JP5438877B2 - Heat insulation structure - Google Patents

Heat insulation structure Download PDF

Info

Publication number
JP5438877B2
JP5438877B2 JP2009250487A JP2009250487A JP5438877B2 JP 5438877 B2 JP5438877 B2 JP 5438877B2 JP 2009250487 A JP2009250487 A JP 2009250487A JP 2009250487 A JP2009250487 A JP 2009250487A JP 5438877 B2 JP5438877 B2 JP 5438877B2
Authority
JP
Japan
Prior art keywords
hollow fine
heat
fine particles
heating
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009250487A
Other languages
Japanese (ja)
Other versions
JP2010133233A (en
Inventor
雅朗 野口
秀樹 和知
秀明 戸田
保幸 玉木
順一 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2009250487A priority Critical patent/JP5438877B2/en
Publication of JP2010133233A publication Critical patent/JP2010133233A/en
Application granted granted Critical
Publication of JP5438877B2 publication Critical patent/JP5438877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、融雪や解凍ないし凍結防止などの設備に用いられる加熱保温構造体に関する。より詳しくは、本発明は、融雪や解凍ないし凍結防止などの設備において熱効率に優れた加熱構造体に関する。 The present invention relates to a heat insulation structure used for facilities such as snow melting, thawing or freezing prevention. More specifically, the present invention relates to a heating structure that is excellent in thermal efficiency in equipment for melting snow, thawing or freezing prevention.

豪雪地帯では、積雪によって建物や道路などの生活環境に生じる障害を除去するために除雪作業や融雪作業などが不可欠である。この除雪作業などには多大な労力がかかり、コストの負担も大きい。しかも人手不足などの理由によって十分な除雪作業が行われないことがある。また、気温が上昇し、道路上の雪が融解した後に気温が低下して道路が凍結すると、交通障害や歩行者の転倒などの危険が生じる。特に傾斜のある道路は積雪や凍結による事故が生じやすい。 In heavy snowfall areas, snow removal work and snow melting work are indispensable in order to remove obstacles that occur in the living environment such as buildings and roads due to snow accumulation. This snow removal work takes a lot of labor and costs a lot. Moreover, sufficient snow removal work may not be performed due to a shortage of manpower. Also, when the temperature rises and the road freezes after the snow on the road has melted, the road freezes, causing dangers such as traffic problems and pedestrian falls. In particular, roads with slopes are prone to accidents due to snow and freezing.

従来、定常的に融雪する方法として、積雪部分の地下に熱源を設置し、加熱して融雪する方法が行われている。例えば、道路ではアスファルト舗装面の下側に加熱装置を埋設したロードヒーティングが知られており、また建物の屋根に熱源を設置して融雪することが行われている。加熱源の種類としては、パイプを通して地下水や水道水などの液体を通す方法や、電気やガスを利用して液体を加熱し、循環させて融雪させる方法、あるいは電熱線を通して加熱する方法などが知られている。さらに、熱効率を良くするために、発熱体下部へ断熱材を敷く方法が試みられている(特許文献1、2、3) Conventionally, as a method for melting snow constantly, a method of melting a snow by installing a heat source in the basement of a snow-covered portion is performed. For example, on roads, road heating is known in which a heating device is embedded under the asphalt pavement surface, and snow is melted by installing a heat source on the roof of a building. Known types of heating sources include methods of passing liquids such as groundwater and tap water through pipes, methods of heating liquids using electricity and gas, circulating them to melt snow, and methods of heating through heating wires. It has been. Furthermore, in order to improve thermal efficiency, a method of laying a heat insulating material under the heating element has been tried (Patent Documents 1, 2, and 3).

しかし、融雪のために地下水を汲み上げて散水する方法では、地下水の過剰な汲み上げによって地盤沈下の問題が生じる。また、電気やガスなどの加熱手段を使用する方法はランニングコストが高くなり、負担が大きいと云う問題がある。 However, in the method of pumping up ground water for snow melting, ground subsidence occurs due to excessive pumping of ground water. In addition, the method using heating means such as electricity and gas has a problem that the running cost is high and the burden is large.

また、熱源を設置して融雪を行う場合、熱源の下側に断熱材を設置して熱効率を高めることが試みられており、一般的には砕石、砂利やコンクリートブロックを敷く方法や、発泡スチロール等の有機系発泡樹脂が用いられている。しかし、砕石、砂利、コンクリートブロックなどの無機材料は断熱性や保温性に限界があり、しかも多量に用いると重量増になり構造体の軽量化を図る場合には好ましくない。また、有機系の断熱材は耐熱性や耐久性が不十分であり、強度不足による撓みが生じる問題があった。さらに、これらは固体であるため、地面や発熱体への密着性が不十分であり、十分な効果が得られない。 In addition, when melting snow by installing a heat source, it has been attempted to increase the thermal efficiency by installing a heat insulating material on the lower side of the heat source. Generally, crushed stone, gravel, concrete block method, polystyrene foam, etc. Organic foamed resin is used. However, inorganic materials such as crushed stone, gravel, and concrete blocks have limitations in heat insulation and heat retention, and when they are used in large quantities, they are undesirably increased in weight and reducing the weight of the structure. Further, the organic heat insulating material has insufficient heat resistance and durability, and there is a problem that bending due to insufficient strength occurs. Furthermore, since these are solids, their adhesion to the ground or the heating element is insufficient, and sufficient effects cannot be obtained.

特開平11−269809号公報JP 11-269809 A 特開平9−177018号公報JP-A-9-177018 特開平9−132706号公報JP-A-9-132706

本発明は、融雪や解凍ないし凍結防止などの設備に用いられる加熱構造について、従来の上記問題を解決したものであり、軽量でありながら十分な強度を有し、しかも断熱保温性と共に蓄熱性に優れた中空微粒子を断熱保温材として利用することによって、熱効率を高めた加熱保温構造体を提供する。本発明の加熱保温構造体は、融雪や解凍ないし凍結防止などの設備に用いる加熱手段として最適である。 The present invention solves the above-mentioned conventional problems for heating structures used for snow melting, thawing or anti-freezing facilities, and has sufficient strength while being lightweight, and also has heat insulation and heat storage properties. By using excellent hollow fine particles as a heat insulating and heat insulating material, a heat and heat insulating structure with improved thermal efficiency is provided. The heat-retaining structure of the present invention is optimal as a heating means for use in facilities such as snow melting, thawing or freezing prevention.

本発明は、以下に示す構成によって上記問題を解決した加熱保温構造体に関する。
〔1〕容重0.10〜0.35g/cm 3 の中空微粒子が加熱源の下側に敷き詰められており、加熱源がこの中空微粒子層に接触して設けられており、加熱源の上側には構造材が設けられており、上記加熱源が上記中空微粒子と上記構造材によって積層された構造を形成していることを特徴とする融雪や解凍ないし凍結防止の設備に用いられる加熱保温構造体。
〔2〕加熱源がその上部を露出し、かつその下部が露出しないように中空粒子層に埋設されている構造を有する上記[1]に記載する加熱保温構造体。
〔3〕中空微粒子の下側に透水性の布材が敷設されており、加熱源の上部が中空微粒子層から露出し、かつ加熱源の下部が上記布材に接触しないように、加熱源が中空微粒子層に埋設されている上記[1]または上記[2]に記載する加熱保温構造体。
〔4〕粒子数で50%以上の粒子の内部空間が隔壁によって区切られた複数の独立気泡を有するシリカ質の中空微粒子が用いられる上記[1]〜上記[3]の何れかに記載する加熱保温構造体。
〔5〕粒径0.5mm以下の粒子を10質量%以上含有し、かつ90%通過粒径が5mm以下である中空微粒子が用いられる上記[1]〜上記[4]の何れかに記載する加熱保温構造体。
〔6〕棒状、コイル状、または板状の加熱源に対して、中空微粒子層の厚さが上記加熱源の厚さの1/3〜2/3である上記[1]〜上記[5]の何れかに記載する加熱保温構造体。
The present invention relates to a heat and heat insulation structure that solves the above problems with the following configuration.
[1] Hollow fine particles having a weight of 0.10 to 0.35 g / cm 3 are spread on the lower side of the heating source, and the heating source is provided in contact with the hollow fine particle layer. Is provided with a structural material, and the heating source forms a structure laminated with the hollow fine particles and the structural material. .
[2] The heating and heat retaining structure according to the above [1], wherein the heating source has a structure embedded in the hollow particle layer so that the upper part is exposed and the lower part is not exposed.
[3] A water-permeable cloth material is laid on the lower side of the hollow fine particles, the upper part of the heat source is exposed from the hollow fine particle layer, and the lower part of the heat source is not in contact with the cloth material. The heat-retaining structure described in [1] or [2] above, embedded in a hollow fine particle layer.
[4] The heating described in any one of [1] to [3] above, wherein siliceous hollow fine particles having a plurality of closed cells in which an internal space of particles of 50% or more is divided by partition walls are used. Thermal insulation structure.
[5] It is described in any one of [1] to [4] above, wherein hollow fine particles containing 10% by mass or more of particles having a particle size of 0.5 mm or less and having a 90% passing particle size of 5 mm or less are used. Heat insulation structure.
[6] The above [1] to [5], wherein the thickness of the hollow fine particle layer is 1/3 to 2/3 of the thickness of the heating source with respect to the rod-shaped, coil-shaped, or plate-shaped heating source. The heat insulation structure described in any of the above.

本発明の加熱保温構造体は、加熱源の下側に中空微粒子が敷き詰められて、該加熱源がこの中空微粒子層に接触して設けられており、加熱源が上記中空微粒子と上記構造材によって積層された構造を形成している。この中空微粒子は優れた断熱性を有し、従って、中空微粒子の下方には熱が殆ど逃げず、加熱源の熱が上方に効率よく伝達されるので、融雪効果や凍結防止効果、あるいは解凍効果に優れる。 In the heat insulation structure of the present invention, hollow fine particles are spread under the heat source, the heat source is provided in contact with the hollow fine particle layer, and the heat source is composed of the hollow fine particles and the structural material. A stacked structure is formed. These hollow fine particles have excellent heat insulating properties. Therefore, almost no heat escapes below the hollow fine particles, and the heat from the heating source is efficiently transferred upward, so that the snow melting effect, antifreezing effect, or thawing effect is achieved. Excellent.

また、この中空微粒子は、好ましくは、内部空間に隔壁を有するシリカ質中空微粒子が用いられるので、隔壁のない単一空間からなる中空粒子に比較して粒子の強度が大きい。このため、外部からの負荷に対して破壊され難く、長期間安定に中空状態が維持することができる。 Further, since the hollow fine particles are preferably siliceous hollow fine particles having partition walls in the internal space, the strength of the particles is higher than that of hollow particles composed of a single space having no partition walls. For this reason, it is hard to be destroyed by the load from the outside, and a hollow state can be maintained stably for a long time.

さらに、シリカ質中空微粒子の内部空間は独立気泡によって形成された閉じられた空間であるので、加熱によって熱が蓄積されると、加熱終了後も蓄積された熱が長時間保持されるので保温性に優れる。従って、断絶的に加熱を行っても、この保温性によって比較的定常的に融雪効果や凍結防止効果を得ることができる。 Furthermore, since the internal space of the siliceous hollow fine particles is a closed space formed by closed cells, if the heat is accumulated by heating, the accumulated heat is retained for a long time after the heating is completed, so that the heat retaining property is maintained. Excellent. Therefore, even if heating is performed intermittently, the effect of melting snow and the effect of preventing freezing can be obtained relatively stably by this heat retention.

また、上記中空粒子は、隔壁によって区切られた独立気泡からなる複数の内部空間を有するので、粒材に局部的な亀裂や破損が生じても、残りの内部空間によって中空状態が維持されるので、断熱性および保温性に優れている。従って、熱効率の高い融雪設備や凍結防止設備を形成することができる。 Further, since the hollow particles have a plurality of internal spaces composed of closed cells separated by partition walls, even if local cracks or breakage occurs in the granular material, the hollow state is maintained by the remaining internal spaces. Excellent heat insulation and heat retention. Therefore, it is possible to form a snow melting facility and a freeze prevention facility with high thermal efficiency.

本発明に係る構造体の模式的な断面構造を示す断面図。Sectional drawing which shows the typical cross-section of the structure which concerns on this invention. 中空微粒子を用いない構造体を示す模式的な断面図。The typical sectional view showing the structure which does not use hollow particulates.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の加熱保温構造体は、容重0.10〜0.35g/cm 3 の中空微粒子が加熱源の下側に敷き詰められており、加熱源がこの中空微粒子層に接触して設けられており、加熱源の上側には構造材が設けられており、上記加熱源が上記中空微粒子と上記構造材によって積層された構造を形成していることを特徴とする融雪や解凍ないし凍結防止の設備に用いられる加熱保温構造体である。

Hereinafter, the present invention will be specifically described based on embodiments.
In the heat-retaining structure of the present invention, hollow fine particles having a capacity of 0.10 to 0.35 g / cm 3 are spread below the heating source, and the heating source is provided in contact with the hollow fine particle layer. A structure material is provided above the heat source, and the heat source forms a structure in which the hollow fine particles and the structure material are laminated. It is the heat insulation structure used.

本発明に係る加熱保温構造体の一例を図1に示す。図示する構造体は、地面4の上側に透水性布材6が設置されており、該透水性布材6の上面に中空微粒子5が敷き詰められており、この中空微粒子5の層に加熱源2が埋設されており、該加熱源2の上部は中空微粒子層から露出しており、その上側に構造材1が積層されている。 An example of the heat insulation structure according to the present invention is shown in FIG. In the illustrated structure, a water permeable cloth material 6 is installed on the upper side of the ground 4, and hollow fine particles 5 are spread on the upper surface of the water permeable cloth material 6. The upper part of the heating source 2 is exposed from the hollow fine particle layer, and the structural material 1 is laminated on the upper side.

なお、図2は中空微粒子を用いない構造例(比較例)であり、地面4の上側に一般的な断熱樹脂製の保温材ないし断熱材が設置されており、その上面に加熱源2が設置されており、該加熱源2の上側には構造材1が設けられている。 FIG. 2 shows a structural example (comparative example) in which no hollow fine particles are used. A heat insulating material or a heat insulating material made of a general heat insulating resin is installed on the upper side of the ground 4, and a heating source 2 is installed on the upper surface thereof. The structural material 1 is provided above the heating source 2.

本発明の加熱保温構造体は、加熱源2としては、電熱コイル等の発熱体を用いたヒータ、熱水や温水が流れる管を用いたものなど各種の熱源を利用することができ、また棒状、コイル状、または板状など各種形状のものを用いることができる。また、中空微粒子5としては、内部が中空な微粒子であって、耐熱性を有するようにシリカ質などの鉱物質微粒子が好ましい。構造材1は設置場所によって異なり、例えば、ロードヒーティングの融雪設備として用いる場合には、歩道や道路の路面部分であり、屋根の融雪設備として用いる場合には屋根材などである。 In the heat insulation structure of the present invention, as the heating source 2, various heat sources such as a heater using a heating element such as an electric heating coil, a hot water or a tube through which hot water flows can be used, Various shapes such as a coil shape or a plate shape can be used. The hollow fine particles 5 are preferably fine particles having a hollow interior and mineral fine particles such as siliceous so as to have heat resistance. The structural material 1 varies depending on the installation location. For example, when used as a snow melting facility for road heating, it is a road surface portion of a sidewalk or a road, and as a snow melting facility for a roof, it is a roof material or the like.

本発明の加熱保温構造体は、具体的には、例えば、歩道や道路の融雪・凍結防止設備に適用する場合(ロードヒーティングなど)には、地面に中空微粒子を敷き詰め、その上に加熱源のヒーターを設置し、その上にアスファルトやコンクリートを敷いて構造材になる舗装面を形成する。また、屋根の融雪設備に用いる場合には、例えば、屋根面の下側に中空微粒子を敷き詰めて、その上にヒーターパネルを設置し、その上に屋根材を施工する。 Specifically, the heat insulation structure of the present invention, for example, when applied to snow melting / freezing prevention equipment for sidewalks and roads (road heating, etc.), lays hollow fine particles on the ground, and a heating source thereon. The paving surface that becomes the structural material is formed by laying asphalt and concrete on it. Moreover, when using it for the snow melting installation of a roof, for example, a hollow microparticle is spread | laid under the roof surface, a heater panel is installed on it, and a roofing material is constructed on it.

本発明の加熱保温構造体は、加熱源の下側に中空微粒子が敷き詰められて中空微粒の層が形成されており、該中空微粒子層に接触させて加熱源が設置されているので、中空微粒子と加熱源との密着性が良くなり、無駄な放熱がなくなる。さらに、中空微粒子を加熱源の下側に敷設することによって熱の下方向(地面方向)への拡散が抑制される。また、その結果、熱が上部方向(積雪側)に向かうことになり、下側に向う余分な熱が解消されるので、熱効率が向上する。同様に、屋根の融雪設備として用いた場合にも、下方への熱拡散が防止され、屋根側に熱が拡散するので融雪効果および凍結防止効果が向上する。このように、本発明の加熱保温構造体において、中空微粒子は主に熱伝導に対する強力な断熱作用および保温材としての役割を果たす。 In the heat insulation structure of the present invention, hollow fine particles are laid down on the lower side of the heat source to form a hollow fine particle layer, and the heat source is placed in contact with the hollow fine particle layer. Adhesion between the heat source and the heat source is improved, and unnecessary heat dissipation is eliminated. Furthermore, by laying the hollow fine particles below the heat source, the downward diffusion of heat (the direction of the ground) is suppressed. As a result, heat is directed upward (snow accumulation side), and excess heat directed downward is eliminated, so that thermal efficiency is improved. Similarly, when used as a snow melting facility for a roof, heat diffusion downward is prevented, and heat diffuses to the roof side, so that the snow melting effect and the freeze prevention effect are improved. As described above, in the heat and heat insulating structure of the present invention, the hollow fine particles mainly play a role of a strong heat insulating action for heat conduction and a heat insulating material.

本は発明の好ましい構造体の例としては、図1に示すように、中空微粒子の下側、即ち、中空微粒子と地面の間に透水性の布材が敷設されており、該布材の上面に中空微粒子が敷き詰められており、加熱源がその上部を露出し、かつその下部が上記布材に接触しないように上記中空粒子層に埋設された構造を有するものである。 As an example of a preferable structure of the present invention, as shown in FIG. 1, a water-permeable cloth material is laid under the hollow fine particles, that is, between the hollow fine particles and the ground, and the upper surface of the cloth material. The hollow particles are embedded in the hollow particle layer so that the upper part of the heating source is exposed and the lower part is not in contact with the cloth material.

例えば、中空微粒子の下側が砂利等で敷き詰められている場合には、中空微粒子が砂利の隙間へ漏れて分散するため保温効果が低下する。この対策として、図1に示す構造体のように、地面の上側に透水性の布材を敷き、その上面に中空微粒子を敷き詰め、この中空微粒子層に加熱源を埋設する構造にすれば、中空微粒子が砂利の隙間などに漏れることがなく、高い保温効果を維持することができる。 For example, when the lower side of the hollow fine particles is spread with gravel or the like, the heat retention effect is reduced because the hollow fine particles leak into the gaps of the gravel and are dispersed. As a countermeasure, if a structure in which a water-permeable cloth material is laid on the upper surface of the ground, hollow fine particles are spread on the upper surface, and a heating source is embedded in the hollow fine particle layer, as shown in FIG. Fine particles do not leak into gravel gaps and the like, and a high heat retention effect can be maintained.

上記布材としては、不織布などの透水性を有する天然繊維、紙、合成樹脂などの布材を用いると良い。透水性がない布材を用いると、水が浸透したときに、中空微粒子の間隙や内部に水が溜まって断熱性が低下し、加熱源から発生した熱が地面へ逃げるため、熱効率が低下する。なお、この布材に中空微粒子を接着剤等を用いて接着させておくと、布材に中空微粒子を敷設する施工時の作業性が良い。 As the cloth material, it is preferable to use a water-permeable natural fiber such as a nonwoven fabric, paper, or a synthetic resin. Using a non-permeable fabric material, when water permeates, water accumulates in the gaps and inside of the hollow fine particles and heat insulation decreases, and heat generated from the heat source escapes to the ground, resulting in a decrease in thermal efficiency. . If the hollow fine particles are bonded to the cloth material using an adhesive or the like, the workability during construction for laying the hollow fine particles on the cloth material is good.

加熱源の下側に敷き詰められる中空微粒子の設置厚さは制限されない。加熱源の上部が中空微粒子層から露出するように、好ましくは、中空微粒子層の厚さは加熱源の厚さの1/3〜2/3が適当であり、より好ましくは、加熱源の下部約半分が中空微粒子に埋設される厚さが適当である。 The installation thickness of the hollow microparticles spread under the heating source is not limited. The thickness of the hollow fine particle layer is preferably 1/3 to 2/3 of the thickness of the heat source so that the upper part of the heat source is exposed from the hollow fine particle layer, more preferably the lower part of the heat source. A thickness in which about half is embedded in the hollow fine particles is appropriate.

具体的には、例えば、図1の構造体において、棒状ないしコイル状の加熱源について、加熱源の厚さが5mm程度のとき、中空微粒子層の厚さは2.5mm以上、好ましくは5mm以上であって加熱源の下側に数mm厚さの中空微粒子が介在する厚さが適当である。 Specifically, for example, in the structure shown in FIG. 1, when the thickness of the heating source is about 5 mm, the thickness of the hollow fine particle layer is 2.5 mm or more, preferably 5 mm or more. In addition, a thickness in which hollow microparticles having a thickness of several millimeters are interposed under the heating source is appropriate.

中空微粒子層の下側に透水性の布材を設置する場合には、加熱源はその上部が露出し、かつその下部が布材に接触しないように中空粒子に埋設される状態が好ましい。加熱源の上部が露出することによって熱放射が良好になり、また加熱源の下部が布材に接触しないので、布材を通じて地面に熱が逃げるのを避けることができる。加熱源が布材に接触すると、該布材を通じて地面への放熱が起こり、また加熱源の上部が覆われると、上側への熱放射が制限されるため、融雪効果が低下する。 When a water-permeable cloth material is installed below the hollow fine particle layer, it is preferable that the heat source is embedded in the hollow particles so that the upper part is exposed and the lower part is not in contact with the cloth material. By exposing the upper part of the heating source, heat radiation is improved, and since the lower part of the heating source does not contact the cloth material, heat can be prevented from escaping to the ground through the cloth material. When the heating source comes into contact with the cloth material, heat is released to the ground through the cloth material, and when the upper part of the heating source is covered, the heat radiation to the upper side is restricted, so that the snow melting effect is reduced.

上記中空微粒子は乾燥粉体の状態で使用することができる。また、中空微粒子を樹脂や塗料と混合して敷き詰めても良い。樹脂や塗料は、本発明の効果を阻害しないものであれば限定されない。例えば、塗料に使用される公知の溶剤や樹脂、増粘剤、糊剤、分散剤、着色顔料などと併用してもよい。また、ガラス繊維等の断熱材と併用しても効果が高い。 The hollow fine particles can be used in a dry powder state. Further, the hollow fine particles may be mixed with resin or paint and spread. The resin and paint are not limited as long as they do not impair the effects of the present invention. For example, you may use together with the well-known solvent and resin used for a coating material, a thickener, a paste agent, a dispersing agent, a coloring pigment, etc. Moreover, even if used in combination with a heat insulating material such as glass fiber, the effect is high.

上記中空微粒子は、好ましくは、内部空間が隔壁によって区切られた複数の独立気泡によって形成されている中空微粒子が用いられる。中空微粒子が内部隔壁を有することによって粒子の強度が向上する。この隔壁は1個よりも複数個あることが望ましい。複数の隔壁を有することによって、粒子の強度がさらに向上する。隔壁の厚さは本発明の効果を喪失させない限り制限されない。 As the hollow fine particles, preferably, hollow fine particles formed of a plurality of closed cells whose internal spaces are separated by partition walls are used. Since the hollow fine particles have the internal partition walls, the strength of the particles is improved. It is desirable that there are a plurality of partition walls rather than one. By having a plurality of partition walls, the strength of the particles is further improved. The thickness of the partition wall is not limited as long as the effect of the present invention is not lost.

上記中空微粒子において、隔壁を有する粒子の割合が多いほど材料の強度が向上するので好ましい。例えば、粒子数で50%以上の粒子の内部空間が隔壁によって区切られた複数の独立気泡によって形成されている中空微粒子が好ましい。隔壁を有する粒子の割合が多いと、歩道や道路においてアスファルトなどの舗装面の下側に敷設される場合でも、上側の舗装面から大きな圧力が加わっても、中空微粒子の強度が大きいので壊れ難く、中空構造が維持されるので、高い断熱性能を有することができる。なお、強度が小さいものは外部の圧力により破損し易く、次第に断熱性が低下する。 In the hollow fine particles, the higher the proportion of particles having partition walls, the better the material strength. For example, hollow fine particles formed by a plurality of closed cells in which the internal space of particles having a particle number of 50% or more are divided by partition walls are preferable. When the ratio of particles with bulkheads is large, even when laid under the pavement surface such as asphalt on sidewalks and roads, even if a large pressure is applied from the upper pavement surface, it is difficult to break because the strength of the hollow fine particles is high Since the hollow structure is maintained, high heat insulation performance can be obtained. In addition, a thing with small intensity | strength tends to be damaged with an external pressure, and heat insulation falls gradually.

本発明で用いる中空微粒子はシリカ質微粒子である。シリカ含有量は70〜90%のものが好ましい。シリカ含有量が70%未満であると不純物が多くなり、均一な発泡ができなくなるため適当ではない。またシリカ含有量が90%を超えると融点が高くなるため発泡温度が高くなり、もしくは高温でも発泡しなくなるため、適当ではない。 The hollow fine particles used in the present invention are siliceous fine particles. The silica content is preferably 70 to 90%. When the silica content is less than 70%, impurities increase and uniform foaming cannot be performed, which is not suitable. On the other hand, if the silica content exceeds 90%, the melting point becomes high, the foaming temperature becomes high, or foaming does not occur even at high temperatures, so it is not suitable.

上記シリカ質中空微粒子はシリカ(化学成分としてSiO2)を主成分とする無機系材料から製造することができる。具体的には、シラス、真珠岩、黒曜石、松脂岩などのシリカ含有量70〜90%の天然ガラス質岩石を微粒子に粉砕し、該岩石微粒子を900℃〜1500℃に加熱して発泡させて中空微粒子にし、この中空微粒子から内部空間が隔壁によって区切られたものを選択することによって製造することができる。また、上記シリカ質中空微粒子は、天然ガラス質岩石に限らず、例えば、岩石粉末に発泡原料を混合して造粒し、加熱発泡させることによって製造することもできる。 The siliceous hollow fine particles can be produced from an inorganic material mainly composed of silica (SiO 2 as a chemical component). Specifically, natural glassy rocks having a silica content of 70 to 90%, such as shirasu, pearlite, obsidian, and pine sebite, are pulverized into fine particles, and the rock fine particles are heated to 900 ° C. to 1500 ° C. for foaming. It can be produced by making hollow fine particles, and selecting those from which the internal spaces are separated by partition walls. The siliceous hollow fine particles are not limited to natural vitreous rocks, and can be produced, for example, by mixing a foaming raw material with rock powder and granulating and foaming by heating.

また、このようにして製造した中空微粒子は内部に大きな空間を有するシリカガラス質粒子であるので、光学顕微鏡によって内部空間や隔壁構造を確認することができる。 Further, since the hollow fine particles produced in this way are silica glassy particles having a large space inside, the internal space and the partition structure can be confirmed by an optical microscope.

本発明の加熱保温構造体に用いる中空微粒子はシリカ質の無機材料なので、耐水生、耐酸性に優れている。従って、歩道や道路に用いた場合でも、地中にしみ込んできた雨水にさらされても劣化せず、中空状態を維持するため断熱性を損なうことはない。また、耐熱性に優れているので、例えば夏季に温度が上昇しても劣化しない。 Since the hollow fine particles used in the heat insulation structure of the present invention are siliceous inorganic materials, they are excellent in water resistance and acid resistance. Therefore, even if it is used on a sidewalk or road, it will not deteriorate even if it is exposed to rainwater that has soaked into the ground, and the heat insulation is not impaired in order to maintain a hollow state. Moreover, since it is excellent in heat resistance, it does not deteriorate even if the temperature rises in summer, for example.

本発明で用いる中空微粒子は、好ましくは、粒子内部の空間が表面に開口のない独立気泡によって形成されているので吸水率が低く、かつ大きな内部空間を有するので軽量であり、水中での浮揚率が高い。また、強度が大きいので加圧下でも亀裂が生じ難く、部分的に亀裂が生じても内部空間が隔壁によって区切られているので水が浸透する範囲が限られる。従って、歩道や道路、屋根などの加熱保温構造体に使用した場合、外側に水が存在する場合でも中空状態を維持することができる。また、地中にて雨水が浸る場合においても中空状態を維持し、断熱効果を得ることができる。 The hollow fine particles used in the present invention preferably have a low water absorption rate because the space inside the particles is formed by closed cells having no openings on the surface, and is light in weight because of having a large internal space. Is expensive. In addition, since the strength is high, cracks are unlikely to occur even under pressure, and even if cracks partially occur, the internal space is divided by the partition walls, so the range in which water penetrates is limited. Therefore, when it is used for a heated and heat insulating structure such as a sidewalk, a road, or a roof, a hollow state can be maintained even when water is present outside. Moreover, even when rainwater is immersed in the ground, a hollow state can be maintained and a heat insulating effect can be obtained.

一方、閉口気孔の粒子であっても、内部空間が連続気泡によって形成されている中空粒子は、部分的に亀裂が生じると、粒子内部の空間全体に液体が浸透して充満し、中空状態を維持できなくなり、十分な断熱性が得られなくなる。 On the other hand, even if the particles are closed pores, the hollow particles in which the internal space is formed by open cells partially penetrates and fills the entire space inside the particles when the cracks are partially cracked. It cannot be maintained, and sufficient heat insulation cannot be obtained.

本発明で用いる中空微粒子は、平均粒径5mm以下が適当である。また、0.5mm以下の粒子を10質量%以上含有していることが好ましい。0.5mm以下の粒子を含有していることによって、大きな粒子の隙間に小さな粒子が入り、隙間なく充填された状態になり、蓄熱性が向上する。この蓄熱性により、加熱源からの熱量が少なくすることができ、また加熱停止後も蓄熱された熱で積雪や凍結の融解に効果がある。 The hollow fine particles used in the present invention suitably have an average particle size of 5 mm or less. Moreover, it is preferable that the particle | grains of 0.5 mm or less are contained 10 mass% or more. By containing particles of 0.5 mm or less, small particles enter the gaps between the large particles, and the particles are filled without any gaps, so that the heat storage property is improved. Due to this heat storage property, the amount of heat from the heating source can be reduced, and even after the heating is stopped, the stored heat is effective for melting snow and freezing.

本発明で用いるシリカ質中空微粒子は容重0.10〜0.35g/cm3の範囲が好ましい。容重が0.35g/cm3を超えると内部空間の割合が少なくなり、断熱効果が小さくなる。一方、容重が0.10g/cm3より小さいと、粒子の殻や隔壁が薄いので強度が低下する。 The siliceous hollow fine particles used in the present invention preferably have a weight in the range of 0.10 to 0.35 g / cm 3 . If the weight exceeds 0.35 g / cm 3 , the proportion of the internal space decreases and the heat insulation effect decreases. On the other hand, when the weight is less than 0.10 g / cm 3 , the strength is lowered because the shells and partition walls of the particles are thin.

以下、本発明の実施例を示す。
真珠岩〔化学成分含有率(質量%):SiO2 74%、Al2O3 13%、Fe2O3 1%、CaO1%、ig.loss 2.2%〕を粉砕し、発泡させてシリカ質中空微粒子を製造した。容重0.08〜0.36g/cm3、篩目10mm、5mm、1.2mmの通過品を使用した。なお、製造した粒子は殆どが内部に隔壁が存在するものであることを光学顕微鏡によって確認した。
Examples of the present invention will be described below.
Pearlite (chemical content (mass%): SiO 2 74%, Al 2 O 3 13%, Fe 2 O 3 1%, CaO 1%, ig.loss 2.2%) is crushed, foamed and siliceous hollow Fine particles were produced. A passing product having a weight of 0.08 to 0.36 g / cm3, a mesh size of 10 mm, 5 mm, and 1.2 mm was used. It was confirmed by optical microscope that most of the produced particles had partition walls inside.

〔実施例1〕
50cm四方の木製型枠に粗骨材(最大粒径20mm)を約10cmの厚さに敷き詰め、その上に不織布を敷き、この不織布の上に1.5L量の断熱材(中空微粒子、表1の試料A1〜A7)を均等に敷き詰めて中空微粒子層を形成し、その上部に直径約8mmのラインヒーター(2m、20W)を10cm間隔で設置した。このラインヒータの上側にモルタルを10mm厚に充填し、1週間モルタルを硬化させて加熱保温構造体を形成した。その後、ヒーターを加熱して、モルタル上部中央部の温度を測定した。測定は5℃の恒温室中で加熱開始から30分経過後の上昇温度を測定した。さらに加熱を止めて30分後の温度を測定した。この結果を表1に示した。また、比較のため、アルミナボール(粒径2mm:内部空洞のない緻密粒子)を用いて同様の試験を行い、この結果を表1に示した(比較試料A8)。
[Example 1]
Coarse aggregate (maximum particle size 20mm) is spread to a thickness of about 10cm on a 50cm square wooden formwork, a non-woven fabric is laid on top of this, and a 1.5L amount of heat insulating material (hollow fine particles, Table 1) Samples A1 to A7) were spread evenly to form a hollow fine particle layer, and a line heater (2 m, 20 W) having a diameter of about 8 mm was installed on top of the sample at intervals of 10 cm. The upper side of the line heater was filled with mortar to a thickness of 10 mm, and the mortar was cured for one week to form a heat-retaining structure. Then, the heater was heated and the temperature of the upper center part of mortar was measured. The measurement was carried out in a constant temperature room at 5 ° C. by measuring the rising temperature after 30 minutes from the start of heating. Further, the heating was stopped and the temperature after 30 minutes was measured. The results are shown in Table 1. For comparison, a similar test was performed using alumina balls (particle diameter 2 mm: dense particles having no internal cavity), and the results are shown in Table 1 (Comparative Sample A8).

表1に示すように、試料A1〜A3は何れも中空微粒子層の断熱効果が良いので、上部温度が高く、上昇温度量が大きい。また、加熱停止後の温度低下も小さい。 As shown in Table 1, all of the samples A1 to A3 have a good heat insulating effect of the hollow fine particle layer, so that the upper temperature is high and the amount of temperature rise is large. In addition, the temperature drop after stopping heating is small.

中空微粒子の粒径が大きいと上昇温度量が少ない(試料A5)。これは粒子間の隙間が大きいために、この隙間を通じて下側に逃げる熱量が増すためであると思われる。さらに中空微粒子の粒径が大きいと、敷き詰めたときに表面の凹凸が大きくなるのでヒーターが中空微粒子に密着せず、断熱保温効果が不均一になる。 When the particle size of the hollow fine particles is large, the amount of temperature rise is small (Sample A5). This seems to be because the amount of heat that escapes downward through the gap increases because the gap between the particles is large. Further, if the particle size of the hollow fine particles is large, the unevenness of the surface becomes large when laid down, so that the heater does not adhere to the hollow fine particles, and the heat insulating and heat retaining effect becomes non-uniform.

中空微粒子の10%通過粒径が大きいと(試料A4)、同程度の粒度分布の中空微粒子を用いた場合に比べて上昇温度量は同程度であるが、加熱停止後の温度低下がやや大きくなる傾向がある。これは、大きな粒子の隙間に小さな粒子が充填されている割合が少なく、蓄熱効果が小さいためであると思われる。 When the hollow microparticles have a large 10% passing particle size (Sample A4), the amount of temperature rise is comparable to that when hollow microparticles with the same particle size distribution are used, but the temperature drop after heating is somewhat large. Tend to be. This is presumably because the small particle filling ratio between large particles is small and the heat storage effect is small.

中空微粒子の密度が大きいと(試料A6)、上昇温度量が少なくなる傾向がある。これは、内部空洞部が少ないので断熱効果が小さいためであると思われる。一方、中空微粒子の密度が小さいと(試料A7)、上昇温度が少なくなる傾向がある。これは、中空微粒子の強度が小さいので、ヒーターを中空粒子層の上部へ設置する際に、上部からの圧力によって中空微粒子が破損し、内部空洞部が減少したため断熱効果が低下したためであると思われる。 When the density of the hollow fine particles is large (sample A6), the amount of temperature rise tends to decrease. This is presumably because the heat insulating effect is small because there are few internal cavities. On the other hand, when the density of the hollow fine particles is small (sample A7), the rising temperature tends to decrease. This is probably because the strength of the hollow fine particles is so small that when the heater is installed on the upper part of the hollow particle layer, the hollow fine particles are damaged by the pressure from the upper part and the internal cavity is reduced, so that the heat insulating effect is lowered. It is.

また、内部が緻密な粒子を用いた比較試料A8は上昇温度量が最も少ない。これは、微粒子の断熱性が殆どなく、従って、下側への放熱が大きいためである。 Further, the comparative sample A8 using fine particles inside has the smallest amount of temperature rise. This is because there is almost no heat insulating property of the fine particles, and therefore heat radiation to the lower side is large.

Figure 0005438877
Figure 0005438877

〔実施例2〕
実施例1の試料A1〜試料A3の中空微粒子を用い、粗骨材と中空微粒子層との間の不織布を除いた以外は実施例1と同様の加熱保温構造体を形成し、実施例1と同様の加熱試験を行った(試料B1〜B3)。また、比較のため、中空微粒子層と不織布を除いた以外は上記と同様の構造体を形成し、上記と同様の加熱試験を行った(試料B4)。この結果を表2に示した。
[Example 2]
Using the hollow fine particles of Sample A1 to Sample A3 of Example 1, except for the non-woven fabric between the coarse aggregate and the hollow fine particle layer, a heat and heat insulation structure similar to Example 1 was formed. A similar heating test was performed (samples B1 to B3). For comparison, a structure similar to the above was formed except that the hollow fine particle layer and the non-woven fabric were removed, and a heating test similar to the above was performed (Sample B4). The results are shown in Table 2.

表2示すように、不織布を用いない試料B1〜B3は、同様の中空微粒子A1〜A3を用いた表1の結果に比較して、上部温度の上昇温度量が少なく、一方、加熱後の温度低下量はやや大きい。これは断熱用の中空微粒子が下側の骨材の隙間へ入り込み、微粒子の厚みが薄くなるため、熱が骨材を通じて下側に伝導しやすくなるためである。また中空微粒子を用いない比較試料B4は下側への熱の伝導が多いため、上昇温度量が大幅に少ない。 As shown in Table 2, the samples B1 to B3 that do not use the nonwoven fabric have a lower upper temperature rise than the results of Table 1 that use the same hollow fine particles A1 to A3, while the temperature after heating. The amount of decline is rather large. This is because the heat-insulating hollow fine particles enter the gaps in the lower aggregate and the thickness of the fine particles is reduced, so that heat is easily conducted downward through the aggregate. Further, the comparative sample B4 which does not use the hollow fine particles has a large amount of temperature rise because of the large amount of heat conduction to the lower side.

Figure 0005438877
Figure 0005438877

〔実施例3〕
実施例1の中空微粒子A1の構造体を用い(試料C1)、また、中空微粒子A1に代えて発泡スチロールを用いた以外は上記と同様に形成した構造体を用い(試料C2)、外気温25℃において、ヒーターの加熱量を高めて上部温度を測定した。加熱開始から30分経過後に測定した温度を表3に示した。
Example 3
Using the structure of the hollow fine particle A1 of Example 1 (Sample C1), and using the structure formed in the same manner as described above (Sample C2) except that the polystyrene foam was used instead of the hollow fine particle A1, and the outside air temperature was 25 ° C. The upper part temperature was measured by increasing the heating amount of the heater. Table 3 shows the temperatures measured 30 minutes after the start of heating.

表3に示すように、断熱材として中空微粒子A1を用いた試料C1は、上部温度の上昇量が大きい。一方、断熱材として発泡スチロールを用いた試料C2は、上部温度の上昇量が少ない。測定後に構造体を解体して状態を観察したところ、試料C1は全く劣化は見られなかったが、試料C2の発泡スチロールはヒーターとの接触部分が軟化して沈下しており、断熱効果が殆ど失われた状態であった。 As shown in Table 3, sample C1 using hollow fine particles A1 as a heat insulating material has a large increase in the upper temperature. On the other hand, sample C2 using a polystyrene foam as a heat insulating material has a small increase in the upper temperature. After the measurement, the structure was disassembled and the state was observed.Sample C1 was not deteriorated at all, but the foamed polystyrene of sample C2 was submerged due to the contact with the heater being softened, and the heat insulation effect was almost lost. It was in a broken state.

Figure 0005438877
Figure 0005438877

〔実施例4〕
縦2m×横2mの枠内に電気式のロードヒーティングを設置した。上記枠内において、地盤上部に不織布を敷き、実施例1の中空微粒子NoA1およびNoA2を高さ約5〜10mmに敷き詰めて中空微粒子層を形成した。その上にヒーターを設置し、その上部に30mm高さにコンクリートを打設して加熱保温構造体を形成した(試料D1、D2)。比較例として、中空微粒子を用いずに地盤上部にヒーターのみを設置した加熱構造体を形成した(試料D3)。前日夕刻より加熱を開始し、朝6時の時点で上部コンクリート表面の温度を測定した。このときの外気温は−6℃であった。この結果を表4に示した。
Example 4
Electric load heating was installed in a frame of 2 m in length and 2 m in width. Within the frame, a non-woven fabric was laid on the upper part of the ground, and the hollow fine particles NoA1 and NoA2 of Example 1 were spread to a height of about 5 to 10 mm to form a hollow fine particle layer. A heater was installed thereon, and concrete was placed at a height of 30 mm on the top to form a heated and insulated structure (samples D1 and D2). As a comparative example, a heating structure in which only a heater was installed on the ground without using hollow fine particles was formed (Sample D3). Heating was started from the evening of the previous day, and the temperature of the upper concrete surface was measured at 6 o'clock in the morning. The outside temperature at this time was −6 ° C. The results are shown in Table 4.

表4の結果から、本発明の中空微粒子を敷き詰めた加熱構造体(試料D1、D2)は、比較試料D3に比べて加熱保温効果が良いことが確認された。特に、中空微粒子A2を用いたものは比較例に比べて+4℃の加熱保温効果が得られる。 From the results shown in Table 4, it was confirmed that the heating structure (samples D1 and D2) in which the hollow fine particles of the present invention were spread had a better heat and heat retention effect than the comparative sample D3. In particular, those using the hollow fine particles A2 can obtain a heat-retaining effect of + 4 ° C. as compared with the comparative example.

Figure 0005438877
Figure 0005438877

1−構造材、2−加熱源、3−保温剤等、4−地面、5−中空微粒子、6−透水性布材、 1-structural material, 2-heating source, 3-insulating agent, 4-ground, 5-hollow particulates, 6-permeable cloth material,

Claims (6)

容重0.10〜0.35g/cm 3 の中空微粒子が加熱源の下側に敷き詰められており、加熱源がこの中空微粒子層に接触して設けられており、加熱源の上側には構造材が設けられており、上記加熱源が上記中空微粒子と上記構造材によって積層された構造を形成していることを特徴とする融雪や解凍ないし凍結防止の設備に用いられる加熱保温構造体。 Hollow fine particles having a capacity of 0.10 to 0.35 g / cm 3 are spread below the heating source, and the heating source is provided in contact with the hollow fine particle layer. And the heating source forms a structure laminated with the hollow fine particles and the structural material. 加熱源がその上部を露出し、かつその下部が露出しないように中空粒子層に埋設されている構造を有する請求項1に記載する加熱保温構造体。 The heating and heat-retaining structure according to claim 1, wherein the heating source has a structure embedded in the hollow particle layer so that an upper portion thereof is exposed and a lower portion thereof is not exposed. 中空微粒子の下側に透水性の布材が敷設されており、加熱源の上部が中空微粒子層から露出し、かつ加熱源の下部が上記布材に接触しないように、加熱源が中空微粒子層に埋設されている請求項1または請求項2に記載する加熱保温構造体。 A water-permeable cloth material is laid on the lower side of the hollow fine particles, the upper part of the heating source is exposed from the hollow fine particle layer, and the lower part of the heating source is not in contact with the cloth material. The heat insulation structure according to claim 1 or claim 2, wherein the heat insulation structure is embedded in the structure. 粒子数で50%以上の粒子の内部空間が隔壁によって区切られた複数の独立気泡を有するシリカ質の中空微粒子が用いられる請求項1〜請求項3の何れかに記載する加熱保温構造体。 The heating and heat-retaining structure according to any one of claims 1 to 3, wherein siliceous hollow fine particles having a plurality of closed cells in which an internal space of particles of 50% or more in number is divided by partition walls are used. 粒径0.5mm以下の粒子を10質量%以上含有し、かつ90%通過粒径が5mm以下である中空微粒子が用いられる請求項1〜請求項4の何れかに記載する加熱保温構造体。 The heat-retaining structure according to any one of claims 1 to 4, wherein hollow fine particles containing 10% by mass or more of particles having a particle size of 0.5 mm or less and having a 90% passing particle size of 5 mm or less are used. 棒状、コイル状、または板状の加熱源に対して、中空微粒子層の厚さが上記加熱源の厚さの1/3〜2/3である請求項1〜請求項5の何れかに記載する加熱保温構造体。 The thickness of the hollow fine particle layer is 1/3 to 2/3 of the thickness of the heating source with respect to the rod-shaped, coil-shaped, or plate-shaped heating source. Heat insulation structure to be.
JP2009250487A 2008-10-31 2009-10-30 Heat insulation structure Expired - Fee Related JP5438877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250487A JP5438877B2 (en) 2008-10-31 2009-10-30 Heat insulation structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008281392 2008-10-31
JP2008281392 2008-10-31
JP2009250487A JP5438877B2 (en) 2008-10-31 2009-10-30 Heat insulation structure

Publications (2)

Publication Number Publication Date
JP2010133233A JP2010133233A (en) 2010-06-17
JP5438877B2 true JP5438877B2 (en) 2014-03-12

Family

ID=42344757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250487A Expired - Fee Related JP5438877B2 (en) 2008-10-31 2009-10-30 Heat insulation structure

Country Status (1)

Country Link
JP (1) JP5438877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640019B1 (en) * 2016-03-24 2016-07-15 주식회사 현대하이텍 road freezing preventing system for non-slip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2903055B2 (en) * 1994-12-28 1999-06-07 日本ベロ−株式会社 Ground layer heating member and its underground buried structure
JP3242836B2 (en) * 1996-03-25 2001-12-25 スカイアルミニウム株式会社 Panel for heating the ground surface layer and its underground structure
JP4195870B2 (en) * 2004-06-11 2008-12-17 東日本旅客鉄道株式会社 Snow melting equipment

Also Published As

Publication number Publication date
JP2010133233A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
KR100965122B1 (en) A construction process of water permeability pavement for bicycle
JP5298306B2 (en) Outside insulation panel
ES2335023T3 (en) FLUID PERMEABLE COMPOSITE MATERIAL AND CORRESPONDING PROCEDURE.
US20100139194A1 (en) Roof paneling system
JP5438877B2 (en) Heat insulation structure
JP6463531B2 (en) Snow melting block and snow melting roadbed
JP5294539B2 (en) Snow melting material and manufacturing method thereof
JP2003146772A (en) Block and method of manufacturing the same
JP5898350B1 (en) Paving material
KR101986242B1 (en) Structure for Road having Smart Snow Melting Pavement, and Constructing Method thereof
KR100924765B1 (en) Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition
JP3852290B2 (en) Road pavement structure and road pavement method
CN111441217A (en) Highway anti-icing structure, ice melting device and method
JP2005155088A (en) Outdoor floor structure formed by laying and bedding blocks
US20200141069A1 (en) Pavement deicing or snow-melting system and construction method thereof
Jiao et al. Experimental investigation of inclination angle on the snow melting process of heated pavement
KR20110113793A (en) Snow melting apparatus on paved road and mehod for paving road
JP2001146703A (en) Permeable block and manufacturing method
JP2003147716A (en) Pavement provided with water permeability, water draining capability and water retentivity and its construction method
CN205711588U (en) A kind of exposed concrete water-drainage antifreezing road structure
JP2003129407A (en) Pavement and paving method
KR100428811B1 (en) Paving method for cement concrete road having drainage layer
JP4052630B2 (en) Snow melting roof structure
JP2003160906A (en) Pavement with both permeable/drainable and water retentive functions, and method for its work execution
CN215441249U (en) Effective bituminous pavement structure that prevents snow and freeze

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131215

R150 Certificate of patent or registration of utility model

Ref document number: 5438877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees