JP3997183B2 - Welding condition inspection method - Google Patents

Welding condition inspection method Download PDF

Info

Publication number
JP3997183B2
JP3997183B2 JP2003175652A JP2003175652A JP3997183B2 JP 3997183 B2 JP3997183 B2 JP 3997183B2 JP 2003175652 A JP2003175652 A JP 2003175652A JP 2003175652 A JP2003175652 A JP 2003175652A JP 3997183 B2 JP3997183 B2 JP 3997183B2
Authority
JP
Japan
Prior art keywords
light
welded
welding
inspection
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003175652A
Other languages
Japanese (ja)
Other versions
JP2005007776A (en
Inventor
誠二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003175652A priority Critical patent/JP3997183B2/en
Publication of JP2005007776A publication Critical patent/JP2005007776A/en
Application granted granted Critical
Publication of JP3997183B2 publication Critical patent/JP3997183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/967Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes
    • B29C66/9672Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes involving special data inputs, e.g. involving barcodes, RFID tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/967Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes
    • B29C66/9674Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes involving special data outputs, e.g. special data display means

Description

【0001】
【発明の属する技術分野】
本発明は、溶着状態検査方法係り、特にレーザ光を用いて溶着物の溶着状態を高精度に検査することができる溶着状態検査方法関する。
【0002】
【従来の技術】
近年、軽量化及び低コスト化を図るため、自動車等における各部品を樹脂化した樹脂成形品が用いられることがある。また、樹脂成形品の高生産性化等の観点より、樹脂成形品を予め複数に分割して成形し、これらの分割成形品を互いに接合して用いられている。
【0003】
一般に樹脂材同士の溶着方法としては、接着剤等による接合が行われていたが、熱による影響で接合が剥がれることがあったため、最近では、レーザ光を用いて樹脂材を過熱溶融させることで接合する方法が利用されている。
【0004】
また、溶着方法として、レーザ光に対して透過性のある透過性樹脂材と、レーザ光に対して吸収性のある吸収性樹脂材とを重ね合わせた後、透過性樹脂材側からレーザ光を照射することにより、透過性樹脂材と吸収性樹脂材との当接面同士を加熱溶融させて両者を一体的に接合するレーザ溶着方法がある(例えば、特許文献1参照。)。
【0005】
また、溶着した溶着物に対して所望の接合ができているかの溶着品質判定を行う場合、作業員が手作業により抜き取り目視検査による品質判定を行っていたため、判定に多大な時間とコストを有していた。これに対応するため、温度センサを設けて溶着前後における被溶着物の近傍の温度差を求め、この温度差に基づいて良否判定を行う溶着判定装置に関する技術がある(例えば、特許文献2参照。)。
【0006】
更に、光源とイメージセンサとを対応付けて設置し、所定の入射角にて試料に入射させ、試料からの反射光の入射面での干渉光強度分布に基づいて、微小領域の膜厚及び表面形状を計測する技術がある(例えば、特許文献3参照。)。
【0007】
これらの技術を利用して検査用光源により接合面に照射した溶着状態を受光して溶着状態を検査する方法が考えられる。
【0008】
【特許文献1】
特開2001−105499号公報
【0009】
【特許文献2】
特開平10−249941号公報
【0010】
【特許文献3】
特開平8−82511号公報
【0011】
【発明が解決しようとする課題】
しかしながら、特許文献2では、溶着装置とは別に温度センサ等の装置構成を付加させる必要があるため、コストが増大になってしまう。また、温度センサを判定装置に溶着前後における被溶着物の近傍の温度を夫々検出する少なくとも2以上の温度センサを設ける必要があり、温度センサからの計測温度から温度差を算出し、算出された温度差から求め、更に、温度差から予め設定した規定値との比較して溶着良否を判定するため、制御が複雑となり効率的に溶着状態の判定(検査)を行っているとは言えなかった。
【0012】
更に、特許文献3の方法を用いた場合、重ね継手により溶着された部位は、表面側の樹脂が透明である場合は、溶着面を目視や検査用光源により溶着状態を検査することは容易である。しかしながら、表面側の樹脂にある程度の色がついていたり検査用光源が暗い場合は、目視や検査用光源による検査は容易ではない。なぜなら、受光部の監視点は検査用光源の照射点に位置付けられ、検査用光源による検査では、接合表面からの反射光と、樹脂内の散乱光の影響により反射光を正確に受光することができないからであり、これらの要因により溶着状態の高精度な検査を行うことができない。
【0013】
本発明は、上述した問題点に鑑みなされたものであり、レーザ光を用いて樹脂からなる溶着された溶着物の溶着状態を高精度に検査することができる溶着状態検査方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本件発明は、以下の特徴を有する課題を解決するための手段を採用している。
【0015】
請求項1に記載された発明は、レーザ発振器から出力されるレーザ光により、被溶着物を溶着し、溶着された部分の溶着状態を検査するための溶着状態検査方法において、前記被溶着物の溶着面に、溶着状態を検査するためのレーザ光を照射する検査用レーザ光照射段階と、前記検査用レーザ光照射段階にて照射されたレーザ光の照射地点から予め設定された距離に基づいてオフセットさせた地点で、前記レーザ光を前記被溶着物内に入射することで発生する第1の散乱光が前記溶着面で反射して得られる反射光により発生する第2の散乱光を受光する受光段階とを有することを特徴とする。
【0016】
請求項1記載の発明によれば、受光点を照射地点から所定の距離分オフセットすることにより、被溶着物の溶着状態を高精度に検査することができる。具体的には、レーザ発振器から被溶着物に入射されるレーザ光により発生する散乱光(第1の散乱光)溶着面に照射され、その反射光は散乱しながら樹脂表面へ到達するため、その散乱光(第2の散乱光)を受光することで、高精度な溶着判定を実現することができる。
【0017】
請求項2に記載された発明は、前記受光段階は、前記照射地点から予め設定された距離に基づいて前記検査用レーザ光の入射面に対してX軸、Y軸、又はZ軸の少なくとも1つの軸方向へオフセットを行うことを特徴とする。
【0018】
請求項2記載の発明によれば、X軸、Y軸、又はZ軸への立体的な移動を行うことで、溶着物の材質やレーザ光に対する透過率等における散乱光の影響に対応させた高精度な受光を行うことができる。これにより、高精度な溶着判定を実現することができる。
【0019】
請求項3に記載された発明は、前記受光段階は、前記検査用レーザ光照射段階にて照射される光源の光軸を焦点面に対して水平方向に所定の角度変化させて受光することを特徴とする。
【0020】
請求項3記載の発明によれば、レーザ光を照射する光軸を焦点面に対して水平方向に所定の角度を設けて受光することにより、第1の散乱光による溶着面からの反射光を直接受光せずに、反射光における散乱光(第2の散乱光)のみを受光することができるため、受光点における光の受光を高精度に行うことができる。
【0027】
【発明の実施の形態】
まず、本発明における発明の概要について説明する。図1は、樹脂同士の溶着の様子を示す一例の図である。図1において、溶着物10−1,10−2が重なり合っており、当接面に対してレーザ光を照射することにより加熱溶融させて溶着させている。
【0028】
ここで、レーザ光に対して透過性のある透過性樹脂材の溶着物10−1から溶着部分を見ると、溶着部11は、非溶着部分と比較して色の変化が見られる。そこで、計測用の光源として過熱しない程度のエネルギーを持つ光源を溶着された後の溶着物10−1,10−2の当接面に照射し、その反射光を受光部で受光することにより良否の判定を行う。
【0029】
しかしながら、当接面に対して光源より照射される光を照射すると、被溶着物10−1内で入射した光は散乱する。受光部ではこの散乱光の影響を受けるため、当接面からの反射光による高精度な判断を行うことができない。
【0030】
そこで、本発明は、光源より照射される光の照射地点から所定の間隔分ずらした位置のを受光するようにする。ここで、本発明における溶着状態の検査方法の概要について図を用いて説明する。
【0031】
図2は、本発明における溶着状態の検査方法の概要を示す一例の図である。
【0032】
図2については、溶着物10−1及び10−2の溶着面に検査光源21を照射して、当接面上の光の内容を受光部22にて受光する。また、当接面上における入射角θに対して照射されるレーザ光と、受光部22における入射角θに対応する受光角θに対して、検査光源の入射地点に対応した位置に受光部22が位置付けられる(図2点線部分)。
【0033】
しかしながら、このような受光部22が位置付けられている場合は、図2に示すように反射光と散乱光とが干渉し、正しい反射光のエネルギーを受光することができず、高精度な溶着状態の検査を行うことができない。
【0034】
そこで、照射地点から所定の間隔(Δd)でオフセットさせた位置に受光部22を位置付けることにより、溶着部10−1内の反射光を直接受光することなく、反射光の影響を低減させた散乱光を高精度に受光することができる。
【0035】
なお、オフセットのずらす方向は樹脂の溶着面上におけるX軸方向、Y軸方向へのオフセットだけでなく、Z方向(高さ方向)へのオフセットでもよく、また、XYZ軸における平面的又は立体的にずらしてもよい。
【0036】
上述したように本発明は、光源から照射された溶着面に対する反射光を樹脂内の散乱光(第1の散乱光)における影響を受けることなく、受光部にて受光できるようにするため、受光部の監視点を照射地点から所定の距離分オフセットする。つまり、溶着面に照射される樹脂内部の散乱光(第1の散乱光)の反射光は散乱しながら樹脂表面へ到達するため、この散乱光(第2の散乱光)を受光することで、受光部にて受光する光として、照射点表面からの反射光と照射点に照射するレーザ光により得られる散乱光(第1の散乱光)とを減少させることができ、高精度な溶着状態の検査を実現することができる。
【0037】
次に、本発明の実施の形態について、図面に基づいて説明する。図3は、本発明における溶着状態検査装置の概略構成図の一例を示す図である。図3の溶着状態検査装置30は、レーザ発振器31と、レーザ出射光学系32と、集光光学系33と、バンドパスフィルタ34と、CCDカメラ35と、位置決めモニタ36と、受光センサ37と、データ計測装置38と、ステージ39とを有するよう構成されている。また、溶着物10は、ステージ39上に着脱自在に固定設置されている。ここで、溶着物10の例としては、溶着物10−1及び10−2は共にPA(ポリアミド)であるものとし、色については、溶着物10−1はナチュラル、溶着物10−2は、カーボンブラックであるものを用いる。なお、材質についてはこの限りではなく、例えば、樹脂であれば、PP(ポリプロピレン)、PC(ポリカーネート)等を使用することができる。
【0038】
レーザ発振器31は、溶着物を加熱溶融させることのないようなエネルギーの検査用レーザ光源を照射する。例えば、ダイオードレーザにおいて波長808nmのレーザ光を照射する。
【0039】
また、ステージ39は、XYZθテーブルであり、レーザ光の照射方向に対して前後左右方向(X、Y方向)及び上下方向(Z方向)への移動が可能であり、かつステージを照射軸に対して傾斜角θ分傾かせることもできる。このようにステージ39を移動させることで所望する検査領域の検査を行うことができる。また、検査用レーザ光の照射角度、受光角度を変化させることができる。
【0040】
レーザ発振器31から出力されるレーザ光源は、ビーム伝送ファイバを介してレーザ出射光学系32に入力される。
【0041】
レーザ出射光学系32では、検査を行う溶着物10に対して溶着物10−1の表面にスポット径Φ0.8mmでスポット照射されるように光学系により集光される。また、集光されたレーザ光源は溶着物10に照射される。
【0042】
受光側では、受光部の位置を調整するための位置決め用に設けられたCCDカメラ35からの画像情報を位置決め用モニタ36で参照しながら所定の間隔分のオフセットを行う。
【0043】
受光部の監視点を照射地点から所定の距離分オフセットされた後、集光光学系33では、溶着物10に照射された接合面に対する反射光を樹脂内の反射光の直接の影響を受けることなく、設定地点における散乱光のみの光を集光し、バンドパスフィルタ34において、受光したレーザ光の中から所望するレーザ光のみを取り出し受光センサ37にて受光する。次に、受光センサ37により受光されたエネルギー情報についてデータ計測装置38にてA/D変換を行いデータを取得する。
上述の流れをステージ39に対して所定の動作を行い、溶着部分と非溶着部分との受光エネルギーを継続して取得する。ここで、上述のステージ移動における受光の様子について図を用いて説明する。
【0044】
図4は、溶着状態の検査の一例を示す図である。なお、図4は、溶着状態検査装置30におけるレーザ出射光学系32と集光光学系33の部分を示している。
【0045】
上述したように、受光側は、レーザ照射地点から所定の間隔Δdのオフセットを有しており、反射光の影響を直接受けることがない。ステージ39上に設置されている溶着物10は、図4に示す矢印A方向、すなわちX軸方向に移動することで、溶着部11と非溶着部の当接面における反射光を容易に受光することができる。また、ステージ39は、XY軸への移動を行うことができるため、当接面の点についての受光データを取得することができる。
【0046】
データ計測装置38は、蓄積された所定のエリアの溶着部と非溶着部にて受光した受光レベルを比較することにより、溶着状態の検査を行う。なお、データ計測装置38にモニタを有することで、受光レベルの蓄積結果や検査結果等の表示出力を容易に行うことができる。
【0047】
受光部は、反射光の影響を低減させた散乱光を受光することができ、高精度な溶着状態を検査することができる。
【0048】
なお、図4においては、レーザ出射光学系32と集光光学系33においては、同軸上(図4ではX軸上)に位置付けられている。つまり、入射角に対応させた反射角により集光光学系33を有する受光部が位置付けられている。これにより、反射光の影響を受けやすくしている。しかしながら、本発明においては、その反射光と散乱光を受光することにより、樹脂の溶着状態を検査するため、レーザ出射光学系32においてレーザ光を照射する光軸を焦点面に対して垂直以外の角度を設けて受光部を位置付けることにより反射光を直接受光せずに反射光における散乱光のみを受光するようにできるため、受光点における光の受光を高精度に行うことができる。
【0049】
ここで、上述の内容について図を用いて説明する。図5は、本発明における受光位置を説明するための図である。なお、図5は、溶着物10−1側から見た図を示している。図5に示すようにレーザ出射光学系32が図5に示すX軸上に位置付けられているものとする。図4では、レーザ出射光学系32からのレーザ光の照射地点から所定の間隔(Δd)分オフセットさせた位置に受光部51が位置付けられている。
【0050】
ここで、上述したように反射光の影響を受けないような所定の角度を設けて移動する。例えば、図5において、受光部51−1の位置からY軸上の51−2又は受光部51−3から受光するように位置付けることにより、その位置からレーザ光の照射地点の光を受光することにより、反射光の影響を直接受けていない光を受光することができる。このようにして受光した溶着部の受光レベルと非溶着部の受光レベルとを比較することで、容易に溶着状態の検査を行うことができる。
【0051】
なお、図5においては、90°の煽り角を設けて移動を行っているが、本発明においては、この限りではなく他の角度に変化させてもよい。しかしながら、入射するレーザ光の方向と同一方向からの受光は、入射光自体の光も受光してしまうため、図5に示す同軸上に位置付けられた受光部51−1を基準として−90°〜90°の範囲で設定されることが好ましい。また、同軸上に位置付けられていない場合でも、溶着物の材質、反射光、反射光における散乱光等の影響により所定の間隔のオフセットを有することで、より高精度な受光を可能にし、溶着状態の検査を容易に実現することができる。
【0052】
ここで、本発明における溶着状態検査装置において、受光された受光レベルの例について図を用いて説明する。なお、図6に示す例は、本実施の形態におけるデータ計測装置38にて蓄積された受光レベルのデータ例である。
【0053】
図6は、受光レベルに基づく検査内容を示す一例の図である。ここで、図6(a)は、オフセットしない状態での受光レベルの様子を示す図を示し、図6(b)は、本発明におけるオフセットを行った状態での受光レベルの様子を示す図である。また、図6(a)、(b)の横軸は、時間(ms)を示し、縦軸は、受光センサのシグナルレベル(V)を示している。
【0054】
また、検査される試料としては、上述した材質(溶着物10−1,10−2)を用いるものとし、レーザ発振器31から出力されるレーザ光源は、波長が808nmで出力が0.8Wのものを用いる。また、レーザ出射光学系から溶着物10への入射角は20°で煽り角は0°(すなわち、入射レーザ光軸と同軸上に位置付けられている)で設置されている。
【0055】
図6(a)に示すように受光部の受光点が照射点と同一の場合には、溶着部と非溶着部における受光レベルの差を認識することができない。しかしながら、本発明におけるオフセットさせて受光した結果である図6(b)に示すように溶着部での受光レベルが、非溶着部と比較して変化している(図6(b)マル1、マル2、及びマル3)。つまり、溶着物10−1,10−2の溶着面において、非溶着部である場合は溶着物間に隙間が存在するため検査用光源の光は溶着物10−1の界面で反射される。そのため、受光部に受光される光の強度は大きくなる。一方、溶着部である場合には溶着物間に隙間が存在していないため検査用光源の光は溶着物10−2に吸収される。そのため、図6(b)マル1、マル2、及びマル3に示すように受光部に受光される光の強度は小さくなる。これにより、溶着状態の良否を高精度に判定することができる。
【0056】
また、データ計測装置38は、所定の受光レベルに応じてエラー表示をしたり、データを記録したりする制御を行うことで、より高精度で効率的に樹脂の溶着状態の検査を行うことができる。
【0057】
上述したように本発明によれば、受光部の受光点を照射地点から所定の距離分オフセットすることにより、これにより、受光部で受光する光としては、照射点表面からの反射光と照射点に照射するレーザ光により得られる散乱光(第1の散乱光)を減少させることができ、高精度に溶着状態の検査をすることができる。これにより、溶着物における溶着部の受光レベルと非溶着部の受光レベルとを比較することで高精度な溶着状態の検査を実現することができる。
【0058】
また、レーザ光を照射する光軸を焦点面に対して垂直以外の角度を設けて受光部を位置付けることにより、照射点表面からの反射光を直接受光しない位置で光の受光を容易に行うことができる。
【0059】
以上本発明の好ましい実施例について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
【0060】
【発明の効果】
上述の如く本発明によれば、レーザ光を用いて溶着物の溶着状態を高精度に検査することができる。
【図面の簡単な説明】
【図1】樹脂同士の溶着の様子を示す一例の図である。
【図2】本発明における溶着状態の検査方法の概要を示す一例の図である。
【図3】本発明における溶着状態検査装置の概略構成図の一例を示す図である。
【図4】溶着状態の検査の一例を示す図である。
【図5】本発明における受光位置を説明するための図である。
【図6】受光レベルに基づく検査内容を示す一例の図である。
【符号の説明】
10 溶着物
11 溶着部
21 検査光源
22,51 受光部
30 溶着状態検査装置
31 レーザ発振器
32 レーザ出射光学系
33 集光光学系
34 バンドパスフィルタ
35 CCDカメラ
36 位置決めモニタ
37 受光センサ
38 データ計測装置
39 ステージ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welding condition inspection method relates to the welding condition inspection method capable of inspecting the welded state of the weld deposit with high precision, especially using a laser beam.
[0002]
[Prior art]
In recent years, in order to reduce weight and cost, a resin molded product obtained by converting each part in an automobile or the like into a resin is sometimes used. Further, from the viewpoint of increasing the productivity of the resin molded product, the resin molded product is divided into a plurality of pieces in advance, and these divided molded products are joined to each other.
[0003]
In general, as a method of welding resin materials, bonding with an adhesive or the like has been performed, but since the bonding may be peeled off due to heat, recently, by using a laser beam to heat and melt the resin material, A joining method is used.
[0004]
Also, as a welding method, after superposing a transparent resin material that is transparent to laser light and an absorbent resin material that is absorbing to laser light, laser light is emitted from the transparent resin material side. There is a laser welding method in which the contact surfaces of a permeable resin material and an absorptive resin material are heated and melted by irradiation to integrally bond the two (see, for example, Patent Document 1).
[0005]
In addition, when performing a weld quality judgment as to whether or not a desired weld has been made on the welded welded material, the worker has made a quality judgment by manual sampling and visual inspection. Was. In order to cope with this, there is a technique related to a welding determination device that provides a temperature sensor to obtain a temperature difference in the vicinity of an object to be welded before and after welding and makes a pass / fail judgment based on the temperature difference (see, for example, Patent Document 2). ).
[0006]
Furthermore, the light source and the image sensor are installed in association with each other, are incident on the sample at a predetermined incident angle, and based on the interference light intensity distribution on the incident surface of the reflected light from the sample, the film thickness and surface of the minute region There is a technique for measuring a shape (see, for example, Patent Document 3).
[0007]
A method of inspecting the welded state by receiving the welded state irradiated to the joint surface by the inspection light source using these techniques can be considered.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-105499
[Patent Document 2]
Japanese Patent Laid-Open No. 10-249941
[Patent Document 3]
Japanese Patent Laid-Open No. 8-82511
[Problems to be solved by the invention]
However, in patent document 2, since it is necessary to add apparatus structures, such as a temperature sensor, separately from a welding apparatus, cost will increase. In addition, it is necessary to provide at least two temperature sensors for detecting the temperature in the vicinity of the object to be welded before and after welding in the determination device, and the temperature difference is calculated from the measured temperature from the temperature sensor. Since it is determined from the temperature difference and further compared with a predetermined value set in advance from the temperature difference to determine whether the welding is good or bad, the control is complicated and it cannot be said that the determination (inspection) of the welding state is performed efficiently. .
[0012]
Furthermore, when the method of Patent Document 3 is used, it is easy to inspect the welding state of the welded surface by visual inspection or a light source for inspection when the resin on the surface side is transparent when the surface is welded by the lap joint. is there. However, when the resin on the surface side has a certain color or the inspection light source is dark, inspection by visual inspection or inspection light source is not easy. This is because the monitoring point of the light receiving unit is positioned at the irradiation point of the inspection light source, and in the inspection by the inspection light source, the reflected light can be accurately received by the influence of the reflected light from the bonding surface and the scattered light in the resin. This is because it is impossible to perform a highly accurate inspection of the welded state due to these factors.
[0013]
The present invention has been made in view of the above-described problems, and provides a welding state inspection method capable of inspecting a welding state of a welded material made of resin using a laser beam with high accuracy. Objective.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs means for solving the problems having the following characteristics.
[0015]
The invention described in claim 1 is a welding state inspection method for inspecting a welding state of a welded portion by welding a welding object with a laser beam output from a laser oscillator. Based on a laser beam irradiation stage for irradiating the welding surface with laser light for inspecting the welding state, and a preset distance from the irradiation point of the laser light irradiated in the laser beam irradiation stage for inspection The second scattered light generated by the reflected light obtained by reflecting the first scattered light generated when the laser light is incident on the object to be welded at the offset point is reflected by the welding surface. And a light receiving stage.
[0016]
According to the first aspect of the present invention, the welding state of the object to be welded can be inspected with high accuracy by offsetting the light receiving point by a predetermined distance from the irradiation point . Specifically, the scattered light (first scattered light) generated by the laser light incident on the object to be welded from the laser oscillator is irradiated onto the welding surface, and the reflected light reaches the resin surface while being scattered . By receiving the scattered light (second scattered light), highly accurate welding determination can be realized.
[0017]
According to a second aspect of the present invention, in the light receiving step, at least one of an X-axis, a Y-axis, or a Z-axis with respect to the incident surface of the inspection laser light based on a preset distance from the irradiation point. It is characterized by offsetting in one axial direction.
[0018]
According to the second aspect of the present invention, the three-dimensional movement to the X axis, the Y axis, or the Z axis is performed to cope with the influence of the scattered light on the material of the welded material, the transmittance with respect to the laser beam, and the like. Highly accurate light reception can be performed. Thereby, highly accurate welding determination is realizable.
[0019]
According to a third aspect of the present invention, the light receiving step receives light by changing the optical axis of the light source irradiated in the inspection laser light irradiation step by a predetermined angle in the horizontal direction with respect to the focal plane. Features.
[0020]
According to the third aspect of the present invention, the reflected light from the welding surface by the first scattered light is received by receiving the optical axis for irradiating the laser light at a predetermined angle in the horizontal direction with respect to the focal plane. Since it is possible to receive only the scattered light (second scattered light) in the reflected light without directly receiving light, it is possible to receive light at the light receiving point with high accuracy.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
First, an outline of the present invention will be described. FIG. 1 is an example of a state of welding of resins. In FIG. 1, welded materials 10-1 and 10-2 overlap each other, and the contact surfaces are heated and melted by being irradiated with laser light to be welded.
[0028]
Here, when the welded portion is viewed from the welded material 10-1 that is transparent to the laser beam, the color of the welded portion 11 is observed as compared with the non-welded portion. Therefore, a light source having energy that does not overheat as a measurement light source is irradiated on the contact surfaces of the welded materials 10-1 and 10-2 after welding, and the reflected light is received by the light receiving unit. Judgment is made.
[0029]
However, when the light irradiated from the light source is irradiated on the contact surface, the light incident in the welded object 10-1 is scattered. Since the light receiving portion is affected by the scattered light, it is impossible to make a highly accurate judgment based on the reflected light from the contact surface.
[0030]
Therefore, the present invention receives light at a position shifted by a predetermined interval from the irradiation point of light irradiated from the light source. Here, the outline | summary of the test | inspection method of the welding state in this invention is demonstrated using figures.
[0031]
FIG. 2 is a diagram showing an example of an overview of the welding state inspection method according to the present invention.
[0032]
As for FIG. 2, the inspection light source 21 is irradiated on the welding surfaces of the welded materials 10-1 and 10-2, and the light content on the contact surface is received by the light receiving unit 22. Further, with respect to the laser beam irradiated to the incident angle θ 1 on the contact surface and the light receiving angle θ 2 corresponding to the incident angle θ 1 in the light receiving unit 22, the position corresponding to the incident point of the inspection light source is set. The light receiving unit 22 is positioned (dotted line portion in FIG. 2).
[0033]
However, when such a light receiving portion 22 is positioned, the reflected light and the scattered light interfere with each other as shown in FIG. Inability to perform inspection.
[0034]
Therefore, the light receiving unit 22 is positioned at a position offset from the irradiation point by a predetermined interval (Δd), thereby directly receiving the reflected light in the welded part 10-1 and reducing the influence of the reflected light. Light can be received with high accuracy.
[0035]
The offset shifting direction may be not only the offset in the X axis direction and the Y axis direction on the weld surface of the resin, but also the offset in the Z direction (height direction). It may be shifted to.
[0036]
As described above, the present invention enables the light receiving unit to receive the reflected light with respect to the welding surface irradiated from the light source without being affected by the scattered light (first scattered light) in the resin. The monitoring point of the unit is offset by a predetermined distance from the irradiation point . That is, since the reflected light of the scattered light (first scattered light) inside the resin irradiated to the welding surface reaches the resin surface while being scattered, by receiving this scattered light (second scattered light), As the light received by the light receiving unit, the reflected light from the surface of the irradiation point and the scattered light (first scattered light) obtained by the laser light irradiated to the irradiation point can be reduced , and a highly accurate welding state can be achieved . Inspection can be realized.
[0037]
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a diagram illustrating an example of a schematic configuration diagram of a welding state inspection apparatus according to the present invention. 3 includes a laser oscillator 31, a laser emitting optical system 32, a condensing optical system 33, a bandpass filter 34, a CCD camera 35, a positioning monitor 36, a light receiving sensor 37, A data measuring device 38 and a stage 39 are included. Further, weld deposit 10 is freely fixedly mounted detachably on the stage 39. Here, as an example of the weld 10, the welds 10-1 and 10-2 are both PA (polyamide), and for the color, the weld 10-1 is natural, and the weld 10-2 is Use carbon black. Incidentally, not limited to this on the material, for example, as long as it is a resin, can be used PP (polypropylene), PC (Porika volume sulfonate) or the like.
[0038]
The laser oscillator 31 irradiates an inspection laser light source having such energy that the welded material is not heated and melted. For example, a laser beam with a wavelength of 808 nm is emitted from a diode laser.
[0039]
The stage 39 is an XYZθ table, which can move in the front-rear and left-right directions (X and Y directions) and the up-down direction (Z direction) with respect to the irradiation direction of the laser beam, and the stage with respect to the irradiation axis Can be tilted by an inclination angle θ. By moving the stage 39 in this way, a desired inspection area can be inspected. Further, the irradiation angle and the light receiving angle of the inspection laser light can be changed.
[0040]
The laser light source output from the laser oscillator 31 is input to the laser emission optical system 32 via the beam transmission fiber.
[0041]
In the laser emission optical system 32, the welded material 10 to be inspected is condensed by the optical system so that the surface of the welded material 10-1 is spot-irradiated with a spot diameter of Φ0.8 mm. Further, the condensed laser light source is irradiated onto the welded material 10.
[0042]
On the light receiving side, offset by a predetermined interval is performed while referring to the image information from the CCD camera 35 provided for positioning for adjusting the position of the light receiving unit on the positioning monitor 36.
[0043]
After the monitoring point of the light receiving unit is offset by a predetermined distance from the irradiation point, the condensing optical system 33 receives the reflected light on the bonding surface irradiated to the welded material 10 directly from the reflected light in the resin. Instead, the light of only the scattered light at the set point is collected, and the bandpass filter 34 extracts only the desired laser light from the received laser light and receives it by the light receiving sensor 37. Next, the energy information received by the light receiving sensor 37 is A / D converted by the data measuring device 38 to obtain data.
A predetermined operation is performed on the stage 39 in the above flow, and the light receiving energy of the welded portion and the non-welded portion is continuously acquired. Here, the state of light reception in the above-described stage movement will be described with reference to the drawings.
[0044]
FIG. 4 is a diagram illustrating an example of an inspection of a welding state. FIG. 4 shows the laser emission optical system 32 and the condensing optical system 33 in the welding state inspection apparatus 30.
[0045]
As described above, the light receiving side has an offset of a predetermined interval Δd from the laser irradiation point, and is not directly affected by the reflected light. The welded material 10 installed on the stage 39 moves in the direction of arrow A shown in FIG. 4, that is, the X-axis direction, thereby easily receiving the reflected light on the contact surface between the welded part 11 and the non-welded part. be able to. Further, since the stage 39 can move to the XY axes, it can acquire light reception data for the points on the contact surface.
[0046]
The data measuring device 38 inspects the welded state by comparing the received light levels received at the accumulated welded part and the non-welded part. In addition, by having a monitor in the data measuring device 38, it is possible to easily perform display output of a light reception level accumulation result, an inspection result, and the like.
[0047]
The light receiving unit can receive the scattered light in which the influence of the reflected light is reduced, and can inspect the welding state with high accuracy.
[0048]
In FIG. 4, the laser emission optical system 32 and the condensing optical system 33 are positioned coaxially (on the X axis in FIG. 4). That is, the light receiving unit having the condensing optical system 33 is positioned by the reflection angle corresponding to the incident angle. This makes it easy to be affected by reflected light. However, in the present invention, the reflected light and the scattered light are received to inspect the welded state of the resin, so that the optical axis for irradiating the laser beam in the laser emission optical system 32 is other than perpendicular to the focal plane. By positioning the light receiving portion with an angle, it is possible to receive only the scattered light in the reflected light without directly receiving the reflected light, so that the light can be received at the light receiving point with high accuracy.
[0049]
Here, the above-mentioned content is demonstrated using figures. FIG. 5 is a diagram for explaining a light receiving position in the present invention. In addition, FIG. 5 has shown the figure seen from the welded material 10-1 side. Assume that the laser emission optical system 32 is positioned on the X axis shown in FIG. 5 as shown in FIG. In FIG. 4, the light receiving unit 51 is positioned at a position that is offset by a predetermined interval (Δd) from the irradiation point of the laser beam from the laser emission optical system 32.
[0050]
Here, as described above, it moves with a predetermined angle so as not to be affected by the reflected light. For example, in FIG. 5, by positioning from the position of the light receiving unit 51-1 so as to receive light from the light receiving unit 51-2 or the light receiving unit 51-3 on the Y axis, the laser beam irradiation point light is received from that position. Thus, it is possible to receive light that is not directly affected by the reflected light. By comparing the received light level of the welded portion thus received with the received light level of the non-welded portion, the welded state can be easily inspected.
[0051]
In FIG. 5, the movement is performed with a turning angle of 90 °, but in the present invention, it is not limited to this and may be changed to another angle. However, since the light received from the same direction as the direction of the incident laser light also receives the light of the incident light itself, the light receiving unit 51-1 positioned on the same axis shown in FIG. It is preferable to set in the range of 90 °. In addition, even when it is not positioned on the same axis, it has a predetermined interval offset due to the influence of the material of the welded material, the reflected light, the scattered light in the reflected light, etc., enabling more accurate light reception and the welding state This inspection can be easily realized.
[0052]
Here, an example of the received light level in the welding state inspection apparatus according to the present invention will be described with reference to the drawings. Note that the example shown in FIG. 6 is a data example of the received light level accumulated in the data measuring device 38 in the present embodiment.
[0053]
FIG. 6 is a diagram illustrating an example of inspection contents based on the light reception level. Here, FIG. 6A shows a state of the light reception level in a state where no offset is performed, and FIG. 6B shows a state of the light reception level in a state where the offset is performed in the present invention. is there. 6A and 6B, the horizontal axis indicates time (ms), and the vertical axis indicates the signal level (V) of the light receiving sensor.
[0054]
Further, as the sample to be inspected, the above-described materials (welded materials 10-1 and 10-2) are used, and the laser light source output from the laser oscillator 31 has a wavelength of 808 nm and an output of 0.8 W. Is used. Further, the incident angle from the laser emission optical system to the welded material 10 is 20 °, and the turning angle is 0 ° (that is, positioned coaxially with the incident laser optical axis).
[0055]
As shown in FIG. 6A, when the light receiving point of the light receiving unit is the same as the irradiation point, the difference in the light receiving level between the welded part and the non-welded part cannot be recognized. However, as shown in FIG. 6 (b), which is the result of receiving the light with an offset in the present invention, the light receiving level at the welded portion is changed as compared with the non-welded portion (FIG. 6 (b) Mar 1, Mull 2 and Mull 3). That is, in the welded surfaces of the welded materials 10-1 and 10-2, in the case of a non-welded portion, there is a gap between the welded materials, and thus the light from the inspection light source is reflected at the interface of the welded material 10-1. For this reason, the intensity of the light received by the light receiving unit increases. On the other hand, in the case of the welded portion, since there is no gap between the welded materials, the light from the inspection light source is absorbed by the welded material 10-2. Therefore, as shown in FIG. 6 (b) circle 1, circle 2, and circle 3, the intensity of light received by the light receiving portion is reduced. Thereby, the quality of the welding state can be determined with high accuracy.
[0056]
Further, the data measuring device 38 can inspect the welded state of the resin with higher accuracy and efficiency by performing an error display or recording data according to a predetermined light reception level. it can.
[0057]
As described above, according to the present invention, the light receiving point of the light receiving unit is offset by a predetermined distance from the irradiation point, so that the light received by the light receiving unit is reflected from the surface of the irradiation point and the irradiation point. Scattered light (first scattered light) obtained by the laser light applied to can be reduced, and the welded state can be inspected with high accuracy. Thereby, it is possible to realize a highly accurate inspection of the welding state by comparing the light receiving level of the welded portion with the light receiving level of the non-welded portion.
[0058]
In addition, by positioning the light receiving unit with the optical axis for irradiating the laser light at an angle other than perpendicular to the focal plane , light can be easily received at a position where the reflected light from the irradiation point surface is not directly received. Can do.
[0059]
The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications, within the scope of the gist of the present invention described in the claims, It can be changed.
[0060]
【The invention's effect】
As described above, according to the present invention, it is possible to inspect the welded state of the welded material with high accuracy using laser light.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a state of welding between resins.
FIG. 2 is a diagram showing an example of an outline of a welding state inspection method according to the present invention.
FIG. 3 is a diagram showing an example of a schematic configuration diagram of a welding state inspection apparatus according to the present invention.
FIG. 4 is a diagram showing an example of a welded state inspection.
FIG. 5 is a diagram for explaining a light receiving position in the present invention.
FIG. 6 is a diagram illustrating an example of inspection contents based on a light reception level.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Welding object 11 Welding part 21 Inspection light source 22, 51 Light-receiving part 30 Welding state inspection apparatus 31 Laser oscillator 32 Laser emission optical system 33 Condensing optical system 34 Band pass filter 35 CCD camera 36 Positioning monitor 37 Light receiving sensor 38 Data measuring apparatus 39 stage

Claims (3)

レーザ発振器から出力されるレーザ光により、被溶着物を溶着し、溶着された部分の溶着状態を検査するための溶着状態検査方法において、
前記被溶着物の溶着面に、溶着状態を検査するためのレーザ光を照射する検査用レーザ光照射段階と、
前記検査用レーザ光照射段階にて照射されたレーザ光の照射地点から予め設定された距離に基づいてオフセットさせた地点で、前記レーザ光を前記被溶着物内に入射することで発生する第1の散乱光が前記溶着面で反射して得られる反射光により発生する第2の散乱光を受光する受光段階とを有することを特徴とする溶着状態検査方法。
In the welding state inspection method for inspecting the welded state of the welded part by welding the object to be welded by the laser light output from the laser oscillator,
A laser beam irradiation stage for inspection that irradiates a laser beam for inspecting the welding state on the welding surface of the object to be welded;
First generated by the laser light entering the welding object at a point offset based on a predetermined distance from the irradiation point of the laser light irradiated in the inspection laser light irradiation step. And a light receiving step for receiving second scattered light generated by the reflected light obtained by reflecting the scattered light on the welding surface.
前記受光段階は、
前記照射地点から予め設定された距離に基づいて前記検査用レーザ光の入射面に対してX軸、Y軸、又はZ軸の少なくとも1つの軸方向へオフセットを行うことを特徴とする請求項1に記載の溶着状態検査方法。
The light receiving step includes
2. An offset is performed in at least one axial direction of an X axis, a Y axis, or a Z axis with respect to an incident surface of the inspection laser light based on a preset distance from the irradiation point. The welding state inspection method described in 1.
前記受光段階は、
前記検査用レーザ光照射段階にて照射される光源の光軸を焦点面に対して水平方向に所定の角度変化させて受光することを特徴とする請求項1又は2に記載の溶着状態検査方法。
The light receiving step includes
The welding state inspection method according to claim 1 or 2, wherein the optical axis of the light source irradiated in the inspection laser light irradiation step is received by changing a predetermined angle in a horizontal direction with respect to a focal plane. .
JP2003175652A 2003-06-20 2003-06-20 Welding condition inspection method Expired - Fee Related JP3997183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175652A JP3997183B2 (en) 2003-06-20 2003-06-20 Welding condition inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175652A JP3997183B2 (en) 2003-06-20 2003-06-20 Welding condition inspection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007093336A Division JP2007230239A (en) 2007-03-30 2007-03-30 Welded state inspection apparatus

Publications (2)

Publication Number Publication Date
JP2005007776A JP2005007776A (en) 2005-01-13
JP3997183B2 true JP3997183B2 (en) 2007-10-24

Family

ID=34098733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175652A Expired - Fee Related JP3997183B2 (en) 2003-06-20 2003-06-20 Welding condition inspection method

Country Status (1)

Country Link
JP (1) JP3997183B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023769B1 (en) * 2013-07-17 2023-01-04 Panasonic Intellectual Property Management Co., Ltd. Spectroscope

Also Published As

Publication number Publication date
JP2005007776A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US7268866B2 (en) Method for inspecting a weld seam in a workpiece made of weldable plastic and device for carrying out this method
JP4531396B2 (en) Method and apparatus for evaluating workpiece joints
JP6754439B2 (en) Methods and equipment for monitoring joint seams during laser beam junctions
JP5312033B2 (en) Method and apparatus for evaluating the joint location of a workpiece
JP2720744B2 (en) Laser processing machine
US7910153B2 (en) Laser deposition acceptance judgment method and apparatus for the method
CN103781618A (en) Device and method for carrying out and monitoring a plastic laser transmission welding process
JP2009515705A5 (en)
JPH03267745A (en) Surface property detecting method
JP2008215879A (en) Cleanness judging device and method
JPH0249194B2 (en)
JP3997183B2 (en) Welding condition inspection method
JP2515103B2 (en) Laser butt welding quality inspection method
JP2021186848A (en) Laser processing device
JP2008008689A (en) Surface inspection device and surface inspection method
JP2007230239A (en) Welded state inspection apparatus
JP2000334587A (en) Device for detecting welding state of laser beam welding
WO2009022587A1 (en) Laser welding inspection device
JP4026404B2 (en) Laser welding quality monitoring method and apparatus
JP2004361229A (en) Apparatus and method for inspecting welding
JP2005067031A (en) Welding inspection device and welding inspection method
JP2004358803A (en) Inspection device for welded state
US20230358604A1 (en) Beam quality monitoring and multiple laser beam location registration for high-speed, traveling, laser focal spots
JP2023060403A (en) Spot weld inspection system and spot weld inspection method
JP5020724B2 (en) Resin welding method and resin welding apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees