JP2004122560A - Method for welding resin material and welding device for resin material - Google Patents

Method for welding resin material and welding device for resin material Download PDF

Info

Publication number
JP2004122560A
JP2004122560A JP2002289536A JP2002289536A JP2004122560A JP 2004122560 A JP2004122560 A JP 2004122560A JP 2002289536 A JP2002289536 A JP 2002289536A JP 2002289536 A JP2002289536 A JP 2002289536A JP 2004122560 A JP2004122560 A JP 2004122560A
Authority
JP
Japan
Prior art keywords
resin material
welding
laser light
temperature
transparent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002289536A
Other languages
Japanese (ja)
Other versions
JP4267286B2 (en
Inventor
Hideo Nakamura
中村 秀生
Reiko Koshida
越田 れい子
Susumu Fujita
藤田 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont KK
Toyota Motor Corp
Original Assignee
Du Pont KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont KK, Toyota Motor Corp filed Critical Du Pont KK
Priority to JP2002289536A priority Critical patent/JP4267286B2/en
Publication of JP2004122560A publication Critical patent/JP2004122560A/en
Application granted granted Critical
Publication of JP4267286B2 publication Critical patent/JP4267286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91231Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin material welding method by which two kinds of resin materials are welded together by laser beam irradiation and thereby a welding state can be judged, and a welding device. <P>SOLUTION: In the resin material welding method by which a transparent resin material 5 which allows transmission of the laser beam 23 is brought into contact with an absorptive resin material 6 which absorbs the laser beam 23 and the transparent resin material 5 and the absorptive resin material 6 are welded together by irradiating them with the laser beam 23 through the transparent resin material 5, a fusion part 7 is formed by thermally fusing a contact area between the transparent resin material 5 and the absorptive resin material 6 through irradiating the materials 5 and 6 with the laser beam 23, and the temperature of the fusion part 7 is detected by a radiation light 31 emitted transmitting through the transparent resin material 5 from the fusion part 7. Consequently, it is judged how well-welded together the transparent resin material 5 and the absorptive resin material 6 are based on the temperature of the fusion part 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光を用いた樹脂材の溶着方法および溶着装置に関し、詳しくは、樹脂材の溶着状態を判断しながら樹脂材をレーザ溶着する樹脂材の溶着方法および溶着装置に関する。
【0002】
【従来の技術】
二種類の樹脂材を接合する方法として、レーザ光を用いた溶着方法が多く用いられている。例えば、レーザ光を透過する透過性樹脂材と、レーザ光を吸収する吸収性樹脂材とを重ね合わせた後、該透過性樹脂材の方向からレーザ光を照射する溶着方法がある(例えば、特許文献1参照。)。この溶着方法では、以下のようにして二種類の樹脂材が溶着される。照射されたレーザ光は、透過性樹脂材を透過し、透過性樹脂材と吸収性樹脂材との合わせ面に到達すると吸収性樹脂材に吸収される。吸収されたレーザ光のエネルギーにより、透過性樹脂材との合わせ面となる吸収性樹脂材の表面が加熱溶融される。吸収性樹脂材の表面で生じた熱は、対向する透過性樹脂材の表面に伝達して、透過性樹脂材も加熱溶融される。透過性樹脂材と吸収性樹脂材とが互いに溶融した状態で圧着されることで両者が溶着される。
【0003】
【特許文献1】
特開昭60−214931号公報
【0004】
【発明が解決しようとする課題】
上記溶着方法で透過性樹脂材と吸収性樹脂材とを溶着させる場合、溶着させる樹脂材の表面に、製造上不可避的なそりやうねり等が生じていることがある。例えば、透過性樹脂材と吸収性樹脂材とを当接させた場合、各樹脂材の当接面にそりやうねりがあると、透過性樹脂材と吸収性樹脂材との間に隙間が生じる。上述したように、レーザ光を用いた溶着方法では、レーザ光の照射により吸収性樹脂材の表面が加熱溶融される。溶着される二種類の樹脂材間に隙間がある場合には、吸収性樹脂材の溶融膨張により隙間が埋められ、吸収性樹脂材と透過性樹脂材とが溶着される。つまり、隙間の分だけ吸収性樹脂材の見かけ密度が低下し、結果的に溶着部の強度が低下することとなる。このように、樹脂材間に隙間がある状態で溶着された場合には、その溶着状態は良好とはいえない。また、二種類の樹脂材の当接面に金属粉や水分等の異物が付着している場合や、レーザ光の照射角度が適切ではない場合には溶着が充分にされ難い。このため、溶着状態は悪くなり、溶着部の強度は低下する。このように、樹脂材の溶着状態と、溶着された樹脂材の強度やシール性とは密接な関係がある。したがって、溶着された樹脂材の溶着状態を把握することは極めて重要となる。
【0005】
本発明は、上記実状に鑑みてなされたものであり、レーザ光を照射して二種類の樹脂材を溶着するとともに、その溶着状態をも判断することのできる樹脂材の溶着方法を提供することを課題とする。また、溶着状態を判断しながら溶着を行うことのできる樹脂材の溶着装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の樹脂材の溶着方法は、レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着方法において、前記レーザ光を照射することにより前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させ溶融部を形成するとともに、該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出し、該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断することを特徴とする。
【0007】
すなわち、本発明の樹脂材の溶着方法は、レーザ光を照射することにより二種類の樹脂材を溶着するとともに、その溶着状態をも判断することができる溶着方法である。本発明者は、樹脂材の溶着状態が何らかの原因で悪くなる場合には、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融されて形成された溶融部の温度が変動するということを見出した。そして、溶融部の温度を検出することで、その温度に基づいて樹脂材の溶着状態を判断することができると考えた。
【0008】
例えば、上述したように、当接された透過性樹脂材と吸収性樹脂材との間に隙間がある場合には、溶着不良となり易い。樹脂材間に隙間がある場合、レーザ光の吸収により吸収性樹脂材の表面で生じた熱は、対向する透過性樹脂材の表面に伝達し難くなる。このため、隙間のない場合と比較して、吸収性樹脂材の表面温度は高くなる。つまり、樹脂材間に隙間がある場合には、溶融部の温度が高くなる。したがって、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融され形成された溶融部の温度変動を監視することで、樹脂材間の隙間の有無を把握することができ、溶着状態を判断することができる。また、例えば、当接された透過性樹脂材と吸収性樹脂材との間に金属粉や水分等の異物が混入している場合には、溶着が充分にされ難く溶着不良となリ易い。この場合、レーザ光は、混入している異物に照射され、吸収性樹脂材に到達し難い。金属粉等の異物は、吸収性樹脂材よりもレーザ光の吸収率が低いため発熱は少ない。つまり、異物が存在すると溶融部の温度は低くなる。したがって、溶融部の温度変動を監視することで、溶着状態を把握することができる。このように、本発明の樹脂材の溶着方法によれば、溶着される樹脂材の溶着状態の良否を判断しながら、樹脂材を溶着することができる。
【0009】
本発明の樹脂材の溶着装置は、レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着装置であって、前記レーザ光を照射して、前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させて溶融部を形成するレーザ光照射手段と、該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出する温度検出手段と、検出された該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断する溶着状態判断手段とを備えることを特徴とする。
【0010】
本発明の樹脂材の溶着装置は、上記本発明の樹脂材の溶着方法を実施することができる装置である。すなわち、本発明の樹脂材の溶着装置によれば、透過性樹脂材と吸収性樹脂材とを溶着することに加え、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融されて形成された溶融部の温度を検出し、その温度に基づいて樹脂の溶着状態を判断することができる。本発明の樹脂材の溶着装置は、レーザ光照射手段の他に、溶融部の温度を検出する温度検出手段と、透過性樹脂材と吸収性樹脂材との溶着状態を判断する溶着状態判断手段とを備える。つまり、温度検出手段と溶着状態判断手段とを備えるだけで、樹脂材の溶着状態を判断することができるため、簡易かつ低コストで実用的な装置となる。
【0011】
【発明の実施の形態】
以下、本発明の樹脂材の溶着方法および溶着装置の実施の形態について詳しく説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の樹脂材の溶着方法および溶着装置は、下記の実施形態に限定されるものではない。本発明の樹脂材の溶着方法および溶着装置は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
【0012】
〈樹脂材の溶着方法〉
本発明の樹脂材の溶着方法では、レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる。
【0013】
本発明の溶着方法で使用するレーザ光は、その種類が特に限定されるものではない。例えば、半導体レーザ、YAGレーザ、ルビーレーザ、ガラスレーザ等を使用することができる。なかでも、樹脂材への透過性、コスト、メインテナンス、操作の容易性等を考慮した場合には、半導体レーザを使用することが望ましい。また、レーザ光の波長は、溶着する樹脂材の種類に応じて適宜選択すればよい。例えば、透過性樹脂材にナイロン6を、吸収性樹脂材にカーボンブラックを添加したナイロン6を用いて両者を溶着する場合には、レーザ光の波長を800〜1100nm程度とすればよい。レーザ光の出力も、溶着する樹脂材の種類や厚さ等に応じて適宜選択すればよい。
【0014】
溶着される樹脂材の一方である透過性樹脂材は、熱可塑性を有し、レーザ光を透過する樹脂を用いれば、その種類が特に限定されるものではない。例えば、ナイロン6やナイロン6,6等のポリアミド、ポリエチレン、ポリプロピレン、スチレン−アクリロニトリル共重合体、ポリエステル、ポリアセタール、ポリカーボネート、アクリル、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)等を用いることができる。また、必要に応じて上記樹脂にガラス繊維等を添加して強化したものを、あるいは上記樹脂にレーザ光を吸収しない染料等で着色したものを用いてもよい。
【0015】
溶着される樹脂材の他方である吸収性樹脂材は、熱可塑性を有し、レーザ光を吸収する樹脂を用いれば、その種類が特に限定されるものではない。例えば、カーボンブラック等の顔料を添加したナイロン6やナイロン6,6等のポリアミド、また、同じくカーボンブラック等の顔料を添加したポリエチレン、ポリプロピレン、スチレン−アクリロニトリル共重合体、ポリエステル、ポリアセタール、ポリカーボネート、アクリル、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)等を用いることができる。また、必要に応じて上記樹脂にガラス繊維等を添加して強化したものを用いてもよい。
【0016】
本発明の溶着方法では、上記透過性樹脂材と吸収性樹脂材とを当接させ、透過性樹脂材を介して上記レーザ光を照射する。透過性樹脂材および吸収性樹脂材は、溶着する部分が互いに接するように配置されていればよい。例えば、透過性樹脂材および吸収性樹脂材がそれぞれ薄板状の場合には、両者を重ね合わせて配置すればよい。また、レーザ光は、透過性樹脂材と吸収性樹脂材との当接面へ照射される。この場合、透過性樹脂材を介してレーザ光を照射する。例えば、薄板状の透過性樹脂材と吸収性樹脂材とを重ね合わせ、その合わせ面を溶着する場合には、透過性樹脂材の側からレーザ光を照射すればよい。レーザ光の照射角度は、特に限定されるものではない。透過性樹脂材と吸収性樹脂材との当接面に対して垂直方向から照射してもよく、また所定の角度から照射してもよい。
【0017】
上述したように、照射されたレーザ光は、透過性樹脂材を透過し、透過性樹脂材と吸収性樹脂材との当接面に到達すると吸収性樹脂材に吸収される。吸収されたレーザ光のエネルギーにより、吸収性樹脂材の表面が加熱溶融される。吸収性樹脂材の表面で生じた熱は、当接する透過性樹脂材の表面に伝達して、透過性樹脂材も加熱溶融される。このように、本発明の溶着方法では、レーザ光を照射することにより、透過性樹脂材と吸収性樹脂材との当接面が加熱溶融され溶融部が形成される。なお、形成された溶融部は、冷却されることにより溶着部となる。
【0018】
吸収性樹脂材は、照射されたレーザ光を吸収することにより発熱する。そして、発熱した吸収性樹脂材から放射光が放射される。本発明の溶着方法では、溶融部から透過性樹脂材を透過して放射される放射光により溶融部の温度を検出する。つまり、透過性樹脂材と吸収性樹脂材との間に異物が存在しない場合には、吸収性樹脂材の表面の温度が溶融部の温度として検出される。溶融部の温度の検出方法は、放射される放射光から温度を検出するものであれば、特に限定されるものではない。例えば、既に公知の放射温度計等を用いて検出することができる。放射される放射光は様々な波長からなる。また、波長の分布は、レーザ光の種類や溶着する樹脂材の種類等により異なる。したがって、溶融部の温度の検出には、用いるレーザ光や樹脂材に応じて最適な波長を適宜選択すればよい。溶融部の温度を検出するための放射光の波長は、レーザ光の波長と異なることが望ましく、特に、温度を検出する際の精度を考慮した場合には、透過性樹脂材に対する透過率が10%以上であることが望ましい。透過率の測定には、市販の分光度測定器を用いればよい。
【0019】
本発明の溶着方法では、検出された溶融部の温度に基づいて透過性樹脂材と吸収性樹脂材との溶着状態を判断する。溶着状態の判断方法は、特に限定されるものではない。例えば、溶融部の温度の管理値を予め設定しておき、溶着中の溶融部の温度とその管理値とを比較することで、溶着状態を判断すればよい。本発明の溶着方法における溶着状態の判断手法の一例として、溶着不良品を検出する態様を以下説明する。
【0020】
(1)透過性樹脂材と吸収性樹脂材との間の隙間による溶着不良品の検出
図1に、透過性樹脂材と吸収性樹脂材との間に隙間が存在する状態で両者を溶着した様子のモデル図を示す。図1に示すように、溶着対象となる薄板状の透過性樹脂材5と薄板状の吸収性樹脂材6とが当接されている。透過性樹脂材5と吸収性樹脂材6との間には隙間8が存在している。レーザ光23は、透過性樹脂材5側から透過性樹脂材5と吸収性樹脂材6との当接面に照射され、溶融部7が形成されている。また、溶融部7から透過性樹脂材5を透過して放射光31が放射されている。このように、透過性樹脂材と吸収性樹脂材との間に隙間が存在する状態で両者を溶着した場合、隙間の長さや厚み、つまり隙間の大きさが大きい程溶着部の強度は低下すると考えられる。したがって、溶着部の強度の低下を招くような隙間が存在する状態で溶着されたものは、溶着状態が不良であると判断されることが望まれる。この場合、以下のようにして溶着状態を判断すればよい。
【0021】
まず、図2に概念図として示すように、溶着部の強度と隙間の大きさとの関係を求める。そして、溶着部の強度の許容下限値を設定し、上記溶着部の強度と隙間の大きさとの関係から、許容下限値に対応する隙間の大きさの上限値を設定する。一方、図3に概念図として示すように、隙間の大きさと溶着における溶融部の温度との関係を求める。上記隙間の大きさと溶着における溶融部の温度との関係から、隙間の大きさの上限値に対応する溶融部の温度を溶融部温度管理値とする。溶着中の溶融部の温度が溶融部温度管理値を超えた場合には、溶着部の強度の低下を招くような隙間が存在すると推測されるため、溶着状態を不良と判断する。このように、溶融部の温度を検出し、所定の管理値と比較することで、樹脂材間の隙間の有無を判断することができ、溶着不良品を検出することができる。
【0022】
(2)異物の混入等による溶着不良品の検出
図4に、透過性樹脂材と吸収性樹脂材との間に異物が混入した状態で両者を溶着した様子のモデル図を示す。図4に示すように、溶着対象となる薄板状の透過性樹脂材5と薄板状の吸収性樹脂材6とが当接されている。透過性樹脂材5と吸収性樹脂材6との間には異物9が存在する。レーザ光23は、透過性樹脂材5側から透過性樹脂材5と吸収性樹脂材6との当接面に照射され、溶融部7が形成されている。溶融部7から透過性樹脂材5を透過して放射光31が放射されている。このように、透過性樹脂材と吸収性樹脂材との間に異物が存在する場合、異物が存在する部分では吸収性樹脂材にレーザ光が照射され難いため、溶着が不充分となり、溶着部の強度は低下すると考えられる。また、異物が透過性樹脂材の外表面に付着している場合や透過性樹脂材の内部に混入している場合等においても、上記同様に、吸収性樹脂材にレーザ光が照射され難くなるため溶着が不充分となり、溶着部の強度は低下すると考えられる。
【0023】
このように、溶着部の強度の低下を招くような異物が存在する状態で溶着されたものは、溶着状態が不良であると判断されることが望まれる。上述したように、異物が存在する場合には、レーザ光は吸収性樹脂材に到達し難くなり、溶融部の温度は低くなる。一方、炭化物等の異物が透過性樹脂材の外表面に付着した場合には、レーザ光の照射により、吸収性樹脂材に加えて異物が発熱するため、検出される溶融部の温度が高くなる場合もある。したがって、例えば、溶着状態が良好なものの溶着における溶融部の温度範囲を溶融部温度管理範囲と設定し、溶着中の溶融部の温度が溶融部温度管理範囲からはずれた場合には、異物が存在すると推測されるため、溶着状態を不良と判断すればよい。このように、溶融部の温度を検出し、所定の管理値と比較することで、樹脂材における異物の付着および混入の有無を判断することができ、溶着不良品を検出することができる。
【0024】
(3)レーザ光の照射条件に起因した溶着不良品の検出
樹脂材に照射するレーザ光の照射角度が変化した場合、透過性樹脂材を透過するレーザ光の透過距離が変化する。図5および図6に、レーザ光の照射角度を変化させて溶着した場合におけるレーザ光の透過距離をそれぞれ示す。図5と図6とでは、レーザ光の照射角度のみが異なる。図5および図6に示すように、溶着対象となる透過性樹脂材5と吸収性樹脂材6とは当接されている。当接面には、レーザ光23が照射され、溶融部7が形成されている。図5に示すように、レーザ光を当接面に対して垂直方向から照射した場合には、レーザ光の透過距離はAとなる。一方、図6に示すように、レーザ光を当接面に対して斜め方向から照射した場合には、レーザ光の透過距離はBとなる。各々のレーザ光の透過距離を比較すると、Bの方が長くなっている。レーザ光の透過距離が長くなると、それだけ透過性樹脂材によるレーザ光の散乱が多くなり、樹脂材の当接面へ到達するレーザ光のエネルギーが低下する。つまり、吸収性樹脂材に吸収されるレーザ光のエネルギーが低下する。このため、吸収性樹脂材は溶融し難くなり、溶着が不充分となる場合がある。したがって、レーザ光を当接面に対して傾斜させて照射した場合には、垂直方向から照射した場合と比較して、溶着部の強度は低下すると考えられる。
【0025】
また、レーザ光の照射角度が一定であっても、溶着部におけるレーザ光の照射位置が変化することで、レーザ光の透過距離が変化する場合がある。図7および図8に、レーザ光の照射位置を変化させて溶着した場合におけるレーザ光の透過距離をそれぞれ示す。図7と図8とでは、レーザ光の照射位置のみが異なる。図7および図8に示すように、棒状の透過性樹脂材5と棒状の吸収性樹脂材6とが、それぞれの端面を合わせて当接されている。当接面には、レーザ光23が照射され、溶融部7が形成されている。図7に示すように、目的とする溶着部のほぼ中央にレーザ光を照射した場合には、レーザ光の透過距離はCとなる。一方、図8に示すように、溶着部の端部にレーザ光を照射した場合には、レーザ光の透過距離はDとなる。各々のレーザ光の透過距離を比較すると、Dの方が長くなっている。このように、レーザ光の照射位置が変化することで、上記同様に溶着が不充分となる場合がある。この場合にも、溶着部の強度は低下すると考えられる。このように、レーザ光の照射条件が変化することにより溶着が不充分となった場合には、溶着状態が不良であると判断されることが望まれる。
【0026】
上記説明したように、レーザ光の透過距離が長くなる場合には、吸収性樹脂材に吸収されるレーザ光のエネルギーが低下するため、吸収性樹脂材の発熱は小さくなり、溶融部の温度は低くなる。したがって、例えば、溶着状態が良好なものの溶着における溶融部の温度範囲の下限値を溶融部温度管理値と設定し、溶着中の溶融部の温度が溶融部温度管理値よりも低い場合には、レーザ光の照射が不充分であるため、溶着状態を不良と判断すればよい。このように、溶融部の温度を検出し、所定の管理値と比較することで、レーザ光の照射条件に起因した溶着不良品を検出することができる。
【0027】
〈樹脂材の溶着装置〉
本発明の樹脂材の溶着装置は、上記本発明の樹脂材の溶着方法を実施することができる装置であり、上述したように、レーザ光照射手段と温度検出手段と溶着状態判断手段とを備える。ここで、本発明の一実施形態である樹脂材の溶着装置の構成を説明する。図9に本発明の一実施形態である樹脂材の溶着装置の概略を示す。図9に示すように、樹脂材の溶着装置1は、レーザ光照射装置2と、放射温度計3と、溶着状態判断装置4とを備える。
【0028】
レーザ光照射装置2は、本発明の溶着装置におけるレーザ光照射手段として機能するものであり、レーザ光照射ファイバ21とレーザ光照射用ミラー22とからなる。レーザ光照射ファイバ21は、図示しないレーザ源に接続され、レーザ光を案内する。レーザ源はコンピュータ本体41と接続され、コンピュータ本体41によりレーザ光の照射および停止が制御される。レーザ光照射用ミラー22は、レーザ光照射ファイバ21により案内されたレーザ光を反射させ、透過性樹脂材5と吸収性樹脂材6との当接面にレーザ光23を照射する。レーザ光23は、波長940nmの半導体レーザ光であり、その出力は300Wである。
【0029】
ここで、レーザ光23を透過する透過性樹脂材5は、厚さ3mmの薄板状を呈し、ガラス繊維を30重量%含むナイロン6からなる。また、レーザ光23を吸収する吸収性樹脂材6は、厚さ25mmの板状を呈し、ガラス繊維を30重量%含み、カーボンブラックが添加されたナイロン6からなる。なお、レーザ光23が照射されることにより、透過性樹脂材5と吸収性樹脂材6との当接面は加熱溶融され溶融部7が形成される。
【0030】
放射温度計3は、本発明の溶着装置における温度検出手段として機能するものであり、レーザ光照射装置2と一体的に設置され、溶着状態判断装置4に接続されている。放射温度計3は、溶融部7から放射される波長1.8〜2.1μmの放射光31を、0.1msecごとに計測することにより、溶融部7の温度を検出する。なお、計測される放射光31の透過性樹脂材に対する透過率は25%である。
【0031】
溶着状態判断装置4は、本発明の溶着装置における溶着状態判断手段としての機能を有するものであり、コンピュータ本体41とモニタ42とからなる。コンピュータ本体41には、放射温度計3により検出された溶融部7の温度データが入力される。コンピュータ本体41は、入力された溶融部7の温度に基づいて透過性樹脂材5と吸収性樹脂材6との溶着状態を判断する。また、モニタ42には、コンピュータ本体41からの出力データが表示される。
【0032】
次に、上記本発明の一実施形態である樹脂材の溶着装置の動作を説明する。予め、透過性樹脂材5と吸収性樹脂材6とを当接させ、所定の位置に配置しておく。レーザ源からレーザ光照射ファイバ21により案内されたレーザ光23は、レーザ光照射用ミラー22により反射され、透過性樹脂材5側から透過性樹脂材5と吸収性樹脂材6との当接面に照射される。レーザ光23が照射されると、透過性樹脂材5と吸収性樹脂材6との当接面は加熱溶融し、溶融部7が形成される。すると、溶融部7から放射光31が放射され、放射温度計3にて溶融部7の温度が検出される。放射温度計3で検出された温度データは、コンピュータ本体41へ入力される。コンピュータ本体41では、入力された温度データに基づいて透過性樹脂材5と吸収性樹脂材6との溶着状態が判断される。検出された温度データや溶着状態の判断結果はモニタ42に表示される。なお、レーザ光照射装置2は、4m/minの速度で溶着方向(図9中の矢印方向)へ移動し、透過性樹脂材5と吸収性樹脂材6との当接面にレーザ光23が順次照射される。
【0033】
ここで、溶着状態の判断を中心に、上記樹脂材の溶着装置による溶着の流れをフローチャートを用いて説明する。図10に、溶着の流れをフローチャートで示す。図10に示すように、溶着のルーチンが実行されると、ステップ1(図中「S1」と略称する。以下同様。)でレーザ光の23の照射が開始される。次いで、ステップ2にて溶融部7の温度(T)が検出され、ステップ3へ進む。ステップ3では、検出された溶着部7の温度(T)と、予め設定された溶融部温度管理値の上限値(Tu)とが比較される。ここで、T>Tuである場合には、ステップ5へ進む。ステップ5では、不良フラグがONの状態とされステップ6へ進む。一方、T≦Tuである場合には、ステップ4へ進む。ステップ4では、検出された溶着部7の温度(T)と、予め設定された溶融部温度管理値の下限値(Tl)とが比較される。ここで、T<Tlである場合には、ステップ5へ進む。ステップ5では、不良フラグがONの状態とされステップ7へ進む。一方、T≧Tlである場合には、ステップ6へ進む。ステップ6では、溶着を終了するか否かが判断される。ここで、溶着を終了させる場合にはステップ7へ進む。溶着を続行する場合には、ステップ1へ戻り、上記ステップ1〜6のルーチンが繰り返される。ステップ7では、レーザ光の23の照射が停止される。続くステップ8にて、不良フラグがONか否かが判断される。ここで、不良フラグがONとなっていない場合には、ステップ9へ進む。ステップ9では、溶着状態が正常であるという結果をモニタ42に表示する。その後、溶着ルーチンを終了する。一方、不良フラグがONとなっている場合には、ステップ10へ進む。ステップ10では、溶着状態が不良であるという結果をモニタ42に表示する。その後、溶着ルーチンを終了する。溶着状態が不良とされた溶着品は、不良品と判定される。
【0034】
このように、本発明の樹脂材の溶着装置を用いることにより、透過性樹脂材と吸収性樹脂材との溶着状態を随時判断しながら両者を溶着することができる。本実施形態では、レーザ光照射手段となるレーザ光照射装置を移動させて溶着を行う態様を示した。しかし、本発明の樹脂材の溶着装置におけるレーザ光照射手段は、例えば、点溶着を行う場合のように、固定されているものでもよい。
【0035】
【実施例】
上記実施の形態に基づいて、透過性樹脂材と吸収性樹脂材とを溶着した。溶着は、上記実施の形態で説明した本発明の一実施形態である樹脂材の溶着装置を用いて行った。なお、当接した透過性樹脂材と吸収性樹脂材との間には、予め所定の大きさの隙間を形成しておいた。そして、溶着方向における隙間の長さを変更して三回溶着を行った。各々の溶着における溶融部の温度変化を図11に示す。図11に示すように、隙間が存在する部分では、いずれも溶融部の温度は上昇した。そして、溶着方向における隙間の長さが長いほど、溶融部の温度が上昇している時間が長くなった。この結果より、溶融部の温度変化を監視することで、樹脂材間における隙間の有無を把握することができることが確認された。さらに、レーザ照射装置の移動速度から、溶着方向における隙間の長さも算出することができる。また、本実施例では、いずれも隙間が存在する部分で溶融部の温度が250℃を超えた。したがって、例えば、溶融部温度管理値を250℃と設定することにより、本実施例の溶着品を溶着不良品として検出することができる。
【0036】
【発明の効果】
本発明の樹脂材の溶着方法は、レーザ光を照射することにより二種類の樹脂材を溶着するとともに、樹脂材の当接面に形成された溶融部の温度を検出し、その温度に基づいて樹脂材の溶着状態を判断する方法である。樹脂材の溶着状態によって、溶着された樹脂材の強度やシール性は大きく左右される。本発明の樹脂材の溶着方法によれば、樹脂材を溶着すると同時にその溶着状態が把握できるため、溶着不良品の検出に有効となる。
【0037】
本発明の樹脂材の溶着装置は、レーザ光照射手段と温度検出手段と溶着状態判断手段とを備える。本発明の樹脂材の溶着装置によれば、上記本発明の樹脂材の溶着方法を容易に実施することができる。また、レーザ光照射手段の他に、温度検出手段と溶着状態判断手段とを備えるだけで、樹脂材の溶着状態を判断することができるため、簡易かつ低コストで実用的な装置となる。
【図面の簡単な説明】
【図1】透過性樹脂材と吸収性樹脂材との間に隙間が存在する状態で両者を溶着した様子のモデル図を示す。
【図2】溶着部の強度と隙間の大きさとの関係を概念的に示す。
【図3】隙間の大きさと溶着における溶融部の温度との関係を概念的に示す。
【図4】透過性樹脂材と吸収性樹脂材との間に異物が混入した状態で両者を溶着した様子のモデル図を示す。
【図5】レーザ光の照射角度を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図6】レーザ光の照射角度を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図7】レーザ光の照射位置を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図8】レーザ光の照射位置を変化させて溶着した場合におけるレーザ光の透過距離を示す。
【図9】本発明の一実施形態である樹脂材の溶着装置の概略を示す。
【図10】本発明の一実施形態である樹脂材の溶着装置による溶着の流れを示すフローチャートである。
【図11】溶着における溶融部の温度変化を示す。
【符号の説明】
1:樹脂材の溶着装置
2:レーザ光照射装置
21:レーザ光照射ファイバ 22:レーザ光照射ミラー 23:レーザ光
3:放射温度計
31:放射光
4:溶着状態判断装置
41:コンピュータ本体 42:モニタ
5:透過性樹脂材 6:吸収性樹脂材 7:溶融部 8:隙間 9:異物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for welding a resin material using a laser beam, and more particularly, to a method and an apparatus for welding a resin material by laser welding a resin material while determining the welding state of the resin material.
[0002]
[Prior art]
As a method of joining two types of resin materials, a welding method using laser light is often used. For example, there is a welding method in which a transparent resin material that transmits a laser beam and an absorbent resin material that absorbs a laser beam are overlapped, and then a laser beam is irradiated from the direction of the transparent resin material (for example, Patent Reference 1). In this welding method, two types of resin materials are welded as follows. The irradiated laser beam passes through the transmissive resin material, and is absorbed by the absorptive resin material when it reaches the mating surface of the transmissive resin material and the absorptive resin material. Due to the energy of the absorbed laser beam, the surface of the absorbing resin material which is to be joined with the transmitting resin material is heated and melted. The heat generated on the surface of the absorbent resin material is transmitted to the surface of the opposing transparent resin material, and the transparent resin material is also heated and melted. The permeable resin material and the absorptive resin material are pressed together in a molten state, so that they are welded to each other.
[0003]
[Patent Document 1]
JP-A-60-214931
[0004]
[Problems to be solved by the invention]
When the permeable resin material and the absorptive resin material are welded by the above-described welding method, warpage or undulation, which is inevitable in manufacturing, may occur on the surface of the resin material to be welded. For example, when the permeable resin material and the absorbent resin material are brought into contact with each other, if there is a warp or undulation on the contact surface of each resin material, a gap is generated between the permeable resin material and the absorbent resin material. . As described above, in the welding method using laser light, the surface of the absorbent resin material is heated and melted by irradiation with laser light. If there is a gap between the two types of resin materials to be welded, the gap is filled by melting and expansion of the absorbent resin material, and the absorbent resin material and the permeable resin material are welded. That is, the apparent density of the absorbent resin material is reduced by the amount of the gap, and as a result, the strength of the welded portion is reduced. As described above, when welding is performed in a state where there is a gap between the resin materials, the welding state cannot be said to be good. In addition, when foreign matter such as metal powder or moisture adheres to the contact surface between the two kinds of resin materials, or when the irradiation angle of the laser beam is not appropriate, it is difficult to sufficiently perform welding. For this reason, the welding state deteriorates, and the strength of the welded portion decreases. Thus, there is a close relationship between the welded state of the resin material and the strength and sealability of the welded resin material. Therefore, it is extremely important to grasp the welded state of the welded resin material.
[0005]
The present invention has been made in view of the above-described circumstances, and provides a method for welding a resin material that irradiates a laser beam to weld two types of resin materials and can also determine the welding state. As an issue. It is another object of the present invention to provide a welding device for a resin material capable of performing welding while determining a welding state.
[0006]
[Means for Solving the Problems]
In the method for welding a resin material according to the present invention, a transparent resin material that transmits laser light and an absorbent resin material that absorbs the laser light are brought into contact with each other, and the laser light is irradiated through the transparent resin material. In the method of welding a resin material for welding the transparent resin material and the absorbent resin material, the contact surface between the transparent resin material and the absorbent resin material is heated by irradiating the laser light. While melting to form a melted portion, the temperature of the melted portion is detected by radiated light transmitted through the transparent resin material from the melted portion, and the transparent resin material is detected based on the temperature of the melted portion. And judging the welding state between the resin material and the absorbent resin material.
[0007]
That is, the method for welding a resin material according to the present invention is a welding method capable of welding two types of resin materials by irradiating a laser beam and determining the welding state. The present inventor says that when the welding state of the resin material is deteriorated for some reason, the temperature of the molten portion formed by heating and melting the contact surface between the permeable resin material and the absorbent resin material fluctuates. I found that. Then, it was thought that by detecting the temperature of the fusion zone, the welding state of the resin material could be determined based on the temperature.
[0008]
For example, as described above, if there is a gap between the abutted permeable resin material and the absorptive resin material, welding failure is likely to occur. When there is a gap between the resin materials, the heat generated on the surface of the absorbent resin material due to the absorption of the laser beam becomes difficult to be transmitted to the surface of the opposing transparent resin material. For this reason, the surface temperature of the absorbent resin material is higher than in the case where there is no gap. That is, when there is a gap between the resin materials, the temperature of the molten portion increases. Therefore, by monitoring the temperature fluctuation of the melted portion formed by heating and melting the contact surface between the permeable resin material and the absorbent resin material, the presence or absence of a gap between the resin materials can be grasped, and the welding state Can be determined. Further, for example, when foreign matter such as metal powder or moisture is mixed between the abutting permeable resin material and the absorptive resin material, the welding is difficult to be sufficiently performed, and the welding is likely to be defective. In this case, the laser light is applied to the contaminant foreign material and hardly reaches the absorbing resin material. Foreign matter such as metal powder generates less heat because it has a lower absorptivity of laser light than the absorptive resin material. That is, the presence of foreign matter lowers the temperature of the fusion zone. Therefore, by monitoring the temperature fluctuation of the fusion zone, the welding state can be grasped. As described above, according to the resin material welding method of the present invention, the resin material can be welded while judging whether or not the welding state of the resin material to be welded is good.
[0009]
The resin welding apparatus according to the present invention is configured to contact a transparent resin material that transmits laser light with an absorbent resin material that absorbs the laser light, and irradiate the laser light through the transparent resin material. What is claimed is: 1. A welding apparatus for a resin material for welding said transparent resin material and said absorbent resin material, said laser beam being radiated to a contact surface between said transparent resin material and said absorbent resin material. A laser beam irradiating means for heating and melting the molten resin to form a fused portion; a temperature detecting device for detecting a temperature of the fused portion by radiation emitted from the fused portion through the transparent resin material; And a welding state determining means for determining a welding state between the permeable resin material and the absorbent resin material based on the temperature of the fusion zone.
[0010]
The resin material welding apparatus of the present invention is an apparatus capable of performing the above-described resin material welding method of the present invention. That is, according to the resin material welding apparatus of the present invention, in addition to welding the permeable resin material and the absorbent resin material, the contact surface between the permeable resin material and the absorbent resin material is heated and melted. The temperature of the formed fusion zone is detected, and the welding state of the resin can be determined based on the detected temperature. The welding apparatus for a resin material according to the present invention includes, in addition to the laser beam irradiating means, a temperature detecting means for detecting a temperature of a melting portion, and a welding state determining means for determining a welding state between the transparent resin material and the absorbent resin material. And That is, since the welding state of the resin material can be determined only by providing the temperature detecting means and the welding state determining means, the apparatus is simple, low-cost and practical.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the method and apparatus for welding a resin material of the present invention will be described in detail. The embodiment to be described is merely an embodiment, and the method and apparatus for welding a resin material of the present invention are not limited to the following embodiment. The method and apparatus for welding a resin material according to the present invention can be implemented in various forms with modifications and improvements that can be made by those skilled in the art without departing from the spirit of the present invention.
[0012]
<Resin welding method>
In the method for welding a resin material according to the present invention, a transparent resin material that transmits laser light and an absorbent resin material that absorbs the laser light are brought into contact with each other, and the laser light is irradiated through the transparent resin material. Thereby, the permeable resin material and the absorptive resin material are welded.
[0013]
The type of the laser beam used in the welding method of the present invention is not particularly limited. For example, a semiconductor laser, a YAG laser, a ruby laser, a glass laser, or the like can be used. Above all, it is desirable to use a semiconductor laser in consideration of the permeability to the resin material, cost, maintenance, ease of operation, and the like. The wavelength of the laser beam may be appropriately selected according to the type of the resin material to be welded. For example, in a case where the nylon 6 is welded to the transmissive resin material and the nylon 6 to which carbon black is added to the absorptive resin material, the wavelength of the laser beam may be about 800 to 1100 nm. The output of the laser beam may be appropriately selected according to the type and thickness of the resin material to be welded.
[0014]
The type of the transparent resin material, which is one of the resin materials to be welded, is not particularly limited as long as the resin has thermoplasticity and transmits a laser beam. For example, polyamides such as nylon 6 and nylon 6,6, polyethylene, polypropylene, styrene-acrylonitrile copolymer, polyester, polyacetal, polycarbonate, acrylic, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS) and the like can be used. it can. If necessary, a glass fiber or the like may be added to the above resin to enhance the strength, or a resin colored with a dye that does not absorb laser light may be used.
[0015]
The type of the absorptive resin material that is the other of the resin materials to be welded is not particularly limited as long as the resin has thermoplasticity and absorbs laser light. For example, polyamides such as nylon 6 and nylon 6,6 to which pigments such as carbon black are added, and polyethylene, polypropylene, styrene-acrylonitrile copolymers, polyesters, polyacetals, polycarbonates and acrylics to which pigments such as carbon black are also added. , Polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), and the like. Further, a resin reinforced by adding glass fiber or the like to the above resin may be used as needed.
[0016]
In the welding method of the present invention, the transparent resin material and the absorbent resin material are brought into contact with each other, and the laser light is irradiated through the transparent resin material. The permeable resin material and the absorptive resin material may be arranged so that the portions to be welded are in contact with each other. For example, when the permeable resin material and the absorptive resin material are each in the form of a thin plate, they may be arranged so as to overlap each other. The laser beam is applied to the contact surface between the transmissive resin material and the absorptive resin material. In this case, laser light is applied through a transparent resin material. For example, in the case where a thin plate-shaped transmissive resin material and an absorbent resin material are overlapped and the joining surface is welded, laser light may be applied from the side of the transmissive resin material. The irradiation angle of the laser beam is not particularly limited. Irradiation may be performed from a perpendicular direction to the contact surface between the transparent resin material and the absorbent resin material, or may be performed from a predetermined angle.
[0017]
As described above, the emitted laser light passes through the transmissive resin material, and is absorbed by the absorbent resin material when it reaches the contact surface between the transmissive resin material and the absorbent resin material. The surface of the absorbing resin material is heated and melted by the energy of the absorbed laser beam. The heat generated on the surface of the absorbent resin material is transmitted to the surface of the transparent resin material that comes into contact, and the transparent resin material is also heated and melted. As described above, in the welding method of the present invention, by irradiating the laser beam, the contact surface between the transmissive resin material and the absorptive resin material is heated and melted to form a fused portion. In addition, the formed fusion | melting part turns into a fusion | melting part by cooling.
[0018]
The absorptive resin material generates heat by absorbing the irradiated laser light. Then, the emitted light is emitted from the absorbing resin material that has generated heat. In the welding method of the present invention, the temperature of the fusion zone is detected by radiation emitted from the fusion zone through the transparent resin material. That is, when there is no foreign substance between the permeable resin material and the absorbent resin material, the temperature of the surface of the absorbent resin material is detected as the temperature of the fusion zone. The method for detecting the temperature of the fusion zone is not particularly limited as long as the method detects the temperature from the emitted light. For example, it can be detected using a known radiation thermometer or the like. The emitted radiation is of various wavelengths. Further, the wavelength distribution differs depending on the type of laser light, the type of resin material to be welded, and the like. Therefore, in order to detect the temperature of the fusion zone, an optimum wavelength may be appropriately selected according to the laser beam or resin material used. It is desirable that the wavelength of the emitted light for detecting the temperature of the fusion zone is different from the wavelength of the laser light. In particular, when the accuracy in detecting the temperature is taken into consideration, the transmittance for the transparent resin material is 10%. % Is desirable. A commercially available spectrophotometer may be used for measuring the transmittance.
[0019]
In the welding method of the present invention, the welding state between the permeable resin material and the absorbent resin material is determined based on the detected temperature of the fusion zone. The method for determining the welding state is not particularly limited. For example, a control value for the temperature of the fusion zone is set in advance, and the welding state may be determined by comparing the temperature of the fusion zone during welding with the management value. As an example of a method for judging a welding state in the welding method of the present invention, a mode for detecting a defective welding product will be described below.
[0020]
(1) Detection of defective welding due to a gap between the transparent resin material and the absorbent resin material
FIG. 1 is a model diagram showing a state in which a transparent resin material and an absorbent resin material are welded together in a state where a gap exists between the two. As shown in FIG. 1, a thin plate-shaped transparent resin material 5 to be welded and a thin plate-shaped absorbent resin material 6 are in contact with each other. A gap 8 exists between the transparent resin material 5 and the absorbent resin material 6. The laser beam 23 is applied to the contact surface between the transmissive resin material 5 and the absorptive resin material 6 from the side of the transmissive resin material 5, thereby forming a fusion part 7. Further, the radiated light 31 is emitted from the fusion portion 7 through the transparent resin material 5. Thus, when both are welded in a state where a gap exists between the permeable resin material and the absorbent resin material, if the length and thickness of the gap, that is, the size of the gap is larger, the strength of the welded portion is reduced. Conceivable. Therefore, it is desired that the welded state is determined to be defective in a state where there is a gap that causes a decrease in the strength of the welded portion. In this case, the welding state may be determined as follows.
[0021]
First, as shown as a conceptual diagram in FIG. 2, the relationship between the strength of the welded portion and the size of the gap is determined. Then, an allowable lower limit value of the strength of the welded portion is set, and an upper limit value of the size of the gap corresponding to the allowable lower limit value is set from the relationship between the strength of the welded portion and the size of the gap. On the other hand, as shown in the conceptual diagram of FIG. 3, the relationship between the size of the gap and the temperature of the fusion zone in welding is determined. From the relationship between the size of the gap and the temperature of the fusion zone in welding, the temperature of the fusion zone corresponding to the upper limit of the size of the gap is defined as the fusion zone temperature management value. If the temperature of the fusion zone during welding exceeds the temperature control value of the fusion zone, it is presumed that there is a gap that causes a decrease in the strength of the fusion zone. As described above, by detecting the temperature of the fusion zone and comparing it with a predetermined control value, it is possible to determine the presence or absence of a gap between the resin materials, and it is possible to detect defective welding.
[0022]
(2) Detection of defective welding due to foreign matter
FIG. 4 is a model diagram showing a state in which a foreign substance is mixed between a permeable resin material and an absorbent resin material and both are welded. As shown in FIG. 4, a thin plate-shaped transparent resin material 5 to be welded and a thin plate-shaped absorbent resin material 6 are in contact with each other. Foreign matter 9 exists between the permeable resin material 5 and the absorbent resin material 6. The laser beam 23 is applied to the contact surface between the transmissive resin material 5 and the absorptive resin material 6 from the side of the transmissive resin material 5, thereby forming a fusion part 7. Radiation light 31 is emitted from the fusion part 7 through the transparent resin material 5. As described above, when a foreign substance exists between the permeable resin material and the absorbent resin material, the laser beam is difficult to irradiate the absorbent resin material in a portion where the foreign substance is present. Is considered to decrease in strength. In addition, even when foreign matter is attached to the outer surface of the permeable resin material or mixed with the inside of the permeable resin material, it is difficult to irradiate the absorptive resin material with laser light, as described above. Therefore, it is considered that the welding becomes insufficient and the strength of the welded portion is reduced.
[0023]
As described above, it is desirable that the welded state is determined to be defective in a state where the foreign matter that causes the strength of the welded portion to be reduced exists. As described above, when a foreign substance is present, it becomes difficult for the laser beam to reach the absorptive resin material, and the temperature of the fusion zone becomes low. On the other hand, when a foreign substance such as a carbide adheres to the outer surface of the permeable resin material, the foreign substance generates heat in addition to the absorbent resin material by the irradiation of the laser beam, so that the detected temperature of the molten portion increases. In some cases. Therefore, for example, when the welding state is good, the temperature range of the fusion zone during welding is set as the fusion zone temperature control range, and when the temperature of the fusion zone during welding deviates from the fusion zone temperature management range, foreign matter is present. Therefore, the welding state may be determined to be defective. As described above, by detecting the temperature of the fusion zone and comparing it with a predetermined control value, it is possible to determine whether or not foreign matter has adhered to or mixed with the resin material, and it is possible to detect a poorly welded product.
[0024]
(3) Detection of defective welding due to laser beam irradiation conditions
When the irradiation angle of the laser beam applied to the resin material changes, the transmission distance of the laser beam transmitted through the transparent resin material changes. FIG. 5 and FIG. 6 show the transmission distance of the laser beam when welding is performed while changing the irradiation angle of the laser beam. 5 and 6 differ only in the irradiation angle of the laser beam. As shown in FIGS. 5 and 6, the transparent resin material 5 to be welded and the absorbent resin material 6 are in contact with each other. The contact surface is irradiated with the laser beam 23 to form the fusion zone 7. As shown in FIG. 5, when the laser light is irradiated from the direction perpendicular to the contact surface, the transmission distance of the laser light is A. On the other hand, as shown in FIG. 6, when the laser light is applied to the contact surface from an oblique direction, the transmission distance of the laser light is B. Comparing the transmission distances of the respective laser beams, B is longer. As the transmission distance of the laser light increases, the scattering of the laser light by the transparent resin material increases, and the energy of the laser light reaching the contact surface of the resin material decreases. That is, the energy of the laser light absorbed by the absorbing resin material decreases. For this reason, the absorbent resin material is difficult to melt, and the welding may be insufficient. Therefore, it is considered that the intensity of the welded portion is lower when the laser beam is irradiated with the laser beam inclined with respect to the contact surface than when the laser beam is irradiated from the vertical direction.
[0025]
Further, even when the irradiation angle of the laser light is constant, the transmission distance of the laser light may change due to a change in the irradiation position of the laser light at the welding portion. 7 and 8 show the transmission distance of the laser beam when welding is performed while changing the irradiation position of the laser beam. 7 and 8 differ only in the irradiation position of the laser beam. As shown in FIGS. 7 and 8, the rod-shaped transmissive resin material 5 and the rod-shaped absorbent resin material 6 are in contact with their respective end faces aligned. The contact surface is irradiated with the laser beam 23 to form the fusion zone 7. As shown in FIG. 7, when the laser beam is applied to substantially the center of the target welded portion, the transmission distance of the laser beam becomes C. On the other hand, as shown in FIG. 8, when the end of the welded portion is irradiated with laser light, the transmission distance of the laser light is D. Comparing the transmission distance of each laser beam, D is longer. As described above, when the irradiation position of the laser beam changes, the welding may be insufficient as described above. Also in this case, it is considered that the strength of the welded portion is reduced. As described above, when welding conditions become insufficient due to a change in the irradiation condition of the laser beam, it is desired that the welding state is determined to be defective.
[0026]
As described above, when the transmission distance of the laser light is long, the energy of the laser light absorbed by the absorbent resin material is reduced, so that the heat generated by the absorbent resin material is reduced, and the temperature of the molten portion is reduced. Lower. Therefore, for example, the lower limit of the temperature range of the fusion zone in the welding of a good welding state is set as a fusion zone temperature control value, if the temperature of the fusion zone during welding is lower than the fusion zone temperature management value, Since the irradiation of the laser beam is insufficient, the welded state may be determined to be defective. As described above, by detecting the temperature of the fusion zone and comparing it with a predetermined control value, it is possible to detect a poorly welded product due to the laser beam irradiation conditions.
[0027]
<Resin welding equipment>
The resin material welding apparatus of the present invention is an apparatus capable of performing the above-described resin material welding method of the present invention, and includes the laser beam irradiation means, the temperature detection means, and the welding state determination means as described above. . Here, the configuration of the resin material welding apparatus according to one embodiment of the present invention will be described. FIG. 9 schematically shows a resin welding apparatus according to an embodiment of the present invention. As shown in FIG. 9, the welding device 1 for a resin material includes a laser beam irradiation device 2, a radiation thermometer 3, and a welding state determination device 4.
[0028]
The laser beam irradiation device 2 functions as a laser beam irradiation means in the welding device of the present invention, and includes a laser beam irradiation fiber 21 and a laser beam irradiation mirror 22. The laser light irradiation fiber 21 is connected to a laser source (not shown) and guides the laser light. The laser source is connected to the computer main body 41, and irradiation and stop of laser light are controlled by the computer main body 41. The laser light irradiating mirror 22 reflects the laser light guided by the laser light irradiating fiber 21 and irradiates the laser light 23 to the contact surface between the transmissive resin material 5 and the absorptive resin material 6. The laser light 23 is a semiconductor laser light having a wavelength of 940 nm, and its output is 300 W.
[0029]
Here, the transparent resin material 5 that transmits the laser light 23 has a thin plate shape with a thickness of 3 mm, and is made of nylon 6 containing 30% by weight of glass fiber. The absorptive resin material 6 that absorbs the laser light 23 has a plate shape with a thickness of 25 mm, contains 30% by weight of glass fiber, and is made of nylon 6 to which carbon black is added. When the laser beam 23 is irradiated, the contact surface between the transmissive resin material 5 and the absorptive resin material 6 is heated and melted to form a fused portion 7.
[0030]
The radiation thermometer 3 functions as a temperature detecting means in the welding device of the present invention, is installed integrally with the laser beam irradiation device 2, and is connected to the welding state determination device 4. The radiation thermometer 3 detects the temperature of the fusion part 7 by measuring the radiation 31 having a wavelength of 1.8 to 2.1 μm emitted from the fusion part 7 every 0.1 msec. The measured transmittance of the emitted light 31 to the transparent resin material is 25%.
[0031]
The welding state judging device 4 has a function as a welding state judging means in the welding device of the present invention, and includes a computer main body 41 and a monitor 42. The temperature data of the melting part 7 detected by the radiation thermometer 3 is input to the computer main body 41. The computer main body 41 determines the welding state between the permeable resin material 5 and the absorbent resin material 6 based on the input temperature of the fusion part 7. The monitor 42 displays output data from the computer main body 41.
[0032]
Next, the operation of the resin material welding apparatus according to one embodiment of the present invention will be described. The permeable resin material 5 and the absorptive resin material 6 are brought into contact with each other in advance and are arranged at predetermined positions. The laser beam 23 guided by the laser beam irradiating fiber 21 from the laser source is reflected by the laser beam irradiating mirror 22, and the contact surface between the transparent resin member 5 and the absorbing resin member 6 from the transparent resin member 5 side. Is irradiated. When the laser beam 23 is irradiated, the contact surface between the transmissive resin material 5 and the absorptive resin material 6 is heated and melted to form a fusion part 7. Then, the radiated light 31 is emitted from the melting part 7, and the temperature of the melting part 7 is detected by the radiation thermometer 3. The temperature data detected by the radiation thermometer 3 is input to the computer main body 41. In the computer main body 41, the welding state of the transparent resin material 5 and the absorbent resin material 6 is determined based on the input temperature data. The detected temperature data and the determination result of the welding state are displayed on the monitor 42. The laser beam irradiation device 2 moves in the welding direction (the direction of the arrow in FIG. 9) at a speed of 4 m / min, and the laser beam 23 is applied to the contact surface between the transparent resin material 5 and the absorbent resin material 6. Irradiated sequentially.
[0033]
Here, the flow of welding by the above-described welding apparatus for resin material will be described with reference to a flowchart, focusing on the determination of the welding state. FIG. 10 is a flowchart showing the flow of welding. As shown in FIG. 10, when the welding routine is executed, the irradiation of the laser beam 23 is started in step 1 (abbreviated as “S1” in the figure; the same applies hereinafter). Next, in step 2, the temperature (T) of the fusion zone 7 is detected, and the process proceeds to step 3. In step 3, the detected temperature (T) of the welded portion 7 is compared with a preset upper limit value (Tu) of the melting portion temperature management value. If T> Tu, the process proceeds to step S5. In step 5, the failure flag is turned on, and the process proceeds to step 6. On the other hand, if T ≦ Tu, the process proceeds to step 4. In step 4, the detected temperature (T) of the welded portion 7 is compared with a preset lower limit value (Tl) of the melting portion temperature management value. If T <Tl, the process proceeds to step S5. In step 5, the failure flag is turned on, and the process proceeds to step 7. On the other hand, if T ≧ T1, the process proceeds to step 6. In step 6, it is determined whether or not to end the welding. Here, to end the welding, the process proceeds to step 7. When the welding is to be continued, the process returns to step 1 and the routine of steps 1 to 6 is repeated. In step 7, the irradiation of the laser beam 23 is stopped. In the following step 8, it is determined whether or not the failure flag is ON. Here, if the failure flag is not ON, the process proceeds to step 9. In step 9, a result indicating that the welding state is normal is displayed on the monitor 42. Thereafter, the welding routine ends. On the other hand, if the failure flag is ON, the process proceeds to step 10. In step 10, the result that the welding state is bad is displayed on the monitor 42. Thereafter, the welding routine ends. A welded product whose welding state is determined to be defective is determined to be defective.
[0034]
As described above, by using the resin welding apparatus of the present invention, it is possible to weld both the permeable resin material and the absorptive resin material while judging the welding state at any time. In the present embodiment, the mode in which the welding is performed by moving the laser light irradiation device serving as the laser light irradiation means has been described. However, the laser beam irradiation means in the resin material welding apparatus of the present invention may be fixed, for example, as in the case of performing point welding.
[0035]
【Example】
Based on the above embodiment, the permeable resin material and the absorbent resin material were welded. The welding was performed using the resin welding apparatus according to the embodiment of the present invention described in the above embodiment. In addition, a gap having a predetermined size was previously formed between the abutting permeable resin material and the absorbing resin material. Then, welding was performed three times while changing the length of the gap in the welding direction. FIG. 11 shows the temperature change of the fusion zone in each welding. As shown in FIG. 11, the temperature of the melted portion increased in any of the portions where the gap was present. And, the longer the length of the gap in the welding direction, the longer the time during which the temperature of the fusion zone rises. From this result, it was confirmed that the presence or absence of a gap between the resin materials can be grasped by monitoring the temperature change of the fusion zone. Further, the length of the gap in the welding direction can be calculated from the moving speed of the laser irradiation device. Further, in the present embodiment, the temperature of the molten portion exceeded 250 ° C. in each of the portions where the gap was present. Therefore, for example, by setting the fusion zone temperature control value to 250 ° C., the welded product of this embodiment can be detected as a poorly welded product.
[0036]
【The invention's effect】
The method of welding a resin material of the present invention is to weld two types of resin materials by irradiating a laser beam, and detect a temperature of a molten portion formed on a contact surface of the resin material, and based on the detected temperature. This is a method for judging the welding state of the resin material. The strength and sealing property of the welded resin material largely depend on the welding state of the resin material. According to the method for welding a resin material of the present invention, the welding state of the resin material can be grasped at the same time as the welding of the resin material, which is effective for detecting defective welding.
[0037]
The resin welding apparatus of the present invention includes a laser beam irradiation unit, a temperature detection unit, and a welding state determination unit. According to the resin material welding apparatus of the present invention, the above-described method of welding the resin material of the present invention can be easily performed. Further, since the welding state of the resin material can be determined only by providing the temperature detecting means and the welding state determining means in addition to the laser beam irradiating means, the apparatus is simple, low-cost and practical.
[Brief description of the drawings]
FIG. 1 is a model diagram showing a state in which a transparent resin material and an absorbent resin material are welded together in a state where a gap exists between the two.
FIG. 2 conceptually shows the relationship between the strength of a welded portion and the size of a gap.
FIG. 3 conceptually shows the relationship between the size of a gap and the temperature of a fusion zone in welding.
FIG. 4 is a model diagram showing a state in which a foreign substance is mixed between a transparent resin material and an absorbent resin material and both are welded.
FIG. 5 shows the transmission distance of laser light when welding is performed while changing the irradiation angle of laser light.
FIG. 6 shows the transmission distance of laser light when welding is performed while changing the irradiation angle of laser light.
FIG. 7 shows the transmission distance of laser light when welding is performed while changing the irradiation position of laser light.
FIG. 8 shows the transmission distance of laser light when welding is performed while changing the irradiation position of laser light.
FIG. 9 schematically shows a resin welding apparatus according to an embodiment of the present invention.
FIG. 10 is a flowchart showing a flow of welding by a resin welding apparatus according to an embodiment of the present invention.
FIG. 11 shows a change in temperature of a fusion zone during welding.
[Explanation of symbols]
1: Welding equipment for resin material
2: Laser beam irradiation device
21: Laser light irradiation fiber 22: Laser light irradiation mirror 23: Laser light
3: Radiation thermometer
31: Synchrotron radiation
4: Welding state determination device
41: Computer body 42: Monitor
5: Transparent resin material 6: Absorbent resin material 7: Fused portion 8: Gap 9: Foreign matter

Claims (3)

レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着方法において、
前記レーザ光を照射することにより前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させ溶融部を形成するとともに、該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出し、該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断する樹脂材の溶着方法。
The transparent resin material transmitting the laser light and the absorbing resin material absorbing the laser light are brought into contact with each other, and the transparent resin material is irradiated with the laser light through the transparent resin material so that the transparent resin material absorbs the laser light. In a method of welding a resin material for welding a conductive resin material,
By irradiating the laser beam, the contact surface between the transmissive resin material and the absorptive resin material is heated and melted to form a fused portion, and the fused portion is radiated through the transparent resin material. A method for welding a resin material, wherein the temperature of the fusion zone is detected by the emitted light, and the welding state of the transparent resin material and the absorptive resin material is determined based on the temperature of the fusion zone.
前記溶融部の温度を検出するための前記放射光の波長は、前記レーザ光の波長と異なる波長であり、前記透過性樹脂材に対する透過率が10%以上である請求項1に記載の樹脂材の溶着方法。2. The resin material according to claim 1, wherein a wavelength of the radiated light for detecting a temperature of the fusion zone is different from a wavelength of the laser light, and a transmittance to the transparent resin material is 10% or more. Welding method. レーザ光を透過する透過性樹脂材と該レーザ光を吸収する吸収性樹脂材とを当接させ、該透過性樹脂材を介して該レーザ光を照射することにより該透過性樹脂材と該吸収性樹脂材とを溶着させる樹脂材の溶着装置であって、
前記レーザ光を照射して、前記透過性樹脂材と前記吸収性樹脂材との当接面を加熱溶融させて溶融部を形成するレーザ光照射手段と、
該溶融部から該透過性樹脂材を透過して放射される放射光により該溶融部の温度を検出する温度検出手段と、
検出された該溶融部の温度に基づいて該透過性樹脂材と該吸収性樹脂材との溶着状態を判断する溶着状態判断手段と
を備える樹脂材の溶着装置。
The transparent resin material transmitting the laser light and the absorbing resin material absorbing the laser light are brought into contact with each other, and the transparent resin material is irradiated with the laser light through the transparent resin material so that the transparent resin material absorbs the laser light. A welding device for a resin material for welding a conductive resin material,
Laser light irradiation means for irradiating the laser light, heating and melting the contact surface between the transparent resin material and the absorptive resin material to form a fused portion,
Temperature detection means for detecting the temperature of the fusion portion by radiation emitted from the fusion portion and transmitted through the transparent resin material,
A welding apparatus for a resin material, comprising: a welding state determination unit configured to determine a welding state between the transparent resin material and the absorbent resin material based on the detected temperature of the fusion zone.
JP2002289536A 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus Expired - Fee Related JP4267286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289536A JP4267286B2 (en) 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289536A JP4267286B2 (en) 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus

Publications (2)

Publication Number Publication Date
JP2004122560A true JP2004122560A (en) 2004-04-22
JP4267286B2 JP4267286B2 (en) 2009-05-27

Family

ID=32281673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289536A Expired - Fee Related JP4267286B2 (en) 2002-10-02 2002-10-02 Resin material welding method and resin material welding apparatus

Country Status (1)

Country Link
JP (1) JP4267286B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341563A (en) * 2005-06-10 2006-12-21 Denso Corp Method for determining acceptability of laser weld, and its device
JP2009012284A (en) * 2007-07-04 2009-01-22 Hamamatsu Photonics Kk Method and apparatus for resin welding
JP2009172960A (en) * 2008-01-28 2009-08-06 Denso Corp Method for manufacturing laser-welded part
JP2010253859A (en) * 2009-04-28 2010-11-11 Noritz Corp Resin welding method and bathroom electric apparatus formed by the method
US7897891B2 (en) * 2005-04-21 2011-03-01 Hewlett-Packard Development Company, L.P. Laser welding system
WO2011045012A1 (en) * 2009-10-12 2011-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for detecting the joining temperature during the laser beam welding of thermoplastics
JP2014147948A (en) * 2013-01-31 2014-08-21 Honda Motor Co Ltd Seam welding device and seam welding method
JP2015077779A (en) * 2013-09-12 2015-04-23 日本特殊陶業株式会社 Method and apparatus for producing resin welded body
WO2016140098A1 (en) * 2015-03-04 2016-09-09 オムロン株式会社 Joint examination device, joining device, and joint examination method
WO2020121700A1 (en) * 2018-12-12 2020-06-18 パナソニックIpマネジメント株式会社 Vehicle-mounted device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897891B2 (en) * 2005-04-21 2011-03-01 Hewlett-Packard Development Company, L.P. Laser welding system
JP2006341563A (en) * 2005-06-10 2006-12-21 Denso Corp Method for determining acceptability of laser weld, and its device
JP4577103B2 (en) * 2005-06-10 2010-11-10 株式会社デンソー Laser welding quality determination method and apparatus
US7910153B2 (en) 2005-06-10 2011-03-22 Denso Corporation Laser deposition acceptance judgment method and apparatus for the method
JP2009012284A (en) * 2007-07-04 2009-01-22 Hamamatsu Photonics Kk Method and apparatus for resin welding
JP2009172960A (en) * 2008-01-28 2009-08-06 Denso Corp Method for manufacturing laser-welded part
JP2010253859A (en) * 2009-04-28 2010-11-11 Noritz Corp Resin welding method and bathroom electric apparatus formed by the method
WO2011045012A1 (en) * 2009-10-12 2011-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for detecting the joining temperature during the laser beam welding of thermoplastics
JP2014147948A (en) * 2013-01-31 2014-08-21 Honda Motor Co Ltd Seam welding device and seam welding method
JP2015077779A (en) * 2013-09-12 2015-04-23 日本特殊陶業株式会社 Method and apparatus for producing resin welded body
WO2016140098A1 (en) * 2015-03-04 2016-09-09 オムロン株式会社 Joint examination device, joining device, and joint examination method
WO2020121700A1 (en) * 2018-12-12 2020-06-18 パナソニックIpマネジメント株式会社 Vehicle-mounted device

Also Published As

Publication number Publication date
JP4267286B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
EP2255919B1 (en) Laser processing apparatus with laser processing temperature measuring device and laser processing method with measurement of laser processing temperature
Lambiase et al. Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: thermal analysis, mechanical characterization, and bonds morphology
US4224096A (en) Laser sealing of thermoplastic material
US3989778A (en) Method of heat sealing thermoplastic sheets together using a split laser beam
JP2004525382A (en) Method for monitoring weld seams in workpieces made of weldable plastic and apparatus for carrying out this method
JP4577103B2 (en) Laser welding quality determination method and apparatus
JP4267286B2 (en) Resin material welding method and resin material welding apparatus
JP3860879B2 (en) Laser processing state detection method and laser processing system
JP4825051B2 (en) Laser processing apparatus and laser processing method
Mamuschkin et al. Enabling pyrometry in absorber-free laser transmission welding through pulsed irradiation
JP2002337236A (en) Method for welding resin member
EP0562492B1 (en) A laser device, particularly a laser robot, with a focusing head having sensor means for monitoring the quality of a process in an automated production system
JP2010064325A (en) Method for joining member using laser
JP2016155319A (en) Laser resin deposition method and device
Fuhrberg et al. 2.0 μm Laser Transmission Welding: Welding of transparent and opaque polymers with single‐mode Tm‐doped fiber lasers
US9738063B2 (en) Method and apparatus for manufacturing welded resin article
KR20160094483A (en) Laser welding Method and apparatus for automobile lamp
JP5878779B2 (en) Laser welding state determination method and laser welding state determination device
JP3931817B2 (en) Laser welding method and welding apparatus
JP5878778B2 (en) Laser welding state determination method and laser welding state determination device
Jankus et al. Effect of the meltdown on thermoplastic joint produced by quasi-simultaneous laser transmission welding
CN110702689A (en) Detection system for laser lath and heat sink welding surface of solid laser
JPH10100259A (en) Apparatus for fusion weld of plastics
JPH10100257A (en) Heat fusion bonding apparatus for plastic
JP5020724B2 (en) Resin welding method and resin welding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees