin interface. Most of the emitted heat radiation having a wavelength of 2600 nm or more is absorbed by the transparent resin member 3. Therefore, the wavelength of the heat radiation 6 radiated from the vicinity of the resin interface and transmitted through the transparent resin member 3 is approximately 900 nm to 2600 nm.

また、本実施の形態1ではレーザ光としてレーザパルス(半導体レーザ)を使用しているため、レーザ光の照射(ON)と照射停止(OFF)が一定周波数で繰り返される。透過性樹脂部材3の表面は雰囲気である空気中へと熱が放出される熱的な非平衡状態にあるので、レーザ光の照射中に上昇した表面近傍の温度は照射停止中に下降し、表面近傍の温度はレーザパルスの周波数に従う周波数で常に変化する。そのため、熱輻射光7の放射強度も高周波数で常に変化する。   In the first embodiment, since a laser pulse (semiconductor laser) is used as the laser beam, the laser beam irradiation (ON) and the irradiation stop (OFF) are repeated at a constant frequency. Since the surface of the transparent resin member 3 is in a thermal non-equilibrium state in which heat is released into the atmosphere air, the temperature in the vicinity of the surface that has risen during the irradiation of the laser light falls while the irradiation is stopped, The temperature near the surface always changes at a frequency according to the frequency of the laser pulse. Therefore, the radiation intensity of the heat radiation light 7 always changes at a high frequency.

第一の検出部である第1の光検出部8は、所定の波長範囲(第一の波長範囲)の光に対して有効感度を持ち、樹脂部材からの放射光(透過性樹脂部材3の表面近傍から放射される熱輻射光7および樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6)を検出して、その検出した熱輻射光の放射強度を基に検出信号を生成する。   The first light detection unit 8 that is the first detection unit has effective sensitivity to light in a predetermined wavelength range (first wavelength range), and radiated light from the resin member (of the transparent resin member 3). The thermal radiation light 7 radiated from the vicinity of the surface and the thermal radiation light 6) radiated from the vicinity of the resin interface and transmitted through the transparent resin member 3) are detected, and a detection signal is generated based on the radiation intensity of the detected thermal radiation light. Generate.

具体的には、上記したように樹脂界面近傍から放射される2600nm以上の波長の熱輻射光はその殆どが透過性樹脂部材3により吸収されるので、第1の光検出部8の検出波長範囲の上限値(第一の波長範囲の上限値)は2600nmにする。また、上記したように樹脂溶着では900nm〜14000nmの波長の熱輻射光が放射されるので、第1の光検出部8の検出波長範囲の下限値(第一の波長範囲の下限値)は900nmにする。これにより、第1の光検出部8は、900nm〜2600nmの波長の熱輻射光6、7を検出することができる。   Specifically, as described above, most of the heat radiation light having a wavelength of 2600 nm or more emitted from the vicinity of the resin interface is absorbed by the transparent resin member 3, so that the detection wavelength range of the first light detection unit 8 is detected. Is set to 2600 nm (the upper limit of the first wavelength range). Further, as described above, since heat radiation with a wavelength of 900 nm to 14000 nm is emitted in the resin welding, the lower limit value of the detection wavelength range of the first light detection unit 8 (the lower limit value of the first wavelength range) is 900 nm. To. Thereby, the 1st photon detection part 8 can detect the thermal radiation lights 6 and 7 of a wavelength of 900 nm-2600 nm.

この第1の光検出部8が具備する検出素子としては、例えば900nm〜2600nmの波長の光に対して有効感度を有するInGaAsフォトダイオード等を用いる。検出素子は、この波長範囲内の光に対して有効感度を有するものであれば、例えばPbS光導電素子やPbSe光導電素子等の他の素子を用いても構わない。   For example, an InGaAs photodiode having effective sensitivity to light having a wavelength of 900 nm to 2600 nm is used as the detection element included in the first light detection unit 8. Any other element such as a PbS photoconductive element or a PbSe photoconductive element may be used as long as the detection element has an effective sensitivity to light within this wavelength range.

第二の検出部である第2の光検出部9は、第1の光検出部8の検出波長範囲とは異なる波長範囲(第二の波長範囲)の光に対して有効感度を持ち、樹脂部材からの放射光を検出して、その検出した熱輻射光の放射強度を基に検出信号を生成する。ここでは、第1の光検出部8の検出波長範囲(第一の波長範囲)の上限値より下限値が大きい波長範囲の光に対して有効感度を持ち、透過性樹脂部材3の表面近傍から放射される熱輻射光7のみを検出するようにする。   The second light detection unit 9 as the second detection unit has effective sensitivity to light in a wavelength range (second wavelength range) different from the detection wavelength range of the first light detection unit 8, and is a resin. Radiated light from the member is detected, and a detection signal is generated based on the detected radiation intensity of the heat radiation light. Here, it has effective sensitivity with respect to light in a wavelength range whose lower limit value is larger than the upper limit value of the detection wavelength range (first wavelength range) of the first light detection unit 8, and from near the surface of the transparent resin member 3. Only the emitted heat radiation light 7 is detected.

具体的には、上記したように透過性樹脂部材3が3000nm以上の波長の光を完全に透過しないので、第2の光検出部9の検出波長範囲の下限値(第二の波長範囲の下限値)は3000nmにする。これにより、第2の光検出部9は、樹脂界面近傍からの熱輻射光の影響を受けない。また、上記したように樹脂溶着では900nm〜14000nmの波長の熱輻射光が放射されるので、第2の光検出部9の検出波長範囲の上限値(第二の波長範囲の上限値)は14000nmにする。これにより、第2の光検出部9は、3000nm〜14000nmの波長の熱輻射光7のみを検出することができる。   Specifically, as described above, since the transparent resin member 3 does not completely transmit light having a wavelength of 3000 nm or more, the lower limit value of the detection wavelength range of the second light detection unit 9 (the lower limit of the second wavelength range). Value) is 3000 nm. Thereby, the 2nd light detection part 9 is not received by the influence of the heat radiation light from the resin interface vicinity. In addition, as described above, since heat radiation with a wavelength of 900 nm to 14000 nm is emitted in the resin welding, the upper limit value of the detection wavelength range of the second light detection unit 9 (the upper limit value of the second wavelength range) is 14000 nm. To. Thereby, the 2nd light detection part 9 can detect only the thermal radiation light 7 of a wavelength of 3000 nm-14000 nm.

この第2の光検出部9が具備する検出素子としては、例えば3000nm〜14000nmの波長の光に対して有効感度を有するサーモパイル等を用いる。検出素子は、この波長範囲内の光に対して有効感度を有するものであれば、例えば焦電素子や、ボロメータ、CdHgTe光導電素子等の他の素子を用いても構わない。   For example, a thermopile having effective sensitivity to light having a wavelength of 3000 nm to 14000 nm is used as the detection element included in the second light detection unit 9. The detection element may be another element such as a pyroelectric element, a bolometer, or a CdHgTe photoconductive element as long as it has effective sensitivity to light within this wavelength range.

なお、半導体レーザ装置から出射されるレーザ光には、発振波長に拘わらず1300nm〜2100nmの波長の微弱な光(ノイズ光)が混在するので、レーザ照射部として半導体レーザ装置を用いる場合には、レーザ照射部の前方に、レーザ光から1300nm〜2100nmの波長の光を除くフィルタ等の光学素子を設けるようにしてもよい。また、樹脂部材によるレーザ光の反射光の影響を考慮して、第1および第2の光検出部8、9の前方に、レーザ光の発振波長の光を遮断するフィルタ等の光学素子を設けるようにしてもよい。また、無論、半導体レーザ装置1の前方や第1および第2の光検出部8、9の前方に、集光レンズ等の光学素子を設けても構わない。   Since the laser light emitted from the semiconductor laser device includes weak light (noise light) having a wavelength of 1300 nm to 2100 nm regardless of the oscillation wavelength, when a semiconductor laser device is used as a laser irradiation unit, An optical element such as a filter that removes light having a wavelength of 1300 nm to 2100 nm from the laser light may be provided in front of the laser irradiation unit. Further, in consideration of the influence of the reflected light of the laser beam from the resin member, an optical element such as a filter for blocking the light having the oscillation wavelength of the laser beam is provided in front of the first and second light detection units 8 and 9. You may do it. Of course, an optical element such as a condensing lens may be provided in front of the semiconductor laser device 1 or in front of the first and second light detection units 8 and 9.

第1および第2の光検出部8、9で検出された熱輻射光は検出素子で電流(検出信号)に変換され、演算部10へ伝送される。演算部10は第1および第2の光検出部8、9からの検出信号の値に基づいて樹脂界面の温度を算出する。具体的には、演算部10は、先ずそれぞれの電流を増幅した後、電流の大きさを電圧の高さとして認識する。次に第1の光検出部8で検出した熱輻射光を基に得た電圧信号から第2の光検出部9で検出した熱輻射光を基に得た電圧信号を差し引いたものを樹脂界面(溶融プール)の温度に対する電圧値として認識する。検出素子の感度や透過性樹脂部材3の材料特性、板厚、表面形状の影響を考慮して、各電圧信号にそれぞれ所定の値を加えたり掛け合わせたりしてもよい。   The heat radiation light detected by the first and second light detection units 8 and 9 is converted into a current (detection signal) by the detection element and transmitted to the calculation unit 10. The calculation unit 10 calculates the temperature of the resin interface based on the values of the detection signals from the first and second light detection units 8 and 9. Specifically, the arithmetic unit 10 first amplifies each current and then recognizes the magnitude of the current as the voltage height. Next, the voltage signal obtained based on the heat radiation detected by the second light detector 9 from the voltage signal obtained based on the heat radiation detected by the first light detector 8 is subtracted from the resin interface. Recognized as a voltage value with respect to the temperature of the (molten pool). In consideration of the sensitivity of the detection element, the material characteristics of the transparent resin member 3, the plate thickness, and the surface shape, a predetermined value may be added to or multiplied by each voltage signal.

図4を用いて説明した従来の温度測定装置により測定した温度と、本実施の形態1に係る温度測定装置により測定した温度を比較すると、本実施の形態1に係る温度測定装置により測定した温度の方が低く、実温度に近かった。この理由としては、従来の装置では、透過性樹脂部材の表面近傍から放射される熱輻射光も同時に検出して温度を測定するので、測定温度が実温度よりも高くなるのに対し、本実施の形態1に係る温度測定装置では、樹脂界面近傍と透過性樹脂部材の表面近傍から放射される熱輻射光を同時に検出して得た電圧信号から、透過性樹脂部材の表面近傍から放射される熱輻射光のみを検出して得た電圧信号を差し引き、その差し引いた電圧信号を樹脂界面の温度に対する電圧値として認識するためである。   When the temperature measured by the conventional temperature measuring apparatus described with reference to FIG. 4 is compared with the temperature measured by the temperature measuring apparatus according to the first embodiment, the temperature measured by the temperature measuring apparatus according to the first embodiment. Was lower and closer to the actual temperature. The reason for this is that, in the conventional apparatus, the temperature is measured by simultaneously detecting the heat radiation emitted from the vicinity of the surface of the transparent resin member, so that the measured temperature becomes higher than the actual temperature. In the temperature measurement device according to the first embodiment, the voltage signal obtained by simultaneously detecting the heat radiation emitted from the vicinity of the resin interface and the surface of the transparent resin member is emitted from the vicinity of the surface of the transparent resin member. This is because a voltage signal obtained by detecting only heat radiation light is subtracted and the subtracted voltage signal is recognized as a voltage value with respect to the temperature of the resin interface.

また、本実施の形態1に係る温度測定装置により測定した温度の方が、高周波数で繰り返される温度変化が小さく安定していた。この理由としては、従来の装置では、上記したように放射強度が高周波数で常に変化する透過性樹脂部材の表面近傍から放射される熱輻射光も同時に検出して温度を測定するのに対し、本実施の形態1に係る温度測定装置では、樹脂界面近傍と透過性樹脂部材の表面近傍から放射される熱輻射光を同時に検出して得た電圧信号から、透過性樹脂部材の表面近傍から放射される熱輻射光のみを検出して得た電圧信号を差し引くためである。   In addition, the temperature measured by the temperature measuring apparatus according to the first embodiment was more stable with a small temperature change repeated at a high frequency. The reason for this is that, in the conventional apparatus, as described above, the heat radiation emitted from the vicinity of the surface of the transparent resin member whose radiation intensity constantly changes at a high frequency is also detected at the same time, and the temperature is measured. In the temperature measurement device according to the first embodiment, radiation from the vicinity of the surface of the transparent resin member is performed from the voltage signal obtained by simultaneously detecting the heat radiation emitted from the vicinity of the resin interface and the vicinity of the surface of the transparent resin member. This is because the voltage signal obtained by detecting only the heat radiation light to be subtracted is subtracted.

以上のように、本実施の形態1によれば、透過性樹脂部材の表面近傍の温度を反映した熱輻射光の影響を軽減することができ、樹脂界面の温度測定精度の向上を図ることができる。また、レーザ照射部が半導体レーザ装置などのレーザパルスを出射する装置であっても、レーザ溶着中に刻々と変化する透過性樹脂部材の表面近傍の温度を反映した熱輻射光の影響を軽減することができ、高周波数で繰り返される温度変化が小さく安定した温度測定が可能となり、樹脂界面の温度測定精度の向上を図ることができる。   As described above, according to the first embodiment, it is possible to reduce the influence of heat radiation light reflecting the temperature near the surface of the transparent resin member, and to improve the temperature measurement accuracy at the resin interface. it can. Even if the laser irradiation unit emits a laser pulse such as a semiconductor laser device, the influence of thermal radiation reflecting the temperature near the surface of the transparent resin member that changes every moment during laser welding is reduced. Therefore, the temperature change repeated at a high frequency is small and stable temperature measurement is possible, and the temperature measurement accuracy at the resin interface can be improved.

なお、本実施の形態1では、700nm〜1600nmの波長の光を透過する透過性樹脂部材と700nm〜1600nmの波長の光を吸収する吸収性樹脂部材を重ね合わせた場合について説明したが、界面部分に700nm〜1600nmの波長の光を吸収する吸収剤(例えば、カーボンブラックを混入したインク等)を塗布した場合や、界面に吸収剤フィルム(例えば、カーボンブラックを混入したポリエチレンフィルム等)を挿入した場合でも同様の効果が得られる。この場合、少なくとも上側を透過性樹脂部材とすればよく、下側の樹脂部材は任意である。   In the first embodiment, the case where the transparent resin member that transmits light with a wavelength of 700 nm to 1600 nm and the absorbent resin member that absorbs light with a wavelength of 700 nm to 1600 nm are overlapped is described. When an absorbent that absorbs light having a wavelength of 700 nm to 1600 nm (for example, ink mixed with carbon black) is applied, or an absorbent film (for example, polyethylene film mixed with carbon black) is inserted at the interface. Even in the case, the same effect can be obtained. In this case, at least the upper side may be a permeable resin member, and the lower resin member is optional.

また、レーザ光としてレーザパルスを使用したが、CW(連続波)を使用してもよく、レーザパワーを変化させて照射してもよい。また、レーザ光の照射位置は固定した位置に限らず、レーザ光と対象物とを相対的に移動させてレーザ光の照射位置を可変にしてもよい。   Further, although the laser pulse is used as the laser light, CW (continuous wave) may be used, and irradiation may be performed while changing the laser power. The irradiation position of the laser beam is not limited to a fixed position, and the irradiation position of the laser beam may be made variable by relatively moving the laser beam and the object.

(実施の形態2)
図2は本実施の形態2に係る温度測定装置の概略構成を示す図である。なお、前述した実施の形態1で説明した部材と同一の部材には同一符号を付して、説明を省略する。
(Embodiment 2)
FIG. 2 is a diagram showing a schematic configuration of the temperature measuring apparatus according to the second embodiment. In addition, the same code | symbol is attached | subjected to the member same as the member demonstrated in Embodiment 1 mentioned above, and description is abbreviate | omitted.

本実施の形態2に係る温度測定装置は、透過性樹脂部材3の表面近傍から放射される熱輻射光7および樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6を第1と第2の光検出部8、9それぞれの検出波長範囲の光に分岐して、第1と第2の光検出部8、9へそれぞれ入射させる光学部を有する点が、実施の形態1と異なる。具体的には、透過性樹脂部材3の表面近傍から放射される熱輻射光7および樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6を入射して、2600nm以下の波長の熱輻射光(第1の光検出部8の検出波長範囲の上限値以下の熱輻射光)と3000nm以上の波長の熱輻射光(第2の光検出部9の検出波長範囲の下限値以上の熱輻射光)に分岐し、2600nm以下の波長の熱輻射光を第1の光検出部8へ入射させ、3000nm以上の波長の熱輻射光を第2の光検出部9へ入射させる波長分岐フィルタを備える。   The temperature measuring apparatus according to the second embodiment is configured to firstly transmit heat radiation 7 radiated from the vicinity of the surface of the transparent resin member 3 and heat radiation light 6 radiated from the vicinity of the resin interface and transmitted through the transparent resin member 3. The first and second light detection units 8 and 9 have optical units that are branched into light in the detection wavelength ranges and incident on the first and second light detection units 8 and 9, respectively. Different. Specifically, the heat radiation light 7 radiated from the vicinity of the surface of the transmissive resin member 3 and the heat radiation light 6 radiated from the vicinity of the resin interface and transmitted through the transmissive resin member 3 are incident and have a wavelength of 2600 nm or less. Thermal radiation light (heat radiation light below the upper limit value of the detection wavelength range of the first light detection unit 8) and heat radiation light having a wavelength of 3000 nm or more (more than the lower limit value of the detection wavelength range of the second light detection unit 9) A wavelength branching filter that splits heat radiation light having a wavelength of 2600 nm or less into the first light detection unit 8 and makes heat radiation light with a wavelength of 3000 nm or more enter the second light detection unit 9. Is provided.

図2において、透過性樹脂部材3の表面近傍から放射される熱輻射光7および樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6は、同一ユニット内に取り込まれる。   In FIG. 2, the heat radiation light 7 radiated from the vicinity of the surface of the transparent resin member 3 and the heat radiation light 6 radiated from the vicinity of the resin interface and transmitted through the transparent resin member 3 are taken into the same unit.

波長分岐フィルタ11は、入射した熱輻射光のうち2600nm以下の波長の熱輻射光を表面で反射して第1の光検出部8へ入射させる。一方、3000nm以上の波長の熱輻射光については、透過して第2の光検出部9へ入射させる。   The wavelength branching filter 11 reflects the heat radiation light having a wavelength of 2600 nm or less out of the incident heat radiation light on the surface, and causes the first light detection unit 8 to enter. On the other hand, thermal radiation having a wavelength of 3000 nm or more is transmitted and incident on the second light detection unit 9.

波長分岐フィルタ11の材質は、例えば3000nm〜14000nmの波長の光に対して高い透過率を示すZnSe等であり、表面には900nm〜2600nmの波長の光に対する反射率を向上するコーティングを施す。材質については、3000nm以上の波長の光を透過するものであれば、シリコン、サファイア、ゲルマニウム、フッ化カルシウム、合成石英等他の材料を用いても構わない。なお、2600nm以下の波長の光を透過し、3000nm以上の波長の光を反射する構成でも構わない。   The material of the wavelength branching filter 11 is, for example, ZnSe or the like that exhibits high transmittance with respect to light with a wavelength of 3000 nm to 14000 nm, and a coating that improves the reflectance with respect to light with a wavelength of 900 nm to 2600 nm is applied to the surface. As for the material, other materials such as silicon, sapphire, germanium, calcium fluoride, and synthetic quartz may be used as long as they transmit light having a wavelength of 3000 nm or more. In addition, the structure which permeate | transmits the light of a wavelength of 2600 nm or less and reflects the light of a wavelength of 3000 nm or more may be sufficient.

本実施の形態2によれば、樹脂界面近傍からの熱輻射光6と透過性樹脂部材3の表面近傍からの熱輻射光7を同時に装置内に取り込み、装置内に具備した波長分岐フィルタ11によって第1の光検出部8と第2の光検出部9へそれぞれ熱輻射光を入射させることができ、熱輻射光を第1および第2の光検出部へ導く光路がそれぞれ独立した装置と比較して装置を小さくできる。   According to the second embodiment, the heat radiation light 6 from the vicinity of the resin interface and the heat radiation light 7 from the vicinity of the surface of the transparent resin member 3 are simultaneously taken into the apparatus, and the wavelength branching filter 11 provided in the apparatus is used. Compared with a device in which heat radiation light can be incident on the first light detection unit 8 and the second light detection unit 9, respectively, and the optical paths for guiding the heat radiation light to the first and second light detection units are independent from each other. The device can be made smaller.

なお、第1と第2の光検出部8、9の検出波長範囲は重ならないので、例えば900nm〜14000nmの波長の熱輻射光を2分割するハーフミラー等を用いて構成してもよい。この場合、透過性樹脂部材3の表面近傍から放射される熱輻射光7および樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6を反射および透過して、反射または透過された熱輻射光を第1の光検出部8へ入射させ、透過または反射された熱輻射光を第2の光検出部9へ入射させることができる。   In addition, since the detection wavelength ranges of the first and second light detection units 8 and 9 do not overlap with each other, for example, a half mirror that divides heat radiation light having a wavelength of 900 nm to 14000 nm into two may be used. In this case, the heat radiation light 7 radiated from the vicinity of the surface of the transparent resin member 3 and the heat radiation light 6 radiated from the vicinity of the resin interface and transmitted through the transparent resin member 3 are reflected and transmitted to be reflected or transmitted. Thermal radiation light can be incident on the first light detection unit 8, and transmitted or reflected heat radiation light can be incident on the second light detection unit 9.

また、レーザ光の照射位置は固定した位置に限らず、レーザ光と対象物とを相対的に移動させてレーザ光の照射位置を可変にしてもよく、照射位置を可変にする場合には、透過性樹脂部材3の表面近傍から放射される熱輻射光7および樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6を取り込むユニットも移動させる。   Further, the irradiation position of the laser beam is not limited to a fixed position, and the irradiation position of the laser beam may be varied by relatively moving the laser beam and the object. The unit that takes in the heat radiation 7 emitted from the vicinity of the surface of the transparent resin member 3 and the heat radiation 6 emitted from the vicinity of the resin interface and transmitted through the transparent resin member 3 is also moved.

(実施の形態3)
本実施の形態3に係る温度測定装置は、半導体レーザ装置が出射するレーザ光(レーザパルス)のON・OFF(レーザ光の照射と照射停止)に同期して、演算部がレーザ光のOFF期間(照射停止期間)にのみ検出信号を取り込むように構成した点に特徴がある。
(Embodiment 3)
In the temperature measurement device according to the third embodiment, the calculation unit is in the OFF period of the laser light in synchronization with ON / OFF (laser light irradiation and irradiation stop) of the laser light (laser pulse) emitted from the semiconductor laser device. It is characterized in that the detection signal is captured only during (irradiation stop period).

図3(a)に本実施の形態3に係る温度測定装置の概略構成を示し、図3(b)に演算部による検出信号の取り込みタイミングを示す。なお、前述した実施の形態1で説明した部材と同一の部材については同一符号を付して、詳細な説明を省略する。   FIG. 3A shows a schematic configuration of the temperature measuring apparatus according to the third embodiment, and FIG. 3B shows a detection signal capture timing by the calculation unit. Note that the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3において、光検出部12は、透過性樹脂部材3の表面近傍から放射される熱輻射光7および樹脂界面近傍から放射され透過性樹脂部材3を透過した熱輻射光6を検出して、その検出した熱輻射光の放射強度を基に検出信号を生成する。なお、ここでは、光検出部12の検出波長範囲は、900nm〜2600nmとするが、少なくともこの波長範囲を含む波長範囲であればよい。   In FIG. 3, the light detection unit 12 detects thermal radiation 7 emitted from the vicinity of the surface of the transparent resin member 3 and thermal radiation 6 emitted from the vicinity of the resin interface and transmitted through the transparent resin member 3. A detection signal is generated based on the detected radiation intensity of the heat radiation light. Here, the detection wavelength range of the light detection unit 12 is set to 900 nm to 2600 nm, but may be a wavelength range including at least this wavelength range.

また、演算部10は、半導体レーザ装置1からのレーザ光2(レーザパルス)のON・OFFに同期して光検出部12からの検出信号を取り込む機構を有する。具体的には、レーザ光のOFF期間(照射停止期間)にのみ光検出部12からの検出信号を取り込む。   In addition, the arithmetic unit 10 has a mechanism for capturing a detection signal from the light detection unit 12 in synchronization with ON / OFF of the laser beam 2 (laser pulse) from the semiconductor laser device 1. Specifically, the detection signal from the light detection unit 12 is captured only during the laser beam OFF period (irradiation stop period).

このように、レーザパルスのOFF期間にのみ検出信号を取り込むので、透過性樹脂部材3の表面近傍からの熱輻射光の影響を受け難い。すなわち、上記したように、レーザパルスのON期間(照射期間)に上昇した透過性樹脂部材3の表面近傍の温度は、レーザパルスのOFF期間(照射停止期間)に下降する。よって、レーザパルスのOFF期間に透過性樹脂部材3の表面近傍から放射される熱輻射光の放射強度は微弱になるので、レーザパルスのOFF期間にのみ検出信号を取り込むようにすれば、温度測定時のノイズとなる透過性樹脂部材3の表面近傍からの熱輻射光の影響を受け難くすることができ、温度測定の精度を向上させることができる。   Thus, since the detection signal is captured only during the OFF period of the laser pulse, it is difficult to be affected by the heat radiation from the vicinity of the surface of the transmissive resin member 3. That is, as described above, the temperature in the vicinity of the surface of the transparent resin member 3 that has increased during the laser pulse ON period (irradiation period) decreases during the laser pulse OFF period (irradiation stop period). Therefore, since the radiation intensity of the heat radiation emitted from the vicinity of the surface of the transparent resin member 3 during the OFF period of the laser pulse becomes weak, if the detection signal is captured only during the OFF period of the laser pulse, the temperature measurement is performed. It is possible to make it less susceptible to the influence of heat radiation from the vicinity of the surface of the transparent resin member 3 that causes noise, and the accuracy of temperature measurement can be improved.

さらに、レーザ光の照射中に光検出部が検出する光にはレーザ光の反射光も含まれ、正確な温度測定の阻害要因となる。また、半導体レーザ装置を用いた場合、上記したようにレーザ光に1300nm〜2100nmのノイズ光が混在するため、このノイズ光の反射光も温度測定の阻害要因となる。そのため、これらの反射光(外乱光)の影響を除くには、半導体レーザ装置の前方にレーザ光からノイズ光を除く光学素子を設けたり、光検出部の前方にレーザ光の発振波長の光を遮断する光学素子を設けたりする必要があるが、当該温度測定装置によれば、レーザ光の照射停止期間に検出信号を取り込むため、フィルタ等の光学素子を設けることなく反射光の影響を回避でき、装置の低廉化等を図ることが可能となる。   Further, the light detected by the light detection unit during the irradiation of the laser light includes reflected light of the laser light, which becomes an obstacle to accurate temperature measurement. In addition, when a semiconductor laser device is used, noise light of 1300 nm to 2100 nm is mixed in the laser light as described above, and the reflected light of the noise light also becomes an obstacle to temperature measurement. Therefore, in order to eliminate the influence of these reflected lights (disturbance light), an optical element that removes noise light from the laser light is provided in front of the semiconductor laser device, or light of the oscillation wavelength of the laser light is placed in front of the light detection unit. Although it is necessary to provide an optical element that shuts off, the temperature measurement device captures the detection signal during the laser beam irradiation stop period, so that the influence of reflected light can be avoided without providing an optical element such as a filter. Therefore, it is possible to reduce the cost of the apparatus.

また、半導体レーザ装置が出射するレーザパルスは、そのON期間がOFF期間以上となるようにする(レーザ光の照射期間の割合が0.5以上)。すなわち、レーザパルスのON期間の割合が0.5未満になると、照射している時間よりも照射していない時間のほうが長くなり、照射していないときに樹脂界面の温度が大きく低下し、これを繰り返すと短時間での樹脂界面温度の増減幅が大きくなり、接合品質の低下を招くとともに、温度測定の精度も低下する。短時間での樹脂界面温度の増減幅を小さくして溶着を安定させるには、レーザパルスのON期間の割合が0.5以上である必要がある。この割合は高いほど良く、0.9以上がより好ましい。   Further, the laser pulse emitted from the semiconductor laser device is set so that the ON period is equal to or longer than the OFF period (the ratio of the laser light irradiation period is 0.5 or more). That is, when the ratio of the ON period of the laser pulse is less than 0.5, the non-irradiation time becomes longer than the irradiation time, and the temperature at the resin interface greatly decreases when the irradiation is not performed. When the process is repeated, the increase / decrease width of the resin interface temperature in a short time increases, resulting in a decrease in bonding quality and a decrease in temperature measurement accuracy. In order to stabilize the welding by reducing the increase / decrease width of the resin interface temperature in a short time, the ratio of the ON period of the laser pulse needs to be 0.5 or more. The higher this ratio is, the more preferable it is 0.9 or more.

また、OFF期間(照射停止期間)については、10μs以上にする。すなわち、OFF期間にのみ検出信号の取り込みを行うため、取り込んだ信号の立ち上がり時間の影響により、OFF期間が10μsより短くなると、測定温度にばらつきが生じ、温度測定の精度が低下するので、OFF期間は10μs以上にする必要がある。   The OFF period (irradiation stop period) is 10 μs or longer. That is, since the detection signal is captured only during the OFF period, if the OFF period is shorter than 10 μs due to the influence of the rise time of the captured signal, the measurement temperature varies and the temperature measurement accuracy decreases. Needs to be 10 μs or more.

以下、レーザパルスのON期間(照射期間)とOFF期間(照射停止期間)について具体的に説明する。
レーザパルスの照射開始(レーザパルスの立ち上がり)と検出信号の取り込み開始のタイミングを1ms周期(繰り返し周波数が1kHz)とし、レーザパルスのON期間を900μsとし、検出信号の取り込み期間を50μsとした場合、測定温度は、高周波数で繰り返される温度変化が小さく安定しており、温度測定の精度が向上した。これは、レーザ光の照射停止期間では、透過性樹脂部材3の表面近傍の温度が下がり、透過性樹脂部材3の表面近傍から放射される熱輻射光の放射強度レベルが低下し、光検出部12において検出した光が、ほぼ樹脂界面近傍から放射される熱輻射光となったためである。
Hereinafter, the ON period (irradiation period) and the OFF period (irradiation stop period) of the laser pulse will be specifically described.
When the laser pulse irradiation start (laser pulse rise) and detection signal capture start timing are 1 ms cycle (repetition frequency is 1 kHz), the laser pulse ON period is 900 μs, and the detection signal capture period is 50 μs, The measurement temperature is stable with small changes in temperature repeated at a high frequency, improving the accuracy of temperature measurement. This is because the temperature in the vicinity of the surface of the transparent resin member 3 decreases during the laser beam irradiation stop period, the radiation intensity level of the heat radiation emitted from the vicinity of the surface of the transparent resin member 3 decreases, and the light detection unit This is because the light detected at 12 becomes heat radiation light emitted from the vicinity of the resin interface.

次に、周期を1msにし、検出信号の取り込み期間をレーザパルスのOFF期間の半分に固定して、ON期間を50μsから950μsまで変化させたところ、900μs以上では高周波数で繰り返される温度変化が殆ど無く、非常に精度よく温度測定できた。900μsより短くなると徐々に温度変化が大きくなり、500μsより短くなると極端に温度変化が大きくなった。他の周期においても同様な温度測定を行った結果、いずれもレーザ光の照射期間の割合が0.5以上のときに、温度変化が小さく安定した温度測定ができた。   Next, the period was set to 1 ms, the detection signal capture period was fixed to half of the OFF period of the laser pulse, and the ON period was changed from 50 μs to 950 μs. The temperature could be measured with very high accuracy. When the time was shorter than 900 μs, the temperature change gradually increased, and when the time was shorter than 500 μs, the temperature change became extremely large. As a result of performing the same temperature measurement in other periods, the temperature measurement was small and stable when the ratio of the laser beam irradiation period was 0.5 or more.

次に、周期を1msにし、レーザパルスのON期間を900μsに固定して、検出信号の取り込み期間を5μs〜95μsまで変化させたところ、10μs以上において温度変化が小さく安定した温度測定ができた。他の周期においても同様な温度測定を行った結果、いずれも10μs以上のときに、温度変化が小さく安定した温度測定が可能であった。   Next, the period was set to 1 ms, the ON period of the laser pulse was fixed to 900 μs, and the detection signal capture period was changed from 5 μs to 95 μs. As a result, the temperature change was small and stable temperature measurement was achieved at 10 μs or more. As a result of performing the same temperature measurement in other periods, the temperature change was small and stable temperature measurement was possible when all were 10 μs or more.

なお、ここでは、演算部がレーザ光の照射停止期間にのみ検出信号を取り込む場合について説明したが、例えば光検出部の前方にレーザパルスのON・OFFに同期して動作するシャッタ等の光遮蔽手段を設け、レーザ光の照射停止期間に放射される熱輻射光のみを光検出部へ入射する構成としてもよい。   Here, the case where the calculation unit captures the detection signal only during the laser beam irradiation stop period has been described. However, for example, light shielding such as a shutter that operates in synchronization with ON / OFF of the laser pulse in front of the light detection unit. Means may be provided so that only the heat radiation emitted during the laser beam irradiation stop period is incident on the light detection unit.

また、上記したように、樹脂界面近傍(溶融プール)からの熱伝導により透過性樹脂部材の表面近傍の温度が上昇することを考慮すると、樹脂界面近傍の温度が上昇すればするほど透過性樹脂部材の表面近傍の温度も上昇して温度測定時のノイズとなり、正確な温度測定を阻害する。   Further, as described above, considering that the temperature in the vicinity of the surface of the permeable resin member increases due to heat conduction from the vicinity of the resin interface (molten pool), the more the temperature in the vicinity of the resin interface increases, the more the permeable resin. The temperature in the vicinity of the surface of the member also rises and becomes a noise during temperature measurement, which hinders accurate temperature measurement.

そこで、本実施の形態3に係る温度測定装置の構成を前述した実施の形態1に係る温度測定装置に適用してもよい。すなわち、演算部10における検出信号の取り込み動作がレーザパルスに同期して行われるようにする。このようにすれば、測定温度の精度をさらに向上させることができる。   Therefore, the configuration of the temperature measurement device according to the third embodiment may be applied to the temperature measurement device according to the first embodiment described above. That is, the detection signal capturing operation in the arithmetic unit 10 is performed in synchronization with the laser pulse. In this way, the accuracy of the measurement temperature can be further improved.

また、ここでは、レーザ光としてレーザパルスを使用したが、CW(連続波)を使用してもよく、レーザ照射部は、レーザ光を樹脂界面へ照射中に少なくとも1回以上レーザ光の照射を停止する期間(照射停止期間)を設定することが可能であればよい。   In addition, although laser pulses are used here as laser light, CW (continuous wave) may be used, and the laser irradiation unit irradiates the laser light at least once while irradiating the resin interface with the laser light. What is necessary is just to be able to set the period to stop (irradiation stop period).

以上のように、実施の形態1〜3によれば、吸収性樹脂部材と透過性樹脂部材を重ね合わせた樹脂部材をレーザ溶着する際に、樹脂部材からの熱放射光を第一の波長範囲で検出するとともに、第一の波長範囲とは異なる波長範囲の第二の波長範囲で検出することで、樹脂界面近傍の温度を反映した熱輻射光に透過性樹脂部材の表面近傍の温度を反映した熱輻射光が重畳した熱輻射光から、透過性樹脂部材の表面近傍の温度を反映した熱輻射光の影響を軽減することができ、樹脂界面の温度測定精度を向上させることができ、高い樹脂接合品質を安定して供給できるようになる。よって、高品質の樹脂部材を低コストで供給することが可能となり、例えば、携帯電話用カメラ鏡筒等の製造に用いられる樹脂接合装置などに有用である。   As described above, according to the first to third embodiments, when laser welding is performed on a resin member in which an absorbent resin member and a transparent resin member are overlapped, the heat radiation light from the resin member is changed to the first wavelength range. In addition, the temperature near the surface of the transparent resin member is reflected in the heat radiation that reflects the temperature near the resin interface by detecting in the second wavelength range that is different from the first wavelength range. The effect of heat radiation reflecting the temperature in the vicinity of the surface of the transparent resin member can be reduced from the heat radiation light superposed on the heat radiation light, and the temperature measurement accuracy at the resin interface can be improved. Resin bonding quality can be supplied stably. Therefore, it is possible to supply a high-quality resin member at a low cost, which is useful for, for example, a resin bonding apparatus used for manufacturing a camera barrel for a mobile phone.

また、実施の形態3によれば、レーザ光を複数回に分けて照射し、レーザ光の照射を停止している際に樹脂部材からの熱輻射光の検出を行うことで、さらに樹脂界面の温度測定精度を向上させることができる。   Further, according to the third embodiment, the laser beam is irradiated in a plurality of times, and the detection of the heat radiation light from the resin member is performed when the laser beam irradiation is stopped. The temperature measurement accuracy can be improved.

本発明にかかる温度測定装置、および温度測定方法は、樹脂部材同士を重ね合わせてレーザ溶着する際の樹脂界面の温度測定精度を向上させることができ、高い樹脂接合品質を安定して供給できるようになり、高品質の樹脂部材を低コストで供給することが可能となり、携帯電話用カメラ鏡筒等の製造に用いられる樹脂接合装置などに有用である。   The temperature measuring device and the temperature measuring method according to the present invention can improve the temperature measurement accuracy of the resin interface when laser members are overlapped and laser welded, and can stably supply high resin bonding quality. Therefore, it becomes possible to supply a high-quality resin member at a low cost, which is useful for a resin bonding apparatus used for manufacturing a camera barrel for a mobile phone or the like.

本発明の実施の形態1に係る温度測定装置の概略構成を示す図The figure which shows schematic structure of the temperature measuring apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る温度測定装置の概略構成を示す図The figure which shows schematic structure of the temperature measuring apparatus which concerns on Embodiment 2 of this invention. (a)は本発明の実施の形態3に係る温度測定装置の概略構成を示す図、(b)は本発明の実施の形態3に係る温度測定装置の演算部による検出信号の取り込みタイミングを示す図(A) is a figure which shows schematic structure of the temperature measuring device which concerns on Embodiment 3 of this invention, (b) shows the capture timing of the detection signal by the calculating part of the temperature measuring device which concerns on Embodiment 3 of this invention. Figure 従来の温度測定装置の概略構成を示す図The figure which shows schematic structure of the conventional temperature measuring device

符号の説明Explanation of symbols

1 半導体レーザ装置
2 レーザ光
3 透過性樹脂部材
4 吸収性樹脂部材
5 溶融プール
6、7 熱輻射光
8 第1の光検出部
9 第2の光検出部
10、16 演算部
11 波長分岐フィルタ
12 光検出部
13 赤外線検出器
14 第1のフィルタ
15 第2のフィルタ

DESCRIPTION OF SYMBOLS 1 Semiconductor laser apparatus 2 Laser beam 3 Transparent resin member 4 Absorbent resin member 5 Molten pool 6, 7 Thermal radiation light 8 1st light detection part 9 2nd light detection part 10, 16 Calculation part 11 Wavelength branch filter 12 Photodetector 13 Infrared detector 14 First filter 15 Second filter

Claims (8)

第一の樹脂部材と所定の光透過性を有する第二の樹脂部材とが重ね合わせられた樹脂部材に対し前記第二の樹脂部材側から所定の波長のレーザ光を照射するレーザ照射部と、
前記樹脂部材からの放射光を第一の波長範囲で検出する第一の検出部と、
前記樹脂部材からの放射光を前記第一の波長範囲と波長範囲が異なる第二の波長範囲で検出する第二の検出部と、
前記第一の検出部で検出された値と前記第二の検出部で検出された値とに基づいて前記第一の樹脂部材と前記第二の樹脂部材との界面の温度を算出する演算部と、
を備えることを特徴とする温度測定装置。
A laser irradiation unit configured to irradiate a laser beam having a predetermined wavelength from the second resin member side with respect to the resin member in which the first resin member and the second resin member having a predetermined light transmittance are superimposed;
A first detection unit for detecting radiation light from the resin member in a first wavelength range;
A second detector for detecting the emitted light from the resin member in a second wavelength range different from the first wavelength range;
An arithmetic unit that calculates the temperature of the interface between the first resin member and the second resin member based on the value detected by the first detection unit and the value detected by the second detection unit When,
A temperature measuring device comprising:
請求項1記載の温度測定装置であって、前記樹脂部材からの放射光を前記第一の波長範囲の放射光と前記第二の波長範囲の放射光とに分岐して前記第一の検出部と前記第二の検出部へ入射させる光学部を備えることを特徴とする温度測定装置。   2. The temperature measuring device according to claim 1, wherein the radiation from the resin member is branched into radiation light in the first wavelength range and radiation light in the second wavelength range, and the first detection unit. And a temperature measurement device comprising an optical unit that is incident on the second detection unit. 前記第二の波長範囲の下限値は、前記第一の波長範囲の上限値より大きいことを特徴とする請求項1もしくは2のいずれかに記載の温度測定装置。   The temperature measurement device according to claim 1, wherein a lower limit value of the second wavelength range is larger than an upper limit value of the first wavelength range. 前記第一の波長範囲は、900nm〜2600nmであり、前記第二の波長範囲は、3000nm〜14000nmであることを特徴とする請求項3記載の温度測定装置。   The temperature measuring apparatus according to claim 3, wherein the first wavelength range is 900 nm to 2600 nm, and the second wavelength range is 3000 nm to 14000 nm. 第一の樹脂部材と所定の光透過性を有する第二の樹脂部材とが重ね合わせられた樹脂部材に対し前記第二の樹脂部材側から所定の波長のレーザ光を照射し、前記樹脂部材からの放射光を第一の波長範囲で検出するとともに、前記樹脂部材からの放射光を前記第一の波長範囲と波長範囲が異なる第二の波長範囲で検出し、前記第一の波長範囲で検出された値と前記第二の波長範囲で検出された値とに基づいて前記第一の樹脂部材と前記第二の樹脂部材との界面の温度を算出する、ことを特徴とする温度測定方法。   A laser beam having a predetermined wavelength is irradiated from the second resin member side to the resin member in which the first resin member and the second resin member having a predetermined light transmittance are overlapped, and from the resin member In the first wavelength range, the emitted light from the resin member is detected in a second wavelength range that is different from the first wavelength range, and is detected in the first wavelength range. A temperature measurement method comprising calculating a temperature of an interface between the first resin member and the second resin member based on the measured value and a value detected in the second wavelength range. 前記第二の波長範囲の下限値は、前記第一の波長範囲の上限値より大きいことを特徴とする請求項5記載の温度測定方法。   The temperature measurement method according to claim 5, wherein a lower limit value of the second wavelength range is larger than an upper limit value of the first wavelength range. 前記レーザ光を複数回に分けて照射し、前記樹脂部材からの放射光の検出を前記レーザ光の照射を停止している際に行うことを特徴とする請求項5もしくは6のいずれかに記載の温度測定方法。   The laser beam is irradiated in a plurality of times, and the detection of the emitted light from the resin member is performed when the irradiation of the laser beam is stopped. Temperature measurement method. 前記レーザ光の照射を停止している期間が10μs以上であることを特徴とする請求項7記載の温度測定方法。

The temperature measurement method according to claim 7, wherein a period during which the laser light irradiation is stopped is 10 μs or more.

JP2005167597A 2005-06-08 2005-06-08 Temperature measuring instrument, and temperature measuring method Pending JP2006343158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167597A JP2006343158A (en) 2005-06-08 2005-06-08 Temperature measuring instrument, and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167597A JP2006343158A (en) 2005-06-08 2005-06-08 Temperature measuring instrument, and temperature measuring method

Publications (1)

Publication Number Publication Date
JP2006343158A true JP2006343158A (en) 2006-12-21

Family

ID=37640235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167597A Pending JP2006343158A (en) 2005-06-08 2005-06-08 Temperature measuring instrument, and temperature measuring method

Country Status (1)

Country Link
JP (1) JP2006343158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628707A (en) * 2015-12-30 2016-06-01 中电环保股份有限公司 Image recognition method for water treatment resin interface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628707A (en) * 2015-12-30 2016-06-01 中电环保股份有限公司 Image recognition method for water treatment resin interface

Similar Documents

Publication Publication Date Title
JP5042013B2 (en) Laser heating device
JP4043859B2 (en) Resin welding apparatus and resin welding method
JP2008520096A5 (en)
JPH01170591A (en) Work processing apparatus
EP3505915B1 (en) Raman spectrum detection apparatus and method based on power of reflected light and image recognition
JP2015152405A5 (en)
JP4825051B2 (en) Laser processing apparatus and laser processing method
JP2016155319A (en) Laser resin deposition method and device
JP2006343158A (en) Temperature measuring instrument, and temperature measuring method
JPH05261576A (en) Device and method for heating
JP2007082608A (en) Sample analysis apparatus
JP2021135232A5 (en)
WO2022181359A1 (en) Laser machining condition determination method and determination device
KR20160019176A (en) Laser welding machine having a temperature control function
JP2715239B2 (en) Method and apparatus for adjusting light intensity of optical system
Pradarutti et al. Terahertz imaging for styrofoam inspection
JP3931817B2 (en) Laser welding method and welding apparatus
JP2003205378A (en) Laser irradiation arc welding equipment
JP2009162659A (en) Three-dimensional shape measuring instrument
JP5020724B2 (en) Resin welding method and resin welding apparatus
JP2004228486A (en) Laser annealing device
US20220324181A1 (en) System for joining thermoplastic workpieces by laser transmission welding
JP7296769B2 (en) Spatter detection device, laser processing device, and method for detecting spatter
JPS63264289A (en) Laser beam welding method
Ding et al. Development of on-line laser power monitoring system