JP4267286B2 - Resin material welding method and resin material welding apparatus - Google Patents

Resin material welding method and resin material welding apparatus Download PDF

Info

Publication number
JP4267286B2
JP4267286B2 JP2002289536A JP2002289536A JP4267286B2 JP 4267286 B2 JP4267286 B2 JP 4267286B2 JP 2002289536 A JP2002289536 A JP 2002289536A JP 2002289536 A JP2002289536 A JP 2002289536A JP 4267286 B2 JP4267286 B2 JP 4267286B2
Authority
JP
Japan
Prior art keywords
resin material
welding
temperature
melted
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002289536A
Other languages
Japanese (ja)
Other versions
JP2004122560A (en
Inventor
秀生 中村
れい子 越田
進 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002289536A priority Critical patent/JP4267286B2/en
Publication of JP2004122560A publication Critical patent/JP2004122560A/en
Application granted granted Critical
Publication of JP4267286B2 publication Critical patent/JP4267286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91231Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin material welding method by which two kinds of resin materials are welded together by laser beam irradiation and thereby a welding state can be judged, and a welding device. <P>SOLUTION: In the resin material welding method by which a transparent resin material 5 which allows transmission of the laser beam 23 is brought into contact with an absorptive resin material 6 which absorbs the laser beam 23 and the transparent resin material 5 and the absorptive resin material 6 are welded together by irradiating them with the laser beam 23 through the transparent resin material 5, a fusion part 7 is formed by thermally fusing a contact area between the transparent resin material 5 and the absorptive resin material 6 through irradiating the materials 5 and 6 with the laser beam 23, and the temperature of the fusion part 7 is detected by a radiation light 31 emitted transmitting through the transparent resin material 5 from the fusion part 7. Consequently, it is judged how well-welded together the transparent resin material 5 and the absorptive resin material 6 are based on the temperature of the fusion part 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光を用いた樹脂材の溶着方法および溶着装置に関し、詳しくは、樹脂材の溶着状態を判断しながら樹脂材をレーザ溶着する樹脂材の溶着方法および溶着装置に関する。
【0002】
【従来の技術】
二種類の樹脂材を接合する方法として、レーザ光を用いた溶着方法が多く用いられている。例えば、レーザ光を透過する透過性樹脂材と、レーザ光を吸収する吸収性樹脂材とを重ね合わせた後、該透過性樹脂材の方向からレーザ光を照射する溶着方法がある(例えば、特許文献1参照。)。この溶着方法では、以下のようにして二種類の樹脂材が溶着される。照射されたレーザ光は、透過性樹脂材を透過し、透過性樹脂材と吸収性樹脂材との合わせ面に到達すると吸収性樹脂材に吸収される。吸収されたレーザ光のエネルギーにより、透過性樹脂材との合わせ面となる吸収性樹脂材の表面が加熱溶融される。吸収性樹脂材の表面で生じた熱は、対向する透過性樹脂材の表面に伝達して、透過性樹脂材も加熱溶融される。透過性樹脂材と吸収性樹脂材とが互いに溶融した状態で圧着されることで両者が溶着される。
【0003】
【特許文献1】
特開昭60−214931号公報
【0004】
【発明が解決しようとする課題】
上記溶着方法で透過性樹脂材と吸収性樹脂材とを溶着させる場合、溶着させる樹脂材の表面に、製造上不可避的なそりやうねり等が生じていることがある。例えば、透過性樹脂材と吸収性樹脂材とを当接させた場合、各樹脂材の当接面にそりやうねりがあると、透過性樹脂材と吸収性樹脂材との間に隙間が生じる。上述したように、レーザ光を用いた溶着方法では、レーザ光の照射により吸収性樹脂材の表面が加熱溶融される。溶着される二種類の樹脂材間に隙間がある場合には、吸収性樹脂材の溶融膨張により隙間が埋められ、吸収性樹脂材と透過性樹脂材とが溶着される。つまり、隙間の分だけ吸収性樹脂材の見かけ密度が低下し、結果的に溶着部の強度が低下することとなる。このように、樹脂材間に隙間がある状態で溶着された場合には、その溶着状態は良好とはいえない。また、二種類の樹脂材の当接面に金属粉や水分等の異物が付着している場合や、レーザ光の照射角度が適切ではない場合には溶着が充分にされ難い。このため、溶着状態は悪くなり、溶着部の強度は低下する。このように、樹脂材の溶着状態と、溶着された樹脂材の強度やシール性とは密接な関係がある。したがって、溶着された樹脂材の溶着状態を把握することは極めて重要となる。
【0005】
本発明は、上記実状に鑑みてなされたものであり、レーザ光を照射して二種類の樹脂材を溶着するとともに、その溶着状態をも判断することのできる樹脂材の溶着方法を提供することを課題とする。また、溶着状態を判断しながら溶着を行うことのできる樹脂材の溶着装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の樹脂材の溶着方法は、レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着方法において、前記レーザ光を照射することにより前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させ溶融部を形成するとともに、該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出し、該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断するものであって、予め、前記透過性樹脂材及び前記吸収性樹脂材間の隙間の大きさと溶着部の強度との関係から、溶着部の強度の許容下限値に対応する隙間の大きさの上限値を設定するとともに、隙間の大きさと溶融部の温度との関係から、隙間の大きさの上限値に対応する溶融部の温度を溶融部温度管理値として設定しておき、検出された前記溶融部の温度と該溶融部温度管理値とを比較することによって溶着状態を判断することを特徴とする。
【0007】
すなわち、本発明の樹脂材の溶着方法は、レーザ光を照射することにより二種類の樹脂材を溶着するとともに、その溶着状態をも判断することができる溶着方法である。本発明者は、樹脂材の溶着状態が何らかの原因で悪くなる場合には、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融されて形成された溶融部の温度が変動するということを見出した。そして、溶融部の温度を検出することで、その温度に基づいて樹脂材の溶着状態を判断することができると考えた。
【0008】
述したように、当接された透過性樹脂材と吸収性樹脂材との間に隙間がある場合には、溶着不良となり易い。樹脂材間に隙間がある場合、レーザ光の吸収により吸収性樹脂材の表面で生じた熱は、対向する透過性樹脂材の表面に伝達し難くなる。このため、隙間のない場合と比較して、吸収性樹脂材の表面温度は高くなる。つまり、樹脂材間に隙間がある場合には、溶融部の温度が高くなる。したがって、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融され形成された溶融部の温度変動を監視することで、樹脂材間の隙間の有無を把握することができ、溶着状態を判断することができる。このように、本発明の樹脂材の溶着方法によれば、溶着される樹脂材の溶着状態の良否を判断しながら、樹脂材を溶着することができる。
【0009】
本発明の樹脂材の溶着装置は、レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着装置であって、前記レーザ光を照射して、前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させて溶融部を形成するレーザ光照射手段と、該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出する温度検出手段と、検出された該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断する溶着状態判断手段とを備え、前記溶着状態判断手段では、予め、前記透過性樹脂材及び前記吸収性樹脂材間の隙間の大きさと溶着部の強度との関係から、溶着部の強度の許容下限値に対応する隙間の大きさの上限値を設定するとともに、隙間の大きさと溶融部の温度との関係から、隙間の大きさの上限値に対応する溶融部の温度を溶融部温度管理値として設定しておき、検出された前記溶融部の温度と該溶融部温度管理値とを比較することによって溶着状態を判断することを特徴とする。
【0010】
本発明の樹脂材の溶着装置は、上記本発明の樹脂材の溶着方法を実施することができる装置である。すなわち、本発明の樹脂材の溶着装置によれば、透過性樹脂材と吸収性樹脂材とを溶着することに加え、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融されて形成された溶融部の温度を検出し、その温度に基づいて樹脂の溶着状態を判断することができる。本発明の樹脂材の溶着装置は、レーザ光照射手段の他に、溶融部の温度を検出する温度検出手段と、透過性樹脂材と吸収性樹脂材との溶着状態を判断する溶着状態判断手段とを備える。つまり、温度検出手段と溶着状態判断手段とを備えるだけで、樹脂材の溶着状態を判断することができるため、簡易かつ低コストで実用的な装置となる。
【0011】
【発明の実施の形態】
以下、本発明の樹脂材の溶着方法および溶着装置の実施の形態について詳しく説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の樹脂材の溶着方法および溶着装置は、下記の実施形態に限定されるものではない。本発明の樹脂材の溶着方法および溶着装置は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
【0012】
〈樹脂材の溶着方法〉
本発明の樹脂材の溶着方法では、レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる。
【0013】
本発明の溶着方法で使用するレーザ光は、その種類が特に限定されるものではない。例えば、半導体レーザ、YAGレーザ、ルビーレーザ、ガラスレーザ等を使用することができる。なかでも、樹脂材への透過性、コスト、メインテナンス、操作の容易性等を考慮した場合には、半導体レーザを使用することが望ましい。また、レーザ光の波長は、溶着する樹脂材の種類に応じて適宜選択すればよい。例えば、透過性樹脂材にナイロン6を、吸収性樹脂材にカーボンブラックを添加したナイロン6を用いて両者を溶着する場合には、レーザ光の波長を800〜1100nm程度とすればよい。レーザ光の出力も、溶着する樹脂材の種類や厚さ等に応じて適宜選択すればよい。
【0014】
溶着される樹脂材の一方である透過性樹脂材は、熱可塑性を有し、レーザ光を透過する樹脂を用いれば、その種類が特に限定されるものではない。例えば、ナイロン6やナイロン6,6等のポリアミド、ポリエチレン、ポリプロピレン、スチレン−アクリロニトリル共重合体、ポリエステル、ポリアセタール、ポリカーボネート、アクリル、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)等を用いることができる。また、必要に応じて上記樹脂にガラス繊維等を添加して強化したものを、あるいは上記樹脂にレーザ光を吸収しない染料等で着色したものを用いてもよい。
【0015】
溶着される樹脂材の他方である吸収性樹脂材は、熱可塑性を有し、レーザ光を吸収する樹脂を用いれば、その種類が特に限定されるものではない。例えば、カーボンブラック等の顔料を添加したナイロン6やナイロン6,6等のポリアミド、また、同じくカーボンブラック等の顔料を添加したポリエチレン、ポリプロピレン、スチレン−アクリロニトリル共重合体、ポリエステル、ポリアセタール、ポリカーボネート、アクリル、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)等を用いることができる。また、必要に応じて上記樹脂にガラス繊維等を添加して強化したものを用いてもよい。
【0016】
本発明の溶着方法では、上記透過性樹脂材と吸収性樹脂材とを当接させ、透過性樹脂材を介して上記レーザ光を照射する。透過性樹脂材および吸収性樹脂材は、溶着する部分が互いに接するように配置されていればよい。例えば、透過性樹脂材および吸収性樹脂材がそれぞれ薄板状の場合には、両者を重ね合わせて配置すればよい。また、レーザ光は、透過性樹脂材と吸収性樹脂材との当接面へ照射される。この場合、透過性樹脂材を介してレーザ光を照射する。例えば、薄板状の透過性樹脂材と吸収性樹脂材とを重ね合わせ、その合わせ面を溶着する場合には、透過性樹脂材の側からレーザ光を照射すればよい。レーザ光の照射角度は、特に限定されるものではない。透過性樹脂材と吸収性樹脂材との当接面に対して垂直方向から照射してもよく、また所定の角度から照射してもよい。
【0017】
上述したように、照射されたレーザ光は、透過性樹脂材を透過し、透過性樹脂材と吸収性樹脂材との当接面に到達すると吸収性樹脂材に吸収される。吸収されたレーザ光のエネルギーにより、吸収性樹脂材の表面が加熱溶融される。吸収性樹脂材の表面で生じた熱は、当接する透過性樹脂材の表面に伝達して、透過性樹脂材も加熱溶融される。このように、本発明の溶着方法では、レーザ光を照射することにより、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融され溶融部が形成される。なお、形成された溶融部は、冷却されることにより溶着部となる。
【0018】
吸収性樹脂材は、照射されたレーザ光を吸収することにより発熱する。そして、発熱した吸収性樹脂材から放射光が放射される。本発明の溶着方法では、溶融部から透過性樹脂材を透過して放射される放射光により溶融部の温度を検出する。つまり、透過性樹脂材と吸収性樹脂材との間に異物が存在しない場合には、吸収性樹脂材の表面の温度が溶融部の温度として検出される。溶融部の温度の検出方法は、放射される放射光から温度を検出するものであれば、特に限定されるものではない。例えば、既に公知の放射温度計等を用いて検出することができる。放射される放射光は様々な波長からなる。また、波長の分布は、レーザ光の種類や溶着する樹脂材の種類等により異なる。したがって、溶融部の温度の検出には、用いるレーザ光や樹脂材に応じて最適な波長を適宜選択すればよい。溶融部の温度を検出するための放射光の波長は、レーザ光の波長と異なることが望ましく、特に、温度を検出する際の精度を考慮した場合には、透過性樹脂材に対する透過率が10%以上であることが望ましい。透過率の測定には、市販の分光度測定器を用いればよい。
【0019】
本発明の溶着方法では、検出された溶融部の温度に基づいて透過性樹脂材と吸収性樹脂材との溶着状態を判断する。溶着状態の判断方法は、特に限定されるものではない。例えば、溶融部の温度の管理値を予め設定しておき、溶着中の溶融部の温度とその管理値とを比較することで、溶着状態を判断すればよい。本発明の溶着方法における溶着状態の判断手法の一例として、溶着不良品を検出する態様を以下説明する。
【0020】
(1)実施形態1:透過性樹脂材と吸収性樹脂材との間の隙間による溶着不良品の検出
図1に、透過性樹脂材と吸収性樹脂材との間に隙間が存在する状態で両者を溶着した様子のモデル図を示す。図1に示すように、溶着対象となる薄板状の透過性樹脂材5と薄板状の吸収性樹脂材6とが当接されている。透過性樹脂材5と吸収性樹脂材6との間には隙間8が存在している。レーザ光23は、透過性樹脂材5側から透過性樹脂材5と吸収性樹脂材6との当接面に照射され、溶融部7が形成されている。また、溶融部7から透過性樹脂材5を透過して放射光31が放射されている。このように、透過性樹脂材と吸収性樹脂材との間に隙間が存在する状態で両者を溶着した場合、隙間の長さや厚み、つまり隙間の大きさが大きい程溶着部の強度は低下すると考えられる。したがって、溶着部の強度の低下を招くような隙間が存在する状態で溶着されたものは、溶着状態が不良であると判断されることが望まれる。この場合、以下のようにして溶着状態を判断すればよい。
【0021】
まず、図2に概念図として示すように、溶着部の強度と隙間の大きさとの関係を求める。そして、溶着部の強度の許容下限値を設定し、上記溶着部の強度と隙間の大きさとの関係から、許容下限値に対応する隙間の大きさの上限値を設定する。一方、図3に概念図として示すように、隙間の大きさと溶着における溶融部の温度との関係を求める。上記隙間の大きさと溶着における溶融部の温度との関係から、隙間の大きさの上限値に対応する溶融部の温度を溶融部温度管理値とする。溶着中の溶融部の温度が溶融部温度管理値を超えた場合には、溶着部の強度の低下を招くような隙間が存在すると推測されるため、溶着状態を不良と判断する。このように、溶融部の温度を検出し、所定の管理値と比較することで、樹脂材間の隙間の有無を判断することができ、溶着不良品を検出することができる。
【0022】
(2)参考形態1:異物の混入等による溶着不良品の検出
図4に、透過性樹脂材と吸収性樹脂材との間に異物が混入した状態で両者を溶着した様子のモデル図を示す。図4に示すように、溶着対象となる薄板状の透過性樹脂材5と薄板状の吸収性樹脂材6とが当接されている。透過性樹脂材5と吸収性樹脂材6との間には異物9が存在する。レーザ光23は、透過性樹脂材5側から透過性樹脂材5と吸収性樹脂材6との当接面に照射され、溶融部7が形成されている。溶融部7から透過性樹脂材5を透過して放射光31が放射されている。このように、透過性樹脂材と吸収性樹脂材との間に異物が存在する場合、異物が存在する部分では吸収性樹脂材にレーザ光が照射され難いため、溶着が不充分となり、溶着部の強度は低下すると考えられる。また、異物が透過性樹脂材の外表面に付着している場合や透過性樹脂材の内部に混入している場合等においても、上記同様に、吸収性樹脂材にレーザ光が照射され難くなるため溶着が不充分となり、溶着部の強度は低下すると考えられる。
【0023】
このように、溶着部の強度の低下を招くような異物が存在する状態で溶着されたものは、溶着状態が不良であると判断されることが望まれる。上述したように、異物が存在する場合には、レーザ光は吸収性樹脂材に到達し難くなり、溶融部の温度は低くなる。一方、炭化物等の異物が透過性樹脂材の外表面に付着した場合には、レーザ光の照射により、吸収性樹脂材に加えて異物が発熱するため、検出される溶融部の温度が高くなる場合もある。したがって、例えば、溶着状態が良好なものの溶着における溶融部の温度範囲を溶融部温度管理範囲と設定し、溶着中の溶融部の温度が溶融部温度管理範囲からはずれた場合には、異物が存在すると推測されるため、溶着状態を不良と判断すればよい。このように、溶融部の温度を検出し、所定の管理値と比較することで、樹脂材における異物の付着および混入の有無を判断することができ、溶着不良品を検出することができる。
【0024】
(3)参考形態2:レーザ光の照射条件に起因した溶着不良品の検出
樹脂材に照射するレーザ光の照射角度が変化した場合、透過性樹脂材を透過するレーザ光の透過距離が変化する。図5および図6に、レーザ光の照射角度を変化させて溶着した場合におけるレーザ光の透過距離をそれぞれ示す。図5と図6とでは、レーザ光の照射角度のみが異なる。図5および図6に示すように、溶着対象となる透過性樹脂材5と吸収性樹脂材6とは当接されている。当接面には、レーザ光23が照射され、溶融部7が形成されている。図5に示すように、レーザ光を当接面に対して垂直方向から照射した場合には、レーザ光の透過距離はAとなる。一方、図6に示すように、レーザ光を当接面に対して斜め方向から照射した場合には、レーザ光の透過距離はBとなる。各々のレーザ光の透過距離を比較すると、Bの方が長くなっている。レーザ光の透過距離が長くなると、それだけ透過性樹脂材によるレーザ光の散乱が多くなり、樹脂材の当接面へ到達するレーザ光のエネルギーが低下する。つまり、吸収性樹脂材に吸収されるレーザ光のエネルギーが低下する。このため、吸収性樹脂材は溶融し難くなり、溶着が不充分となる場合がある。したがって、レーザ光を当接面に対して傾斜させて照射した場合には、垂直方向から照射した場合と比較して、溶着部の強度は低下すると考えられる。
【0025】
また、レーザ光の照射角度が一定であっても、溶着部におけるレーザ光の照射位置が変化することで、レーザ光の透過距離が変化する場合がある。図7および図8に、レーザ光の照射位置を変化させて溶着した場合におけるレーザ光の透過距離をそれぞれ示す。図7と図8とでは、レーザ光の照射位置のみが異なる。図7および図8に示すように、棒状の透過性樹脂材5と棒状の吸収性樹脂材6とが、それぞれの端面を合わせて当接されている。当接面には、レーザ光23が照射され、溶融部7が形成されている。図7に示すように、目的とする溶着部のほぼ中央にレーザ光を照射した場合には、レーザ光の透過距離はCとなる。一方、図8に示すように、溶着部の端部にレーザ光を照射した場合には、レーザ光の透過距離はDとなる。各々のレーザ光の透過距離を比較すると、Dの方が長くなっている。このように、レーザ光の照射位置が変化することで、上記同様に溶着が不充分となる場合がある。この場合にも、溶着部の強度は低下すると考えられる。このように、レーザ光の照射条件が変化することにより溶着が不充分となった場合には、溶着状態が不良であると判断されることが望まれる。
【0026】
上記説明したように、レーザ光の透過距離が長くなる場合には、吸収性樹脂材に吸収されるレーザ光のエネルギーが低下するため、吸収性樹脂材の発熱は小さくなり、溶融部の温度は低くなる。したがって、例えば、溶着状態が良好なものの溶着における溶融部の温度範囲の下限値を溶融部温度管理値と設定し、溶着中の溶融部の温度が溶融部温度管理値よりも低い場合には、レーザ光の照射が不充分であるため、溶着状態を不良と判断すればよい。このように、溶融部の温度を検出し、所定の管理値と比較することで、レーザ光の照射条件に起因した溶着不良品を検出することができる。
【0027】
〈樹脂材の溶着装置〉
本発明の樹脂材の溶着装置は、上記本発明の樹脂材の溶着方法を実施することができる装置であり、上述したように、レーザ光照射手段と温度検出手段と溶着状態判断手段とを備える。ここで、本発明の一実施形態である樹脂材の溶着装置の構成を説明する。図9に本発明の一実施形態である樹脂材の溶着装置の概略を示す。図9に示すように、樹脂材の溶着装置1は、レーザ光照射装置2と、放射温度計3と、溶着状態判断装置4とを備える。
【0028】
レーザ光照射装置2は、本発明の溶着装置におけるレーザ光照射手段として機能するものであり、レーザ光照射ファイバ21とレーザ光照射用ミラー22とからなる。レーザ光照射ファイバ21は、図示しないレーザ源に接続され、レーザ光を案内する。レーザ源はコンピュータ本体41と接続され、コンピュータ本体41によりレーザ光の照射および停止が制御される。レーザ光照射用ミラー22は、レーザ光照射ファイバ21により案内されたレーザ光を反射させ、透過性樹脂材5と吸収性樹脂材6との当接面にレーザ光23を照射する。レーザ光23は、波長940nmの半導体レーザ光であり、その出力は300Wである。
【0029】
ここで、レーザ光23を透過する透過性樹脂材5は、厚さ3mmの薄板状を呈し、ガラス繊維を30重量%含むナイロン6からなる。また、レーザ光23を吸収する吸収性樹脂材6は、厚さ25mmの板状を呈し、ガラス繊維を30重量%含み、カーボンブラックが添加されたナイロン6からなる。なお、レーザ光23が照射されることにより、透過性樹脂材5と吸収性樹脂材6との当接面は加熱溶融され溶融部7が形成される。
【0030】
放射温度計3は、本発明の溶着装置における温度検出手段として機能するものであり、レーザ光照射装置2と一体的に設置され、溶着状態判断装置4に接続されている。放射温度計3は、溶融部7から放射される波長1.8〜2.1μmの放射光31を、0.1msecごとに計測することにより、溶融部7の温度を検出する。なお、計測される放射光31の透過性樹脂材に対する透過率は25%である。
【0031】
溶着状態判断装置4は、本発明の溶着装置における溶着状態判断手段としての機能を有するものであり、コンピュータ本体41とモニタ42とからなる。コンピュータ本体41には、放射温度計3により検出された溶融部7の温度データが入力される。コンピュータ本体41は、入力された溶融部7の温度に基づいて透過性樹脂材5と吸収性樹脂材6との溶着状態を判断する。また、モニタ42には、コンピュータ本体41からの出力データが表示される。
【0032】
次に、上記本発明の一実施形態である樹脂材の溶着装置の動作を説明する。予め、透過性樹脂材5と吸収性樹脂材6とを当接させ、所定の位置に配置しておく。レーザ源からレーザ光照射ファイバ21により案内されたレーザ光23は、レーザ光照射用ミラー22により反射され、透過性樹脂材5側から透過性樹脂材5と吸収性樹脂材6との当接面に照射される。レーザ光23が照射されると、透過性樹脂材5と吸収性樹脂材6との当接面は加熱溶融し、溶融部7が形成される。すると、溶融部7から放射光31が放射され、放射温度計3にて溶融部7の温度が検出される。放射温度計3で検出された温度データは、コンピュータ本体41へ入力される。コンピュータ本体41では、入力された温度データに基づいて透過性樹脂材5と吸収性樹脂材6との溶着状態が判断される。検出された温度データや溶着状態の判断結果はモニタ42に表示される。なお、レーザ光照射装置2は、4m/minの速度で溶着方向(図9中の矢印方向)へ移動し、透過性樹脂材5と吸収性樹脂材6との当接面にレーザ光23が順次照射される。
【0033】
ここで、溶着状態の判断を中心に、上記樹脂材の溶着装置による溶着の流れをフローチャートを用いて説明する。図10に、溶着の流れをフローチャートで示す。図10に示すように、溶着のルーチンが実行されると、ステップ1(図中「S1」と略称する。以下同様。)でレーザ光の23の照射が開始される。次いで、ステップ2にて溶融部7の温度(T)が検出され、ステップ3へ進む。ステップ3では、検出された溶着部7の温度(T)と、予め設定された溶融部温度管理値の上限値(Tu)とが比較される。ここで、T>Tuである場合には、ステップ5へ進む。ステップ5では、不良フラグがONの状態とされステップ6へ進む。一方、T≦Tuである場合には、ステップ4へ進む。ステップ4では、検出された溶着部7の温度(T)と、予め設定された溶融部温度管理値の下限値(Tl)とが比較される。ここで、T<Tlである場合には、ステップ5へ進む。ステップ5では、不良フラグがONの状態とされステップ7へ進む。一方、T≧Tlである場合には、ステップ6へ進む。ステップ6では、溶着を終了するか否かが判断される。ここで、溶着を終了させる場合にはステップ7へ進む。溶着を続行する場合には、ステップ1へ戻り、上記ステップ1〜6のルーチンが繰り返される。ステップ7では、レーザ光の23の照射が停止される。続くステップ8にて、不良フラグがONか否かが判断される。ここで、不良フラグがONとなっていない場合には、ステップ9へ進む。ステップ9では、溶着状態が正常であるという結果をモニタ42に表示する。その後、溶着ルーチンを終了する。一方、不良フラグがONとなっている場合には、ステップ10へ進む。ステップ10では、溶着状態が不良であるという結果をモニタ42に表示する。その後、溶着ルーチンを終了する。溶着状態が不良とされた溶着品は、不良品と判定される。
【0034】
このように、本発明の樹脂材の溶着装置を用いることにより、透過性樹脂材と吸収性樹脂材との溶着状態を随時判断しながら両者を溶着することができる。本実施形態では、レーザ光照射手段となるレーザ光照射装置を移動させて溶着を行う態様を示した。しかし、本発明の樹脂材の溶着装置におけるレーザ光照射手段は、例えば、点溶着を行う場合のように、固定されているものでもよい。
【0035】
【実施例】
上記実施の形態に基づいて、透過性樹脂材と吸収性樹脂材とを溶着した。溶着は、上記実施の形態で説明した本発明の一実施形態である樹脂材の溶着装置を用いて行った。なお、当接した透過性樹脂材と吸収性樹脂材との間には、予め所定の大きさの隙間を形成しておいた。そして、溶着方向における隙間の長さを変更して三回溶着を行った。各々の溶着における溶融部の温度変化を図11に示す。図11に示すように、隙間が存在する部分では、いずれも溶融部の温度は上昇した。そして、溶着方向における隙間の長さが長いほど、溶融部の温度が上昇している時間が長くなった。この結果より、溶融部の温度変化を監視することで、樹脂材間における隙間の有無を把握することができることが確認された。さらに、レーザ照射装置の移動速度から、溶着方向における隙間の長さも算出することができる。また、本実施例では、いずれも隙間が存在する部分で溶融部の温度が250℃を超えた。したがって、例えば、溶融部温度管理値を250℃と設定することにより、本実施例の溶着品を溶着不良品として検出することができる。
【0036】
【発明の効果】
本発明の樹脂材の溶着方法は、レーザ光を照射することにより二種類の樹脂材を溶着するとともに、樹脂材の当接面に形成された溶融部の温度を検出し、その温度に基づいて樹脂材の溶着状態を判断する方法である。樹脂材の溶着状態によって、溶着された樹脂材の強度やシール性は大きく左右される。本発明の樹脂材の溶着方法によれば、樹脂材を溶着すると同時にその溶着状態が把握できるため、溶着不良品の検出に有効となる。
【0037】
本発明の樹脂材の溶着装置は、レーザ光照射手段と温度検出手段と溶着状態判断手段とを備える。本発明の樹脂材の溶着装置によれば、上記本発明の樹脂材の溶着方法を容易に実施することができる。また、レーザ光照射手段の他に、温度検出手段と溶着状態判断手段とを備えるだけで、樹脂材の溶着状態を判断することができるため、簡易かつ低コストで実用的な装置となる。
【図面の簡単な説明】
【図1】 透過性樹脂材と吸収性樹脂材との間に隙間が存在する状態で両者を溶着した様子のモデル図を示す。
【図2】 溶着部の強度と隙間の大きさとの関係を概念的に示す。
【図3】 隙間の大きさと溶着における溶融部の温度との関係を概念的に示す。
【図4】 透過性樹脂材と吸収性樹脂材との間に異物が混入した状態で両者を溶着した様子のモデル図を示す。
【図5】 レーザ光の照射角度を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図6】 レーザ光の照射角度を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図7】 レーザ光の照射位置を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図8】 レーザ光の照射位置を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図9】 本発明の一実施形態である樹脂材の溶着装置の概略を示す。
【図10】 本発明の一実施形態である樹脂材の溶着装置による溶着の流れを示すフローチャートである。
【図11】 溶着における溶融部の温度変化を示す。
【符号の説明】
1:樹脂材の溶着装置
2:レーザ光照射装置
21:レーザ光照射ファイバ 22:レーザ光照射ミラー 23:レーザ光
3:放射温度計
31:放射光
4:溶着状態判断装置
41:コンピュータ本体 42:モニタ
5:透過性樹脂材 6:吸収性樹脂材 7:溶融部 8:隙間 9:異物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin material welding method and welding apparatus using laser light, and more particularly to a resin material welding method and welding apparatus for laser welding a resin material while judging the welding state of the resin material.
[0002]
[Prior art]
As a method for joining two kinds of resin materials, a welding method using laser light is often used. For example, there is a welding method in which a transparent resin material that transmits laser light and an absorbent resin material that absorbs laser light are overlapped, and then laser light is irradiated from the direction of the transparent resin material (for example, a patent) Reference 1). In this welding method, two types of resin materials are welded as follows. The irradiated laser light passes through the transparent resin material and is absorbed by the absorbent resin material when it reaches the mating surface of the transparent resin material and the absorbent resin material. Due to the energy of the absorbed laser light, the surface of the absorptive resin material that becomes the mating surface with the transmissive resin material is heated and melted. The heat generated on the surface of the absorbent resin material is transmitted to the surface of the opposite transparent resin material, and the transparent resin material is also heated and melted. The permeable resin material and the absorptive resin material are welded together by being pressed in a melted state.
[0003]
[Patent Document 1]
JP-A-60-214931
[0004]
[Problems to be solved by the invention]
When the permeable resin material and the absorptive resin material are welded by the above-described welding method, warpage or undulation inevitable in production may occur on the surface of the resin material to be welded. For example, when the permeable resin material and the absorbent resin material are brought into contact with each other, there is a gap between the permeable resin material and the absorbent resin material if there is warpage or undulation on the contact surface of each resin material. . As described above, in the welding method using laser light, the surface of the absorbent resin material is heated and melted by irradiation with laser light. When there is a gap between the two types of resin materials to be welded, the gap is filled by melt expansion of the absorbent resin material, and the absorbent resin material and the permeable resin material are welded. That is, the apparent density of the absorbent resin material is reduced by the gap, and as a result, the strength of the welded portion is reduced. Thus, when it welds in the state with a clearance gap between resin materials, it cannot be said that the welding state is favorable. Further, when foreign matter such as metal powder or moisture adheres to the contact surfaces of the two kinds of resin materials, or when the irradiation angle of the laser beam is not appropriate, it is difficult to achieve sufficient welding. For this reason, a welding state worsens and the intensity | strength of a welding part falls. Thus, there is a close relationship between the welded state of the resin material and the strength and sealability of the welded resin material. Therefore, it is extremely important to grasp the welding state of the welded resin material.
[0005]
This invention is made | formed in view of the said actual condition, and provides the welding method of the resin material which can also judge the welding state while irradiating a laser beam and welding two types of resin materials. Is an issue. It is another object of the present invention to provide a resin material welding apparatus capable of performing welding while judging a welding state.
[0006]
[Means for Solving the Problems]
In the method for welding a resin material according to the present invention, a transparent resin material that transmits laser light and an absorptive resin material that absorbs the laser light are brought into contact with each other, and the laser light is irradiated through the transparent resin material. In the welding method of the resin material for welding the transparent resin material and the absorbent resin material, the contact surface between the transparent resin material and the absorbent resin material is heated by irradiating the laser beam. The molten portion is melted to form a molten portion, and the temperature of the molten portion is detected by radiated light transmitted through the transparent resin material from the molten portion, and based on the temperature of the molten portion, the transparent resin material The welding state between the resin and the absorbent resin material In advance, the upper limit of the size of the gap corresponding to the allowable lower limit value of the strength of the welded portion from the relationship between the size of the gap between the permeable resin material and the absorbent resin material and the strength of the welded portion. In addition to setting a value, from the relationship between the size of the gap and the temperature of the melted part, the temperature of the melted part corresponding to the upper limit value of the size of the gap is set as the melted part temperature control value, and the detected melting The welding state is judged by comparing the temperature of the part and the temperature control value of the molten part It is characterized by that.
[0007]
That is, the resin material welding method according to the present invention is a welding method in which two types of resin materials are welded by irradiating laser light, and the welding state can also be determined. The inventor said that when the welded state of the resin material becomes worse for some reason, the temperature of the melted portion formed by heating and melting the contact surface between the permeable resin material and the absorbent resin material varies. I found out. And it thought that the welding state of the resin material can be judged based on the temperature by detecting the temperature of a fusion | melting part.
[0008]
Up As described above, if there is a gap between the abutting permeable resin material and the absorbent resin material, poor welding is likely to occur. When there is a gap between the resin materials, the heat generated on the surface of the absorbent resin material due to the absorption of the laser beam is difficult to be transmitted to the surface of the opposing transparent resin material. For this reason, the surface temperature of an absorptive resin material becomes high compared with the case where there is no gap. That is, when there is a gap between the resin materials, the temperature of the melted portion increases. Therefore, by monitoring the temperature fluctuation of the melted part formed by heating and melting the contact surface between the permeable resin material and the absorbent resin material, it is possible to grasp the presence or absence of a gap between the resin materials, and the welding state Can judge . This Thus, according to the welding method of the resin material of this invention, a resin material can be welded, judging the quality of the welding state of the resin material to weld.
[0009]
In the resin material welding apparatus of the present invention, a transparent resin material that transmits laser light and an absorbent resin material that absorbs the laser light are brought into contact with each other, and the laser light is irradiated through the transparent resin material. A resin material welding apparatus that welds the permeable resin material and the absorbent resin material to each other, wherein the laser beam is irradiated to contact the permeable resin material and the absorbent resin material. A laser beam irradiating means for forming a melted portion by heating and melting, and a temperature detecting means for detecting the temperature of the melted portion by radiated light emitted from the melted portion through the transparent resin material. A welding state determining means for determining a welding state between the permeable resin material and the absorbent resin material based on the temperature of the melted portion. In the welding state determination means, the size of the gap corresponding to the allowable lower limit value of the strength of the welded portion is determined in advance from the relationship between the size of the gap between the permeable resin material and the absorbent resin material and the strength of the welded portion. The upper limit value of the gap is set, and from the relationship between the size of the gap and the temperature of the molten portion, the temperature of the molten portion corresponding to the upper limit value of the size of the gap is set as the molten portion temperature control value and detected. Further, the welding state is judged by comparing the temperature of the molten part with the temperature control value of the molten part. It is characterized by that.
[0010]
The resin material welding apparatus of the present invention is an apparatus that can carry out the above-described resin material welding method of the present invention. That is, according to the resin material welding apparatus of the present invention, in addition to welding the permeable resin material and the absorbent resin material, the contact surface between the permeable resin material and the absorbent resin material is heated and melted. The temperature of the formed melted part can be detected, and the welded state of the resin can be determined based on the temperature. The resin material welding apparatus according to the present invention includes, in addition to the laser beam irradiation means, a temperature detection means for detecting the temperature of the melting portion, and a welding state determination means for determining the welding state of the permeable resin material and the absorbent resin material. With. That is, it is possible to determine the welding state of the resin material only by providing the temperature detection unit and the welding state determination unit, so that the apparatus is simple and practical at a low cost.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the resin material welding method and the welding apparatus of the present invention will be described in detail below. The embodiment to be described is merely one embodiment, and the resin material welding method and welding apparatus of the present invention are not limited to the following embodiment. The resin material welding method and welding apparatus of the present invention can be implemented in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention.
[0012]
<Method of welding resin material>
In the resin material welding method of the present invention, a transparent resin material that transmits laser light and an absorptive resin material that absorbs the laser light are brought into contact with each other, and the laser light is irradiated through the transparent resin material. Thus, the permeable resin material and the absorbent resin material are welded.
[0013]
The type of laser beam used in the welding method of the present invention is not particularly limited. For example, a semiconductor laser, YAG laser, ruby laser, glass laser, or the like can be used. Among these, it is desirable to use a semiconductor laser in consideration of permeability to a resin material, cost, maintenance, ease of operation, and the like. The wavelength of the laser beam may be appropriately selected according to the type of resin material to be welded. For example, when both are welded using nylon 6 with a transparent resin material and nylon 6 with carbon black added to an absorbent resin material, the wavelength of the laser beam may be about 800 to 1100 nm. The output of the laser beam may be appropriately selected according to the type and thickness of the resin material to be welded.
[0014]
The type of the transmissive resin material that is one of the resin materials to be welded is not particularly limited as long as a resin that has thermoplasticity and transmits laser light is used. For example, polyamide such as nylon 6 or nylon 6,6, polyethylene, polypropylene, styrene-acrylonitrile copolymer, polyester, polyacetal, polycarbonate, acrylic, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS) or the like may be used. it can. Moreover, you may use what strengthened by adding glass fiber etc. to the said resin as needed, or what colored the said resin with the dye etc. which do not absorb a laser beam.
[0015]
The type of the absorbent resin material, which is the other of the resin materials to be welded, is not particularly limited as long as a resin having thermoplasticity and absorbing laser light is used. For example, polyamides such as nylon 6 and nylon 6,6 added with pigments such as carbon black, polyethylene, polypropylene, styrene-acrylonitrile copolymers, polyesters, polyacetals, polycarbonates, acrylics added with pigments such as carbon black. Polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), etc. can be used. Moreover, you may use what strengthened by adding glass fiber etc. to the said resin as needed.
[0016]
In the welding method of the present invention, the transparent resin material and the absorbent resin material are brought into contact with each other, and the laser light is irradiated through the transparent resin material. The permeable resin material and the absorptive resin material may be arranged so that the welded portions are in contact with each other. For example, when each of the permeable resin material and the absorbent resin material is a thin plate, the two may be arranged in an overlapping manner. Further, the laser beam is applied to the contact surface between the transparent resin material and the absorbent resin material. In this case, laser light is irradiated through the transparent resin material. For example, when a thin plate-like transparent resin material and an absorbent resin material are overlapped and the mating surfaces are welded, laser light may be irradiated from the side of the transparent resin material. The irradiation angle of the laser beam is not particularly limited. You may irradiate from the orthogonal | vertical direction with respect to the contact surface of a permeable resin material and an absorptive resin material, and may irradiate from a predetermined angle.
[0017]
As described above, the irradiated laser light passes through the transparent resin material and is absorbed by the absorbent resin material when it reaches the contact surface between the transparent resin material and the absorbent resin material. The surface of the absorbent resin material is heated and melted by the energy of the absorbed laser light. The heat generated on the surface of the absorbent resin material is transmitted to the surface of the permeable resin material in contact therewith, and the permeable resin material is also heated and melted. As described above, in the welding method of the present invention, by irradiating the laser beam, the contact surface between the transparent resin material and the absorbent resin material is heated and melted to form a melted portion. In addition, the formed fusion | melting part turns into a welding part by being cooled.
[0018]
The absorptive resin material generates heat by absorbing the irradiated laser beam. And radiant light is radiated | emitted from the heat-absorbing resin material. In the welding method of the present invention, the temperature of the melted part is detected by the radiated light emitted from the melted part through the transparent resin material. That is, when no foreign substance exists between the permeable resin material and the absorbent resin material, the temperature of the surface of the absorbent resin material is detected as the temperature of the melted portion. The method for detecting the temperature of the melted portion is not particularly limited as long as the temperature is detected from the emitted radiation. For example, it can be detected using a known radiation thermometer or the like. The emitted light is composed of various wavelengths. Further, the wavelength distribution varies depending on the type of laser light, the type of resin material to be welded, and the like. Therefore, an optimal wavelength may be selected as appropriate in accordance with the laser beam or resin material to be used for detecting the temperature of the melted part. The wavelength of the emitted light for detecting the temperature of the melted portion is preferably different from the wavelength of the laser beam. In particular, when the accuracy in detecting the temperature is taken into consideration, the transmittance with respect to the transparent resin material is 10 % Or more is desirable. A commercially available spectrophotometer may be used for measuring the transmittance.
[0019]
In the welding method of the present invention, the welding state between the permeable resin material and the absorbent resin material is determined based on the detected temperature of the melted part. The determination method of a welding state is not specifically limited. For example, a management value for the temperature of the melted part is set in advance, and the welding state may be determined by comparing the temperature of the melted part during welding with the control value. As an example of a technique for determining a welding state in the welding method of the present invention, an aspect in which a defective welding product is detected will be described below.
[0020]
(1) Embodiment 1: Detection of defective welds due to the gap between the permeable resin material and the absorbent resin material
In FIG. 1, the model figure of a mode that both were welded in the state in which a clearance gap exists between a permeable resin material and an absorptive resin material is shown. As shown in FIG. 1, a thin plate-like transparent resin material 5 to be welded and a thin plate-shaped absorbent resin material 6 are in contact with each other. There is a gap 8 between the permeable resin material 5 and the absorbent resin material 6. The laser beam 23 is applied to the contact surface between the transmissive resin material 5 and the absorbent resin material 6 from the transmissive resin material 5 side, so that the melting portion 7 is formed. Further, the radiated light 31 is emitted from the melting part 7 through the transmissive resin material 5. In this way, when both are welded in a state where there is a gap between the permeable resin material and the absorbent resin material, the length and thickness of the gap, that is, the larger the gap size, the lower the strength of the welded portion. Conceivable. Therefore, it is desirable that what is welded in a state where there is a gap that causes a decrease in strength of the welded portion is determined to be poor in the welded state. In this case, the welding state may be determined as follows.
[0021]
First, as shown in a conceptual diagram in FIG. 2, the relationship between the strength of the welded portion and the size of the gap is obtained. Then, an allowable lower limit value of the strength of the welded portion is set, and an upper limit value of the size of the gap corresponding to the allowable lower limit value is set from the relationship between the strength of the welded portion and the size of the gap. On the other hand, as shown in FIG. 3 as a conceptual diagram, the relationship between the size of the gap and the temperature of the melted part in welding is obtained. From the relationship between the size of the gap and the temperature of the melted part in welding, the temperature of the melted part corresponding to the upper limit value of the size of the gap is taken as the melted part temperature control value. If the temperature of the welded part during welding exceeds the melted part temperature control value, it is presumed that there is a gap that causes a decrease in the strength of the welded part, and therefore the welded state is determined to be defective. In this manner, by detecting the temperature of the melted portion and comparing it with a predetermined management value, it is possible to determine the presence or absence of a gap between the resin materials, and it is possible to detect a defective welding product.
[0022]
(2) Reference form 1: Detection of defective welding due to foreign matter
In FIG. 4, the model figure of a mode that both were welded in the state which the foreign material mixed between the permeable resin material and the absorptive resin material is shown. As shown in FIG. 4, a thin plate-like transparent resin material 5 to be welded and a thin plate-shaped absorbent resin material 6 are in contact with each other. Foreign matter 9 exists between the permeable resin material 5 and the absorbent resin material 6. The laser beam 23 is applied to the contact surface between the transmissive resin material 5 and the absorbent resin material 6 from the transmissive resin material 5 side, so that the melting portion 7 is formed. Radiation light 31 is emitted from the melting part 7 through the transparent resin material 5. Thus, when there is a foreign substance between the permeable resin material and the absorbent resin material, it is difficult to irradiate the absorbent resin material with the laser beam in the part where the foreign substance exists, so that the welding becomes insufficient, and the weld part It is considered that the strength of the is reduced. In addition, even when foreign matter is attached to the outer surface of the permeable resin material or mixed inside the permeable resin material, it is difficult to irradiate the absorbent resin material with laser light in the same manner as described above. Therefore, welding is insufficient, and the strength of the welded portion is considered to decrease.
[0023]
Thus, it is desirable that what is welded in a state where there is a foreign matter that causes a decrease in strength of the welded portion is determined to be poor in the welded state. As described above, when foreign matter is present, the laser beam is difficult to reach the absorbent resin material, and the temperature of the melted portion is lowered. On the other hand, when foreign matter such as carbide adheres to the outer surface of the transparent resin material, the temperature of the detected melted portion becomes high because the foreign matter generates heat in addition to the absorbent resin material due to laser light irradiation. In some cases. Therefore, for example, if the temperature range of the melted part during welding is set as the melted part temperature control range even though the welded state is good, and the temperature of the melted part during welding deviates from the melted part temperature control range, there is a foreign object. Then, since it is estimated, what is necessary is just to judge a welding state as defect. In this way, by detecting the temperature of the melted portion and comparing it with a predetermined control value, it is possible to determine the presence or absence of foreign matter adhering to the resin material, and to detect defectively welded products.
[0024]
(3) Reference form 2: Detection of defective welding due to laser light irradiation conditions
When the irradiation angle of the laser light applied to the resin material changes, the transmission distance of the laser light that passes through the transparent resin material changes. FIG. 5 and FIG. 6 show the transmission distance of the laser beam when welding is performed by changing the irradiation angle of the laser beam. 5 and FIG. 6 differ only in the irradiation angle of the laser beam. As shown in FIGS. 5 and 6, the permeable resin material 5 and the absorbent resin material 6 to be welded are in contact with each other. The contact surface is irradiated with a laser beam 23 to form a melted portion 7. As shown in FIG. 5, when the laser beam is irradiated from the direction perpendicular to the contact surface, the transmission distance of the laser beam is A. On the other hand, as shown in FIG. 6, when the laser light is irradiated obliquely with respect to the contact surface, the transmission distance of the laser light is B. Comparing the transmission distances of the respective laser beams, B is longer. As the transmission distance of the laser light becomes longer, the scattering of the laser light by the transmissive resin material increases accordingly, and the energy of the laser light reaching the contact surface of the resin material decreases. That is, the energy of the laser beam absorbed by the absorbent resin material is reduced. For this reason, an absorptive resin material becomes difficult to melt | dissolve and welding may become inadequate. Therefore, it is considered that the intensity of the welded portion is reduced when the laser beam is irradiated while being inclined with respect to the contact surface as compared with the case where the laser beam is irradiated from the vertical direction.
[0025]
Even if the laser beam irradiation angle is constant, the laser light transmission distance may change due to the change of the laser light irradiation position in the welded portion. 7 and 8 show the transmission distance of the laser beam when the laser beam irradiation position is changed and welded. 7 and 8 differ only in the irradiation position of the laser beam. As shown in FIGS. 7 and 8, the rod-shaped permeable resin material 5 and the rod-shaped absorbent resin material 6 are in contact with each other with their end surfaces aligned. The contact surface is irradiated with a laser beam 23 to form a melted portion 7. As shown in FIG. 7, when the laser beam is irradiated almost at the center of the target welded portion, the transmission distance of the laser beam is C. On the other hand, as shown in FIG. 8, when the end of the welded portion is irradiated with laser light, the transmission distance of the laser light is D. Comparing the transmission distances of the respective laser beams, D is longer. As described above, when the laser beam irradiation position is changed, the welding may be insufficient as described above. Also in this case, it is considered that the strength of the welded portion decreases. As described above, when the welding is insufficient due to the change in the irradiation condition of the laser beam, it is desired that the welding state is determined to be defective.
[0026]
As described above, when the transmission distance of the laser light becomes long, the energy of the laser light absorbed by the absorbent resin material decreases, so the heat generation of the absorbent resin material becomes small, and the temperature of the melting part becomes Lower. Therefore, for example, when the welding state is good, the lower limit value of the temperature range of the melted part in welding is set as the melt part temperature control value, and when the temperature of the melted part during welding is lower than the melt part temperature control value, Since the laser beam irradiation is insufficient, the welded state may be determined to be defective. In this manner, a defective weld due to the laser light irradiation condition can be detected by detecting the temperature of the melted portion and comparing it with a predetermined control value.
[0027]
<Resin material welding equipment>
A resin material welding apparatus according to the present invention is an apparatus capable of performing the above-described resin material welding method according to the present invention, and includes a laser beam irradiation unit, a temperature detection unit, and a welding state determination unit as described above. . Here, a configuration of a resin material welding apparatus according to an embodiment of the present invention will be described. FIG. 9 shows an outline of a resin material welding apparatus according to an embodiment of the present invention. As shown in FIG. 9, the resin material welding device 1 includes a laser beam irradiation device 2, a radiation thermometer 3, and a welding state determination device 4.
[0028]
The laser beam irradiation apparatus 2 functions as a laser beam irradiation means in the welding apparatus of the present invention, and includes a laser beam irradiation fiber 21 and a laser beam irradiation mirror 22. The laser light irradiation fiber 21 is connected to a laser source (not shown) and guides the laser light. The laser source is connected to the computer main body 41, and irradiation and stop of the laser beam are controlled by the computer main body 41. The laser light irradiation mirror 22 reflects the laser light guided by the laser light irradiation fiber 21 and irradiates the contact surface between the transmissive resin material 5 and the absorbent resin material 6 with the laser light 23. The laser beam 23 is a semiconductor laser beam having a wavelength of 940 nm, and its output is 300 W.
[0029]
Here, the transparent resin material 5 that transmits the laser beam 23 is a thin plate having a thickness of 3 mm, and is made of nylon 6 containing 30% by weight of glass fiber. Moreover, the absorptive resin material 6 that absorbs the laser beam 23 has a plate shape with a thickness of 25 mm, and is made of nylon 6 containing 30% by weight of glass fiber and added with carbon black. When the laser beam 23 is irradiated, the contact surface between the transmissive resin material 5 and the absorbent resin material 6 is heated and melted to form the melted portion 7.
[0030]
The radiation thermometer 3 functions as temperature detecting means in the welding apparatus of the present invention, and is installed integrally with the laser beam irradiation apparatus 2 and connected to the welding state determination apparatus 4. The radiation thermometer 3 detects the temperature of the melting part 7 by measuring the radiation light 31 having a wavelength of 1.8 to 2.1 μm emitted from the melting part 7 every 0.1 msec. In addition, the transmittance | permeability with respect to the transparent resin material of the radiated light 31 measured is 25%.
[0031]
The welding state determination device 4 has a function as a welding state determination means in the welding device of the present invention, and includes a computer main body 41 and a monitor 42. The computer main body 41 receives temperature data of the melting part 7 detected by the radiation thermometer 3. The computer main body 41 determines the welding state of the permeable resin material 5 and the absorbent resin material 6 based on the input temperature of the melting part 7. Further, output data from the computer main body 41 is displayed on the monitor 42.
[0032]
Next, the operation of the resin material welding apparatus according to an embodiment of the present invention will be described. In advance, the permeable resin material 5 and the absorbent resin material 6 are brought into contact with each other and arranged in a predetermined position. The laser beam 23 guided by the laser beam irradiation fiber 21 from the laser source is reflected by the laser beam irradiation mirror 22, and the contact surface between the transparent resin material 5 and the absorbent resin material 6 from the transparent resin material 5 side. Is irradiated. When the laser beam 23 is irradiated, the contact surface between the transmissive resin material 5 and the absorbent resin material 6 is heated and melted to form the melted portion 7. Then, the radiation 31 is emitted from the melting part 7, and the temperature of the melting part 7 is detected by the radiation thermometer 3. The temperature data detected by the radiation thermometer 3 is input to the computer main body 41. In the computer main body 41, the welding state of the permeable resin material 5 and the absorbent resin material 6 is determined based on the input temperature data. The detected temperature data and the determination result of the welding state are displayed on the monitor 42. The laser beam irradiation device 2 moves in the welding direction (arrow direction in FIG. 9) at a speed of 4 m / min, and the laser beam 23 is applied to the contact surface between the transmissive resin material 5 and the absorbent resin material 6. Irradiated sequentially.
[0033]
Here, focusing on the determination of the welding state, the flow of welding by the resin material welding apparatus will be described using a flowchart. FIG. 10 is a flowchart showing the welding flow. As shown in FIG. 10, when the welding routine is executed, the irradiation of the laser beam 23 is started in step 1 (abbreviated as “S1” in the figure, the same applies hereinafter). Next, the temperature (T) of the melting part 7 is detected in step 2, and the process proceeds to step 3. In step 3, the detected temperature (T) of the welded portion 7 is compared with a preset upper limit value (Tu) of the melted portion temperature management value. If T> Tu, the process proceeds to step 5. In step 5, the defect flag is turned on, and the process proceeds to step 6. On the other hand, if T ≦ Tu, the process proceeds to step 4. In step 4, the detected temperature (T) of the welded portion 7 is compared with a preset lower limit value (Tl) of the melted portion temperature management value. If T <Tl, the process proceeds to step 5. In step 5, the defect flag is turned on and the process proceeds to step 7. On the other hand, if T ≧ T1, the process proceeds to step 6. In step 6, it is determined whether or not to end the welding. Here, when welding is terminated, the process proceeds to step 7. When continuing welding, it returns to step 1 and the routine of said step 1-6 is repeated. In step 7, the irradiation of the laser beam 23 is stopped. In subsequent step 8, it is determined whether or not the defect flag is ON. If the defect flag is not ON, the process proceeds to step 9. In step 9, the result that the welding state is normal is displayed on the monitor 42. Thereafter, the welding routine is terminated. On the other hand, if the defect flag is ON, the process proceeds to step 10. In step 10, the result that the welding state is defective is displayed on the monitor 42. Thereafter, the welding routine is terminated. A welded product in which the welded state is determined to be defective is determined as a defective product.
[0034]
As described above, by using the resin material welding apparatus of the present invention, it is possible to weld both while determining the welding state of the permeable resin material and the absorbent resin material as needed. In the present embodiment, a mode is shown in which welding is performed by moving a laser beam irradiation apparatus serving as a laser beam irradiation unit. However, the laser beam irradiation means in the resin material welding apparatus of the present invention may be fixed as in the case of spot welding, for example.
[0035]
【Example】
Based on the said embodiment, the permeable resin material and the absorptive resin material were welded. The welding was performed using the resin material welding apparatus according to one embodiment of the present invention described in the above embodiment. A gap having a predetermined size was formed in advance between the permeable resin material and the absorbent resin material in contact with each other. Then, welding was performed three times by changing the length of the gap in the welding direction. FIG. 11 shows the temperature change of the melted part in each welding. As shown in FIG. 11, the temperature of the melted portion increased in any portion where there was a gap. And as the length of the gap in the welding direction is longer, the time during which the temperature of the melted portion is increased is longer. From this result, it was confirmed that the presence or absence of a gap between the resin materials can be grasped by monitoring the temperature change of the melted part. Furthermore, the length of the gap in the welding direction can also be calculated from the moving speed of the laser irradiation apparatus. Further, in this example, the temperature of the melted part exceeded 250 ° C. in the part where there was a gap. Therefore, for example, by setting the melt zone temperature control value to 250 ° C., the welded product of the present embodiment can be detected as a poorly welded product.
[0036]
【The invention's effect】
The method for welding a resin material of the present invention welds two types of resin materials by irradiating laser light, detects the temperature of the melted portion formed on the contact surface of the resin material, and based on the temperature This is a method for judging the welding state of the resin material. The strength and sealing performance of the welded resin material are greatly affected by the welded state of the resin material. According to the welding method of the resin material of the present invention, since the welding state can be grasped at the same time as the resin material is welded, it is effective in detecting defective welding.
[0037]
The resin material welding apparatus of the present invention includes a laser beam irradiation unit, a temperature detection unit, and a welding state determination unit. According to the resin material welding apparatus of the present invention, the resin material welding method of the present invention can be easily implemented. In addition to the laser beam irradiating means, it is possible to determine the welding state of the resin material simply by providing the temperature detecting means and the welding state determining means, so that the apparatus is simple, low cost and practical.
[Brief description of the drawings]
FIG. 1 is a model diagram showing a state in which a gap is present between a permeable resin material and an absorptive resin material and both are welded.
FIG. 2 conceptually shows the relationship between the strength of the welded portion and the size of the gap.
FIG. 3 conceptually shows the relationship between the size of the gap and the temperature of the melted part during welding.
FIG. 4 is a model diagram showing a state in which foreign materials are mixed between a permeable resin material and an absorbent resin material and both are welded.
FIG. 5 shows the transmission distance of laser light when welding is performed by changing the irradiation angle of the laser light.
FIG. 6 shows the transmission distance of laser light when welding is performed by changing the irradiation angle of laser light.
FIG. 7 shows the transmission distance of laser light when welding is performed by changing the irradiation position of the laser light.
FIG. 8 shows the transmission distance of laser light when welding is performed by changing the irradiation position of the laser light.
FIG. 9 shows an outline of a resin material welding apparatus according to an embodiment of the present invention.
FIG. 10 is a flowchart showing a flow of welding by a resin material welding apparatus according to an embodiment of the present invention.
FIG. 11 shows the temperature change of the melted part during welding.
[Explanation of symbols]
1: Resin material welding equipment
2: Laser beam irradiation device
21: Laser light irradiation fiber 22: Laser light irradiation mirror 23: Laser light
3: Radiation thermometer
31: Synchrotron radiation
4: Welding state judgment device
41: Computer main unit 42: Monitor
5: Permeable resin material 6: Absorbent resin material 7: Melting part 8: Crevice 9: Foreign matter

Claims (3)

レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着方法において、
前記レーザ光を照射することにより前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させ溶融部を形成するとともに、該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出し、該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断する樹脂材の溶着方法であって、
予め、前記透過性樹脂材及び前記吸収性樹脂材間の隙間の大きさと溶着部の強度との関係から、溶着部の強度の許容下限値に対応する隙間の大きさの上限値を設定するとともに、隙間の大きさと溶融部の温度との関係から、隙間の大きさの上限値に対応する溶融部の温度を溶融部温度管理値として設定しておき、検出された前記溶融部の温度と該溶融部温度管理値とを比較することによって溶着状態を判断する樹脂材の溶着方法
A transparent resin material that transmits laser light and an absorptive resin material that absorbs the laser light are brought into contact with each other, and the transparent resin material and the absorption are irradiated by irradiating the laser light through the transparent resin material. In the welding method of the resin material for welding the conductive resin material,
By irradiating the laser beam, the contact surface between the transparent resin material and the absorbent resin material is heated and melted to form a molten portion, and the molten resin is transmitted through the transparent resin material and emitted. A method of welding a resin material, wherein the temperature of the melted portion is detected by synchrotron radiation, and the welded state between the permeable resin material and the absorbent resin material is determined based on the temperature of the melted portion ,
In advance, from the relationship between the size of the gap between the permeable resin material and the absorbent resin material and the strength of the welded portion, an upper limit value of the size of the gap corresponding to the allowable lower limit value of the strength of the welded portion is set. From the relationship between the size of the gap and the temperature of the melting part, the temperature of the melting part corresponding to the upper limit value of the size of the gap is set as a melting part temperature control value, and the detected temperature of the melting part and the temperature of the melting part A method of welding a resin material, in which a welding state is judged by comparing with a melting part temperature control value .
前記溶融部の温度を検出するための前記放射光の波長は、前記レーザ光の波長と異なる波長であり、前記透過性樹脂材に対する透過率が10%以上である請求項1に記載の樹脂材の溶着方法。  2. The resin material according to claim 1, wherein a wavelength of the emitted light for detecting a temperature of the melted portion is a wavelength different from a wavelength of the laser light, and a transmittance with respect to the transparent resin material is 10% or more. Welding method. レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着装置であって、
前記レーザ光を照射して、前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させて溶融部を形成するレーザ光照射手段と、
該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出する温度検出手段と、
検出された該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断する溶着状態判断手段とを備え、
前記溶着状態判断手段では、予め、前記透過性樹脂材及び前記吸収性樹脂材間の隙間の大きさと溶着部の強度との関係から、溶着部の強度の許容下限値に対応する隙間の大きさの上限値を設定するとともに、隙間の大きさと溶融部の温度との関係から、隙間の大きさの上限値に対応する溶融部の温度を溶融部温度管理値として設定しておき、検出された前記溶融部の温度と該溶融部温度管理値とを比較することによって溶着状態を判断する樹脂材の溶着装置。
A transparent resin material that transmits laser light and an absorptive resin material that absorbs the laser light are brought into contact with each other, and the transparent resin material and the absorption are irradiated by irradiating the laser light through the transparent resin material. A resin material welding apparatus for welding a functional resin material,
A laser beam irradiation means for irradiating the laser beam to heat and melt the contact surface between the transparent resin material and the absorbent resin material;
Temperature detecting means for detecting the temperature of the melted portion by radiated light emitted from the melted portion through the transparent resin material;
A welding state judging means for judging a welding state between the permeable resin material and the absorbent resin material based on the detected temperature of the melted portion ;
In the welding state determination means, the size of the gap corresponding to the allowable lower limit value of the strength of the welded portion in advance from the relationship between the size of the gap between the permeable resin material and the absorbent resin material and the strength of the welded portion. The temperature of the melted part corresponding to the upper limit value of the size of the gap is set as the melted part temperature control value from the relationship between the size of the gap and the temperature of the melted part, and is detected. A resin material welding apparatus for judging a welding state by comparing a temperature of the melting part with a temperature management value of the melting part .
JP2002289536A 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus Expired - Fee Related JP4267286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289536A JP4267286B2 (en) 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289536A JP4267286B2 (en) 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus

Publications (2)

Publication Number Publication Date
JP2004122560A JP2004122560A (en) 2004-04-22
JP4267286B2 true JP4267286B2 (en) 2009-05-27

Family

ID=32281673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289536A Expired - Fee Related JP4267286B2 (en) 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus

Country Status (1)

Country Link
JP (1) JP4267286B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897891B2 (en) * 2005-04-21 2011-03-01 Hewlett-Packard Development Company, L.P. Laser welding system
JP4577103B2 (en) * 2005-06-10 2010-11-10 株式会社デンソー Laser welding quality determination method and apparatus
JP5020724B2 (en) * 2007-07-04 2012-09-05 浜松ホトニクス株式会社 Resin welding method and resin welding apparatus
JP4858454B2 (en) * 2008-01-28 2012-01-18 株式会社デンソー Laser welded part manufacturing method
JP5229091B2 (en) * 2009-04-28 2013-07-03 株式会社ノーリツ Resin welding method and bathroom electrical equipment formed by this method
DE102009049064A1 (en) * 2009-10-12 2011-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for detecting the joining temperature during laser beam welding of thermoplastics
JP6037861B2 (en) * 2013-01-31 2016-12-07 本田技研工業株式会社 Seam welding apparatus and seam welding method
JP6242739B2 (en) * 2013-09-12 2017-12-06 日本特殊陶業株式会社 Manufacturing method and manufacturing apparatus for resin welded body
JP2016159343A (en) * 2015-03-04 2016-09-05 オムロン株式会社 Joint inspection device and joint device, and joint inspection method
WO2020121700A1 (en) * 2018-12-12 2020-06-18 パナソニックIpマネジメント株式会社 Vehicle-mounted device

Also Published As

Publication number Publication date
JP2004122560A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP2004525382A (en) Method for monitoring weld seams in workpieces made of weldable plastic and apparatus for carrying out this method
Coelho et al. High-speed laser welding of plastic films
JP4267286B2 (en) Resin material welding method and resin material welding apparatus
US7651264B2 (en) Laser processing device, laser processing temperature measuring device, laser processing method and laser processing temperature measuring method
Gonçalves et al. Laser welding of thermoplastics: An overview on lasers, materials, processes and quality
JP2006341563A (en) Method for determining acceptability of laser weld, and its device
JPH07185849A (en) Method and laser welding device for effecting process control and/or quality control upon laser butt welding of plate
US20120181250A1 (en) Infrared laser welding of plastic parts with one or more of the parts having a modified surface providing increased absorbtivity to infrared laser light
JP4349075B2 (en) Laser processing method and processing state judgment method
JP3860879B2 (en) Laser processing state detection method and laser processing system
JP2017113789A (en) Laser welding apparatus
Mamuschkin et al. Enabling pyrometry in absorber-free laser transmission welding through pulsed irradiation
JP2007307595A (en) Apparatus and method of laser beam working
US20190202135A1 (en) Method for laser beam plastic welding, and device
JP4805906B2 (en) Method for sealing fiber-based materials
JP2002337236A (en) Method for welding resin member
JP2011240626A (en) Method of deciding welding condition
JP2016155319A (en) Laser resin deposition method and device
US9738063B2 (en) Method and apparatus for manufacturing welded resin article
JP4611620B2 (en) Quality control method in laser welding
JP5878779B2 (en) Laser welding state determination method and laser welding state determination device
Fuhrberg et al. 2.0 μm Laser Transmission Welding: Welding of transparent and opaque polymers with single‐mode Tm‐doped fiber lasers
Jankus et al. Effect of the meltdown on thermoplastic joint produced by quasi-simultaneous laser transmission welding
KR20160094483A (en) Laser welding Method and apparatus for automobile lamp
JP3931817B2 (en) Laser welding method and welding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees