JP5878779B2 - Laser welding state determination method and laser welding state determination device - Google Patents

Laser welding state determination method and laser welding state determination device Download PDF

Info

Publication number
JP5878779B2
JP5878779B2 JP2012032291A JP2012032291A JP5878779B2 JP 5878779 B2 JP5878779 B2 JP 5878779B2 JP 2012032291 A JP2012032291 A JP 2012032291A JP 2012032291 A JP2012032291 A JP 2012032291A JP 5878779 B2 JP5878779 B2 JP 5878779B2
Authority
JP
Japan
Prior art keywords
laser welding
temperature
state determination
welding state
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012032291A
Other languages
Japanese (ja)
Other versions
JP2013166352A (en
Inventor
熊澤 真治
真治 熊澤
航 川岸
航 川岸
中野 等
等 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012032291A priority Critical patent/JP5878779B2/en
Publication of JP2013166352A publication Critical patent/JP2013166352A/en
Application granted granted Critical
Publication of JP5878779B2 publication Critical patent/JP5878779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、レーザー光に対して透過性のある樹脂部材とレーザー光に対して吸収性のある樹脂部材とをレーザー溶着で接合する際の溶着状態を判定するレーザー溶着状態判定方法およびレーザー溶着状態判定装置に関する。   The present invention relates to a laser welding state determination method and a laser welding state for determining a welding state when a resin member that is transparent to laser light and a resin member that is absorbent to laser light are joined by laser welding. The present invention relates to a determination device.

レーザー溶着によって樹脂部材同士を接合する方法が知られている。この方法は、レーザー光に対して透過性のある樹脂部材(以下、「透過性樹脂部材」と呼ぶ)とレーザー光に対して吸収性のある樹脂部材(以下、「吸収性樹脂部材」と呼ぶ)とを重ね、透過性樹脂部材側からレーザー光を照射することにより、吸収性樹脂部材における照射された部分を発熱・溶融させると共に、吸収性樹脂部材からの伝熱によって透過性樹脂部材も発熱・溶融させ、これによって透過性樹脂部材と吸収性樹脂部材とを溶着する方法である。   A method of joining resin members by laser welding is known. This method is a resin member that is transmissive to laser light (hereinafter referred to as “transparent resin member”) and a resin member that is absorbent to laser light (hereinafter referred to as “absorbent resin member”). ) And irradiating laser light from the transparent resin member side generates heat and melts the irradiated portion of the absorbent resin member, and the transparent resin member also generates heat due to heat transfer from the absorbent resin member. A method of melting and welding the permeable resin member and the absorbent resin member thereby.

レーザー溶着の際に、透過性樹脂部材と吸収性樹脂部材との間に例えば部材の変形に起因する間隙があると、レーザー光によって発熱した吸収性樹脂部材から透過性樹脂部材に熱が十分に伝わらないために透過性樹脂部材が十分に発熱・溶融せず、溶着強度の低下や溶着位置における隙間の発生といった溶着状態の不良が発生する場合がある。溶着状態の判定方法として、レーザー溶着中に溶着位置の温度をセンサーを用いて検出し、検出された温度が所定の閾値を超える場合には溶着状態が不良であると判定する方法が知られている(例えば、特許文献1参照)。この判定方法は、レーザー溶着の際に透過性樹脂部材と吸収性樹脂部材との間に間隙があると、間隙が無い場合と比較して、吸収性樹脂部材から透過性樹脂部材への伝熱量が低下して、結果的に吸収性樹脂部材の温度がより高くなるという知見に基づいている。   During laser welding, if there is a gap between the permeable resin member and the absorbent resin member due to, for example, deformation of the member, sufficient heat is generated from the absorbent resin member generated by the laser light to the permeable resin member. Since the transmission resin member does not transmit, the permeable resin member does not sufficiently generate heat and melt, and a defective weld state such as a decrease in welding strength or a gap at the welding position may occur. As a method for determining the welding state, a method is known in which the temperature at the welding position is detected using a sensor during laser welding, and if the detected temperature exceeds a predetermined threshold, the welding state is determined to be defective. (For example, refer to Patent Document 1). In this determination method, when there is a gap between the permeable resin member and the absorbent resin member at the time of laser welding, the amount of heat transfer from the absorbent resin member to the permeable resin member compared to the case where there is no gap. Is based on the knowledge that the temperature of the absorbent resin member becomes higher as a result.

特開2006−341563号公報JP 2006-341563 A 特開2004−17120号公報JP 2004-17120 A

レーザー溶着中の溶着位置の温度は、レーザー照射装置の出力の経時変化や溶着される樹脂部材の品質ばらつき、環境温度の変化等に起因して変動し得る。そのため、上記のような固定閾値を用いた溶着状態の判定方法では、そのような温度の変動要因の影響を受けて、実際には良好のものが不良と判定されたり実際には不良のものが良好と判定されたりする場合があり、判定精度の点で向上の余地があった。   The temperature at the welding position during laser welding may vary due to changes over time in the output of the laser irradiation device, quality variations of the resin member to be welded, changes in environmental temperature, and the like. Therefore, in the method for determining the welding state using the fixed threshold as described above, it is determined that a good one is actually defective or is actually a bad one under the influence of such temperature fluctuation factors. In some cases, it is determined to be good, and there is room for improvement in terms of determination accuracy.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
本発明の第1の形態は、レーザー光に対して透過性のある樹脂部材とレーザー光に対して吸収性のある樹脂部材とをレーザー溶着で接合する際の溶着状態を判定するレーザー溶着状態判定方法である。このレーザー溶着状態判定方法は、レーザー溶着中に溶着位置における発熱溶融によって発生する温度又は発熱量をセンサーを用いて検出する工程と、レーザー溶着期間の内の所定の有効期間における前記温度又は発熱量の変化量と変化の傾きとの少なくとも一方を算出する工程と、前記温度又は発熱量の変化量と変化の傾きとの少なくとも一方について、算出値が所定の範囲内であるか否かを判定する工程と、を備える。
溶着軌跡の一部において溶着される樹脂部材間に間隙が存在している場合には、溶着位置の温度が間隙に対応する部分で大きく上昇し、かつ、急激に変化するところ、この方法では、レーザー溶着期間の内の所定の有効期間における温度又は発熱量の変化量と変化の傾きとの少なくとも一方について、算出値が所定の範囲内であるか否かを判定するため、間隙の存在に起因する溶着状態の不良が存在するか否かの判定を行うことができる。ここで、レーザー照射装置の出力の経時変化や溶着される樹脂部材の品質ばらつき、環境温度の変化等に起因してレーザー溶着中の溶着位置の温度が変動しても、その変動の程度はレーザー溶着期間の所定の有効期間において同程度であると考えられるため、そのような温度変動は上記温度又は発熱量の変化量や変化の傾きにはほとんど影響しない。そのため、この判定方法では、上述した要因によってレーザー溶着中の溶着位置の温度が変動し得るとしても、精度良く溶着状態を判定することができる。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
1st form of this invention is a laser welding state determination which determines the welding state at the time of joining the resin member transparent to a laser beam, and the resin member which absorbs a laser beam by laser welding Is the method. This laser welding state determination method includes a step of detecting a temperature or a calorific value generated by exothermic melting at a welding position during laser welding using a sensor, and the temperature or calorific value in a predetermined effective period within a laser welding period. Determining whether the calculated value is within a predetermined range for at least one of the step of calculating at least one of the amount of change and the slope of change, and at least one of the amount of change in temperature or heat generation and the slope of change A process.
In the case where a gap exists between the resin members to be welded in a part of the welding locus, the temperature at the welding position rises greatly in a portion corresponding to the gap and changes rapidly. Due to the presence of a gap to determine whether the calculated value is within a predetermined range for at least one of the change in temperature or the amount of heat generated during the predetermined effective period of the laser welding period and the slope of the change. It is possible to determine whether or not there is a poor welded state. Here, even if the temperature of the welding position during laser welding fluctuates due to changes in the output of the laser irradiation device over time, variations in the quality of the resin member to be welded, changes in the environmental temperature, etc. Since it is considered that the welding period is the same in a predetermined effective period, such temperature fluctuation hardly affects the change amount or the inclination of the temperature or the heat generation amount. Therefore, in this determination method, even if the temperature at the welding position during laser welding may fluctuate due to the above-described factors, the welding state can be accurately determined.

[適用例1]レーザー光に対して透過性のある樹脂部材とレーザー光に対して吸収性のある樹脂部材とをレーザー溶着で接合する際の溶着状態を判定するレーザー溶着状態判定方法において、
レーザー溶着中に溶着位置における温度に相関のある指標値をセンサーを用いて検出する工程と、
レーザー溶着期間の内の所定の有効期間における前記指標値の変化量と変化の傾きとの少なくとも一方を算出する工程と、
前記指標値の変化量と変化の傾きとの少なくとも一方について、算出値が所定の範囲内であるか否かを判定する工程と、を備える、レーザー溶着状態判定方法。
[Application Example 1] In a laser welding state determination method for determining a welding state when a resin member that is transparent to laser light and a resin member that is absorbent to laser light are joined by laser welding,
A step of detecting an index value correlated with the temperature at the welding position using a sensor during laser welding;
Calculating at least one of a change amount and a change slope of the index value in a predetermined effective period of the laser welding period; and
Determining whether the calculated value is within a predetermined range for at least one of the change amount of the index value and the slope of the change.

溶着軌跡の一部において溶着される樹脂部材間に間隙が存在している場合には、溶着位置の温度が間隙に対応する部分で大きく上昇し、かつ、急激に変化するところ、この方法では、レーザー溶着期間の内の所定の有効期間における温度相関指標値の変化量と変化の傾きとの少なくとも一方について、算出値が所定の範囲内であるか否かを判定するため、間隙の存在に起因する溶着状態の不良が存在するか否かの判定を行うことができる。ここで、レーザー照射装置の出力の経時変化や溶着される樹脂部材の品質ばらつき、環境温度の変化等に起因してレーザー溶着中の溶着位置の温度が変動しても、その変動の程度はレーザー溶着期間の所定の有効期間において同程度であると考えられるため、そのような温度変動は上記温度相関指標値の変化量や変化の傾きにはほとんど影響しない。そのため、この判定方法では、上述した要因によってレーザー溶着中の溶着位置の温度が変動し得るとしても、精度良く溶着状態を判定することができる。   In the case where a gap exists between the resin members to be welded in a part of the welding locus, the temperature at the welding position rises greatly in a portion corresponding to the gap and changes rapidly. Due to the presence of a gap to determine whether the calculated value is within a predetermined range for at least one of the amount of change in the temperature correlation index value and the slope of the change during the predetermined effective period within the laser welding period. It is possible to determine whether or not there is a poor welded state. Here, even if the temperature of the welding position during laser welding fluctuates due to changes in the output of the laser irradiation device over time, variations in the quality of the resin member to be welded, changes in the environmental temperature, etc. Since it is considered that the welding period is almost the same during a predetermined effective period, such temperature fluctuation hardly affects the change amount or inclination of the temperature correlation index value. Therefore, in this determination method, even if the temperature at the welding position during laser welding may fluctuate due to the above-described factors, the welding state can be accurately determined.

[適用例2]適用例1に記載のレーザー溶着状態判定方法であって、
前記変化量は、前記有効期間における前記指標値の最大値と前記指標値から導かれる基準値との差である、レーザー溶着状態判定方法。
[Application Example 2] The laser welding state determination method according to Application Example 1,
The laser welding state determination method, wherein the change amount is a difference between a maximum value of the index value in the effective period and a reference value derived from the index value.

間隙が存在している場合には間隙に対応する部分において温度相関指標値が最大値をとる可能性が高いため、この方法では、温度相関指標値の変化量に基づき、精度良く溶着状態を判定することができる。   If there is a gap, there is a high possibility that the temperature correlation index value will take the maximum value in the part corresponding to the gap, so this method will accurately determine the welding state based on the amount of change in the temperature correlation index value. can do.

[適用例3]適用例2に記載のレーザー溶着状態判定方法であって、
前記基準値は、前記有効期間における前記指標値の最小値である、レーザー溶着状態判定方法。
[Application Example 3] The laser welding state determination method according to Application Example 2,
The laser welding state determination method, wherein the reference value is a minimum value of the index value in the effective period.

この方法では、レーザー溶着期間の内の有効期間における温度相関指標値の変化量を適切に把握することができ、精度良く溶着状態を判定することができる。   In this method, the amount of change in the temperature correlation index value during the effective period within the laser welding period can be properly grasped, and the welding state can be determined with high accuracy.

[適用例4]適用例2に記載のレーザー溶着状態判定方法であって、
前記基準値は、前記有効期間における前記指標値の平均値である、レーザー溶着状態判定方法。
[Application Example 4] The laser welding state determination method according to Application Example 2,
The laser welding state determination method, wherein the reference value is an average value of the index values in the effective period.

この方法では、仮に温度相関指標値が極端に小さい異常値が検出された場合でも、レーザー溶着期間の内の有効期間における温度相関指標値の変化量を適切に把握することができ、精度良く溶着状態を判定することができる。   With this method, even if an abnormal value with an extremely small temperature correlation index value is detected, the amount of change in the temperature correlation index value during the effective period within the laser welding period can be properly grasped, and welding can be performed with high accuracy. The state can be determined.

[適用例5]適用例1ないし適用例4のいずれかに記載のレーザー溶着状態判定方法であって、
前記有効期間は、前記レーザー溶着期間から、最初の所定の期間と最後の所定の期間との少なくとも一方を除いた期間である、レーザー溶着状態判定方法。
[Application Example 5] The laser welding state determination method according to any one of Application Examples 1 to 4,
The laser welding state determination method, wherein the effective period is a period obtained by removing at least one of a first predetermined period and a last predetermined period from the laser welding period.

この方法では、レーザー出力が定格に達するまでの過渡期間や、レーザー出力が遮断されるまでの過渡期間、溶着軌跡のオーバーラップ部分といった温度相関指標値が安定していないと考えられる期間を除いて判定を行うため、判定精度を一層向上させることができる。   In this method, except for the transition period until the laser output reaches the rated value, the transition period until the laser output is cut off, and the period during which the temperature correlation index value is considered to be unstable, such as the overlap part of the welding trajectory. Since the determination is performed, the determination accuracy can be further improved.

[適用例6]適用例1ないし適用例5のいずれかに記載のレーザー溶着状態判定方法であって、さらに、
前記算出する工程の前に、前記検出された指標値に対して、異常データのマスキング処理と、ノイズ除去処理と、の少なくとも一方を実行する工程を備える、レーザー溶着状態判定方法。
[Application Example 6] The laser welding state determination method according to any one of Application Examples 1 to 5, further comprising:
A laser welding state determination method comprising a step of performing at least one of an abnormal data masking process and a noise removal process on the detected index value before the calculating step.

この方法では、検出された温度相関指標値における異常データやノイズの影響を除外することができ、判定精度を一層向上させることができる。   In this method, the influence of abnormal data and noise in the detected temperature correlation index value can be excluded, and the determination accuracy can be further improved.

なお、本発明は、種々の態様で実現することが可能であり、例えば、レーザー溶着状態の判定方法、レーザー溶着状態判定装置、レーザー溶着状態判定システム等の形態で実現することができる。   In addition, this invention can be implement | achieved in various aspects, for example, can be implement | achieved with forms, such as a determination method of a laser welding state, a laser welding state determination apparatus, a laser welding state determination system.

本発明の第1実施例におけるレーザー溶着システム10の構成を示す説明図である。It is explanatory drawing which shows the structure of the laser welding system 10 in 1st Example of this invention. レーザー溶着の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of laser welding. 本実施例における溶着状態判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the welding state determination process in a present Example. 温度データが表す温度曲線CTの一例を示す説明図である。It is explanatory drawing which shows an example of the temperature curve CT which temperature data represents. 比較例における溶着状態の判定方法を示す説明図である。It is explanatory drawing which shows the determination method of the welding state in a comparative example. 第2実施例における溶着状態判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the welding state determination process in 2nd Example.

次に、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.第1実施例:
A−1.レーザー溶着システムの構成:
A−2.溶着状態判定処理:
B.第2実施例:
C.変形例:
Next, embodiments of the present invention will be described in the following order based on examples.
A. First embodiment:
A-1. Configuration of laser welding system:
A-2. Welding state judgment processing:
B. Second embodiment:
C. Variations:

A.第1実施例:
A−1.レーザー溶着システムの構成:
図1は、本発明の第1実施例におけるレーザー溶着システム10の構成を示す説明図である。レーザー溶着システム10は、樹脂部材同士をレーザー溶着によって接合すると共に、溶着状態を判定するシステムである。
A. First embodiment:
A-1. Configuration of laser welding system:
FIG. 1 is an explanatory view showing a configuration of a laser welding system 10 in the first embodiment of the present invention. The laser welding system 10 is a system that joins resin members together by laser welding and determines a welding state.

レーザー溶着システム10は、レーザー溶着を行うためのレーザー照射装置12を備えている。図2は、レーザー溶着の概要を示す説明図である。レーザー溶着の際には、レーザー光LAに対して透過性のある透過性樹脂部材22とレーザー光LAに対して吸収性のある吸収性樹脂部材24とが重ね合わされ、図示しない押さえ治具によって重ね方向に沿って加圧される。この状態で、レーザー照射装置12(図1)を溶着軌跡WLと略同一の軌跡を辿る溶着予定軌跡(図示せず)に沿って各樹脂部材22,24に対して相対移動させつつ、透過性樹脂部材22側からレーザー光LAの照射を行う。これにより、透過性樹脂部材22を透過したレーザー光LAによって吸収性樹脂部材24が照射され、吸収性樹脂部材24におけるレーザー光LAに照射された部分、すなわち、吸収性樹脂部材24における透過性樹脂部材22との境界部分が発熱・溶融する。また、吸収性樹脂部材24からの伝熱によって透過性樹脂部材22における吸収性樹脂部材24との境界部分も発熱・溶融する。透過性樹脂部材22および吸収性樹脂部材24の溶融部分によって吸収性樹脂部材24と透過性樹脂部材22との境界部分を中心に溶着部26(図1)が形成され、これにより両者が接合される。なお、図2に示す例では、溶着軌跡WLは略矩形であり、溶着軌跡WLの最初と最後の一部はオーバーラップしている。また、図2に示す例では、溶着軌跡WLの一部において、透過性樹脂部材22と吸収性樹脂部材24との間に間隙GAが存在している。   The laser welding system 10 includes a laser irradiation device 12 for performing laser welding. FIG. 2 is an explanatory view showing an outline of laser welding. At the time of laser welding, a transparent resin member 22 that is transmissive to the laser beam LA and an absorbent resin member 24 that is permeable to the laser beam LA are overlapped and stacked by a pressing jig (not shown). Pressurized along the direction. In this state, the laser irradiation device 12 (FIG. 1) is moved relative to each of the resin members 22 and 24 along a planned welding track (not shown) that follows a track substantially the same as the welding track WL. Laser light LA is irradiated from the resin member 22 side. Thereby, the absorbent resin member 24 is irradiated with the laser light LA transmitted through the transparent resin member 22, and the portion irradiated with the laser light LA in the absorbent resin member 24, that is, the transparent resin in the absorbent resin member 24. The boundary portion with the member 22 generates heat and melts. Further, due to heat transfer from the absorbent resin member 24, the boundary portion between the permeable resin member 22 and the absorbent resin member 24 also generates heat and melts. A welded portion 26 (FIG. 1) is formed around the boundary portion between the absorbent resin member 24 and the permeable resin member 22 by the melted portion of the permeable resin member 22 and the absorbent resin member 24, and thereby both are joined. The In the example shown in FIG. 2, the welding locus WL is substantially rectangular, and the first and last part of the welding locus WL overlap. In the example shown in FIG. 2, a gap GA exists between the permeable resin member 22 and the absorbent resin member 24 in a part of the welding locus WL.

吸収性樹脂部材24としては、熱可塑性を有し、レーザー光LAを透過させずに吸収し得る樹脂を用いることができる。例えば、吸収性樹脂部材24として、ポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリオキシメチレン(POM)、アクリロニトリル−ブタジエン−スチレン(ABS)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)、アクリル(PMME)等の樹脂材に、カーボンブラック、染料、顔料等の所定の着色材を混入したものを使用することができる。また、透過性樹脂部材22としては、熱可塑性を有し、レーザー光LAに対して所定の透過率を有する樹脂を用いることができる。例えば、透過性樹脂部材22として、上に例示した樹脂材を使用することができる。この場合に、レーザー光LAに対する所定の透過率を確保できれば、樹脂材に着色材が混入されていてもよい。また、透過性樹脂部材22および吸収性樹脂部材24には、ガラス繊維やカーボン繊維などの補強繊維が添加されていてもよい。また、透過性樹脂部材22および吸収性樹脂部材24の組み合わせとしては、互いに相溶性のあるもの同士の組み合わせであることが好ましい。   As the absorptive resin member 24, a resin that has thermoplasticity and can absorb without transmitting the laser beam LA can be used. For example, as the absorbent resin member 24, polyamide (PA), polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyoxymethylene (POM), acrylonitrile-butadiene-styrene (ABS), polybutylene terephthalate (PBT) ), Polyphenylene sulfide (PPS), acrylic (PMME) or the like, and a mixture of a predetermined colorant such as carbon black, dye, or pigment can be used. Moreover, as the transparent resin member 22, a resin having thermoplasticity and a predetermined transmittance with respect to the laser light LA can be used. For example, the resin material exemplified above can be used as the permeable resin member 22. In this case, a colorant may be mixed in the resin material as long as a predetermined transmittance for the laser beam LA can be secured. In addition, reinforcing fibers such as glass fibers and carbon fibers may be added to the permeable resin member 22 and the absorbent resin member 24. Further, the combination of the permeable resin member 22 and the absorbent resin member 24 is preferably a combination of compatible materials.

また、レーザー光LAとしては、透過性樹脂部材22の吸収スペクトルや板厚(透過長)等の関係で、透過性樹脂部材22での透過率が所定値以上となるような波長を有する種類のレーザー光LAが適宜選択される。例えば、YAGレーザー、半導体レーザー、ガラス−ネオジムレーザー、ルビーレーザー、ヘリウム−ネオンレーザー、クリプトンレーザー、アルゴンレーザー、水素レーザー、窒素レーザーを用いることができる。   The laser beam LA is of a type having a wavelength such that the transmittance of the transparent resin member 22 is equal to or greater than a predetermined value due to the absorption spectrum, plate thickness (transmission length), etc. of the transparent resin member 22. The laser beam LA is appropriately selected. For example, a YAG laser, a semiconductor laser, a glass-neodymium laser, a ruby laser, a helium-neon laser, a krypton laser, an argon laser, a hydrogen laser, or a nitrogen laser can be used.

レーザー溶着システム10(図1)は、赤外線センサー14と、センサーアンプ16と、判定装置18とを備える。赤外線センサー14は、レーザー照射装置12と一緒に各樹脂部材22,24に対して相対移動し、レーザー溶着中における溶着位置の温度を検出する。なお、レーザー溶着中における溶着位置の温度とは、吸収性樹脂部材24にレーザー光LAが入力された瞬間から所定時間経過後における、透過性樹脂部材22と吸収性樹脂部材24との溶着位置(お互いが対向する位置)における温度を意味する。なお、上記所定時間は、レーザー照射装置12と赤外線センサー14との位置関係と、レーザー照射装置12および赤外線センサー14の移動速度により定まる。この所定時間は、わずかな時間であることが好ましい。赤外線センサー14で検出された温度を表す信号は、センサーアンプ16における増幅を経て、判定装置18に入力される。判定装置18は、CPUおよびメモリを備えるコンピューターを用いて構成されており、入力された温度データを用いて、以下に説明する溶着状態判定処理を行う。なお、赤外線センサー14およびセンサーアンプ16は、本発明における検出部に相当し、判定装置18は、本発明における算出部および判定部に相当する。   The laser welding system 10 (FIG. 1) includes an infrared sensor 14, a sensor amplifier 16, and a determination device 18. The infrared sensor 14 moves relative to the resin members 22 and 24 together with the laser irradiation device 12, and detects the temperature of the welding position during laser welding. The temperature at the welding position during laser welding is the welding position between the permeable resin member 22 and the absorbent resin member 24 after a predetermined time has elapsed from the moment the laser beam LA is input to the absorbent resin member 24 ( It means the temperature at the position where each other faces. The predetermined time is determined by the positional relationship between the laser irradiation device 12 and the infrared sensor 14 and the moving speed of the laser irradiation device 12 and the infrared sensor 14. This predetermined time is preferably a short time. A signal representing the temperature detected by the infrared sensor 14 is amplified by the sensor amplifier 16 and input to the determination device 18. The determination device 18 is configured using a computer including a CPU and a memory, and performs welding state determination processing described below using the input temperature data. The infrared sensor 14 and the sensor amplifier 16 correspond to a detection unit in the present invention, and the determination device 18 corresponds to a calculation unit and a determination unit in the present invention.

A−2.溶着状態判定処理:
図3は、本実施例における溶着状態判定処理の流れを示すフローチャートである。溶着状態判定処理は、レーザー溶着された透過性樹脂部材22と吸収性樹脂部材24との間の溶着状態の良否を判定する処理であり、より具体的には、図2に示す例のように溶着軌跡WLの一部において透過性樹脂部材22と吸収性樹脂部材24との間に間隙GAが存在していることに起因する溶着状態の不良を検出する処理である。レーザー溶着の際に透過性樹脂部材22と吸収性樹脂部材24との間に間隙GAがあると、レーザー光LAによって発熱した吸収性樹脂部材24から透過性樹脂部材22に熱が十分に伝わらないために透過性樹脂部材22が十分に発熱・溶融せず、溶着強度の低下や溶着位置における隙間の発生といった溶着状態の不良が発生する場合がある。このような溶着状態の不良は、溶着後の製品において、不良部分を介して異物(水やガス)が侵入し、内部の設置物(例えば電子回路)の動作に悪影響を及ぼしたり金属部分の腐食につながったりすると共に、被溶着部材が脱落するおそれもあり、好ましくない。溶着状態判定処理は、このような溶着状態の不良の有無を判定するために実行される。
A-2. Welding state judgment processing:
FIG. 3 is a flowchart showing the flow of the welding state determination process in the present embodiment. The welding state determination process is a process for determining the quality of the welding state between the laser-welded transparent resin member 22 and the absorbent resin member 24, and more specifically, as in the example shown in FIG. This is a process for detecting a defective weld state caused by the presence of the gap GA between the permeable resin member 22 and the absorbent resin member 24 in a part of the welding locus WL. If there is a gap GA between the permeable resin member 22 and the absorbent resin member 24 at the time of laser welding, heat is not sufficiently transmitted from the absorbent resin member 24 generated by the laser beam LA to the transmissive resin member 22. For this reason, the permeable resin member 22 does not sufficiently generate heat and melt, and a defective weld state such as a decrease in welding strength or a gap at the welding position may occur. Such defects in the welded state are caused by foreign matter (water or gas) entering through the defective part in the product after welding, which adversely affects the operation of internal installations (for example, electronic circuits) or corrodes metal parts. And the welded member may fall off, which is not preferable. The welding state determination process is executed to determine whether or not there is a defect in such a welding state.

最初に、判定装置18が、赤外線センサー14およびセンサーアンプ16から、レーザー溶着中に検出された溶着位置の温度を表す温度データを読み込む(ステップS110)。図4は、温度データが表す温度曲線CTの一例を示す説明図である。図4に示すように、本実施例では、赤外線センサー14により、レーザー溶着開始時t0から終了時teに至るまで、溶着位置の温度Tが連続的に検出(測定)される。   First, the determination device 18 reads temperature data representing the temperature at the welding position detected during laser welding from the infrared sensor 14 and the sensor amplifier 16 (step S110). FIG. 4 is an explanatory diagram illustrating an example of a temperature curve CT represented by temperature data. As shown in FIG. 4, in this embodiment, the temperature T at the welding position is continuously detected (measured) by the infrared sensor 14 from the laser welding start time t0 to the end time te.

なお、図4では、図2に示す例のように溶着軌跡WLの一部において透過性樹脂部材22と吸収性樹脂部材24との間に間隙GAが存在している場合の温度曲線CTの一例を実線で示している。この温度曲線CTでは、レーザー溶着期間の中程で温度Tが他の期間より突出して高くなっているが、この温度上昇は、間隙GAの存在に起因している。図4には、また、間隙GAが存在しない場合の温度曲線CTxの一例を二点鎖線で示している(ただし、温度曲線CTとの共通部分は図示を省略している)。この温度曲線CTxでは、温度Tが他の期間より突出して高くなっている期間は存在しない。   In FIG. 4, an example of a temperature curve CT in the case where a gap GA exists between the permeable resin member 22 and the absorbent resin member 24 in a part of the welding locus WL as in the example shown in FIG. Is shown by a solid line. In this temperature curve CT, the temperature T is prominently higher than the other periods in the middle of the laser welding period, but this temperature rise is caused by the presence of the gap GA. FIG. 4 also shows an example of the temperature curve CTx when there is no gap GA by a two-dot chain line (however, a portion common to the temperature curve CT is not shown). In this temperature curve CTx, there is no period in which the temperature T is prominently higher than other periods.

判定装置18は、温度データの内、温度が不安定な期間のデータを破棄する(ステップS120)。具体的には、判定装置18は、レーザー溶着期間(図4のt0からteまでの期間)の温度データの内、最初の所定の期間(図4のt0からt1までの期間)のデータと最後の所定の期間(図4のt2からteまでの期間)のデータとを破棄する。この最初の所定の期間はレーザー照射装置12からのレーザー出力が定格に達するまでの過渡期間に該当し、また最後の所定の期間は溶着軌跡WLのオーバーラップやレーザー照射終了によりレーザー出力が遮断されるまでの過渡期間に該当し、図4に例示するようにいずれも温度Tが安定していない期間である。本実施例では、判定精度の一層の向上のため、これらの期間のデータを破棄するものとしている。なお、本実施例において、レーザー溶着期間の内、上記最初の所定の期間および最後の所定の期間を除いた期間(図4のt1からt2までの期間)を、有効期間とも呼ぶ。   The determination device 18 discards the data in the temperature unstable period among the temperature data (step S120). Specifically, the determination device 18 determines the data of the first predetermined period (period from t0 to t1 in FIG. 4) and the last of the temperature data of the laser welding period (period from t0 to te in FIG. 4). The data of a predetermined period (period from t2 to te in FIG. 4) are discarded. This first predetermined period corresponds to a transition period until the laser output from the laser irradiation device 12 reaches the rated value, and the laser output is cut off due to the overlap of the welding locus WL or the end of laser irradiation in the last predetermined period. This corresponds to the transition period until the temperature T, and as illustrated in FIG. In this embodiment, in order to further improve the determination accuracy, data in these periods is discarded. In the present embodiment, a period (a period from t1 to t2 in FIG. 4) excluding the first predetermined period and the last predetermined period in the laser welding period is also referred to as an effective period.

次に、判定装置18は、判定精度の一層の向上のため、温度データに対して異常データのマスキング処理とローパスフィルタを用いたノイズ除去処理とを実行する(ステップS130およびS140)。これらの処理は順不同に実行可能である。なお、これらの処理は公知の方法により実行可能であるため、ここでは詳細な記載を省略する。   Next, in order to further improve the determination accuracy, the determination device 18 performs abnormal data masking processing and noise removal processing using a low-pass filter on the temperature data (steps S130 and S140). These processes can be executed in any order. In addition, since these processes can be performed by a well-known method, detailed description is abbreviate | omitted here.

次に、判定装置18は、レーザー溶着期間の内の有効期間(図4のt1からt2までの期間)における検出温度の最大値T(max)と最小値T(min)とを抽出する(ステップS154)。次に判定装置18は、最大値T(max)と最小値T(min)との差ΔT(=T(max)−T(min))が、所定の閾値ΔT0以下であるか否かを判定する(ステップS164)。なお、差ΔTは、レーザー溶着期間の内の有効期間における検出温度の変化量である。判定装置18は、差ΔTが閾値ΔT0以下である場合には、溶着状態は良好であると判定し(ステップS170)、差ΔTが閾値ΔT0より大きい場合には、溶着状態は不良であると判定する(ステップS180)。   Next, the determination device 18 extracts the maximum value T (max) and the minimum value T (min) of the detected temperature in the effective period (period from t1 to t2 in FIG. 4) of the laser welding period (step) S154). Next, the determination device 18 determines whether or not the difference ΔT (= T (max) −T (min)) between the maximum value T (max) and the minimum value T (min) is equal to or less than a predetermined threshold value ΔT0. (Step S164). The difference ΔT is the amount of change in the detected temperature during the effective period within the laser welding period. The determination device 18 determines that the welding state is good when the difference ΔT is equal to or smaller than the threshold value ΔT0 (step S170), and determines that the welding state is bad when the difference ΔT is larger than the threshold value ΔT0. (Step S180).

図4において実線で例示するように、溶着軌跡WLの一部において透過性樹脂部材22と吸収性樹脂部材24との間に間隙GAが存在している場合には、温度曲線CTは間隙GAに対応する部分において大きく上昇する。そのため、間隙GAが存在する場合には、検出温度の最大値T(max)と最小値T(min)との差ΔTは比較的大きくなる。一方、図4において二点鎖線で例示するように、そのような間隙GAが存在しない場合には、温度曲線CTxは部分的に極端に上昇することはない。そのため、間隙GAが存在しない場合には、差ΔTは比較的小さくなる。そのため、検出温度の最大値T(max)と最小値T(min)との差ΔTが閾値ΔT0以下であるか否かを判定することによって、間隙GAの存在に起因する溶着状態の不良が存在するか否かの判定を行うことができる。   As illustrated by a solid line in FIG. 4, when a gap GA exists between the permeable resin member 22 and the absorbent resin member 24 in a part of the welding locus WL, the temperature curve CT is in the gap GA. It rises greatly in the corresponding part. Therefore, when the gap GA exists, the difference ΔT between the maximum value T (max) and the minimum value T (min) of the detected temperature is relatively large. On the other hand, as exemplified by a two-dot chain line in FIG. 4, when such a gap GA does not exist, the temperature curve CTx does not partially rise extremely. Therefore, the difference ΔT is relatively small when there is no gap GA. Therefore, it is determined whether or not the difference ΔT between the maximum value T (max) and the minimum value T (min) of the detected temperature is equal to or less than the threshold value ΔT0, so that there is a defective weld state due to the presence of the gap GA. It can be determined whether or not.

図5は、比較例における溶着状態の判定方法を示す説明図である。比較例における溶着状態の判定方法は、温度曲線CT全体が所定の閾値Tth以下であるか否かを判定することにより、溶着状態の良否を判定する方法である。ここで、レーザー溶着中の溶着位置の温度は、レーザー照射装置12の出力の経時変化や樹脂部材22,24の品質ばらつき、環境温度の変化等に起因して変動し得る。そのため、溶着位置の温度検出結果は、例えば図5の温度曲線CT(1)のようになったり、温度曲線CT(2)のようになったりする可能性がある。ここで、閾値Tthを図5のTth(1)のように大きめに設定すると、透過性樹脂部材22と吸収性樹脂部材24との間に間隙GAが存在しているときに、温度検出結果が温度曲線CT(1)のようであった場合には、温度曲線CT(1)が閾値Tth(1)を超える部分があるために溶着状態は不良であると判定されるが、温度曲線CT(2)のようであった場合には、温度曲線CT(2)が閾値Tth(1)を超える部分がないために溶着状態は良好であると誤判定されてしまう。反対に、閾値Tthを図5のTth(2)のように小さめに設定すると、間隙GAが存在しないときに、温度検出結果が温度曲線CTx(2)(CT(2)との重複部分を含む)のようであった場合には、温度曲線CTx(2)が閾値Tth(2)を超える部分がないために溶着状態は良好であると判定されるが、温度曲線CTx(1)(CT(1)との重複部分を含む)のようであった場合には、温度曲線CTx(1)が閾値Tth(2)を超える部分があるために溶着状態は不良であると誤判定されてしまう。このように、温度曲線CT全体が所定の閾値Tth以下であるか否かを判定することにより溶着状態の良否を判定する比較例の方法では、判定精度の点で向上の余地がある。   FIG. 5 is an explanatory diagram illustrating a method for determining a welding state in a comparative example. The determination method of the welding state in the comparative example is a method of determining whether the welding state is good or not by determining whether or not the entire temperature curve CT is equal to or less than a predetermined threshold Tth. Here, the temperature at the welding position during laser welding may vary due to changes in the output of the laser irradiation device 12 with time, quality variations of the resin members 22 and 24, changes in environmental temperature, and the like. Therefore, the temperature detection result of the welding position may be, for example, a temperature curve CT (1) in FIG. 5 or a temperature curve CT (2). Here, if the threshold value Tth is set larger as Tth (1) in FIG. 5, the temperature detection result is obtained when the gap GA exists between the permeable resin member 22 and the absorbent resin member 24. In the case of the temperature curve CT (1), the temperature curve CT (1) is determined to be defective because there is a portion where the temperature curve CT (1) exceeds the threshold value Tth (1). In the case of 2), since there is no portion where the temperature curve CT (2) exceeds the threshold value Tth (1), it is erroneously determined that the welding state is good. On the other hand, when the threshold value Tth is set to a small value like Tth (2) in FIG. 5, the temperature detection result includes an overlapping portion with the temperature curve CTx (2) (CT (2) when the gap GA does not exist. ), The temperature curve CTx (2) is determined to be good because there is no portion exceeding the threshold Tth (2), but the temperature curve CTx (1) (CT ( 1), the temperature curve CTx (1) exceeds the threshold value Tth (2), so that the welding state is erroneously determined to be defective. As described above, in the method of the comparative example in which the quality of the welded state is determined by determining whether or not the entire temperature curve CT is equal to or less than the predetermined threshold Tth, there is room for improvement in terms of determination accuracy.

これに対し、本実施例の判定方法では、レーザー溶着期間の内の有効期間における検出温度の変化量、すなわち、最大値T(max)と最小値T(min)との差ΔTが閾値ΔT0以下であるか否かを判定することによって溶着状態の良否を判定する。上述した要因によってレーザー溶着中の溶着位置の温度が変動しても、その変動の程度はレーザー溶着期間の有効期間において同程度であると考えられるため、そのような温度変動は、差ΔTにはほとんど影響しない。従って、本実施例の判定方法では、上述した要因によってレーザー溶着中の溶着位置の温度が変動し得るとしても、精度良く溶着状態を判定することができる。これにより、例えば、レーザー溶着後に溶着部が被溶着部材によって覆われて目視できない場合でも、特別な設備を追加することなく、非破壊で溶着状態を精度良く判定することができ、不良品が出荷されたり、反対に良品が不良と判定されて歩留まりが低下したりすることを防止できる。   In contrast, in the determination method of the present embodiment, the amount of change in the detected temperature during the effective period within the laser welding period, that is, the difference ΔT between the maximum value T (max) and the minimum value T (min) is equal to or less than the threshold value ΔT0. The quality of the welded state is determined by determining whether or not it is. Even if the temperature at the welding position during laser welding fluctuates due to the above-described factors, the degree of fluctuation is considered to be the same in the effective period of the laser welding period. Almost no effect. Therefore, in the determination method of the present embodiment, even if the temperature at the welding position during laser welding may fluctuate due to the above-described factors, the welding state can be accurately determined. As a result, for example, even when the welded portion is covered with the member to be welded and cannot be visually observed after laser welding, the welded state can be accurately determined in a non-destructive manner without adding special equipment. On the other hand, it is possible to prevent a good product from being judged defective and a yield from being lowered.

なお、本実施例の判定方法は、レーザー溶着期間の有効期間における検出温度の変化量を用いて判定を行うため、溶着軌跡WLの略全体にわたって精度良く溶着状態の判定を行うことができる。従って、本実施例の判定方法は、被溶着部材同士の位置関係が一意に決まらない場合(例えば円筒形部材や正方形平面を有する部材である場合)や、レーザー照射の開始位置と被溶着部材の位置との関係が一意に決まらない場合にも好適である。   In addition, since the determination method of a present Example performs determination using the variation | change_quantity of the detected temperature in the effective period of a laser welding period, it can determine a welding state with sufficient precision over the substantially whole welding locus | trajectory WL. Therefore, in the determination method of the present embodiment, the positional relationship between the members to be welded is not uniquely determined (for example, a cylindrical member or a member having a square plane), or the laser irradiation start position and the members to be welded are It is also suitable when the relationship with the position is not uniquely determined.

B.第2実施例:
図6は、第2実施例における溶着状態判定処理の流れを示すフローチャートである。第2実施例における溶着状態判定処理において、温度データの読み込み(ステップS110)からノイズ除去処理(ステップS140)までの処理内容は図3に示した第1実施例と同様であるため、ここでは説明を省略する。以下、第1実施例とは異なるそれ以降の処理内容について説明する。
B. Second embodiment:
FIG. 6 is a flowchart showing the flow of welding state determination processing in the second embodiment. In the welding state determination processing in the second embodiment, the processing contents from reading of the temperature data (step S110) to noise removal processing (step S140) are the same as those in the first embodiment shown in FIG. Is omitted. In the following, the subsequent processing contents different from the first embodiment will be described.

判定装置18は、レーザー溶着期間の内の有効期間(図4のt1からt2までの期間)における検出温度を微分して、温度の変化率(変化の傾き)Rを算出する(ステップS156)。次に判定装置18は、変化率の最大値R(max)が所定の閾値R0(1)以下であるか否かを判定する(ステップS166)。判定装置18は、変化率の最大値R(max)が所定の閾値R0(1)より大きい場合には、溶着状態は不良であると判定する(ステップS180)。一方、変化率の最大値R(max)が所定の閾値R0(1)以下である場合には、判定装置18は、さらに、変化率の最小値R(min)が所定の閾値R0(2)以上であるか否かを判定する(ステップS168)。判定装置18は、変化率の最小値R(min)が所定の閾値R0(2)より小さい場合には、溶着状態は不良であると判定し(ステップS180)、変化率の最小値R(min)が所定の閾値R0(2)以上である場合には、溶着状態は良好であると判定する(ステップS170)。なお、所定の閾値R0(1)は、変化率Rの最大許容閾値であり、所定の閾値R0(2)は、変化率Rの最小許容閾値である。   The determination device 18 differentiates the detected temperature in the effective period (the period from t1 to t2 in FIG. 4) in the laser welding period, and calculates the temperature change rate (change gradient) R (step S156). Next, the determination device 18 determines whether or not the maximum change rate value R (max) is equal to or less than a predetermined threshold value R0 (1) (step S166). If the maximum value R (max) of the change rate is greater than the predetermined threshold value R0 (1), the determination device 18 determines that the welded state is defective (step S180). On the other hand, when the maximum value R (max) of the change rate is equal to or less than the predetermined threshold value R0 (1), the determination device 18 further determines that the minimum value R (min) of the change rate is the predetermined threshold value R0 (2). It is determined whether or not this is the case (step S168). When the minimum value R (min) of the change rate is smaller than the predetermined threshold value R0 (2), the determination device 18 determines that the welding state is defective (step S180), and the minimum value R (min of the change rate) ) Is greater than or equal to a predetermined threshold value R0 (2), it is determined that the welding state is good (step S170). The predetermined threshold value R0 (1) is the maximum allowable threshold value for the change rate R, and the predetermined threshold value R0 (2) is the minimum allowable threshold value for the change rate R.

溶着軌跡WLの一部において透過性樹脂部材22と吸収性樹脂部材24との間に間隙GAが存在している場合には、検出温度は間隙GAに対応する部分において急激に大きくなるか、あるいは急激に小さくなるため、検出温度の変化率Rは突出して大きくあるいは小さくなる。一方、そのような間隙GAが存在しない場合には、検出温度の変化は比較的緩やかであるため、検出温度の変化率Rは突出して大きくなったり小さくなったりする可能性は低い。また、上述した要因によってレーザー溶着中の溶着位置の温度が変動しても、その変動の程度はレーザー溶着期間の有効期間において同程度であると考えられるため、そのような温度変動は、変化率Rにはほとんど影響しない。そのため、検出温度の変化率Rの最大値R(max)が閾値R0(1)以下であるか否かの判定、および、変化率Rの最小値R(min)が閾値R0(2)以上であるか否かの判定によって、間隙GAの存在に起因する溶着状態の不良が存在するか否かの判定を精度良く行うことができる。   When a gap GA exists between the permeable resin member 22 and the absorbent resin member 24 in a part of the welding locus WL, the detected temperature suddenly increases at a portion corresponding to the gap GA, or Since the temperature rapidly decreases, the change rate R of the detected temperature protrudes and increases or decreases. On the other hand, when such a gap GA does not exist, the change in the detection temperature is relatively gradual, so the change rate R of the detection temperature is unlikely to increase or decrease. Moreover, even if the temperature at the welding position during laser welding varies due to the factors described above, the degree of variation is considered to be the same in the effective period of the laser welding period. R is hardly affected. Therefore, it is determined whether or not the maximum value R (max) of the change rate R of the detected temperature is equal to or less than the threshold value R0 (1), and the minimum value R (min) of the change rate R is equal to or greater than the threshold value R0 (2). By determining whether or not there is a defect, it is possible to accurately determine whether or not there is a defective weld due to the presence of the gap GA.

C.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
C. Variations:
The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.

上記実施例におけるレーザー溶着システム10の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施例では、溶着位置の温度検出のために赤外線センサー14を用いるとしているが、赤外線センサー14以外の他の温度センサーを用いるとしてもよい。また、センサーアンプ16は適宜、省略可能である。   The configuration of the laser welding system 10 in the above embodiment is merely an example, and various modifications can be made. For example, in the above embodiment, the infrared sensor 14 is used to detect the temperature of the welding position, but a temperature sensor other than the infrared sensor 14 may be used. The sensor amplifier 16 can be omitted as appropriate.

また、上記実施例では、レーザー溶着中に溶着位置の温度をセンサーを用いて検出するとしているが、溶着位置の温度に相関する他の指標値(例えば発熱量)を当該指標値を検出可能なセンサーを用いて検出するとしてもよい。   In the above embodiment, the temperature at the welding position is detected using a sensor during laser welding. However, other index values (for example, the amount of generated heat) correlated with the temperature at the welding position can be detected. It may be detected using a sensor.

また、上記実施例では、温度データの内、温度が不安定な期間(レーザー溶着期間における最初の所定の期間および最後の所定の期間)のデータを破棄するものとしているが、この期間の一方または両方のデータは必ずしも破棄する必要はない。なお、最初の所定の期間の温度データの破棄を行わない場合には、図4のt0からt2までの期間が有効期間となり、最後の所定の期間の温度データの破棄を行わない場合には、図4のt1からteまでの期間が有効期間となり、最初の所定の期間および最後の所定の期間の温度データの破棄を行わない場合には、レーザー溶着期間(図4のt0からteまでの期間)自体が有効期間となる。また、上記実施例では、温度データに対して異常データのマスキング処理とローパスフィルタを用いたノイズ除去処理とを実行するものとしているが、これらの処理の一方または両方を実行しないとしてもよい。   Further, in the above embodiment, among the temperature data, the data of the period when the temperature is unstable (the first predetermined period and the last predetermined period in the laser welding period) are discarded. Both data need not necessarily be discarded. When the temperature data of the first predetermined period is not discarded, the period from t0 to t2 in FIG. 4 becomes an effective period, and when the temperature data of the last predetermined period is not discarded, The period from t1 to te in FIG. 4 becomes an effective period, and when the temperature data of the first predetermined period and the last predetermined period are not discarded, the laser welding period (the period from t0 to te in FIG. 4) ) Itself is the effective period. In the above embodiment, the abnormal data masking process and the noise removal process using the low-pass filter are executed on the temperature data. However, one or both of these processes may not be executed.

また、上記実施例では、溶着軌跡WLが略矩形であるとしているが、本発明は、溶着軌跡WLが略矩形以外(例えば円形や直線形状)である場合にも適用可能である。   Moreover, in the said Example, although the welding locus | trajectory WL shall be substantially rectangular, this invention is applicable also when the welding locus | trajectory WL is other than substantially rectangular (for example, circular shape or linear shape).

また、上記実施例では、レーザー溶着期間の有効期間における検出温度の変化量として、最大値T(max)と最小値T(min)との差ΔTを用いているが、変化量として、最大値T(max)と有効期間における検出温度から導かれる他の基準値との差を用いることも可能である。変化量として、最大値T(max)と当該他の基準値との差を用いても、上記実施例と同様に、精度良く溶着状態を判定することができる。また、このようにすれば、仮に極端に低い異常温度値が検出された場合でも、検出温度の変化量を適切に把握することができる。このような他の基準値としては、例えば、有効期間における検出温度の平均値が挙げられる。   In the above embodiment, the difference ΔT between the maximum value T (max) and the minimum value T (min) is used as the amount of change in the detected temperature during the effective period of the laser welding period, but the maximum value is used as the amount of change. It is also possible to use a difference between T (max) and another reference value derived from the detected temperature in the effective period. Even if the difference between the maximum value T (max) and the other reference value is used as the amount of change, the welding state can be determined with high accuracy as in the above embodiment. In this way, even if an extremely low abnormal temperature value is detected, the amount of change in the detected temperature can be properly grasped. Examples of such other reference values include an average value of detected temperatures in the effective period.

また、上記第1実施例では検出温度の変化量ΔTを用いて溶着状態の判定を行い、上記第2実施例では検出温度の変化の傾きRを用いて溶着状態の判定を行うとしているが、これらを組み合わせて、変化量ΔTと変化の傾きRとの両方を用いて溶着状態の判定を行うとしてもよい。   In the first embodiment, the welding state is determined using the detected temperature change amount ΔT. In the second embodiment, the welding state is determined using the detected temperature change slope R. By combining these, the welding state may be determined using both the change amount ΔT and the change gradient R.

10…レーザー溶着システム
12…レーザー照射装置
14…赤外線センサー
16…センサーアンプ
18…判定装置
22…透過性樹脂部材
24…吸収性樹脂部材
26…溶着部
DESCRIPTION OF SYMBOLS 10 ... Laser welding system 12 ... Laser irradiation apparatus 14 ... Infrared sensor 16 ... Sensor amplifier 18 ... Determination apparatus 22 ... Transmissible resin member 24 ... Absorbent resin member 26 ... Welding part

Claims (7)

レーザー光に対して透過性のある樹脂部材とレーザー光に対して吸収性のある樹脂部材とをレーザー溶着で接合する際の溶着状態を判定するレーザー溶着状態判定方法において、
レーザー溶着中に溶着位置における発熱溶融によって発生する温度又は発熱量をセンサーを用いて検出する工程と、
レーザー溶着期間の内の所定の有効期間における前記温度又は発熱量の変化量と変化の傾きとの少なくとも一方を算出する工程と、
前記温度又は発熱量の変化量と変化の傾きとの少なくとも一方について、算出値が所定の範囲内であるか否かを判定する工程と、を備える、レーザー溶着状態判定方法。
In the laser welding state determination method for determining a welding state when joining a resin member that is transparent to laser light and a resin member that is absorbing to laser light by laser welding,
A step of detecting, using a sensor, the temperature or the amount of heat generated by exothermic melting at the welding position during laser welding;
Calculating at least one of the change amount of the temperature or the calorific value and the inclination of the change in a predetermined effective period of the laser welding period;
And a step of determining whether or not a calculated value is within a predetermined range for at least one of the change amount of the temperature or the calorific value and the inclination of the change.
請求項1に記載のレーザー溶着状態判定方法であって、
前記変化量は、前記有効期間における前記温度又は発熱量の最大値と前記温度又は発熱量から導かれる基準値との差である、レーザー溶着状態判定方法。
The laser welding state determination method according to claim 1,
The laser welding state determination method, wherein the change amount is a difference between a maximum value of the temperature or the heat generation amount in the effective period and a reference value derived from the temperature or the heat generation amount .
請求項2に記載のレーザー溶着状態判定方法であって、
前記基準値は、前記有効期間における前記温度又は発熱量の最小値である、レーザー溶着状態判定方法。
The laser welding state determination method according to claim 2,
The laser welding state determination method, wherein the reference value is a minimum value of the temperature or the calorific value in the effective period.
請求項2に記載のレーザー溶着状態判定方法であって、
前記基準値は、前記有効期間における前記温度又は発熱量の平均値である、レーザー溶着状態判定方法。
The laser welding state determination method according to claim 2,
The laser welding state determination method, wherein the reference value is an average value of the temperature or the calorific value in the effective period.
請求項1ないし請求項4のいずれかに記載のレーザー溶着状態判定方法であって、
前記有効期間は、前記レーザー溶着期間から、最初の所定の期間と最後の所定の期間との少なくとも一方を除いた期間である、レーザー溶着状態判定方法。
A laser welding state determination method according to any one of claims 1 to 4,
The laser welding state determination method, wherein the effective period is a period obtained by removing at least one of a first predetermined period and a last predetermined period from the laser welding period.
請求項1ないし請求項5のいずれかに記載のレーザー溶着状態判定方法であって、さらに、
前記算出する工程の前に、前記検出された温度又は発熱量に対して、異常データのマスキング処理と、ノイズ除去処理と、の少なくとも一方を実行する工程を備える、レーザー溶着状態判定方法。
The laser welding state determination method according to any one of claims 1 to 5, further comprising:
A laser welding state determination method comprising a step of performing at least one of an abnormal data masking process and a noise removal process on the detected temperature or calorific value before the calculating step.
レーザー光に対して透過性のある樹脂部材とレーザー光に対して吸収性のある樹脂部材とをレーザー溶着で接合する際の溶着状態を判定するレーザー溶着状態判定装置において、
レーザー溶着中に溶着位置における発熱溶融によって発生する温度又は発熱量をセンサーを用いて検出する検出部と、
レーザー溶着期間の内の有効期間における前記温度又は発熱量の変化量と変化の傾きとの少なくとも一方を算出する算出部と、
前記温度又は発熱量の変化量と変化の傾きとの少なくとも一方について、算出値が所定の範囲内であるか否かを判定する判定部と、を備える、レーザー溶着状態判定装置。
In a laser welding state determination device that determines a welding state when a resin member that is transparent to laser light and a resin member that is absorbent to laser light are joined by laser welding,
A detection unit that detects the temperature or the amount of heat generated by heat generation and melting at the welding position during laser welding using a sensor;
A calculation unit that calculates at least one of a change amount of the temperature or a calorific value and an inclination of the change in the effective period of the laser welding period;
A laser welding state determination apparatus comprising: a determination unit that determines whether or not a calculated value is within a predetermined range for at least one of the change amount of the temperature or the heat generation amount and the inclination of the change.
JP2012032291A 2012-02-17 2012-02-17 Laser welding state determination method and laser welding state determination device Expired - Fee Related JP5878779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032291A JP5878779B2 (en) 2012-02-17 2012-02-17 Laser welding state determination method and laser welding state determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032291A JP5878779B2 (en) 2012-02-17 2012-02-17 Laser welding state determination method and laser welding state determination device

Publications (2)

Publication Number Publication Date
JP2013166352A JP2013166352A (en) 2013-08-29
JP5878779B2 true JP5878779B2 (en) 2016-03-08

Family

ID=49177179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032291A Expired - Fee Related JP5878779B2 (en) 2012-02-17 2012-02-17 Laser welding state determination method and laser welding state determination device

Country Status (1)

Country Link
JP (1) JP5878779B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242739B2 (en) * 2013-09-12 2017-12-06 日本特殊陶業株式会社 Manufacturing method and manufacturing apparatus for resin welded body
JP6513906B2 (en) * 2014-04-28 2019-05-15 ハジメ産業株式会社 Laser welding device
CN109353011B (en) * 2018-10-30 2021-07-20 大族激光科技产业集团股份有限公司 Monitoring method of laser welding plastic

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998709B2 (en) * 2007-03-05 2012-08-15 Jfeスチール株式会社 Welding pass / fail judgment device and welding pass / fail judgment method
JP4858454B2 (en) * 2008-01-28 2012-01-18 株式会社デンソー Laser welded part manufacturing method

Also Published As

Publication number Publication date
JP2013166352A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5028494B2 (en) Automatic testing method for material joints
JP4577103B2 (en) Laser welding quality determination method and apparatus
KR101670155B1 (en) Welding method, welding device, and battery manufacturing method
JP5878779B2 (en) Laser welding state determination method and laser welding state determination device
JP2006082222A (en) System and method for monitoring laser shock peening process
JP5878778B2 (en) Laser welding state determination method and laser welding state determination device
AU2015278174B2 (en) Method for ensuring the quality of welded plastics components
CN112643191A (en) Method for inspecting laser welding quality and laser welding quality inspection device
KR100955564B1 (en) Welding method and welding apparatus for resin member
JP6242739B2 (en) Manufacturing method and manufacturing apparatus for resin welded body
JP4267286B2 (en) Resin material welding method and resin material welding apparatus
JP6982450B2 (en) Protective glass stain detection system and method
CN110545947B (en) Laser brazing system having a clamp for contacting a brazing wire and blocking a first portion of a laser beam in association with a detector, method of monitoring a laser brazing system
JP2010094693A (en) Laser machining apparatus and laser machining method
JP7126223B2 (en) Laser processing equipment
JP6393625B2 (en) Laser processing equipment
JP2004243629A (en) Laser welding method and laser welding apparatus
CN114450120A (en) Laser processing monitoring method and laser processing monitoring device
JP2017056464A (en) Laser welding device
JP2008122360A (en) Method and device for evaluating quality at resin fused part
JP4501997B2 (en) Laser welding monitoring method
JPS6316888A (en) Monitoring device for abnormality of laser light
JP2005067031A (en) Welding inspection device and welding inspection method
Park et al. Laser Weld Quality Monitoring System
JPS6119356B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160129

R150 Certificate of patent or registration of utility model

Ref document number: 5878779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees