JP5133108B2 - Temperature measuring device and temperature measuring method - Google Patents

Temperature measuring device and temperature measuring method Download PDF

Info

Publication number
JP5133108B2
JP5133108B2 JP2008087346A JP2008087346A JP5133108B2 JP 5133108 B2 JP5133108 B2 JP 5133108B2 JP 2008087346 A JP2008087346 A JP 2008087346A JP 2008087346 A JP2008087346 A JP 2008087346A JP 5133108 B2 JP5133108 B2 JP 5133108B2
Authority
JP
Japan
Prior art keywords
ultrasonic
temperature
semiconductor wafer
detection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008087346A
Other languages
Japanese (ja)
Other versions
JP2008304453A (en
Inventor
弘行 高松
隆 古保里
浩司 井上
吉人 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008087346A priority Critical patent/JP5133108B2/en
Publication of JP2008304453A publication Critical patent/JP2008304453A/en
Application granted granted Critical
Publication of JP5133108B2 publication Critical patent/JP5133108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は,支持台により支持された半導体ウェハ等の平板状の処理対象物の温度を測定する温度測定装置及びその方法に関するものである。   The present invention relates to a temperature measuring apparatus and method for measuring the temperature of a flat processing object such as a semiconductor wafer supported by a support.

半導体デバイスの製造過程では,半導体ウェハ(主としてシリコンウェハ)に対し,成膜処理,エッチング処理,熱処理等の各種の処理が施されるが,その処理速度や処理結果(シリコンウェハの結晶性等)は,その処理プロセスにおける半導体ウェハの温度に大きく左右される。このため,半導体デバイスの製造過程において,歩留まり向上や製造効率向上の面から,処理中の半導体ウェハの温度を高精度で測定することが重要となる。
一般に,半導体デバイスの製造過程では,半導体ウェハがその下面においてヒータが内蔵されたウェハステージにより支持され,そのヒータにより温度が調節された半導体ウェハに対して各種の処理が施される。
ここで,半導体ウェハとウェハステージとの間に熱抵抗が存在することから,ウェハステージの温度とそれに支持された半導体ウェハとは必ずしも温度が一致しない。そのため,処理中の半導体ウェハの温度を直接測定することが必要である。
また,温度測定の手間の軽減や半導体ウェハの汚染防止のため,処理中の半導体ウェハの温度を,熱電対等の硬い突起物を接触させることなく測定することが望ましい。
例えば,特許文献1には,放射温度計により,プロセスチャンバーの上部に設けられた窓を通して,そのプロセスチャンバーに収容された半導体ウェハの温度を非接触で測定するにあたり,半導体ウェハの加工前の測定値によって放射率を校正することが示されている。
また,特許文献2には,半導体ウェハの下面(ウェハステージにより支持される面)にダイヤフラムを密着させ,そのダイヤフラムの温度を測定することによって半導体ウェハの温度を間接的に測定する技術が示されている。
特開2003−106902号公報 特開2003−214957号公報
In the manufacturing process of semiconductor devices, various processes such as film formation, etching, and heat treatment are performed on semiconductor wafers (mainly silicon wafers). The processing speed and processing results (crystallinity of silicon wafers, etc.) Depends greatly on the temperature of the semiconductor wafer in the process. For this reason, in the process of manufacturing semiconductor devices, it is important to measure the temperature of the semiconductor wafer being processed with high accuracy in terms of improving yield and manufacturing efficiency.
In general, in the manufacturing process of a semiconductor device, a semiconductor wafer is supported on a lower surface thereof by a wafer stage having a built-in heater, and various processes are performed on the semiconductor wafer whose temperature is adjusted by the heater.
Here, since a thermal resistance exists between the semiconductor wafer and the wafer stage, the temperature of the wafer stage and the temperature of the semiconductor wafer supported by the wafer stage do not necessarily match. Therefore, it is necessary to directly measure the temperature of the semiconductor wafer being processed.
It is also desirable to measure the temperature of the semiconductor wafer being processed without contacting a hard protrusion such as a thermocouple, in order to reduce the temperature measurement effort and prevent contamination of the semiconductor wafer.
For example, in Patent Document 1, when measuring the temperature of a semiconductor wafer accommodated in a process chamber through a window provided in the upper part of the process chamber in a non-contact manner using a radiation thermometer, measurement before processing the semiconductor wafer is performed. The values indicate that the emissivity is calibrated.
Patent Document 2 discloses a technique for indirectly measuring the temperature of a semiconductor wafer by bringing the diaphragm into close contact with the lower surface of the semiconductor wafer (the surface supported by the wafer stage) and measuring the temperature of the diaphragm. ing.
JP 2003-106902 A JP 2003-214957 A

しかしながら,物質の赤外線放射率は,その表面状態(表面粗さ等)によって大きく異なるため,特許文献1に示されるように放射温度計により半導体ウェハの温度を測定した場合,半導体ウェハの表面コーティングやエッチングの状態によって測定値が変化する。さらに,放射温度計は,測定部以外の周辺からの放射や反射の影響を受けやすい。これらのことから,放射温度計による半導体ウェハの測定は,安定かつ高精度での温度測定が難しいという問題点があった。特に,半導体ウェハの素材として採用されることが多いシリコンの赤外線放射率は非常に低いため,放射温度計による半導体ウェハの温度測定は,精度面で特に不利となる。
また,特許文献2に示されるように,半導体ウェハに接触させた物の温度測定によって間接的に半導体ウェハの温度を測定した場合,半導体ウェハとそれに対する接触物(前記ダイヤフラム等)との間の熱抵抗の存在により,やはり高精度での温度測定が難しいという問題点があった。
また,その他の温度測定手法として,半導体ウェハの反射率やラマン光の測定よって温度測定を行うことが考えられるが,前者については温度に対する反射率変化が微小であること,後者についてはラマン光強度そのものが微弱であることに起因して,安定かつ高精度の温度測定が難しいという問題点がある。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,各種の処理が施される半導体ウェハ等の平板状の処理対象物の温度を,温度計等の硬い突起物の接触による汚染を回避しつつ高精度で測定することができる温度測定装置及びその方法を提供することにある。
However, since the infrared emissivity of a substance varies greatly depending on its surface condition (surface roughness, etc.), as shown in Patent Document 1, when the temperature of a semiconductor wafer is measured with a radiation thermometer, The measured value varies depending on the etching state. Furthermore, radiation thermometers are susceptible to radiation and reflections from the surrounding area other than the measurement section. For these reasons, the measurement of semiconductor wafers with a radiation thermometer has had the problem that it is difficult to measure temperature with stability and high accuracy. In particular, since the infrared emissivity of silicon, which is often used as a material for semiconductor wafers, is very low, measuring the temperature of a semiconductor wafer with a radiation thermometer is particularly disadvantageous in terms of accuracy.
Further, as shown in Patent Document 2, when the temperature of a semiconductor wafer is indirectly measured by measuring the temperature of an object brought into contact with the semiconductor wafer, the temperature between the semiconductor wafer and an object to be contacted (such as the diaphragm) is Due to the presence of thermal resistance, it was still difficult to measure temperature with high accuracy.
As another temperature measurement method, it is conceivable to measure the temperature by measuring the reflectance and Raman light of a semiconductor wafer. However, in the former, the change in reflectance with respect to temperature is very small, and in the latter the Raman light intensity is measured. Due to the weakness itself, there is a problem that stable and highly accurate temperature measurement is difficult.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to change the temperature of a flat processing object such as a semiconductor wafer subjected to various types of processing to a hard protrusion such as a thermometer. An object of the present invention is to provide a temperature measuring apparatus and method capable of measuring with high accuracy while avoiding contamination caused by contact with an object.

上記目的を達成するために本発明に係る温度測定装置は,平板状の半導体ウェハをその一の面において支持する支持台を備え,その支持台により支持された前記半導体ウェハの温度を測定するものであり,以下の(1−1)〜(1−3)に示す各構成要素を備えるものである。
(1−1)前記支持台側から前記半導体ウェハに対し超音波を出力する超音波出力手段。
(1−2)前記半導体ウェハに反射した反射超音波を検出する超音波検出手段。
(1−3)前記超音波検出手段の検出信号に基づいて前記半導体ウェハの温度を算出する温度算出手段。
図7に示すように,物質中を伝播する超音波の速度(即ち,音速)は,その物質の温度と高い相関がある。例えば,半導体ウェハに採用されることが多いシリコンが超音波(縦波)の伝送媒体である場合,常温での超音波の伝播速度(音速)が8433[m/s](縦波)であるのに対し,シリコンの温度変化に応じて−0.4[(m/s)/℃]の温度係数をもって超音波の伝播速度が変化する。このため,前記半導体ウェハに超音波を照射し,その半導体ウェハ中における超音波の伝播速度(音速)を測定できれば,その速度に対応する半導体ウェハの温度を測定(算出)することができる。
一方,超音波を前記半導体ウェハに照射した場合,その超音波は前記半導体ウェハにおける超音波照射面とその反対側の面との両方に反射するため,その反射波を検出すれば,その検出信号と前記半導体ウェハの既知の厚み(超音波照射面とその反対側の面との間隔)とに基づいて,前記半導体ウェハ内での超音波の伝播速度(音速)を高精度で算出することができる。
従って,前記温度算出手段により,前記超音波検出手段の検出信号に基づく処理を実行することによって前記半導体ウェハの温度を高精度で算出することができる。
しかも,超音波による測定は,前記半導体ウェハに汚染を生じさせない。
ここで,前記温度算出手段が,前記超音波検出手段の検出信号に基づいて前記半導体ウェハ内での超音波の共振周波数の特定又は前記半導体ウェハ内で伝播した超音波の伝播時間もしくは位相の検出を行い,その結果に応じて(即ち,その結果を前記半導体ウェハ内での超音波の伝播速度の指標として)前記半導体ウェハの温度を算出することが考えられる。
Temperature measurement apparatus according to the present invention in order to achieve the above object, a support base for supporting the plate-shaped semi-conductor weblog Ha In one aspect thereof, measure the temperature of the supported said semiconductor wafer by the support table And includes the components shown in the following (1-1) to (1-3).
(1-1) Ultrasonic wave output means for outputting ultrasonic waves to the semiconductor wafer from the support base side.
(1-2) Ultrasonic detection means for detecting reflected ultrasonic waves reflected on the semiconductor wafer .
(1-3) Temperature calculation means for calculating the temperature of the semiconductor wafer based on the detection signal of the ultrasonic detection means.
As shown in FIG. 7, the velocity of ultrasonic waves propagating in a substance (that is, the speed of sound) is highly correlated with the temperature of the substance. For example, when silicon, which is often used for semiconductor wafers, is an ultrasonic (longitudinal wave) transmission medium, the propagation speed (sound speed) of ultrasonic waves at room temperature is 8433 [m / s] (longitudinal wave). On the other hand, the propagation speed of the ultrasonic wave changes with a temperature coefficient of −0.4 [(m / s) / ° C.] according to the temperature change of silicon. Therefore, the ultrasonic waves irradiated to the semiconductor wafer, if measuring the propagation velocity of ultrasound (sonic speed) in the semiconductor wafer, can be the temperature of the semiconductor wafer corresponding to the speed measured (calculated).
On the other hand, when the semiconductor wafer is irradiated with ultrasonic waves, the ultrasonic waves are reflected on both the ultrasonic irradiation surface and the opposite surface of the semiconductor wafer . And the ultrasonic wave propagation speed (sound speed) in the semiconductor wafer can be calculated with high accuracy based on the known thickness of the semiconductor wafer (the distance between the ultrasonic irradiation surface and the opposite surface). it can.
Therefore, the temperature of the semiconductor wafer can be calculated with high accuracy by executing processing based on the detection signal of the ultrasonic detection means by the temperature calculation means.
In addition, the ultrasonic measurement does not cause contamination of the semiconductor wafer .
Here, the temperature calculation means specifies the resonance frequency of the ultrasonic wave in the semiconductor wafer based on the detection signal of the ultrasonic detection means or detects the propagation time or phase of the ultrasonic wave propagated in the semiconductor wafer . It was carried out, according to the result (i.e., the ultrasonic wave propagation as an indication of the speed of the results in the semiconductor wafer) is conceivable to calculate the temperature of the semiconductor wafer.

本発明における前記温度算出手段としては,例えば,以下に示す4つの例が考えられる。
まず,第1の例は,本発明に係る温度測定装置が,前記超音波出力手段により出力される超音波の周波数掃引を行う周波数掃引手段を具備する場合の例である。
この場合,前記温度算出手段が,前記周波数掃引手段による超音波の掃引周波数と超音波の周波数掃引に応じて変化する前記超音波検出手段の検出信号の強度(振幅)とに基づいて前記半導体ウェハ内での超音波の共振周波数を特定し,その共振周波数に基づいて前記半導体ウェハの温度を算出する。
前記半導体ウェハの表面(被支持面)に超音波を照射した場合,その半導体ウェハ内において超音波照射面とその反対側の面との間で超音波が多重反射する。その際,超音波の周波数,その伝播速度及び前記半導体ウェハの厚みの関係が所定の共振条件を満たすと大きな超音波振動が発生し,前記超音波検出手段の検出信号の強度(反射超音波の強度)が相対的に大きくなる。従って,前記半導体ウェハに照射する超音波の周波数掃引を行えば,反射超音波の強度がピークとなるとき(前記共振条件を満たすとき)の掃引周波数から前記共振周波数を特定でき,その共振周波数に基づいて,前記半導体ウェハ中の超音波の伝播速度(音速)に対応する前記半導体ウェハの温度を算出できる。
As the temperature calculation means in the present invention, for example, the following four examples can be considered.
First, the first example is an example in which the temperature measuring device according to the present invention includes frequency sweeping means for performing frequency sweeping of the ultrasonic wave output from the ultrasonic wave output means.
In this case, the temperature calculation means, said frequency sweep means by the ultrasonic wave intensity of the detection signal of the detection means (amplitude) and the semiconductor wafer on the basis of which changes according to the frequency sweep of the sweep frequency and ultrasonic ultrasound The resonance frequency of the ultrasonic wave inside is specified, and the temperature of the semiconductor wafer is calculated based on the resonance frequency.
Wherein when irradiated with ultrasonic waves in the surface of the semiconductor wafer (the supported surface), ultrasound between within the semiconductor wafer and the ultrasonic wave irradiation surface and its opposite surface is multiple reflection. At that time, if the relationship between the ultrasonic frequency, the propagation speed, and the thickness of the semiconductor wafer satisfies a predetermined resonance condition, a large ultrasonic vibration is generated, and the intensity of the detection signal of the ultrasonic detection means (the reflected ultrasonic wave) Strength) is relatively large. Therefore, if the frequency sweep of the ultrasonic wave applied to the semiconductor wafer is performed, the resonance frequency can be specified from the sweep frequency when the intensity of the reflected ultrasonic wave reaches a peak (when the resonance condition is satisfied), and the resonance frequency is based on, it can calculate the temperature of the semiconductor wafer corresponding to the propagation speed of the ultrasonic wave in the semiconductor wafer (speed of sound).

また,第2の例は,前記超音波出力手段がパルス状の超音波を出力する場合の例である。
この場合,前記温度算出手段が,前記超音波検出手段の検出信号に基づいて,前記半導体ウェハにおける前記支持台により支持される面及びその反対側の面で反射した超音波それぞれの前記超音波検出手段への到達時点の差を検出し,その検出結果に基づいて前記半導体ウェハの温度を算出する。
一般に,超音波の伝播速度を既知とし,反射超音波の検出信号におけるピーク間の時間間隔から測定対象物の厚みを測定することが行われる。これに対し,前記第2の例では,前記半導体ウェハの厚みを既知とし,反射超音波の検出信号におけるピーク間の時間間隔に基づいて,前記半導体ウェハ内での超音波の伝播速度(音速)に対応する温度を算出する。
また,第3の例は,前記超音波出力手段がパルス状の超音波を出力する場合の例である。
この場合,前記温度算出手段が,前記超音波検出手段の検出信号の変化に基づいて,前記半導体ウェハ内での超音波の共振周波数を特定し,その共振周波数に基づいて前記半導体ウェハの温度を算出する。
前述したように,超音波が前記半導体ウェハ内で多重反射するため,前記共振条件を満たさなくても,前記超音波検出手段の検出信号の変化に前記共振周波数の成分が現れる。従って,前記超音波検出手段の検出信号の波形解析を行えば,前記共振周波数を特定し,その共振周波数及び前記半導体ウェハの既知の厚みに基づいて,前記半導体ウェハ中の超音波の伝播速度(音速)に対応する前記半導体ウェハの温度を算出できる。
The second example is an example in which the ultrasonic output means outputs pulsed ultrasonic waves.
In this case, the ultrasonic calculation of the ultrasonic wave reflected by the surface of the semiconductor wafer supported by the support base and the surface opposite thereto based on the detection signal of the ultrasonic detection unit. A difference in arrival time at the means is detected, and the temperature of the semiconductor wafer is calculated based on the detection result.
In general, the propagation speed of ultrasonic waves is known, and the thickness of the measurement object is measured from the time interval between peaks in the detection signal of reflected ultrasonic waves. On the other hand, in the second example, the thickness of the semiconductor wafer is known, and the ultrasonic wave propagation speed (sound speed) in the semiconductor wafer is based on the time interval between peaks in the reflected ultrasonic detection signal. The temperature corresponding to is calculated.
The third example is an example in which the ultrasonic output means outputs pulsed ultrasonic waves.
In this case, the temperature calculation means identifies the resonance frequency of the ultrasonic wave in the semiconductor wafer based on the change in the detection signal of the ultrasonic detection means, and determines the temperature of the semiconductor wafer based on the resonance frequency. calculate.
As described above, since the ultrasonic waves are multiple-reflected in the semiconductor wafer , the resonance frequency component appears in the change in the detection signal of the ultrasonic detection means even if the resonance condition is not satisfied. Therefore, by performing waveform analysis of the detection signal of the ultrasonic detection means to identify the resonance frequency, based on the known thickness of the resonant frequency and the semiconductor wafer, the propagation velocity of the ultrasonic wave in the semiconductor wafer ( The temperature of the semiconductor wafer corresponding to the speed of sound) can be calculated.

また,第4の例は,前記超音波出力手段が複数のパルス状の超音波を既定周期で出力する場合の例,即ち,超音波が既定周期で断続する(一定周波数の)いわゆるバースト波状の超音波を出力する例である。
この場合,前記温度算出手段が,前記超音波検出手段の検出信号から前記半導体ウェハにおける前記支持台により支持される面及びその反対側の面の間で往復反射した前記反射超音波の位相を検出し,その位相に基づいて前記半導体ウェハの温度を算出する。例えば,前記温度算出手段が,前記超音波検出手段の検出信号と前記超音波出力手段により生成され前記超音波の周波数で発振する基準発振信号とのミキシングにより前記往復反射した超音波の位相を検出する。
前述したように,前記半導体ウェハの内部を伝播する超音波の速度(音速)は,その半導体ウェハの温度と高い相関があり,また,前記半導体ウェハの内部を伝搬した超音波の位相は,その伝播時間(伝播に要した時間)に応じて定まる。
そこで,前記第4の例では,前記半導体ウェハの厚みを既知とし,前記反射超音波の検出信号の位相に基づいて,前記半導体ウェハ内での超音波の伝播速度(音速)に対応する温度を算出する。
その際,前記温度算出手段が,前記超音波検出手段の検出信号から前記超音波出力手段により出力されるバースト波状の超音波の出力周期に同期した既定の時間帯の信号を抽出し,その抽出信号と前記基準発振信号とのミキシングにより前記対向面の間で複数回往復反射した超音波の位相を検出することが考えられる。
前記半導体ウェハの内部を伝搬する超音波の位相は,その伝播時間が長いほど大きく変化するため,前記対向面の間で複数回往復反射した(即ち,伝播時間の長い)超音波の位相を検出することにより,高感度での温度算出(温度検出)が可能となる。
The fourth example is an example in which the ultrasonic output means outputs a plurality of pulsed ultrasonic waves at a predetermined period, that is, a so-called burst wave-like state in which the ultrasonic wave is intermittent (with a constant frequency) at a predetermined period. It is an example which outputs an ultrasonic wave.
In this case, the temperature calculation means detects the phase of the reflected ultrasonic wave reciprocally reflected between the surface of the semiconductor wafer supported by the support base and the opposite surface thereof from the detection signal of the ultrasonic detection means. Then, the temperature of the semiconductor wafer is calculated based on the phase. For example, the temperature calculation means detects the phase of the ultrasonic waves reflected back and forth by mixing the detection signal of the ultrasonic detection means and the reference oscillation signal generated by the ultrasonic output means and oscillating at the ultrasonic frequency. To do.
As described above, the ultrasonic velocity propagating within the semiconductor wafer (speed of sound), the there are temperature and high correlation of the semiconductor wafer, and the ultrasonic phase propagated through the inside of the semiconductor wafer, the It depends on the propagation time (time required for propagation).
Therefore, in the fourth example, the thickness of the semiconductor wafer is known, and the temperature corresponding to the ultrasonic wave propagation speed (sound speed) in the semiconductor wafer is determined based on the phase of the detection signal of the reflected ultrasonic wave. calculate.
At that time, the temperature calculation means extracts a signal in a predetermined time zone synchronized with the output period of the burst wave-like ultrasonic wave output from the ultrasonic wave output means from the detection signal of the ultrasonic wave detection means, and the extraction It is conceivable to detect the phase of the ultrasonic wave reflected back and forth a plurality of times between the opposing surfaces by mixing the signal and the reference oscillation signal.
Since the phase of the ultrasonic wave propagating inside the semiconductor wafer changes greatly as the propagation time becomes longer, the phase of the ultrasonic wave reflected and reciprocated a plurality of times (that is, having a long propagation time) between the opposing surfaces is detected. By doing so, temperature calculation (temperature detection) with high sensitivity becomes possible.

また,前記超音波出力手段が,前記支持台における複数の測定位置ごとに設けられた複数の超音波振動子とその超音波振動子に交流信号を供給する1つの交流信号供給部とを有し,前記超音波検出手段が,前記複数の測定位置ごとに設けられた複数の超音波振動子とその超音波振動子が出力する前記反射超音波の検出信号が入力される1つの信号入力部とを有する場合に,本発明に係る温度測定装置が,さらに次の(1−4)に示す構成要素を備えることが考えられる。
(1−4)前記超音波出力手段における前記複数の超音波振動子と前記交流信号供給部との間の信号経路,及び前記超音波検出手段における前記複数の超音波振動子と前記信号入力部との間の信号経路を順次切り替える信号経路切替手段。
この場合,前記温度算出手段が,前記信号経路切替手段により信号経路が切り替えられるごとに前記信号入力部を通じて得られる前記反射超音波の検出信号に基づいて,前記半導体ウェハにおける前記複数の測定位置それぞれに対応する位置の温度を算出する。
これにより,比較的少ない構成機器により,前記半導体ウェハの複数箇所の温度の分布を測定することができる。
また,超音波を効率的に伝播させるため,前記支持台における前記超音波出力手段と前記半導体ウェハとの間に形成された超音波の導波路を備えれば好適である。
Further, the ultrasonic output means has a plurality of ultrasonic transducers provided for each of a plurality of measurement positions on the support base and one AC signal supply unit for supplying an AC signal to the ultrasonic transducers. The ultrasonic detection means includes a plurality of ultrasonic transducers provided for each of the plurality of measurement positions, and one signal input unit to which detection signals of the reflected ultrasonic waves output from the ultrasonic transducers are input. It is conceivable that the temperature measuring device according to the present invention further includes the constituent elements shown in the following (1-4).
(1-4) Signal paths between the plurality of ultrasonic transducers and the AC signal supply unit in the ultrasonic output unit, and the plurality of ultrasonic transducers and the signal input unit in the ultrasonic detection unit Signal path switching means for sequentially switching the signal path between and.
In this case, each of the plurality of measurement positions on the semiconductor wafer is based on a detection signal of the reflected ultrasonic wave obtained through the signal input unit every time the signal path is switched by the signal path switching unit. The temperature at the position corresponding to is calculated.
Thereby, the temperature distribution of a plurality of locations of the semiconductor wafer can be measured with relatively few components.
In order to efficiently propagate the ultrasonic wave, it is preferable to provide an ultrasonic wave guide formed between the ultrasonic wave output means and the semiconductor wafer in the support base.

また,本発明は,以上に示した本発明に係る温度測定装置を用いて前記半導体ウェハの温度を測定する温度測定方法として捉えることもできる。
即ち,本発明に係る温度測定方法は,所定の半導体ウェハがその一の面において支持台により支持された状態で,前記半導体ウェハの温度を測定する方法であり,次の(2−1)〜(2−3)に示す各工程を有する。
(2−1)超音波出力手段により前記支持台側から前記半導体ウェハに対して超音波を出力する超音波出力工程。
(2−2)超音波検出手段により前記半導体ウェハに反射した反射超音波を検出する超音波検出工程。
(2−3)演算手段により前記超音波検出工程での検出信号に基づいて前記半導体ウェハの温度を算出する温度算出工程。
本発明に係る温度測定方法も,前述した本発明に係る温度測定装置と同様の作用効果を奏する。
The present invention can also be understood as a temperature measuring method for measuring the temperature of the semiconductor wafer using the temperature measuring apparatus according to the present invention described above.
That is, the temperature measuring method according to the present invention is a method for measuring the temperature of the semiconductor wafer in a state where a predetermined semiconductor wafer is supported by a support on one surface thereof. It has each process shown in (2-3).
(2-1) An ultrasonic output step of outputting ultrasonic waves to the semiconductor wafer from the support base side by an ultrasonic output means.
(2-2) An ultrasonic detection step of detecting reflected ultrasonic waves reflected on the semiconductor wafer by the ultrasonic detection means.
(2-3) A temperature calculation step of calculating the temperature of the semiconductor wafer based on the detection signal in the ultrasonic detection step by the calculation means.
The temperature measuring method according to the present invention also exhibits the same operational effects as the above-described temperature measuring device according to the present invention.

本発明によれば,各種の処理が施される半導体ウェハの温度を,接触による汚染を回避しつつ,安定かつ高精度で簡易に測定することができる。 According to the present invention, the temperature of the semiconductor weblog Ha various processes are performed, while avoiding contamination by contact, can be measured easily in a stable and high precision.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1実施形態に係る半導体ウェハ温度測定装置X1の概略構成図,図2は半導体ウェハ温度測定装置X1による温度測定手順を表すフローチャート,図3は半導体ウェハ温度測定装置X1により得られる超音波周波数と反射超音波強度との関係を表す図,図4は本発明の第2実施形態に係る半導体ウェハ温度測定装置X2の概略構成図,図5は半導体ウェハ温度測定装置X2により得られる反射超音波の検出信号の変化を模式的に表した図,図6は本発明の第3実施形態に係る半導体ウェハ温度測定装置X3により得られる反射超音波の検出信号の変化を表すグラフ,図7は物質の温度とその物質内での縦波伝播速度との関係を表す図,図8は本発明の第4実施形態に係る半導体ウェハ温度測定装置X4の概略構成図,図9は半導体ウェハ温度測定装置X4により得られる反射超音波の検出信号の変化を模式的に表した図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
1 is a schematic configuration diagram of the semiconductor wafer temperature measuring device X1 according to the first embodiment of the present invention, FIG. 2 is a flowchart showing a temperature measuring procedure by the semiconductor wafer temperature measuring device X1, and FIG. 3 is a semiconductor wafer temperature measuring device. The figure showing the relationship between the ultrasonic frequency obtained by apparatus X1, and reflected ultrasonic intensity, FIG. 4 is a schematic block diagram of semiconductor wafer temperature measuring apparatus X2 which concerns on 2nd Embodiment of this invention, FIG. 5 is semiconductor wafer temperature measurement FIG. 6 schematically shows a change in the reflected ultrasonic detection signal obtained by the apparatus X2, and FIG. 6 shows a change in the reflected ultrasonic detection signal obtained by the semiconductor wafer temperature measuring apparatus X3 according to the third embodiment of the present invention. FIG. 7 is a diagram showing the relationship between the temperature of the substance and the longitudinal wave propagation velocity in the substance, and FIG. 8 is a schematic configuration diagram of the semiconductor wafer temperature measuring apparatus X4 according to the fourth embodiment of the present invention. Figure 9 is a diagram schematically showing a change in the reflected ultrasonic wave detection signal obtained by the semiconductor wafer temperature measuring device X4.

[第1の実施形態]
まず,図1を参照しつつ,本発明の第1実施形態に係る半導体ウェハ温度測定装置X1(以下,温度測定装置X1という)の構成について説明する。
温度測定装置X1は,図1に示すように,ウェハステージ2,発振器3,セレクタ4,増幅器5,制御・演算装置6及び環境温度センサ7を備えている。
前記ウェハステージ2は,プロセスチャンバー8内に収容され,成膜処理,エッチング処理,熱処理等の各種の処理が施される平板状の処理対象物である半導体ウェハ1(以下,ウェハという)をその下面において支持する支持台である。前記ウェハステージ2を構成する材料は,例えば,テフロン(デュポン社の登録商標)やセラミック等である。
また,前記ウェハステージ2は,その複数の箇所に多数の吸引孔(不図示)が設けられている。前記吸引孔は,不図示のコンプレッサによって引き込まれる空気の通路を形成するものであり,前記ウェハステージ2上に載置されたウェハ1は,前記コンプレッサの吸引力によってウェハステージ2の支持面に吸着されて固定される。
さらに,前記ウェハステージ2には,不図示のヒータが内蔵されており,このヒータによってウェハステージ2上のウェハ1が所望の温度に加温される。
なお,前記ウェハステージ2は,それ自体の温度を検出する温度センサ,ウェハ1を保持して上下させる上下機構,ウェハ1への電圧印加機構等も備えるが(いずれも不図示),ここでへその説明を省略する。
そして,温度測定装置Xは,ウェハステージ2により支持されたウェハ1の温度を超音波を用いて測定する装置である。
[First Embodiment]
First, the configuration of the semiconductor wafer temperature measuring device X1 (hereinafter referred to as the temperature measuring device X1) according to the first embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the temperature measuring device X1 includes a wafer stage 2, an oscillator 3, a selector 4, an amplifier 5, a control / arithmetic unit 6, and an environmental temperature sensor 7.
The wafer stage 2 is accommodated in a process chamber 8, and a semiconductor wafer 1 (hereinafter referred to as a wafer), which is a flat processing object to be subjected to various processes such as a film forming process, an etching process, and a heat treatment. It is a support stand supported on the lower surface. The material constituting the wafer stage 2 is, for example, Teflon (registered trademark of DuPont) or ceramic.
The wafer stage 2 has a plurality of suction holes (not shown) at a plurality of locations. The suction hole forms a passage for air drawn in by a compressor (not shown), and the wafer 1 placed on the wafer stage 2 is attracted to the support surface of the wafer stage 2 by the suction force of the compressor. To be fixed.
Further, the wafer stage 2 incorporates a heater (not shown), and the wafer 1 on the wafer stage 2 is heated to a desired temperature by the heater.
The wafer stage 2 includes a temperature sensor for detecting its own temperature, a vertical mechanism for holding the wafer 1 up and down, a voltage application mechanism for the wafer 1, and the like (all not shown). The description is omitted.
The temperature measuring device X is a device that measures the temperature of the wafer 1 supported by the wafer stage 2 using ultrasonic waves.

さらに,前記ウェハステージ2には,その複数の箇所に超音波送受部10が設けられている。
前記超音波送受部10は,それぞれ送信用超音波振動子11と,受信用超音波振動子12と,導波路13とを有している。
前記導波路13は,前記ウェハステージ2における前記超音波送受部10とウェハ1との間に形成され,ウェハ1に照射される超音波及びその反射波(反射超音波)の伝送路であり,前記ウェハステージ2の支持面(ウェハ1を支持する面)に形成された孔にシリコンゴム等の弾性部材が充填された部分である。 前記弾性部材の材料としては,超音波の伝播損失が少なく,ウェハ1に接触してもウェハ1を汚染しない材料を採用することが望ましい。また,図1における前記超音波送受部10の拡大断面図(破線枠内)に示すように,前記ウェハステージ2の支持面にウェハ1が支持されたときに,そのウェハ1の被支持面と前記導波路13との間に空隙が極力生じないよう,前記弾性部材は,前記ウェハ1はステージ2の支持面よりもわずかに突出するように,その支持面に設けられた孔に充填されている。これにより,超音波の伝播損失が小さくなる。
Furthermore, the wafer stage 2 is provided with ultrasonic transmission / reception units 10 at a plurality of locations.
The ultrasonic transmission / reception unit 10 includes a transmission ultrasonic transducer 11, a reception ultrasonic transducer 12, and a waveguide 13.
The waveguide 13 is formed between the ultrasonic transmission / reception unit 10 and the wafer 1 in the wafer stage 2 and is a transmission path for the ultrasonic wave applied to the wafer 1 and its reflected wave (reflected ultrasonic wave). The hole formed in the support surface of the wafer stage 2 (the surface that supports the wafer 1) is filled with an elastic member such as silicon rubber. As the material of the elastic member, it is desirable to adopt a material that has a small propagation loss of ultrasonic waves and does not contaminate the wafer 1 even if it contacts the wafer 1. Further, as shown in an enlarged cross-sectional view (within a broken line frame) of the ultrasonic transmitting / receiving unit 10 in FIG. 1, when the wafer 1 is supported on the support surface of the wafer stage 2, The elastic member is filled in a hole provided in the support surface so that the wafer 1 protrudes slightly from the support surface of the stage 2 so that a gap is not generated between the waveguide 13 and the waveguide 13 as much as possible. Yes. This reduces the propagation loss of the ultrasonic wave.

前記送信用超音波振動子11は,前記ウェハステージ2の複数箇所に形成された前記導波路13ごとに設けられ,前記発振器3(前記交流信号供給部の一例)から交流信号が供給されることによって発振し,前記導波路13を通じてウェハ1に対してその被支持面側から超音波を出力する(照射する)ものである。なお,前記発振器3及び前記送信用超音波振動子11が,前記超音波出力手段の一例である。
前記受信用超音波振動子12は,複数の前記導波路13ごとに設けられ,ウェハ1に反射して前記導波路13を通じて戻る反射超音波を検出し,その検出信号(前記反射超音波の強度を表す電気信号)を出力するものである。その検出信号は,前記増幅器5(前記信号入力部の一例)に入力され,その増幅器5によって増幅された後に前記制御・演算装置6に伝送される。なお,前記受信用超音波振動子12及び前記増幅器5が,前記超音波検出手段の一例である。
The transmitting ultrasonic transducer 11 is provided for each of the waveguides 13 formed at a plurality of locations on the wafer stage 2, and an AC signal is supplied from the oscillator 3 (an example of the AC signal supply unit). , And outputs (irradiates) ultrasonic waves to the wafer 1 from the supported surface side through the waveguide 13. The oscillator 3 and the transmission ultrasonic transducer 11 are examples of the ultrasonic output means.
The reception ultrasonic transducer 12 is provided for each of the plurality of waveguides 13, detects reflected ultrasonic waves reflected on the wafer 1 and returning through the waveguides 13, and detects the detection signal (intensity of the reflected ultrasonic waves). (Electrical signal representing). The detection signal is input to the amplifier 5 (an example of the signal input unit), amplified by the amplifier 5, and then transmitted to the control / arithmetic unit 6. The reception ultrasonic transducer 12 and the amplifier 5 are examples of the ultrasonic detection means.

前記発振器3は,複数の前記送信用超音波振動子11に対して1つ設けられるものであり,前記送信用超音波振動子11に対して交流信号を供給するものである。温度測定装置X1における前記発振器3は,前記制御・演算装置6からの指令に従って前記交流信号の周波数を調節(変更)する機能を備え,その周波数調節により,前記送信用超音波振動子11から出力される超音波の周波数掃引を実行できる(前記周波数掃引手段の一例)。もちろん,前記発振器3は,前記交流信号の周波数を固定することにより,前記送信用超音波振動子11から出力される超音波の周波数を特定の周波数に固定することもできる。
前記セレクタ4は,複数の前記送信用超音波振動子11と前記発振器3との間の信号経路,及び複数の前記受信用超音波振動子12と前記増幅器5との間の信号経路を順次切り替える信号切替器である(前記信号経路切替手段の一例)。
前記環境温度センサ7は,前記プロセスチャンバー8内の雰囲気温度,即ち,ウェハ1の設置環境の温度を検出するセンサ(サーミスタや熱電対等)であり,その検出温度は前記制御・演算装置6に取り込まれる。
前記制御・演算装置6は,予めその記憶部に記憶された所定のプログラムを実行するプロセッサ(演算手段)を備え,そのプロセッサにより,前記発振器3の制御や,前記増幅器5を通じて得られる反射超音波の検出信号に基づくウェハ1の厚み算出処理及び温度算出処理等を実行する。
One oscillator 3 is provided for the plurality of transmission ultrasonic transducers 11 and supplies an AC signal to the transmission ultrasonic transducers 11. The oscillator 3 in the temperature measuring device X1 has a function of adjusting (changing) the frequency of the AC signal in accordance with a command from the control / arithmetic device 6, and output from the transmitting ultrasonic transducer 11 by adjusting the frequency. The frequency sweep of the ultrasonic wave to be performed can be executed (an example of the frequency sweep means). Of course, the oscillator 3 can also fix the frequency of the ultrasonic wave output from the ultrasonic transducer for transmission 11 to a specific frequency by fixing the frequency of the AC signal.
The selector 4 sequentially switches a plurality of signal paths between the transmission ultrasonic transducers 11 and the oscillator 3 and a plurality of signal paths between the reception ultrasonic transducers 12 and the amplifier 5. It is a signal switching device (an example of the signal path switching means).
The environmental temperature sensor 7 is a sensor (thermistor, thermocouple, etc.) for detecting the ambient temperature in the process chamber 8, that is, the temperature of the installation environment of the wafer 1, and the detected temperature is taken into the control / arithmetic unit 6. It is.
The control / arithmetic unit 6 includes a processor (arithmetic means) for executing a predetermined program stored in the storage unit in advance, and the processor controls the oscillator 3 and the reflected ultrasonic wave obtained through the amplifier 5 by the processor. The thickness calculation process and temperature calculation process of the wafer 1 based on the detection signal are executed.

次に,図2に示すフローチャートを参照しつつ,温度測定装置X1によるウェハ1の温度測定の手順について説明する。以下,S1,S2,…は,処理手順(ステップ)の識別符号を表す。なお,以下に示すS1〜S10の処理は,処理対象物であるウェハ1がその一方の面(下面)においてウェハステージ2により支持された状態で行われる。
まず,前記制御・演算装置6が,複数の前記超音波送受部10のうちのいずれか1つを選択し,その超音波送受部10における前記送信用超音波振動子11と前記発振器3との間の信号経路が接続され,同じ超音波送受部10における前記受信用超音波振動子12と前記増幅器5との間の信号経路が接続されるように前記セレクタ4の設定(制御)を行う(S1)。
さらに,前記制御・演算装置6は,前記環境温度センサ7の検出温度(環境温度)を取得する(S2)。
次に,前記制御・演算装置6は,前記発振器3に対して超音波出力指令を出力する。これにより,前記発振器3及び前記送信用超音波振動子11が,ウェハ1の被支持面(図1における下面)に対し,周波数掃引を行いながら超音波を出力する(S3)。これと並行して,前記制御・演算装置6は,超音波の掃引周波数とその超音波の周波数掃引に応じて変化する前記反射超音波の検出信号(前記受信用超音波振動子12の検出信号)のデータとを,相互に関連付けて所定の記憶手段に記録する(S3)。超音波の掃引周波数の範囲は,例えば,11.2[MHz]〜11.3[MHz]程度の範囲である。
なお,温度測定装置X1において,前記制御・演算装置6は,前記反射超音波の検出信号をその波形を把握できる程度の分解能をもって取得及び記録する必要はなく,前記反射超音波の検出信号の強度IUS(振幅,実効値など)を検出及び記録できれば十分である。
Next, a procedure for measuring the temperature of the wafer 1 by the temperature measuring device X1 will be described with reference to the flowchart shown in FIG. Hereinafter, S1, S2,... Represent identification codes of processing procedures (steps). In addition, the process of S1-S10 shown below is performed in the state by which the wafer 1 which is a process target object was supported by the wafer stage 2 in the one surface (lower surface).
First, the control / calculation device 6 selects any one of the plurality of ultrasonic transmission / reception units 10, and the transmission ultrasonic transducer 11 and the oscillator 3 in the ultrasonic transmission / reception unit 10 The selector 4 is set (controlled) so that the signal path between the receiving ultrasonic transducer 12 and the amplifier 5 in the same ultrasonic transmission / reception unit 10 is connected. S1).
Further, the control / arithmetic unit 6 acquires the detected temperature (environment temperature) of the environment temperature sensor 7 (S2).
Next, the control / arithmetic unit 6 outputs an ultrasonic output command to the oscillator 3. As a result, the oscillator 3 and the transmitting ultrasonic transducer 11 output ultrasonic waves while performing frequency sweep on the supported surface (the lower surface in FIG. 1) of the wafer 1 (S3). In parallel with this, the control / calculation device 6 detects the ultrasonic sweep frequency and the reflected ultrasonic detection signal (the detection signal of the reception ultrasonic transducer 12) that changes according to the ultrasonic frequency sweep. ) Are recorded in a predetermined storage means in association with each other (S3). The range of the ultrasonic sweep frequency is, for example, about 11.2 [MHz] to 11.3 [MHz].
In the temperature measuring device X1, the control / arithmetic unit 6 does not need to acquire and record the reflected ultrasonic detection signal with a resolution that can grasp the waveform of the reflected ultrasonic detection signal. It is sufficient to be able to detect and record I US (amplitude, rms, etc.).

次に,前記制御・演算装置6は,ステップS3で記録した超音波の掃引周波数及びその周波数掃引に応じて変化する前記反射超音波の強度IUS(前記受信用超音波振動子12の検出信号の強度)とに基づいて,ウェハ1内での超音波の共振周波数frを特定し,その共振周波数frとステップS2で取得した環境温度Taとに基づいて,その時点で選択されている前記超音波送受部10に対応する位置におけるウェハ1の厚みLを算出するとともに,その算出結果を所定の記憶手段に記録する(S4,前記厚み自動設定手段の一例)。このステップS4の処理は,後述する温度算処理(S8)で用いられるウェハ1の厚みを自動設定する処理である。なお,このステップS4の処理の詳細については後述する。
そして,前記制御・演算装置6は,複数箇所の前記超音波送受部10全てに対応するウェハ1の厚み測定が終了するまで,前記セレクタ4の切り替え実績を判別(S5)しつつステップS1〜S4の処理を順次実行する。
以上に示したステップS1〜S5の処理により,複数の前記超音波送受部10に対応する全ての測定部位ついて,後述する温度算出処理(S8)で用いられるウェハ1の厚みが事前に(温度測定前に)設定される。
Next, the control / arithmetic unit 6 detects the ultrasonic sweep frequency recorded in step S3 and the reflected ultrasonic intensity I US (detection signal of the reception ultrasonic transducer 12) that changes according to the frequency sweep. Is determined based on the resonance frequency fr and the ambient temperature Ta acquired in step S2, and the ultrasonic frequency selected at that time is determined based on the resonance frequency fr. The thickness L of the wafer 1 at the position corresponding to the acoustic wave transmitting / receiving unit 10 is calculated and the calculation result is recorded in a predetermined storage means (S4, an example of the automatic thickness setting means). The process of step S4 is a process of automatically setting the thickness of the wafer 1 used in a temperature calculation process (S8) described later. Details of the process in step S4 will be described later.
Then, the control / arithmetic unit 6 discriminates the switching results of the selector 4 until the thickness measurement of the wafer 1 corresponding to all the ultrasonic transmitting / receiving units 10 at a plurality of locations is completed (S5). These processes are executed sequentially.
Through the processes in steps S1 to S5 described above, the thickness of the wafer 1 used in the temperature calculation process (S8) described later is set in advance (temperature measurement) for all measurement sites corresponding to the plurality of ultrasonic transmission / reception units 10. Set before).

そして,前記制御・演算装置6は,所定の温度測定開始条件が成立したことを検知(S6)した場合に,前記プロセスチャンバー8内で成膜処理,エッチング処理,熱処理等の各種の処理が施されているときのウェハ1の温度測定処理(ステップS7〜S10)を実行する。
温度測定処理では,まず,前記制御・演算装置6は,ステップS1と同様に,複数の前記超音波送受部10のうちのいずれか1つについて,前記送信用超音波振動子11と前記発振器3との間の信号経路の接続,及び前記受信用超音波振動子12と前記増幅器5との間の信号経路の接続を行う(S7)。
さらに,前記制御・演算装置6は,ステップS3と同様に,前記発振器3に対して超音波出力指令を出力することにより,前記発振器3及び前記送信用超音波振動子11による超音波出力処理(ウェハ1の被支持面に対し,周波数掃引を行いながら超音波を出力する処理)を実行させる(S8)。これと並行して,前記制御・演算装置6は,超音波の掃引周波数と,その超音波の周波数掃引に応じて変化する前記反射超音波の検出信号(前記受信用超音波振動子12の検出信号)のデータと,その時点の時刻とを,相互に関連付けて所定の記憶手段に記録する(S8)。なお,温度測定装置X1においては,前記反射超音波の検出信号をその波形を把握できる程度の分解能をもって取得及び記録する必要はなく,前記反射超音波の検出信号の強度IUS(振幅,実効値など)を検出及び記録できれば十分である。
When the control / calculation device 6 detects that a predetermined temperature measurement start condition is satisfied (S6), the control / calculation device 6 performs various processes such as a film forming process, an etching process, and a heat treatment in the process chamber 8. The temperature measurement process (steps S7 to S10) of the wafer 1 when being performed is executed.
In the temperature measurement process, first, the control / arithmetic unit 6 performs the transmission ultrasonic transducer 11 and the oscillator 3 for any one of the plurality of ultrasonic transmission / reception units 10 as in step S1. And a signal path between the receiving ultrasonic transducer 12 and the amplifier 5 (S7).
Further, the control / arithmetic unit 6 outputs an ultrasonic output command to the oscillator 3 in the same manner as in step S3, so that an ultrasonic output process (by the oscillator 3 and the transmitting ultrasonic transducer 11) ( A process of outputting an ultrasonic wave while performing frequency sweep on the supported surface of the wafer 1 is executed (S8). In parallel with this, the control / arithmetic unit 6 detects the ultrasonic sweep frequency and the reflected ultrasonic detection signal (detection of the reception ultrasonic transducer 12) that changes in accordance with the ultrasonic frequency sweep. Signal) and the time at that time are correlated and recorded in a predetermined storage means (S8). In the temperature measurement apparatus X1, it is not necessary to acquire and record the reflected ultrasonic detection signal with a resolution that can grasp the waveform, and the intensity I US (amplitude, effective value) of the reflected ultrasonic detection signal. Etc.) can be detected and recorded.

次に,前記制御・演算装置6は,ステップS8で記録した超音波の掃引周波数及びその周波数掃引に応じて変化する前記反射超音波の強度IUS(前記受信用超音波振動子12の検出信号の強度)とに基づいて,ウェハ1内での超音波の共振周波数frを特定し,その共振周波数frとステップS4で記録したウェハ1の厚みdとに基づいて,ウェハ1の温度を算出するとともに,その算出結果を所定の記憶手段に記録する(S9,前記温度算出手段の一例)。なお,このステップS8の処理の詳細については後述する。
そして,前記制御・演算装置6は,所定の温度測定終了条件が成立するまで,その終了条件を判別(S10)しつつステップS7〜S10の処理を順次実行する。
このように,前記制御・演算装置6は,前記セレクタ4により信号経路が切り替えられるごとに前記増幅器5を通じて得られる前記反射超音波の検出信号に基づいて,ウェハ1における複数箇所の前記導波路13それぞれに対応する位置の温度を算出する。以上に示したステップS7〜S10の処理により,複数の前記超音波送受部10に対応する全ての測定部位ついて,処理中のウェハ1の温度変化の実測値が記憶手段に記録される。
Next, the control / arithmetic unit 6 detects the ultrasonic sweep frequency recorded in step S8 and the intensity I US of the reflected ultrasonic wave that changes according to the frequency sweep (the detection signal of the reception ultrasonic transducer 12). The resonance frequency fr of the ultrasonic wave in the wafer 1 is specified based on the intensity of the wafer 1 and the temperature of the wafer 1 is calculated based on the resonance frequency fr and the thickness d of the wafer 1 recorded in step S4. At the same time, the calculation result is recorded in a predetermined storage means (S9, an example of the temperature calculation means). Details of the process in step S8 will be described later.
Then, the control / arithmetic unit 6 sequentially executes the processes of steps S7 to S10 while determining the end condition (S10) until a predetermined temperature measurement end condition is satisfied.
In this manner, the control / arithmetic unit 6 performs a plurality of the waveguides 13 on the wafer 1 on the basis of the reflected ultrasonic detection signal obtained through the amplifier 5 each time the signal path is switched by the selector 4. The temperature of the position corresponding to each is calculated. Through the processes in steps S7 to S10 described above, the measured values of the temperature change of the wafer 1 being processed are recorded in the storage unit for all the measurement sites corresponding to the plurality of ultrasonic transmitting / receiving units 10.

次に,温度測定装置X1における温度算出処理(S9)の詳細について説明する。
図7に示したように,半導体ウェハの材料として採用されることが多いシリコン単結晶内における音速は温度依存性を有する。その温度係数は,シリコン単結晶の場合−0.4[(m/s)/℃]程度である。
一方,超音波をウェハ1に対してその厚み方向から照射した場合,その超音波はウェハ1における超音波照射面とその反対側の面との間で多重反射する。そのときの超音波の波長をλ,ウェハ1の厚みをLとすると,次の(a1)式で表される共振条件を満たす場合に,ウェハ1において大きな超音波振動が発生し,前記反射超音波の検出信号の強度が相対的に大きくなる。
λ=2L/n (但し,n=1,2,…) …(a1)
また,前記共振条件を満たすときの共振周波数をfrとすると,ウェハ1内での音速(超音波伝播速度)Vtは次の(a2)式で表される。
Vt = fr・(2L)/n (但し,n=1,2,…) …(a2)
なお,「n」は,ウェハ1の材質及び概略の厚み,及び超音波の掃引周波数の範囲から予め想定できる数値である。
Next, details of the temperature calculation process (S9) in the temperature measuring device X1 will be described.
As shown in FIG. 7, the speed of sound in a silicon single crystal that is often employed as a material for a semiconductor wafer has temperature dependence. The temperature coefficient is about −0.4 [(m / s) / ° C.] in the case of a silicon single crystal.
On the other hand, when the ultrasonic wave is irradiated to the wafer 1 from the thickness direction, the ultrasonic wave is subjected to multiple reflections between the ultrasonic wave irradiation surface of the wafer 1 and the opposite surface. Assuming that the wavelength of the ultrasonic wave is λ and the thickness of the wafer 1 is L, a large ultrasonic vibration is generated in the wafer 1 when the resonance condition expressed by the following equation (a1) is satisfied. The intensity of the sound wave detection signal becomes relatively large.
λ = 2L / n (where n = 1, 2,...) (a1)
If the resonance frequency when the resonance condition is satisfied is fr, the sound velocity (ultrasonic propagation velocity) Vt in the wafer 1 is expressed by the following equation (a2).
Vt = fr. (2L) / n (where n = 1, 2,...) (A2)
Note that “n” is a numerical value that can be assumed in advance from the range of the material and approximate thickness of the wafer 1 and the ultrasonic sweep frequency.

図3は,超音波の周波数(横軸)と反射超音波の強度(縦軸)との関係を表すグラフである。図3に示すように,ウェハ1に照射する超音波の周波数掃引を行えば,反射超音波の強度が変化してある掃引周波数においてピークとなる。従って,ウェハ1に照射する超音波の周波数掃引を行い,反射超音波の強度がピークとなるとき(前記共振条件を満たすとき)の掃引周波数fpを特定すれば,その周波数fpがウェハ1の共振周波数frであるといえる。
前記制御・演算装置6は,ステップS9において,まず,ウェハ1に照射する超音波の周波数掃引を行った場合に反射超音波の強度がピークとなるときの掃引周波数fpを特定することにより,前記共振周波数frを特定する。さらに,前記制御・演算装置6は,図7に示した音速Vtと温度Txとの関係を表す式(既知の関係式)に(a2)式を適用して得られる式に,前記共振周波数fr及びウェハ1の厚みLを適用することによってウェハ1の温度Txを算出する。
ここで,ウェハ1の厚みLが0.8[mm],温度係数が−0.4[(m/s)/℃]であるとすると,ウェハ1の測定温度について2[℃]の分解能を得るためには,ウェハ1内での音速を1[m/s]以下の精度で測定する必要がある。
また,(a2)式より,ウェハ1内での音速を1[m/s]以下の精度で測定するためには,掃引周波数の分解能(刻み幅)を1[kHz]以下にする必要がある。
これに対し,ステップS8における掃引周波数の刻み幅(分解能)を1[kHz]程度にすることは十分に可能である。従って,温度測定装置X1は,2[℃]以下の温度分解能により高精度でウェハ1の温度測定を行うことができる。しかも,超音波による非接触測定であるので,ごく簡易に温度測定を行うことができる上,ウェハ1に汚染を生じさせず,さらに,ウェハ1の表面状態(表面粗さ等)の影響を受けにくいため測定の安定性が高い。
FIG. 3 is a graph showing the relationship between the frequency of the ultrasonic waves (horizontal axis) and the intensity of the reflected ultrasonic waves (vertical axis). As shown in FIG. 3, if the frequency sweep of the ultrasonic wave applied to the wafer 1 is performed, the peak is obtained at the sweep frequency at which the intensity of the reflected ultrasonic wave is changed. Therefore, if the frequency sweep of the ultrasonic wave applied to the wafer 1 is performed and the sweep frequency fp when the intensity of the reflected ultrasonic wave reaches a peak (when the resonance condition is satisfied) is specified, the frequency fp is the resonance of the wafer 1. It can be said that the frequency fr.
In step S9, the controller / arithmetic unit 6 first specifies the sweep frequency fp when the intensity of the reflected ultrasonic wave reaches a peak when the frequency of the ultrasonic wave applied to the wafer 1 is swept. The resonance frequency fr is specified. Further, the control / arithmetic unit 6 adds the resonance frequency fr to the equation obtained by applying the equation (a2) to the equation representing the relationship between the sound speed Vt and the temperature Tx shown in FIG. And the temperature Tx of the wafer 1 is calculated by applying the thickness L of the wafer 1.
Here, assuming that the thickness L of the wafer 1 is 0.8 [mm] and the temperature coefficient is −0.4 [(m / s) / ° C.], the resolution of 2 [° C.] is obtained for the measurement temperature of the wafer 1. In order to obtain it, it is necessary to measure the speed of sound in the wafer 1 with an accuracy of 1 [m / s] or less.
Further, from the equation (a2), in order to measure the speed of sound in the wafer 1 with an accuracy of 1 [m / s] or less, it is necessary to set the resolution (step size) of the sweep frequency to 1 [kHz] or less. .
On the other hand, it is sufficiently possible to set the step size (resolution) of the sweep frequency in step S8 to about 1 [kHz]. Therefore, the temperature measuring device X1 can measure the temperature of the wafer 1 with high accuracy with a temperature resolution of 2 [° C.] or less. In addition, since it is a non-contact measurement using ultrasonic waves, temperature measurement can be performed very easily, and the wafer 1 is not contaminated, and is also affected by the surface condition (surface roughness, etc.) of the wafer 1. Measurement stability is high due to difficulty.

ところで,温度測定前において,ウェハ1を加温しない常温状態や,ウェハ1を収容するプロセスチャンバー8内全体が所定の温度に維持されたような状態では,ウェハ1の温度が前記環境温度センサ7の検出温度(環境温度)と等しいとみなせる。
そこで,前記制御・演算装置6は,ウェハ1の温度測定前のステップS4において,前述した温度算出処理におけるウェハ1の厚みL(既知)及び温度Tx(未知)の既知と未知との関係を逆にした計算を行うことにより,既知の環境温度の下での前記反射超音波の検出信号と既知の環境温度とに基づいて,ウェハ1の厚みLを算出して自動設定する。
なお,ウェハ1が加熱処理される場合,加熱中のウェハ1の厚みLは,熱膨張によって加熱前に測定された厚みに対して変化するが,例えばシリコンの熱膨張係数は10-6のであるため,通常はその影響をほぼ無視できる。また,ウェハ1の温度算出(S9)に用いるウェハ1の厚みLを,ウェハ1の熱膨張分を考慮して補正することも考えられる。
By the way, before the temperature measurement, the temperature of the wafer 1 is the ambient temperature sensor 7 in a normal temperature state where the wafer 1 is not heated or in a state where the entire process chamber 8 containing the wafer 1 is maintained at a predetermined temperature. It can be regarded as being equal to the detected temperature (environment temperature).
Therefore, in step S4 before measuring the temperature of the wafer 1, the control / arithmetic unit 6 reverses the relationship between the known and unknown thickness L (known) and temperature Tx (unknown) of the wafer 1 in the temperature calculation process described above. By performing the calculation, the thickness L of the wafer 1 is calculated and automatically set based on the detection signal of the reflected ultrasonic wave under the known ambient temperature and the known ambient temperature.
When the wafer 1 is heat-treated, the thickness L of the wafer 1 being heated changes with respect to the thickness measured before heating due to thermal expansion. For example, the thermal expansion coefficient of silicon is 10 −6 . Therefore, the effect can usually be ignored. It is also conceivable to correct the thickness L of the wafer 1 used for calculating the temperature of the wafer 1 (S9) in consideration of the thermal expansion of the wafer 1.

[第2の実施形態]
次に,図4を参照しつつ,本発明の第2実施形態に係る半導体ウェハ温度測定装置X2(以下,温度測定装置X2という)について説明する。
温度測定装置X2は,前記温度測定装置X1の応用例であるので,以下,前記温度測定装置X1と異なる部分についてのみ説明する。なお,図4において,前記温度測定装置X1と同じ構成要素については同じ符号が付されている。
温度測定装置X2は,図4に示すように,ウェハステージ2,セレクタ4’,超音波信号処理装置9,制御・演算装置6’及び環境温度センサ7を備えている。
また,前記ウェハステージ2は,その複数の箇所に超音波送受部10’が設けられている。
前記超音波送受部10’は,それぞれ超音波振動子11’と導波路13とを有している。この超音波送受部10’における超音波振動子11’は,前記温度測定装置X1における前記送信用超音波振動子11としての役割と,前記受信用超音波振動子12としての役割とを兼用するものである。
また,前記超音波信号処理装置9は,前記温度測定装置X1における前記発振器3及び前記増幅器5の両機能を併せ持つものであるが,周波数掃引機能を有する必要はなく,前記超音波振動子11’に対してパルス状の交流信号を供給することにより,前記超音波振動子11’を通じてパルス状の超音波を出力させる。前記超音波信号処理装置9及び前記超音波振動子11’により出力される超音波のパルス幅は,例えば,30[ns]程度である。
さらに,前記超音波信号処理装置9は,ウェハステージ2により支持されたウェハ1に反射して前記導波路13を通じて戻る反射超音波を前記超音波振動子11’を通じて検出し,その検出信号を出力する。このように,前記超音波振動子11’は,パルス状の超音波を出力し,その反射波を検出することにより,超音波の出力と検出とを時分割で行う。なお,前記超音波信号処理装置9及び前記超音波振動子11’は,前記超音波出力手段及び前記超音波検出手段の両方を兼ねたものの一例である。
また,前記制御・演算装置6’は,前記温度測定装置X1における前記制御・演算装置6と同様に,予めその記憶部に記憶された所定のプログラムを実行するプロセッサ(演算手段)を備え,そのプロセッサにより,前記超音波信号処理装置9の制御や,その超音波信号処理装置9を通じて得られる反射超音波の検出信号に基づくウェハ1の厚み算出処理及び温度算出処理等を実行する。
[Second Embodiment]
Next, a semiconductor wafer temperature measuring device X2 (hereinafter referred to as a temperature measuring device X2) according to a second embodiment of the present invention will be described with reference to FIG.
Since the temperature measuring device X2 is an application example of the temperature measuring device X1, only portions different from the temperature measuring device X1 will be described below. In FIG. 4, the same components as those of the temperature measuring device X1 are denoted by the same reference numerals.
As shown in FIG. 4, the temperature measuring device X2 includes a wafer stage 2, a selector 4 ′, an ultrasonic signal processing device 9, a control / arithmetic device 6 ′, and an environmental temperature sensor 7.
Further, the wafer stage 2 is provided with ultrasonic transmission / reception units 10 'at a plurality of locations.
The ultrasonic transmission / reception unit 10 ′ includes an ultrasonic transducer 11 ′ and a waveguide 13. The ultrasonic transducer 11 ′ in the ultrasonic transmission / reception unit 10 ′ serves both as the transmitting ultrasonic transducer 11 and the receiving ultrasonic transducer 12 in the temperature measuring device X 1. Is.
The ultrasonic signal processing device 9 has both functions of the oscillator 3 and the amplifier 5 in the temperature measuring device X1, but does not need to have a frequency sweep function, and the ultrasonic transducer 11 ′. By supplying a pulsed alternating current signal, a pulsed ultrasonic wave is output through the ultrasonic transducer 11 ′. The pulse width of the ultrasonic waves output from the ultrasonic signal processing device 9 and the ultrasonic transducer 11 ′ is, for example, about 30 [ns].
Further, the ultrasonic signal processing device 9 detects reflected ultrasonic waves reflected on the wafer 1 supported by the wafer stage 2 and returning through the waveguide 13 through the ultrasonic transducer 11 ′, and outputs the detection signal. To do. As described above, the ultrasonic transducer 11 ′ outputs pulsed ultrasonic waves and detects the reflected waves, thereby performing ultrasonic output and detection in a time-sharing manner. Note that the ultrasonic signal processing device 9 and the ultrasonic transducer 11 ′ are examples of both the ultrasonic output means and the ultrasonic detection means.
The control / arithmetic unit 6 ′ includes a processor (arithmetic unit) for executing a predetermined program stored in the storage unit in advance, like the control / arithmetic unit 6 in the temperature measuring device X1. The processor performs control of the ultrasonic signal processing device 9 and processing for calculating the thickness of the wafer 1 and temperature calculation processing based on the detection signal of the reflected ultrasonic wave obtained through the ultrasonic signal processing device 9.

次に,温度測定装置X2によるウェハ1の温度測定の手順について説明する。
温度測定装置X2において,前記制御・演算装置6’は,図2のフローチャートに示す手順と同様の手順で温度測定を実行する。
但し,温度測定装置X2においては,前記制御・演算装置6’が,ステップS3,S8で実行する超音波の出力制御及び反射超音波の検出処理の内容,ステップS4,S9で実行するウェハ1の厚み算出及び温度算出の内容は,前記温度測定装置X1において実行される内容と異なる。以下,その点について説明する。
ステップS3及びS8において,前記制御・演算装置6’は,前記超音波信号処理装置9に対してパルス超音波出力指令を出力する。これにより,前記超音波信号処理装置9が,ウェハ1の被支持面(図1における下面)に対し,パルス状の超音波を出力する。これと並行して,前記制御・演算装置6’は,前記反射超音波の検出信号(前記受信用超音波振動子12の検出信号)のデータを所定の記憶手段に記録する。なお,温度測定装置X2において,前記制御・演算装置6’は,前記反射超音波の検出信号をその波形を把握できる程度の分解能をもって取得及び記録する。
また,ステップS9において,前記制御・演算装置6’は,まず,ステップS8で記録した前記反射超音波の検出信号に基づいて,ウェハ1における被支持面及びその反対側の面で反射した超音波それぞれの前記超音波振動子11’への到達時点の差を検出する。
Next, a procedure for measuring the temperature of the wafer 1 using the temperature measuring device X2 will be described.
In the temperature measuring device X2, the control / arithmetic device 6 ′ performs temperature measurement in the same procedure as shown in the flowchart of FIG.
However, in the temperature measurement device X2, the control / calculation device 6 ′ performs the ultrasonic output control and reflected ultrasonic detection processing executed in steps S3 and S8, and the wafer 1 executed in steps S4 and S9. The contents of the thickness calculation and the temperature calculation are different from the contents executed in the temperature measuring device X1. This will be described below.
In steps S 3 and S 8, the control / calculation device 6 ′ outputs a pulse ultrasonic output command to the ultrasonic signal processing device 9. As a result, the ultrasonic signal processing device 9 outputs pulsed ultrasonic waves to the supported surface of the wafer 1 (the lower surface in FIG. 1). In parallel with this, the control / calculation device 6 ′ records the data of the reflected ultrasonic detection signal (the detection signal of the reception ultrasonic transducer 12) in a predetermined storage means. In the temperature measuring device X2, the control / calculation device 6 ′ acquires and records the reflected ultrasonic wave detection signal with a resolution that can grasp the waveform.
In step S9, the control / arithmetic unit 6 ′ first starts the ultrasonic wave reflected on the supported surface and the opposite surface of the wafer 1 based on the reflected ultrasonic detection signal recorded in step S8. A difference in arrival time at each of the ultrasonic transducers 11 ′ is detected.

図5は,ウェハ1にパルス状の超音波を照射したときの反射超音波の検出信号の変化を模式的に表した図である。
ウェハ1に対し,その被支持面にほぼ垂直な方向から超音波を照射すると,その超音波の一部がウェハ1の被支持面に反射するとともに,残りの一部がウェハ1内に入って前記被支持面の反対側の面(図4における上面)と被支持面との間で多重反射する。このため,図5に示すように,前記超音波信号処理装置9により,前記超音波振動子11’とウェハ1の被支持面との距離に応じた時間の経過後に,ウェハ1の被支持面で反射した反射超音波の信号(エコー信号)が検出され,その後,ウェハ1の厚みLに応じた時間(2Lの距離を超音波が進む時間)が経過するごとに,ウェハ1の被支持面の反対側の面で反射した反射超音波の信号が検出される。
前記制御・演算装置6’は,ステップS9において,ステップS8で記録した前記反射超音波の検出信号のピーク間の時間間隔を検出することにより,ウェハ1における被支持面及びその反対側の面で反射した超音波それぞれの前記超音波振動子11’への到達時点の差であるエコー時間差tppを検出する。
ここで,ウェハ1中の超音波の伝播速度(縦波音速)Vtは,ウェハ1の厚みL及び前記エコー時間差tppに基づく次の(b1)式により表される。
Vt = 2L/tpp …(b1)
従って,前記制御・演算装置6’は,ステップS9において,図7に示した音速Vtと温度Txとの関係を表す式(既知の関係式)に(b1)式を適用して得られる式に,反射超音波の検出信号に基づき検出した前記エコー時間差tppとステップS4で算出したウェハ1の厚みLとを適用することによってウェハ1の温度Txを算出する。
FIG. 5 is a diagram schematically showing a change in the detection signal of the reflected ultrasonic wave when the wafer 1 is irradiated with pulsed ultrasonic waves.
When the wafer 1 is irradiated with ultrasonic waves from a direction substantially perpendicular to the supported surface, a part of the ultrasonic waves is reflected on the supported surface of the wafer 1 and the remaining part enters the wafer 1. Multiple reflection is performed between the surface opposite to the supported surface (the upper surface in FIG. 4) and the supported surface. Therefore, as shown in FIG. 5, the ultrasonic signal processing device 9 causes the supported surface of the wafer 1 to pass after a time corresponding to the distance between the ultrasonic transducer 11 ′ and the supported surface of the wafer 1. The reflected ultrasonic signal (echo signal) reflected at 1 is detected, and each time a time corresponding to the thickness L of the wafer 1 (the time during which the ultrasonic wave travels a distance of 2L) elapses, the supported surface of the wafer 1 The reflected ultrasonic signal reflected on the surface opposite to the surface is detected.
In step S9, the control / arithmetic unit 6 ′ detects the time interval between the peaks of the detection signals of the reflected ultrasonic waves recorded in step S8, so that the supported surface of the wafer 1 and the opposite surface thereof are detected. An echo time difference tpp which is a difference in arrival time of each reflected ultrasonic wave to the ultrasonic transducer 11 ′ is detected.
Here, the ultrasonic wave propagation velocity (longitudinal wave velocity) Vt in the wafer 1 is expressed by the following equation (b1) based on the thickness L of the wafer 1 and the echo time difference tpp.
Vt = 2L / tpp (b1)
Accordingly, in step S9, the control / calculation device 6 ′ obtains an expression obtained by applying the expression (b1) to the expression (known relational expression) representing the relationship between the sound speed Vt and the temperature Tx shown in FIG. The temperature Tx of the wafer 1 is calculated by applying the echo time difference tpp detected based on the reflected ultrasonic detection signal and the thickness L of the wafer 1 calculated in step S4.

ところで,ウェハ1の厚みLが0.8[mm],温度係数が−0.4[(m/s)/℃]であるとすると,ウェハ1の測定温度について2[℃]の分解能を得るためには,ウェハ1内での音速を1[m/s]以下の精度で測定する必要がある。
また,(b1)式より,ウェハ1内での音速を1[m/s]以下の精度で測定するためには,前記エコー時間差tppを20[ps]以下の分解能で測定する必要がある。一般的な信号波形の観測機の時間分解能(サンプリング周期)は数百[ps]程度であるが,反射超音波の検出信号に対して遅延相関処理等の波形解析処理を施すことにより,20[ps]以下の分解能で前記エコー時間差tppを測定することができる。
ここで,パルス状の超音波を出力した場合,ウェハ1の厚みが0.8[mm]程度であると,前記エコー時間差tppが200[ns]以下となるため,超音波のパルス幅を0.1[μs]程度以下にする必要がある。
When the thickness L of the wafer 1 is 0.8 [mm] and the temperature coefficient is −0.4 [(m / s) / ° C.], a resolution of 2 [° C.] is obtained for the measurement temperature of the wafer 1. Therefore, it is necessary to measure the speed of sound in the wafer 1 with an accuracy of 1 [m / s] or less.
Further, from the equation (b1), in order to measure the sound speed in the wafer 1 with an accuracy of 1 [m / s] or less, it is necessary to measure the echo time difference tpp with a resolution of 20 [ps] or less. The time resolution (sampling period) of a general signal waveform observer is about several hundreds [ps]. However, by applying waveform analysis processing such as delayed correlation processing to the detection signal of reflected ultrasonic waves, 20 [ The echo time difference tpp can be measured with a resolution of [ps] or less.
Here, when pulsed ultrasonic waves are output, if the thickness of the wafer 1 is about 0.8 [mm], the echo time difference tpp is 200 [ns] or less, so the pulse width of the ultrasonic waves is set to 0. .1 [μs] or less is required.

また,前述したように,温度測定前における常温状態やプロセスチャンバー8内全体が所定の温度に維持されたような状態では,ウェハ1の温度が前記環境温度センサ7の検出温度(環境温度)と等しいとみなせる。
そこで,前記制御・演算装置6’は,ウェハ1の温度測定前のステップS4において,前述した温度算出処理におけるウェハ1の厚みL(既知)及び温度Tx(未知)の既知と未知との関係を逆にした計算を行うことにより,既知の環境温度の下での前記反射超音波の検出信号と既知の環境温度とに基づいて,ウェハ1の厚みLを算出して自動設定する。
Further, as described above, in the normal temperature state before the temperature measurement or the state in which the entire process chamber 8 is maintained at a predetermined temperature, the temperature of the wafer 1 is the detected temperature (environment temperature) of the environmental temperature sensor 7. Can be considered equal.
Therefore, in step S4 before measuring the temperature of the wafer 1, the control / arithmetic unit 6 ′ determines the relationship between the known and unknown thickness L (known) and temperature Tx (unknown) of the wafer 1 in the temperature calculation process described above. By performing the reverse calculation, the thickness L of the wafer 1 is calculated and automatically set based on the detection signal of the reflected ultrasonic wave under the known ambient temperature and the known ambient temperature.

[第3の実施形態]
次に,本発明の第3実施形態に係る半導体ウェハ温度測定装置X3(以下,温度測定装置X3という)について説明する。
温度測定装置X3の装置構成は,前記温度測定装置X2と同じである。この温度測定装置X3において,前記超音波信号処理装置9及び前記超音波振動子11’により出力される超音波のパルス幅は,例えば,0.5[μs]程度である。
温度測定装置X3が前記温度測定装置X2と異なる点は,ステップS4,S9で実行するウェハ1の厚み算出及び温度算出の内容である。以下,その内容について説明する。
ステップS9において,前記制御・演算装置6’は,ステップS8で記録した前記反射超音波の検出信号の変化に基づいて,ウェハ1内での超音波の共振周波数frを特定し,その共振周波数frとウェハ1の厚みLとに基づいて,ウェハ1の温度Txを算出する。
図6(b)は,ウェハ1にパルス状の超音波を照射したときの反射超音波の検出信号の変化を表したグラフである。
前述したように,超音波がウェハ1内で多重反射するため,(a1)式に示した共振条件を満たさなくても,前記反射超音波の検出信号の変化には,図6(b)に示される区間Peの波形のように前記共振周波数frの成分が現れる。
なお,図6(a)は,温度測定装置X2において,ウェハステージ2上にウェハ1が存在しない場合の反射超音波の検出信号の変化を表したグラフである。図6(a)から,共振媒体となるウェハ1が存在しない場合は前記反射超音波の検出信号に前記共振周波数frの成分が生じないことがわかる。
従って,前記制御・演算装置6’は,ステップS9において,まず,前記反射超音波の検出信号の波形解析を行うことにより,前記共振周波数fr(区間Peの信号の周波数)を特定する。
さらに,前記制御・演算装置6’は,ステップS9において,図7に示した音速Vtと温度Txとの関係を表す式(既知の関係式)に(a2)式を適用して得られる式に,前記共振周波数fr及びウェハ1の厚みLを適用することによってウェハ1の温度Txを算出する。
[Third Embodiment]
Next, a semiconductor wafer temperature measuring device X3 (hereinafter referred to as a temperature measuring device X3) according to a third embodiment of the present invention will be described.
The device configuration of the temperature measuring device X3 is the same as that of the temperature measuring device X2. In this temperature measurement device X3, the pulse width of the ultrasonic waves output from the ultrasonic signal processing device 9 and the ultrasonic transducer 11 ′ is, for example, about 0.5 [μs].
The temperature measurement device X3 is different from the temperature measurement device X2 in the contents of the thickness calculation and temperature calculation of the wafer 1 executed in steps S4 and S9. The contents will be described below.
In step S9, the controller / arithmetic unit 6 'specifies the resonance frequency fr of the ultrasonic wave in the wafer 1 based on the change in the detection signal of the reflected ultrasonic wave recorded in step S8, and the resonance frequency fr. And the temperature Tx of the wafer 1 is calculated based on the thickness L of the wafer 1.
FIG. 6B is a graph showing a change in the detection signal of the reflected ultrasonic wave when the wafer 1 is irradiated with pulsed ultrasonic waves.
As described above, since the ultrasonic waves are multiple-reflected in the wafer 1, even if the resonance condition shown in the equation (a1) is not satisfied, the change in the detection signal of the reflected ultrasonic waves is shown in FIG. The component of the resonance frequency fr appears like the waveform of the section Pe shown.
FIG. 6A is a graph showing changes in detection signals of reflected ultrasonic waves when the wafer 1 does not exist on the wafer stage 2 in the temperature measurement device X2. From FIG. 6A, it can be seen that when the wafer 1 serving as a resonance medium does not exist, the component of the resonance frequency fr does not occur in the detection signal of the reflected ultrasonic wave.
Accordingly, in step S9, the control / arithmetic unit 6 ′ first identifies the resonance frequency fr (frequency of the signal in the section Pe) by performing a waveform analysis of the detection signal of the reflected ultrasonic wave.
Further, in step S9, the control / arithmetic unit 6 ′ applies the equation (a2) to the equation (known relational equation) representing the relationship between the sound speed Vt and the temperature Tx shown in FIG. The temperature Tx of the wafer 1 is calculated by applying the resonance frequency fr and the thickness L of the wafer 1.

また,前述したように,温度測定前における常温状態やプロセスチャンバー8内全体が所定の温度に維持されたような状態では,ウェハ1の温度が前記環境温度センサ7の検出温度(環境温度)と等しいとみなせる。
そこで,前記制御・演算装置6’は,ウェハ1の温度測定前のステップS4において,前述した温度算出処理におけるウェハ1の厚みL(既知)及び温度Tx(未知)の既知と未知との関係を逆にした計算を行うことにより,既知の環境温度の下での前記反射超音波の検出信号と既知の環境温度とに基づいて,ウェハ1の厚みLを算出して自動設定する。
Further, as described above, in the normal temperature state before the temperature measurement or the state in which the entire process chamber 8 is maintained at a predetermined temperature, the temperature of the wafer 1 is the detected temperature (environment temperature) of the environmental temperature sensor 7. Can be considered equal.
Therefore, in step S4 before measuring the temperature of the wafer 1, the control / arithmetic unit 6 ′ determines the relationship between the known and unknown thickness L (known) and temperature Tx (unknown) of the wafer 1 in the temperature calculation process described above. By performing the reverse calculation, the thickness L of the wafer 1 is calculated and automatically set based on the detection signal of the reflected ultrasonic wave under the known ambient temperature and the known ambient temperature.

以上に示した実施形態では,前記ウェハステージ2に前記導波路13が形成された例を示した。
その他の実施形態としては,例えば,前記超音波送受部10が前記ウェハステージ2の内部又は下面(ウェハ1の支持面と反対側の面)に設けられ,前記ウェハステージ2自体が超音波を伝播させる構成も考えられる。
また,前記超音波送受部10の超音波出射面(上面)が,前記ウェハステージ2のウェハ1支持面と面一に形成され,前記超音波送受部10からウェハ1に超音波を直接伝播させる構成等も考えられる。
In the embodiment described above, an example in which the waveguide 13 is formed on the wafer stage 2 has been described.
As another embodiment, for example, the ultrasonic transmission / reception unit 10 is provided inside or on the lower surface (surface opposite to the support surface of the wafer 1) of the wafer stage 2, and the wafer stage 2 itself propagates ultrasonic waves. The structure to make it possible is also considered.
Further, the ultrasonic wave emitting surface (upper surface) of the ultrasonic wave transmitting / receiving unit 10 is formed flush with the wafer 1 support surface of the wafer stage 2, and the ultrasonic wave is directly propagated from the ultrasonic wave transmitting / receiving unit 10 to the wafer 1. Configurations are also conceivable.

[第4の実施形態]
次に,図8を参照しつつ,本発明の第4実施形態に係る半導体ウェハ温度測定装置X4(以下,温度測定装置X4という)について説明する。
温度測定装置X4は,前記温度測定装置X1及び前記温度測定装置X2の応用例であるので,以下,前記温度測定装置X1,X2と異なる部分についてのみ説明する。なお,図8において,前記温度測定装置X1,X2と同じ構成要素については同じ符号が付されている。
温度測定装置X4は,図8に示すように,前記ウェハステージ2,前記発振器3,前記セレクタ4’,増幅器5a,5b,制御・演算装置6”,前記環境温度センサ7,分配器20,バースト化回路21,ゲート回路22及び位相検波回路23を備えている。
ここで,複数の箇所に前記超音波送受部10’が設けられた前記ウェハステージ2,前記セレクタ4’及び前記環境温度センサ7は,前記温度測定装置X2が備えるものと同じものである。
[Fourth Embodiment]
Next, a semiconductor wafer temperature measuring device X4 (hereinafter referred to as a temperature measuring device X4) according to a fourth embodiment of the present invention will be described with reference to FIG.
Since the temperature measuring device X4 is an application example of the temperature measuring device X1 and the temperature measuring device X2, only the parts different from the temperature measuring devices X1 and X2 will be described below. In FIG. 8, the same components as those of the temperature measuring devices X1 and X2 are denoted by the same reference numerals.
As shown in FIG. 8, the temperature measuring device X4 includes the wafer stage 2, the oscillator 3, the selector 4 ′, the amplifiers 5a and 5b, the control / calculation device 6 ″, the environmental temperature sensor 7, the distributor 20, and the burst. A circuit 21, a gate circuit 22 and a phase detection circuit 23 are provided.
Here, the wafer stage 2, the selector 4 ', and the environmental temperature sensor 7 provided with the ultrasonic transmission / reception units 10' at a plurality of locations are the same as those provided in the temperature measuring device X2.

また,温度測定装置X4において,前記発振器3,前記バースト化回路21,前記増幅器及び前記超音波送受信部10’が,超音波出力手段の一例を構成している。
即ち,前記発振器3が,一定の周波数foの正弦波状の信号である基準発振信号Soを出力し,前記バースト化回路21が,その基準発振信号Soを周期的に断続させることにより,一定周波数foのバースト波が,予め定められた周期(以下,断続周期Tpという)で表れるバースト信号Sbに変換する。そのバースト信号Sbは,前記増幅器5aで増幅された後に前記セレクタ4’を通じて前記超音波送受部10’における前記超音波振動子11’(図4参照)に供給される。
これにより,前記超音波振動子11’から,一定周波数foのバースト波状の超音波が前記断続周期Tpで出力される。このように,温度測定装置X4は,一定の周波数foの超音波が前記断続周期Tpで断続するいわゆるバースト波状の超音波を出力する。例えば,前記周波数foは200MHz程度,超音波のパルス幅は2〜10波長分(0.01〜0.1μs)程度,前記断続周期Tpは10μs程度等に設定される。
なお,前記発振器3により出力される前記基準発振信号Soは,前記分配器20により2分岐され,分岐信号の一方は前記バースト化回路21に伝送され,分岐信号の他方は前記位相検波回路23に伝送される。
In the temperature measuring device X4, the oscillator 3, the bursting circuit 21, the amplifier, and the ultrasonic transmission / reception unit 10 'constitute an example of an ultrasonic output unit.
That is, the oscillator 3 outputs a reference oscillation signal So that is a sinusoidal signal having a constant frequency fo, and the burst circuit 21 periodically interrupts the reference oscillation signal So, thereby causing the constant frequency fo. Is converted into a burst signal Sb that appears in a predetermined cycle (hereinafter referred to as an intermittent cycle Tp). The burst signal Sb is amplified by the amplifier 5a and then supplied to the ultrasonic transducer 11 ′ (see FIG. 4) in the ultrasonic transmission / reception unit 10 ′ through the selector 4 ′.
As a result, a burst wave ultrasonic wave having a constant frequency fo is output from the ultrasonic transducer 11 ′ at the intermittent period Tp. Thus, the temperature measuring device X4 outputs a so-called burst wave-like ultrasonic wave in which an ultrasonic wave having a constant frequency fo is intermittent at the intermittent period Tp. For example, the frequency fo is set to about 200 MHz, the ultrasonic pulse width is set to about 2 to 10 wavelengths (0.01 to 0.1 μs), and the intermittent period Tp is set to about 10 μs.
The reference oscillation signal So output from the oscillator 3 is branched into two by the distributor 20, one of the branch signals is transmitted to the burst circuit 21 and the other of the branch signals is sent to the phase detector circuit 23. Is transmitted.

また,前記超音波振動子11’が,ウェハステージ2により支持されたウェハ1内で反射して戻る反射超音波を検出し,その検出信号は,前記セレクタ4’及び前記増幅器5bを通じて前記ゲート回路22に伝送される。このように,前記超音波振動子11’は,バースト波状の超音波を出力し,その反射波を検出することにより,超音波の出力と検出とを時分割で行う。なお,前記超音波振動子11’及び前記増幅器5a,5bは,前記超音波出力手段及び前記超音波検出手段の両方を兼ねたものの一例である。
図9は,温度測定装置X4により得られる反射超音波の検出信号の変化を模式的に表した図である。
図9に示されるように,温度測定装置X4においても,前記温度測定装置X2と同様に,ウェハ1内部に侵入することなくウェハ1の被支持面に反射した反射超音波を検出した1番目のエコー信号と,ウェハ1の被支持面及びその反対側の面(以下,その両面を対向面と総称する)の間で1回及び複数回に渡って往復反射(多重反射)した反射超音波それぞれに対応する2番目以降の複数のエコー信号とが検出される。以下,1つのパルス状の超音波(出力超音波)に対応する複数の前記エコー信号を総称してエコー信号ブロックEbkという。
また,温度測定装置X4においては,前記断続周期Tpで断続するバースト波状の超音波が出力されることから,図9に示されるように,複数の前記エコー信号ブロックEbkが前記断続周期Tpで検出される。
The ultrasonic transducer 11 ′ detects reflected ultrasonic waves that are reflected back within the wafer 1 supported by the wafer stage 2, and the detection signal is sent to the gate circuit through the selector 4 ′ and the amplifier 5b. 22 is transmitted. As described above, the ultrasonic transducer 11 ′ outputs ultrasonic waves in the form of burst waves and detects the reflected waves, thereby performing ultrasonic output and detection in a time-sharing manner. The ultrasonic transducer 11 ′ and the amplifiers 5a and 5b are examples of both ultrasonic output means and ultrasonic detection means.
FIG. 9 is a diagram schematically showing changes in the detection signal of the reflected ultrasonic wave obtained by the temperature measuring device X4.
As shown in FIG. 9, in the temperature measuring device X4, similarly to the temperature measuring device X2, the first reflected ultrasonic wave reflected on the supported surface of the wafer 1 without entering the wafer 1 is detected. Reflected ultrasonic waves that have been reciprocally reflected (multiple reflected) once and a plurality of times between the echo signal and the supported surface of the wafer 1 and the opposite surface (hereinafter, both surfaces are collectively referred to as opposing surfaces). And the second and subsequent echo signals corresponding to. Hereinafter, the plurality of echo signals corresponding to one pulsed ultrasonic wave (output ultrasonic wave) are collectively referred to as an echo signal block Ebk.
Further, in the temperature measuring device X4, since burst wave-like ultrasonic waves that are intermittent at the intermittent period Tp are output, a plurality of echo signal blocks Ebk are detected at the intermittent period Tp as shown in FIG. Is done.

また,前記ゲート回路22は,前記超音波振動子11’の検出信号から,超音波出力の前記断続周期Tp(即ち,前記超音波振動子11’により出力されるパルス状の超音波の出力周期)に同期した既定の時間帯(以下,抽出時間帯という)の信号を抽出する回路である。前記ゲート回路22は,前記バースト化回路21から,前記断続周期Tpに同期したタイミング信号を取得し,そのタイミング信号を基準として前記抽出時間帯を設定する。
ここで,前記ゲート回路22は,前記抽出時間帯の信号抽出により,前記対向面の間で複数回(例えば,2回乃至4回)往復反射した超音波(反射超音波)の検出信号を抽出する。なお,図8において,波線で囲まれた時間帯が前記抽出時間帯の一例である。
Further, the gate circuit 22 detects the intermittent period Tp of the ultrasonic output from the detection signal of the ultrasonic transducer 11 ′ (that is, the output cycle of the pulsed ultrasonic wave output by the ultrasonic transducer 11 ′). ) Is a circuit for extracting a signal in a predetermined time zone (hereinafter referred to as an extraction time zone) synchronized with the above. The gate circuit 22 acquires a timing signal synchronized with the intermittent period Tp from the bursting circuit 21, and sets the extraction time zone based on the timing signal.
Here, the gate circuit 22 extracts a detection signal of an ultrasonic wave (reflected ultrasonic wave) reciprocally reflected a plurality of times (for example, 2 to 4 times) between the opposing surfaces by signal extraction in the extraction time period. To do. In FIG. 8, a time zone surrounded by a wavy line is an example of the extraction time zone.

また,前記位相検波回路23は,前記ゲート回路22による抽出信号(反射超音波の検出信号の一部)と,前記発振器3から前記分配器20を通じて得られる前記基準発振信号Soとをミキシングして検波することにより,前記対向面の間で複数回(例えば,2回乃至4回)往復反射した超音波の位相を検出し,その検出信号を出力する回路である。前記位相の検出信号は,前記制御・演算装置6”へ伝送される。この位相検波回路23により検出される位相は,前記基準発振信号Soの位相を基準とした前記ゲート回路22の抽出信号の位相(位相差)である。
例えば,前記基準発振信号Soの波形(時間tの時点における信号レベルLso),及び前記エコー信号ブロックEbkそれぞれにおけるn番目(n=1,2,3,…)のエコーの信号波形(時間tの時点における信号レベルEn)は,それぞれ次の(c1)式及び(c2)式で表すことができる。
Lso = A・sin(2πft+φo) …(c1)
En = Bn・sin(2πft+φn) …(c2)
(c1)式において,Aは前記基準発振信号Soの振幅,φoは前記基準発振信号Soの初期位相であり,A,φoはいずれも前記発振器3によって設定可能な値である。また,(c2)式において,Bnはn番目のエコーの振幅,φnはn番目のエコーの位相である。なお,初期位相φoは,前記発振器3によって設定可能
The phase detection circuit 23 mixes the extraction signal (a part of the detection signal of the reflected ultrasonic wave) from the gate circuit 22 and the reference oscillation signal So obtained from the oscillator 3 through the distributor 20. This is a circuit that detects the phase of an ultrasonic wave that is reciprocally reflected a plurality of times (for example, 2 to 4 times) between the opposing surfaces by detection and outputs the detection signal. The phase detection signal is transmitted to the control / arithmetic unit 6 ″. The phase detected by the phase detection circuit 23 is the extracted signal of the gate circuit 22 based on the phase of the reference oscillation signal So. Phase (phase difference).
For example, the waveform of the reference oscillation signal So (the signal level Lso at time t) and the signal waveform of the nth (n = 1, 2, 3,...) Echo in each echo signal block Ebk (at time t) The signal level En at the time point can be expressed by the following equations (c1) and (c2), respectively.
Lso = A · sin (2πft + φo) (c1)
En = Bn.sin (2πft + φn) (c2)
In the equation (c1), A is the amplitude of the reference oscillation signal So, φo is the initial phase of the reference oscillation signal So, and A and φo are values that can be set by the oscillator 3. In equation (c2), Bn is the amplitude of the nth echo, and φn is the phase of the nth echo. The initial phase φo can be set by the oscillator 3.

そして,前記基準発振信号Soとn番目のエコーの信号とのミキシング検波によって得られる検波信号のレベルLdは,次の(c3)式で表すことができる。
Ld = C・Bn・cos(φn−φo) …(c3)
なお,(c3)式におけるCは定数である。
ここで,前記位相検波回路23は,前記基準発振信号Soと複数のエコー信号(i番目からj番目(2≦i<j)とする)とのミキシング検波を行うため,前記位相検波回路23により得られる実際の検波信号のレベルLd'は,i番目からj番目のエコーの平均的な振幅Bn',及びi番目からj番目のエコーの平均的な位相φn'に基づく次の(c4)式で表すことができる。
Ld' = C・ Bn'・cos(φn'−φo) …(c4)
図7に示したように,ウェハ1の内部を伝播する超音波の速度(音速)は,そのウェハ1の温度と高い相関があり,また,そのウェハ1の内部を伝搬(往復反射)した超音波の位相は,その伝播時間(伝播に要した時間)に応じて定まる。そのことは,i番目からj番目のエコーの平均的な位相φn'についても同様にいえる。
The level Ld of the detection signal obtained by mixing detection of the reference oscillation signal So and the nth echo signal can be expressed by the following equation (c3).
Ld = C.Bn.cos (.phi.n-.phi.o) (c3)
Note that C in the equation (c3) is a constant.
Here, the phase detection circuit 23 performs mixing detection of the reference oscillation signal So and a plurality of echo signals (i-th to j-th (2 ≦ i <j)). The level Ld ′ of the actual detection signal obtained is expressed by the following equation (c4) based on the average amplitude Bn ′ of the i-th to j-th echoes and the average phase φn ′ of the i-th to j-th echoes. Can be expressed as
Ld ′ = C · Bn ′ · cos (φn′−φo) (c4)
As shown in FIG. 7, the velocity (sound velocity) of the ultrasonic wave propagating inside the wafer 1 has a high correlation with the temperature of the wafer 1, and the supersonic wave propagating inside the wafer 1 (reciprocal reflection). The phase of the sound wave is determined according to its propagation time (time required for propagation). The same applies to the average phase φn ′ of the i-th to j-th echoes.

ところで,(c4)式には,検出対象となるエコーの位相φn'の他に,未知の数値C・Bn'が含まれるが,前記発振器3により,前記基準発振信号Soの初期位相φoを変更して複数回の測定を行うことにより,(c4)式に基づいて,エコーの位相をφn'を検出することができる。なお,前記基準発振信号Soの振幅Aは一定とする。
そこで,前記位相検波回路23は,前記基準発振信号Soの初期位相φoを変更した複数の条件下で検波を行い,その検波により得られる複数の検波信号(信号レベルLd')から,(c4)式に基づいて前記反射超音波の検出信号の位相φn'(i番目からj番目のエコーの平均的な位相)を検出する。
このように,前記位相検波回路23は,前記ゲート回路22による抽出信号と前記基準発振信号Soとのミキシングにより,前記対向面の間で複数回(例えば,2回乃至4回)往復反射した超音波の位相φn'を検出する。
ウェハ1の内部を伝搬する超音波の位相は,その伝播時間が長いほど大きく変化するため,前記対向面の間で複数回往復反射した(即ち,伝播時間の長い)超音波の位相φn'を検出することにより,高感度での位相検出が可能となり,ひいては高感度での温度算出(温度検出)が可能となる。
By the way, the equation (c4) includes the unknown numerical value C · Bn ′ in addition to the echo phase φn ′ to be detected. The oscillator 3 changes the initial phase φo of the reference oscillation signal So. By performing the measurement a plurality of times, φn ′ can be detected as the phase of the echo based on the equation (c4). The amplitude A of the reference oscillation signal So is assumed to be constant.
Therefore, the phase detection circuit 23 performs detection under a plurality of conditions in which the initial phase φo of the reference oscillation signal So is changed, and from a plurality of detection signals (signal level Ld ′) obtained by the detection, (c4) Based on the equation, the phase φn ′ (the average phase of the i-th to j-th echoes) of the detection signal of the reflected ultrasonic wave is detected.
As described above, the phase detection circuit 23 is a super-reflector that has been reciprocally reflected a plurality of times (for example, 2 to 4 times) between the opposing surfaces by mixing the extraction signal from the gate circuit 22 and the reference oscillation signal So. The phase φn ′ of the sound wave is detected.
Since the phase of the ultrasonic wave propagating inside the wafer 1 changes greatly as the propagation time becomes longer, the phase φn ′ of the ultrasonic wave reflected and reciprocated a plurality of times (that is, having a long propagation time) between the opposing surfaces By detecting it, it becomes possible to detect the phase with high sensitivity, and in turn, temperature calculation (temperature detection) with high sensitivity becomes possible.

また,前記制御・演算装置6”は,前記温度測定装置X1,X2における前記制御・演算装置6と同様に,予めその記憶部に記憶された所定のプログラムを実行するプロセッサ(演算手段)を備え,そのプロセッサにより,前記発振器3の制御や,前記位相検波回路23を通じて得られる位相φn'の検出信号に基づくウェハ1の厚み算出処理及び温度算出処理等を実行する。
ウェハ1の厚みLが一定であれば,前記反射超音波の検出信号の位相φn'とウェハ1の温度との間に一定の相関がある。
そこで,前記制御・演算装置6”の記憶部に,厚みが既知のウェハ1の実測によって予め求められたウェハ1の厚みLと温度と位相φn'との対応関係を表す厚み・温度・位相対応情報(対応テーブル或いは対応式等)を予め記憶させておく。
また,前述したように,温度測定前における常温状態やプロセスチャンバー8内全体が所定の温度に維持されたような定常状態では,ウェハ1の温度が前記環境温度センサ7の検出温度(環境温度)と等しいとみなせる。
そこで,前記制御・演算装置6”は,前記定常状態において,前記環境温度センサ7の検出温度と,前記位相検波回路23により検出された位相φn'と,前記厚み・温度・位相対応情報とに基づいて,ウェハ1の厚みLを算出して自動設定する(図2におけるステップS4の処理に相当)。
さらに,前記制御・演算装置6”は,ウェハ1の加温後に,前記位相検波回路23により検出された位相φn'と,事前に設定したウェハ1の厚みLと,前記厚み・温度・位相対応情報とに基づいて,ウェハ1の温度Txを算出する(図2におけるステップS9の処理に相当)。
以上に示した温度測定装置X4によっても,ウェハ1等の処理対象物の温度を,接触による汚染を回避しつつ,安定かつ高精度で簡易に測定することができる。
なお,温度測定装置X4において,前記ゲート回路22,前記位相検波回路23及び前記制御・演算装置6”が,前記温度算出手段の一例である。
Further, the control / arithmetic apparatus 6 ″ includes a processor (calculation means) for executing a predetermined program stored in the storage unit in advance, like the control / arithmetic apparatus 6 in the temperature measuring devices X1 and X2. The processor executes control of the oscillator 3 and processing for calculating the thickness and temperature of the wafer 1 based on the detection signal of the phase φn ′ obtained through the phase detection circuit 23.
If the thickness L of the wafer 1 is constant, there is a certain correlation between the phase φn ′ of the reflected ultrasonic detection signal and the temperature of the wafer 1.
Therefore, the storage / control unit 6 ″ stores the thickness / temperature / phase correspondence indicating the correspondence between the thickness L, temperature, and phase φn ′ of the wafer 1 obtained in advance by actual measurement of the wafer 1 of known thickness. Information (such as correspondence table or correspondence formula) is stored in advance.
Further, as described above, in a normal state before temperature measurement or in a steady state where the entire process chamber 8 is maintained at a predetermined temperature, the temperature of the wafer 1 is detected by the environmental temperature sensor 7 (environment temperature). Can be regarded as equal.
Therefore, in the steady state, the control / arithmetic unit 6 ″ uses the detected temperature of the environmental temperature sensor 7, the phase φn ′ detected by the phase detection circuit 23, and the thickness / temperature / phase correspondence information. Based on this, the thickness L of the wafer 1 is calculated and automatically set (corresponding to step S4 in FIG. 2).
Further, the control / arithmetic unit 6 ″, after the wafer 1 is heated, has a phase φn ′ detected by the phase detection circuit 23, a preset thickness L of the wafer 1, and the thickness / temperature / phase correspondence. Based on the information, the temperature Tx of the wafer 1 is calculated (corresponding to step S9 in FIG. 2).
Also with the temperature measuring device X4 shown above, the temperature of the processing object such as the wafer 1 can be easily measured stably and with high accuracy while avoiding contamination due to contact.
In the temperature measurement device X4, the gate circuit 22, the phase detection circuit 23, and the control / calculation device 6 ″ are examples of the temperature calculation means.

本発明は,半導体ウェハ等の処理対象物の温度を測定する温度測定装置及びその方法に利用可能である。   The present invention is applicable to a temperature measuring apparatus and method for measuring the temperature of an object to be processed such as a semiconductor wafer.

本発明の第1実施形態に係る半導体ウェハ温度測定装置X1の概略構成図。1 is a schematic configuration diagram of a semiconductor wafer temperature measuring device X1 according to a first embodiment of the present invention. 半導体ウェハ温度測定装置X1による温度測定手順を表すフローチャート。The flowchart showing the temperature measurement procedure by the semiconductor wafer temperature measurement apparatus X1. 半導体ウェハ温度測定装置X1により得られる超音波周波数と反射超音波強度との関係を表す図。The figure showing the relationship between the ultrasonic frequency obtained by the semiconductor wafer temperature measuring apparatus X1, and reflected ultrasonic intensity. 本発明の第2実施形態に係る半導体ウェハ温度測定装置X2の概略構成図。The schematic block diagram of the semiconductor wafer temperature measuring apparatus X2 which concerns on 2nd Embodiment of this invention. 半導体ウェハ温度測定装置X2により得られる反射超音波の検出信号の変化を模式的に表した図。The figure which represented typically the change of the detection signal of the reflected ultrasonic wave obtained by the semiconductor wafer temperature measuring apparatus X2. 本発明の第3実施形態に係る半導体ウェハ温度測定装置X3により得られる反射超音波の検出信号の変化を表すグラフ。The graph showing the change of the detection signal of the reflected ultrasonic wave obtained by the semiconductor wafer temperature measuring apparatus X3 which concerns on 3rd Embodiment of this invention. 物質の温度とその物質内での縦波伝播速度との関係を表す図。The figure showing the relationship between the temperature of a substance, and the longitudinal wave propagation velocity in the substance. 本発明の第4実施形態に係る半導体ウェハ温度測定装置X4の概略構成図。The schematic block diagram of the semiconductor wafer temperature measuring apparatus X4 which concerns on 4th Embodiment of this invention. 半導体ウェハ温度測定装置X4により得られる反射超音波の検出信号の変化を模式的に表した図。The figure which represented typically the change of the detection signal of the reflected ultrasonic wave obtained by the semiconductor wafer temperature measuring apparatus X4.

符号の説明Explanation of symbols

X1,X2,X3,X4:半導体ウェハ温度測定装置
1 :半導体ウェハ
2 :ウェハステージ
3 :発振器
4,4’:セレクタ
5,5a,5b:増幅器
6,6’,6”:制御・演算装置
7 :環境温度センサ
8 :プロセスチャンバー
9 :超音波信号処理装置
10,10’:超音波送受部
11:送信用超音波振動子
12:受信用超音波振動子
11’:超音波振動子
13:導波路
20:分配器
21:バースト化回路
22:ゲート回路
23:位相検波回路
X1, X2, X3, X4: Semiconductor wafer temperature measuring device 1: Semiconductor wafer 2: Wafer stage 3: Oscillator 4, 4 ′: Selector 5, 5a, 5b: Amplifier 6, 6 ′, 6 ″: Control / arithmetic unit 7 : Environmental temperature sensor 8: Process chamber 9: Ultrasonic signal processing device 10, 10 ': Ultrasonic transmitter / receiver 11: Ultrasonic transducer for transmission 12: Ultrasonic transducer for reception 11': Ultrasonic transducer 13: Guide Waveguide 20: Distributor 21: Burst circuit 22: Gate circuit 23: Phase detection circuit

Claims (10)

平板状の半導体ウェハをその一の面において支持する支持台を備え,該支持台により支持された前記半導体ウェハの温度を測定する温度測定装置であって,
前記支持台側から前記半導体ウェハに対し超音波を出力する超音波出力手段と,
前記半導体ウェハに反射した反射超音波を検出する超音波検出手段と,
前記超音波検出手段の検出信号に基づいて前記半導体ウェハの温度を算出する温度算出手段と,
前記支持台における前記超音波出力手段と前記半導体ウェハとの間に形成された,超音波の伝播損失が少なくて前記半導体ウェハに接触しても前記半導体ウェハを汚染しない弾性部材からなる超音波の導波路と,
を具備し
前記超音波出力手段は,前記導波路を通じて前記半導体ウェハに対して超音波を出力し,
前記超音波検出手段は,前記半導体ウェハに反射して前記導波路を通じて戻る反射超音波を検出し,
前記温度算出手段は,前記超音波検出手段からの検出信号に基づいて予め設定しておいた前記半導体ウェハの厚みと,前記超音波検出手段からの検出信号とに基づいて,前記半導体ウェハの温度を算出することを特徴とする温度測定装置。
A temperature measuring device comprising a support table for supporting a flat semiconductor wafer on one surface thereof, and measuring the temperature of the semiconductor wafer supported by the support table,
Ultrasonic output means for outputting ultrasonic waves to the semiconductor wafer from the support base side;
Ultrasonic detection means for detecting reflected ultrasonic waves reflected on the semiconductor wafer ;
Temperature calculation means for calculating the temperature of the semiconductor wafer based on a detection signal of the ultrasonic detection means;
An ultrasonic wave formed of an elastic member formed between the ultrasonic wave output means and the semiconductor wafer in the support base and having a small ultrasonic wave propagation loss and does not contaminate the semiconductor wafer even if it comes into contact with the semiconductor wafer. A waveguide;
Equipped with,
The ultrasonic output means outputs ultrasonic waves to the semiconductor wafer through the waveguide;
The ultrasonic detection means detects reflected ultrasonic waves reflected on the semiconductor wafer and returning through the waveguide;
The temperature calculating means is configured to set a temperature of the semiconductor wafer based on a thickness of the semiconductor wafer set in advance based on a detection signal from the ultrasonic detection means and a detection signal from the ultrasonic detection means. The temperature measuring device characterized by calculating .
前記温度算出手段が,
前記超音波検出手段の検出信号に基づいて前記半導体ウェハ内での超音波の共振周波数の特定又は前記半導体ウェハ内で伝播した超音波の伝播時間もしくは位相の検出を行い,その結果に応じて前記半導体ウェハの温度を算出してなる請求項1に記載の温度測定装置。
The temperature calculating means is
The subjected to ultrasonic particular or the semiconductor of the ultrasonic wave propagated in the wafer propagation time or detection of the phase of the resonance frequency in said semiconductor wafer on the basis of a detection signal of the ultrasonic detection means, in response to said result The temperature measuring apparatus according to claim 1, wherein the temperature of the semiconductor wafer is calculated.
前記超音波出力手段により出力される超音波の周波数掃引を行う周波数掃引手段を具備し,
前記温度算出手段が,
前記周波数掃引手段による超音波の掃引周波数と超音波の周波数掃引に応じて変化する前記超音波検出手段の検出信号の強度とに基づいて前記半導体ウェハ内での超音波の共振周波数を特定し,その共振周波数に基づいて前記半導体ウェハの温度を算出してなる請求項2に記載の温度測定装置。
Frequency sweeping means for performing frequency sweeping of the ultrasonic wave output by the ultrasonic wave output means,
The temperature calculating means is
Identifying the resonance frequency of the ultrasonic wave in the semiconductor wafer based on the sweep frequency of the ultrasonic wave by the frequency sweeping unit and the intensity of the detection signal of the ultrasonic wave detection unit that changes according to the frequency sweep of the ultrasonic wave, The temperature measuring device according to claim 2, wherein the temperature of the semiconductor wafer is calculated based on the resonance frequency.
前記超音波出力手段がパルス状の超音波を出力し,
前記温度算出手段が,
前記超音波検出手段の検出信号に基づいて,前記半導体ウェハにおける前記支持台により支持される面及びその反対側の面で反射した超音波それぞれの前記超音波検出手段への到達時点の差を検出し,その検出結果に基づいて前記半導体ウェハの温度を算出してなる請求項2に記載の温度測定装置。
The ultrasonic output means outputs pulsed ultrasonic waves,
The temperature calculating means is
Based on the detection signal of the ultrasonic detection means, a difference in arrival time of the ultrasonic waves reflected by the surface of the semiconductor wafer supported by the support base and the opposite surface thereof to the ultrasonic detection means is detected. The temperature measuring device according to claim 2, wherein the temperature of the semiconductor wafer is calculated based on the detection result.
前記超音波出力手段がパルス状の超音波を出力し,
前記温度算出手段が,
前記超音波検出手段の検出信号の変化に基づいて,前記半導体ウェハ内での超音波の共振周波数を特定し,その共振周波数に基づいて前記半導体ウェハの温度を算出してなる請求項2に記載の温度測定装置。
The ultrasonic output means outputs pulsed ultrasonic waves,
The temperature calculating means is
The ultrasonic wave resonance frequency in the semiconductor wafer is specified based on a change in a detection signal of the ultrasonic wave detection means, and the temperature of the semiconductor wafer is calculated based on the resonance frequency. Temperature measuring device.
前記超音波出力手段が複数の一定周波数のバースト波状の超音波を既定周期で出力し,
前記温度算出手段が,前記超音波検出手段の検出信号から前記半導体ウェハにおける前記支持台により支持される面及びその反対側の面である対向面の間で往復反射した前記反射超音波の位相を検出し,その位相に基づいて前記半導体ウェハの温度を算出してなる請求項2に記載の温度測定装置。
The ultrasonic output means outputs a plurality of burst wave ultrasonic waves having a constant frequency at a predetermined period,
The temperature calculation means calculates the phase of the reflected ultrasonic wave reflected back and forth between the surface of the semiconductor wafer supported by the support base and the opposite surface which is the opposite surface from the detection signal of the ultrasonic detection means. The temperature measuring apparatus according to claim 2, wherein the temperature is detected and the temperature of the semiconductor wafer is calculated based on the phase.
前記温度算出手段が,前記超音波検出手段の検出信号と前記超音波出力手段により生成され前記超音波の周波数で発振する基準発振信号とのミキシングにより前記対向面の間で往復反射した超音波の位相を検出してなる請求項6に記載の温度測定装置。   The temperature calculation unit is configured to mix the detection signal of the ultrasonic detection unit and the reference oscillation signal generated by the ultrasonic output unit and oscillated at the frequency of the ultrasonic wave. The temperature measuring device according to claim 6, wherein the temperature is detected. 前記温度算出手段が,前記超音波検出手段の検出信号から前記超音波出力手段によるバースト波状の超音波の出力周期に同期した既定の時間帯の信号を抽出し,その抽出信号と前記基準発振信号とのミキシングにより前記対向面の間で複数回往復反射した超音波の位相を検出してなる請求項7に記載の温度測定装置。   The temperature calculating means extracts a signal in a predetermined time period synchronized with the burst wave-like ultrasonic wave output period by the ultrasonic wave output means from the detection signal of the ultrasonic wave detecting means, and the extracted signal and the reference oscillation signal The temperature measuring device according to claim 7, wherein the phase of the ultrasonic wave reflected and reciprocated a plurality of times between the opposing surfaces is detected by mixing with the counter. 前記超音波出力手段が,前記支持台における複数の測定位置ごとに設けられた複数の超音波振動子と該超音波振動子に交流信号を供給する1つの交流信号供給部と有し,
前記超音波検出手段が,前記複数の測定位置ごとに設けられた複数の超音波振動子と該超音波振動子が出力する前記反射超音波の検出信号が入力される1つの信号入力部とを有し,
当該温度測定装置が,前記超音波出力手段における前記複数の超音波振動子と前記交流信号供給部との間の信号経路,及び前記超音波検出手段における前記複数の超音波振動子と前記信号入力部との間の信号経路を順次切り替える信号経路切替手段を具備し,
前記温度算出手段が,前記信号経路切替手段により信号経路が切り替えられるごとに前記信号入力部を通じて得られる前記反射超音波の検出信号に基づいて,前記半導体ウェハにおける前記複数の測定位置それぞれに対応する位置の温度を算出してなる請求項1〜8のいずれかに記載の温度測定装置。
The ultrasonic output means includes a plurality of ultrasonic transducers provided for each of a plurality of measurement positions on the support base, and one AC signal supply unit that supplies an AC signal to the ultrasonic transducers,
The ultrasonic detection means includes a plurality of ultrasonic transducers provided for each of the plurality of measurement positions, and one signal input unit to which the detection signals of the reflected ultrasonic waves output from the ultrasonic transducers are input. Have
The temperature measuring device includes a signal path between the plurality of ultrasonic transducers and the AC signal supply unit in the ultrasonic output unit, and the plurality of ultrasonic transducers and the signal input in the ultrasonic detection unit. Signal path switching means for sequentially switching the signal path to the unit,
The temperature calculation unit corresponds to each of the plurality of measurement positions on the semiconductor wafer based on the detection signal of the reflected ultrasonic wave obtained through the signal input unit every time the signal path is switched by the signal path switching unit. The temperature measuring device according to claim 1, wherein the temperature of the position is calculated.
平板状の半導体ウェハがその一の面において支持台により支持された状態で,前記半導体ウェハの温度を測定する温度測定方法であって,
超音波出力手段により前記支持台側から前記半導体ウェハに対して超音波を出力する超音波出力工程と,
超音波検出手段により前記半導体ウェハに反射した反射超音波を検出する超音波検出工程と,
演算手段により前記超音波検出工程での検出信号に基づいて前記半導体ウェハの温度を算出する温度算出工程と,
を有し
前記超音波出力工程において,前記超音波出力手段は,前記支持台における前記超音波出力手段と前記半導体ウェハとの間に形成された,超音波の伝播損失が少なくて前記半導体ウェハに接触しても前記半導体ウェハを汚染しない弾性部材からなる超音波の導波路を通じて前記半導体ウェハに対して超音波を出力し,
前記超音波検出工程において,前記超音波検出手段は,前記半導体ウェハに反射して前記導波路を通じて戻る反射超音波を検出し,
前記温度算出工程において,前記演算手段は,前記超音波検出手段からの検出信号に基づいて予め設定しておいた前記半導体ウェハの厚みと,前記超音波検出手段からの検出信号とに基づいて,前記半導体ウェハの温度を算出することを特徴とする温度測定方法。
A temperature measuring method for measuring the temperature of a semiconductor wafer in a state where a flat semiconductor wafer is supported by a support on one surface thereof,
An ultrasonic output step of outputting ultrasonic waves to the semiconductor wafer from the support table side by an ultrasonic output means;
An ultrasonic detection step of detecting reflected ultrasonic waves reflected on the semiconductor wafer by an ultrasonic detection means;
A temperature calculating step of calculating a temperature of the semiconductor wafer based on a detection signal in the ultrasonic detection step by an arithmetic means;
Have,
In the ultrasonic output step, the ultrasonic output means is formed between the ultrasonic output means and the semiconductor wafer on the support base and is in contact with the semiconductor wafer with a small ultrasonic propagation loss. And outputting ultrasonic waves to the semiconductor wafer through an ultrasonic waveguide made of an elastic member that does not contaminate the semiconductor wafer,
In the ultrasonic detection step, the ultrasonic detection means detects reflected ultrasonic waves that are reflected by the semiconductor wafer and returned through the waveguide,
In the temperature calculation step, the calculation means is based on the thickness of the semiconductor wafer set in advance based on the detection signal from the ultrasonic detection means and the detection signal from the ultrasonic detection means, A temperature measuring method comprising calculating a temperature of the semiconductor wafer .
JP2008087346A 2007-05-09 2008-03-28 Temperature measuring device and temperature measuring method Expired - Fee Related JP5133108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087346A JP5133108B2 (en) 2007-05-09 2008-03-28 Temperature measuring device and temperature measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007124973 2007-05-09
JP2007124973 2007-05-09
JP2008087346A JP5133108B2 (en) 2007-05-09 2008-03-28 Temperature measuring device and temperature measuring method

Publications (2)

Publication Number Publication Date
JP2008304453A JP2008304453A (en) 2008-12-18
JP5133108B2 true JP5133108B2 (en) 2013-01-30

Family

ID=40233288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087346A Expired - Fee Related JP5133108B2 (en) 2007-05-09 2008-03-28 Temperature measuring device and temperature measuring method

Country Status (1)

Country Link
JP (1) JP5133108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101921077B1 (en) * 2016-10-28 2018-11-22 주식회사 포스코 Apparatus and method for measuring temperature
KR101954567B1 (en) 2018-01-08 2019-03-05 충남대학교산학협력단 The surface temperature measurement apparatus using ultrasonic waveguide
US20200049496A1 (en) * 2018-08-13 2020-02-13 Samsung Display Co., Ltd. Apparatus for measuring sample thickness and method for measuring sample thickness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813528B (en) * 2010-04-30 2012-01-04 重庆理工大学 Method for precisely measuring temperature by using ultrasonic technology and measuring instrument
CN111076841B (en) * 2019-12-30 2021-04-06 中国船舶重工集团公司第七一一研究所 Method and system for improving frequency sweeping efficiency of resonant acoustic surface wave temperature measurement system
WO2023181056A1 (en) * 2022-03-24 2023-09-28 Indian Institute Of Technology Madras An apparatus for determining surface temperature of an object and a method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206410A (en) * 1986-03-06 1987-09-10 Mimasu Handotai Kogyo Kk Method and apparatus of measuring wafer thickness
JPH06123430A (en) * 1992-10-08 1994-05-06 Matsushita Electric Ind Co Ltd Micro wave range and temperature sensor
JP3469405B2 (en) * 1996-09-20 2003-11-25 株式会社東芝 Temperature measurement device
JPH11190670A (en) * 1997-12-26 1999-07-13 Toshiba Corp Surface temperature measuring device and surface temperature measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101921077B1 (en) * 2016-10-28 2018-11-22 주식회사 포스코 Apparatus and method for measuring temperature
KR101954567B1 (en) 2018-01-08 2019-03-05 충남대학교산학협력단 The surface temperature measurement apparatus using ultrasonic waveguide
US20200049496A1 (en) * 2018-08-13 2020-02-13 Samsung Display Co., Ltd. Apparatus for measuring sample thickness and method for measuring sample thickness
US11788835B2 (en) * 2018-08-13 2023-10-17 Samsung Display Co., Ltd. Apparatus for measuring sample thickness and method for measuring sample thickness

Also Published As

Publication number Publication date
JP2008304453A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US5469742A (en) Acoustic temperature and film thickness monitor and method
JP5133108B2 (en) Temperature measuring device and temperature measuring method
US10794870B2 (en) Waveguide technique for the simultaneous measurement of temperature dependent properties of materials
Yaralioglu Ultrasonic heating and temperature measurement in microfluidic channels
WO2008064113A2 (en) Thermally compensated dueal-probe fluorescence decay rate temperature sensor and method of use
CN106768464A (en) A kind of laser-ultrasound detection method and system in uniform material component inside temperature field
KR100832839B1 (en) Thickness measurement instrumentation and method using ultrasonic longitudinal wave and shear wave
US10852277B2 (en) Active waveguide excitation and compensation
JP5061055B2 (en) Temperature measuring device and temperature measuring method
CN111157617A (en) System and method for measuring temperature-dependent Young modulus of solid material
Ihara et al. New ultrasonic thermometry and its applications to temperature profiling of heated materials
TW201250226A (en) Interferometric biometric sensing apparatus including adjustable coupling and associated methods
US9846088B2 (en) Differential acoustic time of flight measurement of temperature of semiconductor substrates
JP2009031180A (en) Method and device for measuring internal temperature
US20050089077A1 (en) Method of and apparatus for measuring and controlling substrate holder temperature using ultrasonic tomography
US10794867B2 (en) System and method of diagnosing tube sensor integrity by analysis of excited stress waves
JP7513449B2 (en) Ultrasonic element evaluation test device and method
CN115389046B (en) Temperature measurement method and device
Degertekin et al. In-situ temperature monitoring in RTP by acoustical techniques
Ihara et al. Ultrasonic thermometry for temperature profiling of heated materials
CN115420687B (en) System and method for measuring temperature-dependent shear modulus of solid material based on surface wave TOF (time of flight) delay
JP2021067645A (en) Measuring device, measuring method, and program
JP2007121199A (en) Density measuring instrument and density measuring method
Ihara et al. A non-contact temperature sensing with ultrasound and the potential for monitoring heated materials
JP2016044984A (en) Weld monitoring device and method by ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees