JP5430909B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP5430909B2
JP5430909B2 JP2008294533A JP2008294533A JP5430909B2 JP 5430909 B2 JP5430909 B2 JP 5430909B2 JP 2008294533 A JP2008294533 A JP 2008294533A JP 2008294533 A JP2008294533 A JP 2008294533A JP 5430909 B2 JP5430909 B2 JP 5430909B2
Authority
JP
Japan
Prior art keywords
convex
wheel
hub wheel
fitting
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008294533A
Other languages
Japanese (ja)
Other versions
JP2010120461A (en
Inventor
仁博 小澤
光 梅木田
祐一 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2008294533A priority Critical patent/JP5430909B2/en
Priority to PCT/JP2009/069161 priority patent/WO2010058719A1/en
Publication of JP2010120461A publication Critical patent/JP2010120461A/en
Application granted granted Critical
Publication of JP5430909B2 publication Critical patent/JP5430909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置に関する。   The present invention relates to a wheel bearing device for rotatably supporting a wheel with respect to a vehicle body in a vehicle such as an automobile.

車輪用軸受装置には、複列の転がり軸受を組み合わせて使用する第1世代と称される構造から、外方部材に車体取付フランジを一体に設けた第2世代に進化し、さらに、複列の転がり軸受の2つの内側軌道面のうち、一方をハブ輪の外周に形成した第3世代、さらには、複列の転がり軸受の2つの内側軌道面のうち、一方をハブ輪の外周に形成すると共に、他方を等速自在継手の外側継手部材の外周に形成した第4世代のものまで開発されている。   The wheel bearing device has evolved from a structure called the first generation, which uses a combination of double row rolling bearings, to a second generation in which the body mounting flange is integrally provided on the outer member. One of the two inner raceways of the rolling bearing is formed on the outer circumference of the hub ring, and one of the two inner raceways of the double row rolling bearing is formed on the outer circumference of the hub ring. At the same time, a fourth-generation one having the other formed on the outer periphery of the outer joint member of the constant velocity universal joint has been developed.

例えば、特許文献1には、第3世代と呼ばれるものが記載されている。第3世代と呼ばれる車輪用軸受装置は、図24に示すように、外径方向に延びるフランジ151を有するハブ輪152と、このハブ輪152に外側継手部材153が固定される等速自在継手154と、ハブ輪152の外周側に配設される外方部材155とを備える。   For example, Patent Document 1 describes what is called a third generation. As shown in FIG. 24, a wheel bearing device called a third generation includes a hub wheel 152 having a flange 151 extending in the outer diameter direction, and a constant velocity universal joint 154 to which an outer joint member 153 is fixed. And an outer member 155 disposed on the outer peripheral side of the hub wheel 152.

等速自在継手154は、外側継手部材153と、この外側継手部材153のマウス部157内に配設される内側継手部材158と、この内側継手部材158と外側継手部材153との間に配設されるボール159と、このボール159を保持する保持器160とを備える。また、内側継手部材158の中心孔の内周面には雌スプライン161が形成され、この中心孔に図示省略のシャフトの端部に形成した雄スプラインが挿入される。内側継手部材158側の雌スプライン161とシャフト側の雄スプラインとを嵌合することで、内側継手部材158とシャフトがトルク伝達可能に結合される。   The constant velocity universal joint 154 is disposed between the outer joint member 153, the inner joint member 158 disposed in the mouth portion 157 of the outer joint member 153, and the inner joint member 158 and the outer joint member 153. And a cage 160 for holding the ball 159. A female spline 161 is formed on the inner peripheral surface of the center hole of the inner joint member 158, and a male spline formed at the end of the shaft (not shown) is inserted into the center hole. By fitting the female spline 161 on the inner joint member 158 side and the male spline on the shaft side, the inner joint member 158 and the shaft are coupled so that torque can be transmitted.

また、ハブ輪152は、筒部163と前記フランジ151とを有し、フランジ151の外端面164(アウトボード側の端面)には、図示省略のホイールおよびブレーキロータを装着するための短筒状のパイロット部165が突設されている。パイロット部165は、大径部165aと小径部165bとからなり、大径部165aにホイールが外嵌され、小径部165bにブレーキロータが外嵌される。   The hub wheel 152 has a cylindrical portion 163 and the flange 151, and a short cylindrical shape for mounting a wheel and a brake rotor (not shown) on the outer end surface 164 (end surface on the outboard side) of the flange 151. The pilot portion 165 is projected. The pilot portion 165 includes a large diameter portion 165a and a small diameter portion 165b, and a wheel is fitted on the large diameter portion 165a, and a brake rotor is fitted on the small diameter portion 165b.

筒部163のインボード側端部の外周面に嵌合部166が設けられ、この嵌合部166に内輪167が嵌合されている。筒部163の外周面のフランジ151近傍には第1内側軌道面168が設けられ、内輪167の外周面に第2内側軌道面169が設けられている。また、ハブ輪152のフランジ151にはボルト装着孔162が設けられており、フランジ151にホイールおよびブレーキロータを固定するためのハブボルトがボルト装着孔162に装着される。   A fitting portion 166 is provided on the outer peripheral surface of the end portion on the inboard side of the cylindrical portion 163, and the inner ring 167 is fitted to the fitting portion 166. A first inner raceway surface 168 is provided in the vicinity of the flange 151 on the outer peripheral surface of the cylindrical portion 163, and a second inner raceway surface 169 is provided on the outer peripheral surface of the inner ring 167. The flange 151 of the hub wheel 152 is provided with a bolt mounting hole 162, and a hub bolt for fixing the wheel and the brake rotor to the flange 151 is mounted in the bolt mounting hole 162.

転がり軸受の外方部材155は、その内周に2列の外側軌道面170、171が設けられると共に、その外周にフランジ(車体取付フランジ)182が設けられている。外方部材155の第1外側軌道面170とハブ輪152の第1内側軌道面168とが対向し、外方部材155の第2外側軌道面171と、内輪167の軌道面169とが対向し、これらの間に転動体172が介装される。   The outer member 155 of the rolling bearing is provided with two rows of outer raceways 170 and 171 on the inner periphery thereof, and a flange (vehicle body mounting flange) 182 on the outer periphery thereof. The first outer raceway surface 170 of the outer member 155 and the first inner raceway surface 168 of the hub wheel 152 face each other, and the second outer raceway surface 171 of the outer member 155 and the raceway surface 169 of the inner ring 167 face each other. The rolling elements 172 are interposed between these.

ハブ輪152の筒部163に外側継手部材153の軸部173が挿入される。軸部173の軸端部にはねじ部174が形成され、このねじ部174よりもインボード側の外径部に雄スプライン175が形成されている。また、ハブ輪152の筒部163の内径面に雌スプライン176が形成され、軸部173をハブ輪152の筒部163に圧入することで、軸部173側の雄スプライン175とハブ輪152側の雌スプライン176とが嵌合する。   The shaft portion 173 of the outer joint member 153 is inserted into the tube portion 163 of the hub wheel 152. A screw portion 174 is formed at the shaft end of the shaft portion 173, and a male spline 175 is formed at the outer diameter portion on the inboard side of the screw portion 174. In addition, a female spline 176 is formed on the inner diameter surface of the cylindrical portion 163 of the hub wheel 152, and the shaft portion 173 is press-fitted into the cylindrical portion 163 of the hub wheel 152, so that the male spline 175 on the shaft portion 173 side and the hub wheel 152 side. The female spline 176 is fitted.

そして、軸部173のねじ部174にナット部材177が螺着され、ハブ輪152と外側継手部材153とが固定される。この際、ナット部材177の座面178と筒部163の外端面179とが当接し、マウス部157のアウトボード側の端面180と内輪167の端面181とが当接する。これにより、ハブ輪152が内輪167を介してナット部材177とマウス部157とで挟持される。
特開2004−340311号公報
Then, the nut member 177 is screwed to the screw portion 174 of the shaft portion 173, and the hub wheel 152 and the outer joint member 153 are fixed. At this time, the seat surface 178 of the nut member 177 and the outer end surface 179 of the cylindrical portion 163 come into contact with each other, and the end surface 180 on the outboard side of the mouse portion 157 and the end surface 181 of the inner ring 167 come into contact with each other. As a result, the hub wheel 152 is sandwiched between the nut member 177 and the mouth portion 157 via the inner ring 167.
JP 2004340403 A

従来では、前記したように、外側継手部材153とハブ輪152は、軸部173に設けられた雄スプライン175を、ハブ輪152に設けられた雌スプライン176に圧入することで結合される。このため、軸部173及びハブ輪152の両者にスプライン加工を施す必要があって、コスト高となる。また、圧入時には、軸部173の雄スプライン175とハブ輪152の雌スプライン176との凹凸を合わせる必要がある。この際、歯面合わせで圧入すれば、歯面がむしれ等によって損傷するおそれがある。また、大径合わせで圧入すれば、円周方向のガタが生じやすい。円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれがある。このように、スプライン嵌合による場合、圧入時の歯面の損傷、及び使用時のガタの発生という問題があり、両者を同時に回避することは困難であった。   Conventionally, as described above, the outer joint member 153 and the hub wheel 152 are coupled by press-fitting the male spline 175 provided on the shaft portion 173 into the female spline 176 provided on the hub wheel 152. For this reason, it is necessary to perform spline processing on both the shaft portion 173 and the hub wheel 152, which increases the cost. Further, at the time of press-fitting, it is necessary to match the unevenness of the male spline 175 of the shaft portion 173 and the female spline 176 of the hub wheel 152. At this time, if press-fitting is performed by tooth surface alignment, the tooth surface may be damaged due to peeling or the like. Moreover, if it press-fits by large diameter matching, the play of the circumferential direction will arise easily. If there is play in the circumferential direction, the transmission performance of the rotational torque is inferior and abnormal noise may be generated. Thus, in the case of spline fitting, there are problems of tooth surface damage during press-fitting and generation of play during use, and it is difficult to avoid both at the same time.

また、筒部163から突出した軸部173のねじ部174にナット部材177を螺着する必要がある。このため、組立時にはねじ締結作業を有し、作業性に劣るとともに、部品点数も多く、部品管理性も劣ることになっていた。   Further, it is necessary to screw the nut member 177 to the screw portion 174 of the shaft portion 173 protruding from the cylindrical portion 163. For this reason, it has a screw fastening operation at the time of assembly, which is inferior in workability, has a large number of parts, and inferior in part manageability.

本発明は、上記課題に鑑みて、円周方向のガタの抑制を図ることができ、しかも、ハブ輪と等速自在継手の外側継手部材との連結作業性に優れるとともに、ハブ輪と等速自在継手の外側継手部材とが強固に結合された車輪用軸受装置を提供する。   In view of the above problems, the present invention can suppress circumferential backlash, and is excellent in connection workability between the hub wheel and the outer joint member of the constant velocity universal joint, and at the same time with the hub wheel and the constant velocity. Provided is a wheel bearing device in which an outer joint member of a universal joint is firmly coupled.

本発明の車輪用軸受装置は、内周に複列の軌道面を有する外方部材と、前記軌道面に対向する複列の軌道面を外周に有し、外周に車輪取り付け用のフランジを有する内方部材と、これら外方部材と内方部材の軌道面間に介在した複列の転動体とを備えた車輪用軸受と、マウス部及び軸部からなる外側継手部材を有する等速自在継手とを備え、ハブ輪の孔部に嵌挿される外側継手部材の軸部がハブ輪と凹部および凸部の嵌合により結合された車輪用軸受装置であって、外側継手部材の軸部とハブ輪の孔部のうち、どちらか一方に設けられた軸方向に延びる凸部を他方に圧入し、他方に前記凸部により凹部を形成することで、前記凸部と前記凹部との嵌合部位全域が密着する凹凸嵌合構造を構成し、前記ハブ輪の孔部のアウトボード側端部には、アウトボード端部側に向かって拡径するテーパ孔を設け、外側継手部材の軸部と前記テーパ孔の内径面との間に、軸部の抜けを規制する抜け止め構造を設け、前記テーパ孔の継手軸線に対するテーパ角度θを20°≦θ≦60°としたものである。   The wheel bearing device of the present invention has an outer member having a double row raceway surface on the inner periphery, a double row raceway surface facing the raceway surface on the outer periphery, and a wheel mounting flange on the outer periphery. A constant velocity universal joint having a wheel bearing including an inner member, a double row rolling element interposed between the outer member and the raceway surface of the inner member, and an outer joint member including a mouth portion and a shaft portion A bearing device for a wheel in which a shaft portion of an outer joint member that is inserted into a hole portion of the hub wheel is coupled by fitting the hub wheel with a concave portion and a convex portion, and the shaft portion of the outer joint member and the hub A fitting portion between the convex portion and the concave portion is formed by pressing a convex portion extending in the axial direction provided in one of the hole portions of the ring into the other and forming a concave portion by the convex portion on the other side. Constructing a concave-convex fitting structure in which the entire area is in close contact, and on the outboard side end of the hole of the hub wheel, A tapered hole that expands toward the end of the outer board is provided, and a retaining structure is provided between the shaft portion of the outer joint member and the inner diameter surface of the tapered hole to prevent the shaft portion from coming off. The taper angle θ with respect to the joint axis is 20 ° ≦ θ ≦ 60 °.

本発明の車輪用軸受装置によれば、凸部を相手側に圧入した際に、凸部がハブ輪の孔部内径面に食い込んでいくことによって、孔部が僅かに拡径した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部が元の径に戻ろうとして縮径することになる。これによって、凸部のうち、凹部との嵌合部位の全体(凸部の頂部からその両側の側面に至るまでの連続領域)が凹部に対して密着し、径方向及び円周方向の双方で、ガタを生じるような隙間が形成されない。そのため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音も生じない。さらには、凸部と凹部が隙間無く密着しているので、トルク伝達部位の強度が向上する。このため、車輪用軸受装置を軽量、コンパクトにすることができる。   According to the wheel bearing device of the present invention, when the convex portion is press-fitted into the other side, the convex portion bites into the hole inner diameter surface of the hub wheel, so that the hole portion is slightly expanded in diameter. Thus, when the axial movement of the convex portion is allowed and the axial movement stops, the hole portion is reduced in diameter to return to the original diameter. Thereby, the whole fitting part (continuous area | region from the top part of a convex part to the side surface of the both sides) is closely_contact | adhered with respect to a recessed part among convex parts, and both radial direction and the circumferential direction , No gaps that cause play are formed. Therefore, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated. Furthermore, since the convex portion and the concave portion are in close contact with each other with no gap, the strength of the torque transmitting portion is improved. For this reason, the wheel bearing device can be made lightweight and compact.

抜け止め構造を設けることによって、ハブ輪に対して外側継手部材が軸方向に抜けることを防止でき、安定した連結状態が維持される。また、例えば車両発進時、軸受部の内輪と等速自在継手の外側継手部材の肩部(バック面)との面圧が高くなると、軸受部の内輪と等速自在継手の外側継手部材のバック面との間で、カッキン音と通称されるスティックスリップ音が発生するおそれがある。しかしながら、本発明ではテーパ孔の継手軸線に対するテーパ角度θを20°≦θ≦60°としているので、凹凸嵌合構造の耐抜け荷重を維持しつつ軸受部のインボード側端部とマウス部のバック面との面圧が高くなるのを防止することができる。これにより、カッキン音の発生を防止でき、しかも効果的に抜け止め効果を発揮できる。θが20°未満では、軸受部の内方部材のインボード側端部と等速自在継手の外側継手部材のバック面との面圧を低減できるが、抜け止め効果が得られなくなる。また、60°を超えると、耐抜け荷重は高くなるが、抜け止め部が等速自在継手を軸方向に押し付ける力が大きくなって、軸受部の内方部材のインボード側端部と等速自在継手の外側継手部材のバック面との面圧が高くなるため、カッキン音が大きくなる。しかも、円筒面をテーパ形状に拡径するため、先端部(抜け止め部の大径側)の肉厚が薄くなり、期待通りの耐抜け荷重を得ることができなくなる。   By providing the retaining structure, the outer joint member can be prevented from coming off in the axial direction with respect to the hub wheel, and a stable connected state is maintained. Further, for example, when the vehicle starts, if the surface pressure between the inner ring of the bearing portion and the shoulder (back surface) of the outer joint member of the constant velocity universal joint increases, the back of the outer ring member of the constant velocity universal joint and the inner ring of the bearing portion increases. There is a risk that a stick-slip sound commonly referred to as a “cuckling sound” may occur between the surface and the surface. However, in the present invention, the taper angle θ with respect to the joint axis of the taper hole is set to 20 ° ≦ θ ≦ 60 °, so that the inboard side end portion of the bearing portion and the mouth portion of the bearing portion are maintained while maintaining the slip-proof load of the uneven fitting structure. It is possible to prevent an increase in surface pressure with the back surface. Thereby, generation | occurrence | production of a cuckling sound can be prevented and the fall-out prevention effect can be exhibited effectively. If θ is less than 20 °, the surface pressure between the inboard side end of the inner member of the bearing portion and the back surface of the outer joint member of the constant velocity universal joint can be reduced, but the retaining effect cannot be obtained. Also, if it exceeds 60 °, the load-proof load increases, but the force with which the retaining portion presses the constant velocity universal joint in the axial direction increases, so that the inboard side end of the inner member of the bearing portion becomes constant velocity. Since the surface pressure with the back surface of the outer joint member of the universal joint is increased, the cuckling noise is increased. In addition, since the diameter of the cylindrical surface is increased to a tapered shape, the thickness of the tip portion (large diameter side of the retaining portion) becomes thin, and it is impossible to obtain an expected anti-slip load.

前記外側継手部材の軸部のアウトボード側の端部を拡径させて、テーパ孔の内径面に係合させることができる。これにより、部品点数を削減することができ、装置のコンパクト化、コストの低減を図ることができる。   The end portion on the outboard side of the shaft portion of the outer joint member can be expanded and engaged with the inner diameter surface of the tapered hole. Thereby, the number of parts can be reduced, and the apparatus can be made compact and the cost can be reduced.

前記外側継手部材の軸部のアウトボード側の端部の硬度を、HRc40以下とすることができる。これにより、外側継手部材の軸部のアウトボード側端部を拡径させて、テーパ孔の内径面に係合させる際、軸部のアウトボード側端部が割れるのを防止することができ、長期にわたって安定して抜け止め効果を維持することができる。   The hardness of the end portion on the outboard side of the shaft portion of the outer joint member can be set to HRc40 or less. Thereby, when the diameter of the outboard side end of the shaft portion of the outer joint member is expanded and engaged with the inner diameter surface of the taper hole, the outboard side end of the shaft portion can be prevented from cracking, The retaining effect can be maintained stably over a long period of time.

前記内方部材が、外周に前記車輪取り付け用のフランジを有するハブ輪と、前記ハブ輪のインボード側の端部の外周に圧入される内輪とで構成され、前記ハブ輪の外周および内輪の外周にそれぞれ前記軌道面が形成されており、ハブ輪のインボード側端部を加締めることによりハブ輪と内輪とを一体化することができる。このように、いわゆるセルフリテイン構造とすることにより、従来のようにナット等で強固に緊締して予圧量を管理する必要がないため、車両への組込を簡便にすることができると共に、かつ長期間その予圧量を維持することができる。   The inner member is composed of a hub wheel having a flange for mounting the wheel on the outer periphery, and an inner ring press-fitted into the outer periphery of the end portion on the inboard side of the hub wheel, the outer periphery of the hub wheel and the inner ring The raceway surfaces are formed on the outer circumferences, respectively, and the hub ring and the inner ring can be integrated by crimping the inboard side end of the hub ring. In this way, the so-called self-retain structure eliminates the need to manage the preload by firmly tightening with a nut or the like as in the prior art, so that it can be easily incorporated into the vehicle, and The preload amount can be maintained for a long time.

前記外側継手部材の軸部に凹凸嵌合構造を形成する凸部を形成することができる。この場合、軸部をハブ輪の孔部に圧入し、凸部の形状がハブ輪の孔部に転写され、圧入時にハブ輪が径方向に弾性変形することにより、圧入部にその弾性変形分の予圧が接触している凸部に作用することにより隙間なく密着して強固に嵌合する。一方、前記ハブ輪の孔部の内径面に凹凸嵌合構造を形成する凸部を形成することができる。この場合、軸部をハブ輪の孔部に圧入し、凸部の形状が外側継手部材の軸部に転写され、圧入時に軸部が径方向に弾性変形することにより、圧入部にその弾性変形分の予圧が接触している凸部に作用することにより隙間なく密着して強固に嵌合する。   The convex part which forms an uneven | corrugated fitting structure can be formed in the axial part of the said outer joint member. In this case, the shaft portion is press-fitted into the hole portion of the hub wheel, and the shape of the convex portion is transferred to the hole portion of the hub wheel, and the hub wheel is elastically deformed in the radial direction at the time of press-fitting. The pre-load acts on the projecting portion that is in contact with each other so that the pre-load is in close contact and tightly fitted. On the other hand, the convex part which forms an uneven | corrugated fitting structure can be formed in the internal diameter surface of the hole of the said hub ring. In this case, the shaft portion is press-fitted into the hole of the hub wheel, the shape of the convex portion is transferred to the shaft portion of the outer joint member, and the shaft portion is elastically deformed in the radial direction at the time of press-fitting. When the preload of the minute acts on the projecting portions that are in contact with each other, it is tightly fitted and tightly fitted.

前記凸部の圧入開始側の端部の硬度を、ハブ輪の孔部内径部よりも高くし、その硬度差を、HRc20以上とすることができる。また、前記凸部の圧入開始側の端部の硬度を外側継手部材の軸部の外径部よりも高くし、その硬度差を、HRc20以上とすることができる。つまり、凸部の硬度を相手部材の凹部が形成される箇所の硬度よりもHRc20以上とする。これにより、凸部にて効果的に凹部を形成することができる。   The hardness of the end portion on the press-fitting start side of the convex portion can be made higher than the inner diameter portion of the hole portion of the hub wheel, and the hardness difference can be set to HRc20 or more. Moreover, the hardness of the edge part by the side of the press injection of the said convex part can be made higher than the outer-diameter part of the axial part of an outer joint member, and the hardness difference can be more than HRc20. That is, the hardness of the convex portion is set to HRc20 or higher than the hardness of the portion where the concave portion of the counterpart member is formed. Thereby, a recessed part can be effectively formed in a convex part.

外側継手部材の軸部あるいはハブ輪の孔部には、前記圧入による凹部の形成によって生じるはみ出し部を収納するポケット部を設けることができる。ここで、はみ出し部は、凸部によって形成された凹部の容積に相当する量の材料分であって、形成される凹部から押し出されたもの、凹部を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。ポケット部を設けることによって、はみ出し部をこのポケット部内に保持することができ、はみ出し部が装置外の車両内等へ入り込んだりすることがない。この場合、はみ出し部をポケット部に収納したままにしておくことができ、はみ出し部の除去処理を行う必要がなく、組立作業工数の減少を図ることができて、組立作業性の向上及びコスト低減を図ることができる。   A pocket portion for accommodating a protruding portion generated by the formation of the concave portion by the press-fitting can be provided in the shaft portion of the outer joint member or the hole portion of the hub wheel. Here, the protruding portion is an amount of material corresponding to the volume of the concave portion formed by the convex portion, and is extruded from the formed concave portion, cut to form the concave portion, or extruded. It consists of both the cut and the cut. By providing the pocket portion, the protruding portion can be held in the pocket portion, and the protruding portion does not enter the vehicle outside the apparatus. In this case, the protruding portion can be kept stored in the pocket portion, and it is not necessary to perform the removal processing of the protruding portion, the number of assembling work can be reduced, the assembling workability is improved, and the cost is reduced. Can be achieved.

ハブ輪の孔部の内径面の内径寸法を、凸部の頂点を結ぶ円の直径寸法よりも小さく、凸部間の谷底の直径寸法よりも大きく設定することができる。また、外側継手部材の軸部の外径寸法を、ハブ輪の複数の凸部の頂点を結ぶ円弧の直径寸法よりも大きく、凸部間の谷底の直径寸法よりも小さくすることができる。これにより、凸部の最小直径部分に隙間が形成される。   The inner diameter dimension of the inner diameter surface of the hole portion of the hub wheel can be set smaller than the diameter dimension of the circle connecting the apexes of the projections and larger than the diameter dimension of the valley bottom between the projections. Further, the outer diameter dimension of the shaft portion of the outer joint member can be larger than the diameter dimension of the arc connecting the vertices of the plurality of convex portions of the hub wheel, and smaller than the diameter dimension of the valley bottom between the convex portions. Thereby, a gap is formed in the minimum diameter portion of the convex portion.

凸部の高さ方向の中間部において、凸部の周方向厚さの総和を、隣接する凸部との間の溝幅の総和よりも小さくするのが好ましい。この場合、隣接する凸部間の溝に入り込んだ相手側の肉が周方向で大きな厚さを有するため、前記肉のせん断面積を大きくすることができ、ねじり強度の向上を図ることができる。しかも、凸部の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部の高さ方向の中間部において、各凸部の周方向厚さの総和を、隣接する凸部との間の溝幅の総和よりも小さくすることでも同様の効果が達成される。   It is preferable to make the sum of the circumferential thicknesses of the protrusions smaller than the sum of the groove widths between the adjacent protrusions at the intermediate portion in the height direction of the protrusions. In this case, since the mating meat entering the groove between the adjacent convex portions has a large thickness in the circumferential direction, the shear area of the meat can be increased, and the torsional strength can be improved. And since the tooth thickness of a convex part is small, a press-fit load can be made small and a press-fit property can be aimed at. The same effect can be achieved by making the sum of the circumferential thicknesses of the respective convex portions smaller than the sum of the groove widths between the adjacent convex portions at the intermediate portion in the height direction of the convex portions.

外側継手部材のバック面と内方部材との隙間部に異物の浸入防止用のシール部材を設ければ、隙間部から凹凸嵌合構造へ雨水や異物の侵入が防止され、品質向上を図ることができる。   If a seal member for preventing the entry of foreign matter is provided in the gap between the back surface of the outer joint member and the inner member, rainwater and foreign matter can be prevented from entering the concave-convex fitting structure from the gap to improve quality. Can do.

本発明によれば、車輪用軸受装置において、使用時のガタの発生を抑制を図ることができ、しかも、ハブ輪と外側継手部材との連結作業性に優れる。また、ハブ輪と等速自在継手の外側継手部材との嵌合が安定しており、強度的にも優れた車輪用軸受装置を提供することができる。   According to the present invention, in the wheel bearing device, it is possible to suppress the occurrence of backlash during use, and the connection workability between the hub wheel and the outer joint member is excellent. Moreover, the fitting of the hub wheel and the outer joint member of the constant velocity universal joint is stable, and a wheel bearing device excellent in strength can be provided.

以下本発明の実施の形態を図1〜図26に基づいて説明する。図1に第1実施形態の車輪用軸受装置を示す。この車輪用軸受装置は、ハブ輪1を含む複列の車輪用軸受2と、等速自在継手3とが一体化されてなる。なお、以下の説明において、インボード側とは、車両に取り付けた状態で、車両の車幅方向内側となる側を意味し、アウトボード側とは、車両に取り付けた状態で車両の車幅方向外側となる側を意味する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a wheel bearing device according to a first embodiment. In this wheel bearing device, a double row wheel bearing 2 including a hub wheel 1 and a constant velocity universal joint 3 are integrated. In the following description, the inboard side means the side that is inside the vehicle width direction of the vehicle when attached to the vehicle, and the outboard side means the vehicle width direction of the vehicle when attached to the vehicle. This means the outside side.

等速自在継手3は、外側継手部材としての継手外輪5と、継手外輪5の内側に配された内側継手部材としての継手内輪6と、継手外輪5と継手内輪6との間に介在してトルクを伝達する複数のボール7と、継手外輪5と継手内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。継手内輪6はその孔部内径6aにシャフト10の端部10aを圧入することによりスプライン嵌合してシャフト10とトルク伝達可能に結合されている。なお、シャフト10の端部10aには、シャフト抜け止め用の止め輪9が嵌合されている。   The constant velocity universal joint 3 is interposed between a joint outer ring 5 as an outer joint member, a joint inner ring 6 as an inner joint member disposed inside the joint outer ring 5, and a joint outer ring 5 and a joint inner ring 6. A plurality of balls 7 that transmit torque and a cage 8 that is interposed between the joint outer ring 5 and the joint inner ring 6 and holds the balls 7 are configured as main members. The joint inner ring 6 is spline-fitted by press-fitting the end portion 10a of the shaft 10 into the hole inner diameter 6a and is coupled to the shaft 10 so as to be able to transmit torque. Note that a retaining ring 9 for retaining the shaft is fitted to the end portion 10a of the shaft 10.

継手外輪5はマウス部11と軸部(ステム部とも呼ばれる)12とからなり、マウス部11は一端にて開口した椀状で、その内球面13に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。そのトラック溝14はマウス部11の開口端まで延びている。継手内輪6は、その外球面15に、軸方向に延びた複数のトラック溝16が円周方向等間隔に形成されている。   The joint outer ring 5 includes a mouth portion 11 and a shaft portion (also referred to as a stem portion) 12. The mouth portion 11 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction on the inner spherical surface 13 thereof. Are formed at equal intervals in the circumferential direction. The track groove 14 extends to the open end of the mouse portion 11. In the joint inner ring 6, a plurality of track grooves 16 extending in the axial direction are formed on the outer spherical surface 15 at equal intervals in the circumferential direction.

継手外輪5のトラック溝14と継手内輪6のトラック溝16とは対をなし、各対のトラック溝14,16で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール7が転動可能に組み込んである。ボール7は継手外輪5のトラック溝14と継手内輪6のトラック溝16との間に介在してトルクを伝達する。ケージ8は継手外輪5と継手内輪6との間に摺動可能に介在し、外球面8aにて継手外輪5の内球面13と嵌合し、内球面8bにて継手内輪6の外球面15と嵌合する。なお、この場合の等速自在継手3は、マウス部11の開口側で外輪トラック溝14を直線状とし、マウス部11の奥部側で継手内輪トラック溝16をストレートにしたアンダーカットフリー型を示しているが、ツェパー型等の他の等速自在継手であってもよい。   The track groove 14 of the joint outer ring 5 and the track groove 16 of the joint inner ring 6 make a pair, and one ball 7 as a torque transmission element rolls on each of the ball tracks constituted by the pair of track grooves 14 and 16. Incorporated as possible. The ball 7 is interposed between the track groove 14 of the joint outer ring 5 and the track groove 16 of the joint inner ring 6 to transmit torque. The cage 8 is slidably interposed between the joint outer ring 5 and the joint inner ring 6, and is fitted to the inner spherical surface 13 of the joint outer ring 5 by the outer spherical surface 8a, and the outer spherical surface 15 of the joint inner ring 6 by the inner spherical surface 8b. Mates with. The constant velocity universal joint 3 in this case is an undercut-free type in which the outer ring track groove 14 is linear on the opening side of the mouth portion 11 and the inner ring track groove 16 is straight on the back side of the mouth portion 11. Although shown, other constant velocity universal joints such as a Zepper type may be used.

また、マウス部11の開口部はブーツ60にて塞がれている。ブーツ60は、大径部60aと、小径部60bと、大径部60aと小径部60bとを連結する蛇腹部60cとからなる。大径部60aがマウス部11の開口部に外嵌され、この状態でブーツバンド61にて締結される。また、小径部60bがシャフト10のブーツ装着部10bに外嵌され、この状態でブーツバンド62にて締結されている。   Further, the opening of the mouse part 11 is closed by a boot 60. The boot 60 includes a large-diameter portion 60a, a small-diameter portion 60b, and a bellows portion 60c that connects the large-diameter portion 60a and the small-diameter portion 60b. The large-diameter portion 60a is fitted around the opening of the mouse portion 11, and is fastened by the boot band 61 in this state. Further, the small-diameter portion 60b is externally fitted to the boot mounting portion 10b of the shaft 10, and is fastened by the boot band 62 in this state.

図2に示すように、ハブ輪1は、筒部20と、筒部20のアウトボード側の端部に設けられる車輪取り付け用のフランジ21とを有する。筒部20の孔部22は、軸方向中間部の軸部嵌合孔22aと、アウトボード側のテーパ孔22bと、インボード側の大径孔22cとを備える。テーパ孔22bは、アウトボード端部側に向かって拡径し、このテーパ孔22bの継手軸線に対するテーパ角度θを20°≦θ≦60°としている。軸部嵌合孔22aにおいて、後述する凹凸嵌合構造Mを介して継手外輪5の軸部12とハブ輪1とが結合される。また、軸部嵌合孔22aと大径孔22cとの間には、テーパ部(テーパ孔)22dが設けられている。このテーパ部22dは、継手外輪5の軸部12の軸端側に向けて縮径している。テーパ部22dのテーパ角度θ3は、例えば15°〜75°とされる。   As shown in FIG. 2, the hub wheel 1 includes a tube portion 20 and a wheel mounting flange 21 provided at an end portion of the tube portion 20 on the outboard side. The hole portion 22 of the cylindrical portion 20 includes a shaft portion fitting hole 22a in the middle portion in the axial direction, a tapered hole 22b on the outboard side, and a large diameter hole 22c on the inboard side. The diameter of the tapered hole 22b increases toward the outboard end, and the taper angle θ of the tapered hole 22b with respect to the joint axis is 20 ° ≦ θ ≦ 60 °. In the shaft portion fitting hole 22a, the shaft portion 12 of the joint outer ring 5 and the hub wheel 1 are coupled to each other through an uneven fitting structure M described later. A tapered portion (tapered hole) 22d is provided between the shaft portion fitting hole 22a and the large diameter hole 22c. The tapered portion 22 d is reduced in diameter toward the shaft end side of the shaft portion 12 of the joint outer ring 5. The taper angle θ3 of the taper portion 22d is, for example, 15 ° to 75 °.

ハブ輪1のインボード側の外周面には、小径の段差部23が形成される。この段差部23に内輪24を嵌合することで複列の内側軌道面(インナレース)28,29を有する内方部材が構成される。複列の内側軌道面のうち、アウトボード側の内側軌道面28はハブ輪1の外周面に形成され、インボード側の内側軌道面29は、内輪24の外周面に形成されている。車輪用軸受2は、この内方部材と、内方部材の外径側に配置され、内周に複列の外側軌道面(アウタレース)26,27を有する外方部材25と、外方部材25のアウトボード側の外側軌道面26とハブ輪1の内側軌道面28との間、および外方部材25のインボード側の外側軌道面27と内輪24の内側軌道面29との間に配置された転動体30としてのボールとで構成される。ハブ輪1と、ハブ輪1の外周に圧入される内輪24とで、内側軌道面28,29を有する内方部材を構成するので、車輪用軸受装置の軽量・コンパクト化を図ることができる。なお、外方部材25の両開口部にはシール部材S1、S2が装着されている。   On the outer peripheral surface of the hub wheel 1 on the inboard side, a step portion 23 having a small diameter is formed. An inner member having double-row inner raceways (inner races) 28 and 29 is formed by fitting the inner ring 24 to the stepped portion 23. Of the double-row inner raceway surfaces, the outboard side inner raceway surface 28 is formed on the outer peripheral surface of the hub wheel 1, and the inboard side inner raceway surface 29 is formed on the outer peripheral surface of the inner ring 24. The wheel bearing 2 is disposed on the outer diameter side of the inner member, the inner member, and an outer member 25 having double-row outer raceways (outer races) 26 and 27 on the inner periphery, and the outer member 25. Between the outer raceway surface 26 on the outboard side and the inner raceway surface 28 of the hub wheel 1, and between the outer raceway surface 27 on the inboard side of the outer member 25 and the inner raceway surface 29 of the inner ring 24. And a ball as the rolling element 30. Since the hub ring 1 and the inner ring 24 press-fitted into the outer periphery of the hub ring 1 constitute an inner member having the inner raceways 28 and 29, the wheel bearing device can be reduced in weight and size. Seal members S1 and S2 are attached to both openings of the outer member 25.

この車輪用軸受2は、ハブ輪1のインボード側の円筒状端部を加締め、加締めによって形成された加締部31で内輪24を押圧することによって軸受内部に予圧を付与する構造である。これによって、内輪24をハブ輪1に固定することができる。ハブ輪1の端部に形成した加締め部31で軸受2に予圧を付与した場合、継手外輪5のマウス部11で予圧を付与する必要がない。従って、予圧量を考慮せずに継手外輪5の軸部12を圧入することができ、ハブ輪1と継手外輪5との連結性(組み付け性)の向上を図ることができる。   The wheel bearing 2 has a structure in which a cylindrical end portion on the inboard side of the hub wheel 1 is swaged and a preload is applied to the inside of the bearing by pressing the inner ring 24 with a swaged portion 31 formed by swaged. is there. Thereby, the inner ring 24 can be fixed to the hub ring 1. When preload is applied to the bearing 2 by the crimped portion 31 formed at the end of the hub wheel 1, it is not necessary to apply preload at the mouth portion 11 of the joint outer ring 5. Therefore, the shaft portion 12 of the joint outer ring 5 can be press-fitted without considering the amount of preload, and the connectivity (assembleability) between the hub wheel 1 and the joint outer ring 5 can be improved.

ハブ輪1の加締め部31とマウス部11の肩部(バック面)11aとは当接させている。この場合、継手外輪5の軸部12の位置決めが行われるので、車輪軸受装置の寸法精度が安定すると共に、凹凸嵌合構造Mの軸方向長さを安定化させて、トルク伝達性の向上を図ることができる。このようにハブ輪1の加締め部31とマウス部11のバック面11aとを当接させる場合、両者の接触面圧は100MPa以下とするのが望ましい。接触面圧が100MPaを超えると、大トルク負荷時に継手外輪5とハブ輪1との捩れ量に差が生じ、この差によって接触部に急激なスリップが生じて異音を発生するおそれがあるからである。従って、接触面圧を100MPa以下とすることで、異音の発生を防止して静粛な車輪用軸受装置を提供することができる。   The caulking portion 31 of the hub wheel 1 and the shoulder portion (back surface) 11a of the mouse portion 11 are in contact with each other. In this case, since the shaft portion 12 of the joint outer ring 5 is positioned, the dimensional accuracy of the wheel bearing device is stabilized, and the axial length of the concave-convex fitting structure M is stabilized to improve torque transmission. Can be planned. When the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouse portion 11 are brought into contact with each other in this way, it is desirable that the contact surface pressure between them is 100 MPa or less. If the contact surface pressure exceeds 100 MPa, there will be a difference in the torsional amount between the joint outer ring 5 and the hub wheel 1 when a large torque is applied, and this difference may cause a sudden slip at the contact portion and generate noise. It is. Therefore, by setting the contact surface pressure to 100 MPa or less, it is possible to provide a quiet wheel bearing device that prevents the generation of abnormal noise.

ハブ輪1のフランジ21にはボルト装着孔32が設けられて、ホイールおよびブレーキロータをこのフランジ21に固定するためのハブボルト33がこのボルト装着孔32に装着される。ハブ輪1には、従来の車輪軸受装置のハブ輪に設けられていたパイロット部165が設けられていない(図24参照)。   Bolt mounting holes 32 are provided in the flange 21 of the hub wheel 1, and hub bolts 33 for fixing the wheel and brake rotor to the flange 21 are mounted in the bolt mounting holes 32. The hub wheel 1 is not provided with the pilot portion 165 provided in the hub wheel of the conventional wheel bearing device (see FIG. 24).

凹凸嵌合構造Mは、図3(a)および図3(b)に示すように、例えば、軸部12のアウトボード側の端部に設けられた軸方向に延びる凸部35と、ハブ輪1の孔部22の内径面(本実施形態では、軸部嵌合孔22aの内径面37)に形成される凹部36とで構成される。凸部35とその凸部35に嵌合するハブ輪1の凹部36との嵌合部位38全域が密着している。軸部12のアウトボード側の端部の外周面に、軸方向に延びる複数の凸部35が周方向に沿って所定ピッチで配設され、ハブ輪1の孔部22の軸部嵌合孔22aの内径面37に、凸部35が嵌合する軸方向の複数の凹部36が周方向に沿って形成されている。凸部35と凹部36とは、周方向全周にわたってタイトフィットしている。   As shown in FIGS. 3 (a) and 3 (b), the concave-convex fitting structure M includes, for example, a convex portion 35 provided in an end portion of the shaft portion 12 on the outboard side and extending in the axial direction, and a hub wheel. It is comprised with the recessed part 36 formed in the internal-diameter surface (In this embodiment, the internal-diameter surface 37 of the axial part fitting hole 22a) of the 1 hole part 22. As shown in FIG. The entire fitting portion 38 between the convex portion 35 and the concave portion 36 of the hub wheel 1 fitted to the convex portion 35 is in close contact. A plurality of convex portions 35 extending in the axial direction are disposed at a predetermined pitch along the circumferential direction on the outer peripheral surface of the end portion on the outboard side of the shaft portion 12, and the shaft portion fitting hole of the hole portion 22 of the hub wheel 1. A plurality of axial recesses 36 in which the protrusions 35 are fitted are formed along the circumferential direction on the inner diameter surface 37 of 22a. The convex portion 35 and the concave portion 36 are tight-fitted over the entire circumference.

この場合、各凸部35は、図4(a)に示すように、その断面が凸アール状の頂部を有する三角形状(山形状)であり、各凸部35の凹部との嵌合領域は、図3(b)に示す範囲Aである。断面における凸部35の円周方向両側の中腹部から頂部に至る範囲で各凸部35と凹部36が嵌合している。周方向の隣り合う凸部35間において、ハブ輪1の内径面37よりも内径側に隙間40が形成されており、そのため各凸部35の側面35bには、凹部36と嵌合しない領域Bが形成されている。   In this case, as shown in FIG. 4A, each convex portion 35 has a triangular shape (mountain shape) having a convex round-shaped top, and the fitting region of each convex portion 35 with the concave portion is A range A shown in FIG. Each convex part 35 and the recessed part 36 are fitted in the range from the middle part to the top part on both sides in the circumferential direction of the convex part 35 in the cross section. Between the adjacent convex portions 35 in the circumferential direction, a gap 40 is formed on the inner diameter side with respect to the inner diameter surface 37 of the hub wheel 1, so that the side surface 35 b of each convex portion 35 does not fit into the concave portion 36. Is formed.

凸部35は、その圧入開始側の端面35aの縁に丸みのない角部39を有する。ここで、「角部39」とは、端面35aと凸部35の周面35bとが直線的に交わることによって構成された山形の稜(多面体の隣り合った二つの面が交わってなす辺)を意味する。よって、角部にC面取りを施したものは除外されることとなるが、肉眼でC面取りがないと認められても、微視的に観察すればC面取り状のものが形成されていると認められる場合がある。また、角部は「丸みのない」ものとするが、同様に肉眼では確認できなくても、微視的にはR面取り状のものが形成されていると認められる場合がある。以上の事情から、本発明において、0.1mm以下のR面取りあるいは0.1mm以下のC面取りが形成された角部は、「丸みのない角部」に含まれるものとする。例えばモジュール0.48で歯数58枚の雄スプライン41を構成した場合に、R面取りの場合ではR0.02〜0.05mm程度のもの、C面取りの場合ではC0.02〜0.05mm程度のものは「丸みのない角部」に含める。ここで、モジュールとは、ピッチ円直径を歯数で割ったものである。   The convex part 35 has the corner | angular part 39 without the roundness in the edge of the end surface 35a of the press injection start side. Here, the “corner portion 39” is a mountain-shaped ridge formed by linearly intersecting the end surface 35a and the peripheral surface 35b of the convex portion 35 (side formed by two adjacent surfaces of a polyhedron intersecting each other). Means. Therefore, C-chamfered corners are excluded, but even if it is recognized that there is no C-chamfer with the naked eye, a C-chamfered shape is formed if observed microscopically. May be allowed. In addition, the corners are assumed to be “unrounded”. However, even if the corners cannot be confirmed with the naked eye, it may be recognized that an R chamfer is formed microscopically. In view of the above circumstances, in the present invention, a corner where an R chamfer of 0.1 mm or less or a C chamfer of 0.1 mm or less is formed is included in the “corner without roundness”. For example, when the male spline 41 having 58 teeth is configured with the module 0.48, in the case of R chamfering, it is about R0.02 to 0.05 mm, and in the case of C chamfering, about C0.02 to 0.05 mm. Include things in the “round corners”. Here, the module is a pitch circle diameter divided by the number of teeth.

凸部35としては、図4(b)に示すようにその頂部が平坦面44で形成されたものも使用することができる。   As the convex portion 35, a convex portion having a flat surface 44 as shown in FIG. 4B can be used.

図1に示すように、継手外輪5の軸部12の端部とハブ輪1の内径面37との間に軸部の抜けを規制するための抜け止め構造M1が設けられている。この抜け止め構造M1は、継手外輪5の軸部12の端部からアウトボード側に延びてテーパ孔22bと軸方向で係合するテーパ状係止片65で構成される。テーパ状係止片65は、インボード側からアウトボード側に向かって拡径するリング状体からなり、その外周面65aの少なくとも一部がテーパ孔22bに圧接もしくは接触している。   As shown in FIG. 1, a retaining structure M <b> 1 is provided between the end of the shaft portion 12 of the joint outer ring 5 and the inner diameter surface 37 of the hub wheel 1 to restrict the shaft portion from coming off. The retaining structure M1 includes a tapered locking piece 65 that extends from the end of the shaft portion 12 of the joint outer ring 5 to the outboard side and engages with the tapered hole 22b in the axial direction. The tapered locking piece 65 is a ring-shaped body whose diameter increases from the inboard side to the outboard side, and at least a part of the outer peripheral surface 65a is in pressure contact with or in contact with the tapered hole 22b.

例えば車両発進時、車輪用軸受2の内輪24と等速自在継手3の継手外輪5のバック面11aとの面圧が高くなると、車輪用軸受2の内輪24と等速自在継手3の継手外輪5のバック面11aとの間で、カッキン音と通称されるスティックスリップ音が発生するおそれがある。しかしながら、本発明ではテーパ孔22bの継手軸線に対するテーパ角度θを20°≦θ≦60°としているので、凹凸嵌合構造の耐抜け荷重を維持しつつ車輪用軸受2のインボード側端部とマウス部11のバック面11aとの面圧が高くなるのを防止することができる。これにより、カッキン音の発生を防止でき、しかも効果的に抜け止め効果を発揮できる。θが20°未満では、車輪用軸受2の内輪24のインボード側端部と等速自在継手3の継手外輪5のバック面11aとの面圧を低減できるが、抜け止め効果が得られなくなる。また、60°を超えると、耐抜け荷重は高くなるが、抜け止め部が等速自在継手3を軸方向に押し付ける力が大きくなって、車輪用軸受2の内輪24のインボード側端部と等速自在継手3の継手外輪5のバック面11aとの面圧が高くなるため、カッキン音が大きくなる。しかも、円筒面をテーパ形状に拡径するため、先端部(抜け止め部の大径側)の肉厚が薄くなり、期待通りの耐抜け荷重を得ることができなくなる。   For example, when the surface pressure between the inner ring 24 of the wheel bearing 2 and the back surface 11a of the joint outer ring 5 of the constant velocity universal joint 3 increases when the vehicle starts, the inner ring 24 of the wheel bearing 2 and the joint outer ring of the constant velocity universal joint 3 become higher. There is a possibility that a stick-slip sound commonly referred to as a “cuckling sound” may occur between the back surface 11a and the back surface 11a. However, in the present invention, since the taper angle θ with respect to the joint axis of the tapered hole 22b is 20 ° ≦ θ ≦ 60 °, the end portion on the inboard side of the wheel bearing 2 and It can prevent that the surface pressure with the back surface 11a of the mouse | mouth part 11 becomes high. Thereby, generation | occurrence | production of a cuckling sound can be prevented and the fall-out prevention effect can be exhibited effectively. If θ is less than 20 °, the surface pressure between the inboard side end of the inner ring 24 of the wheel bearing 2 and the back surface 11a of the joint outer ring 5 of the constant velocity universal joint 3 can be reduced, but the retaining effect cannot be obtained. . Further, if it exceeds 60 °, the load resistance increases, but the force with which the retaining portion presses the constant velocity universal joint 3 in the axial direction increases, and the inboard side end portion of the inner ring 24 of the wheel bearing 2 Since the surface pressure of the constant velocity universal joint 3 with the back surface 11a of the joint outer ring 5 is increased, the cuckling noise is increased. In addition, since the diameter of the cylindrical surface is increased to a tapered shape, the thickness of the tip portion (large diameter side of the retaining portion) becomes thin, and it is impossible to obtain an expected anti-slip load.

この車輪用軸受装置では、凹凸嵌合構造Mへの異物侵入防止手段Wを、凹凸嵌合構造Mよりもアウトボード側に設けている。   In this wheel bearing device, the foreign matter intrusion preventing means W to the concave / convex fitting structure M is provided on the outboard side of the concave / convex fitting structure M.

また、図25に示すように、ハブ輪1の加締部31とマウス部11のバック面11aとの間の隙間98を設けてもよい。この場合、インボード側では、図26(a)及び図26(b)に示すように、ハブ輪1の加締部31とマウス部11のバック面11aとの間の隙間98にシール部材99が嵌着され、このシール部材99でインボード側の異物侵入防止手段W1が構成されている。隙間98は、ハブ輪1の加締部31とマウス部11のバック面11aとの間から、ハブ輪1の大径孔22cと軸部12との間に至るまで形成される。このように、隙間98のコーナ部、すなわちハブ輪1の加締部31と大径部12cとの境界部分にシール部材99を配置し、ハブ輪1の端部とマウス部11の底部との間の隙間98を塞ぐことで、この隙間98からの凹凸嵌合構造Mへの雨水や異物の侵入を防止することができる。シール部材99としては、例えば、図26(a)に示すような市販のOリング等を使用することができる。シール部材99は、ハブ輪1の端部とマウス部11の底部との間に介在可能である限り任意のものが使用可能であり、Oリング以外にも、例えば図26(b)に示すようなガスケット等のようなものも使用可能である。   Further, as shown in FIG. 25, a gap 98 between the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouth portion 11 may be provided. In this case, on the inboard side, as shown in FIGS. 26 (a) and 26 (b), a seal member 99 is provided in a gap 98 between the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouth portion 11. The seal member 99 constitutes the inboard foreign matter intrusion prevention means W1. The gap 98 is formed from the space between the caulking portion 31 of the hub wheel 1 and the back surface 11 a of the mouth portion 11 to the space between the large-diameter hole 22 c of the hub wheel 1 and the shaft portion 12. In this way, the seal member 99 is disposed at the corner portion of the gap 98, that is, at the boundary portion between the caulking portion 31 of the hub wheel 1 and the large diameter portion 12c, and the end portion of the hub wheel 1 and the bottom portion of the mouth portion 11 are located. By closing the gap 98 therebetween, it is possible to prevent rainwater and foreign matter from entering the concave-convex fitting structure M from the gap 98. As the seal member 99, for example, a commercially available O-ring as shown in FIG. As the seal member 99, any member can be used as long as it can be interposed between the end of the hub wheel 1 and the bottom of the mouth portion 11. Other than the O-ring, for example, as shown in FIG. Something like a gasket can also be used.

アウトボード側の異物侵入防止手段W2は、係合部であるテーパ状係止片65と、テーパ孔22bの内径面との間に介在されるシール材(図示省略)とで構成することができる。この場合、テーパ状係止片65にシール材が塗布されることになる。すなわち、塗布後に硬化してテーパ状係止片65と、テーパ孔22bの内径面の間において密封性を発揮できる種々の樹脂からなるシール材をテーパ状係止片65に塗布すればよい。なお、このシール材としては、この車輪用軸受装置が使用される雰囲気中において劣化しないものが選択される。   The outboard-side foreign matter intrusion preventing means W2 can be constituted by a tapered locking piece 65 as an engaging portion and a sealing material (not shown) interposed between the inner diameter surface of the tapered hole 22b. . In this case, the sealing material is applied to the tapered locking piece 65. That is, a sealing material made of various resins that can be cured after application and can exhibit sealing performance between the tapered locking piece 65 and the inner diameter surface of the tapered hole 22 b may be applied to the tapered locking piece 65. In addition, as this sealing material, the thing which does not deteriorate in the atmosphere where this wheel bearing apparatus is used is selected.

凸部35と凹部36との間にシール材を介在させ、これによって、異物侵入防止手段W(W3)を構成してもよい。この場合、凸部35の表面に、塗布後に硬化して、嵌合接触部位38間において密封性を発揮できる種々の樹脂からなるシール材を塗布すればよい。   A sealing material may be interposed between the convex portion 35 and the concave portion 36, whereby the foreign matter intrusion prevention means W (W3) may be configured. In this case, a sealing material made of various resins that can be cured after application and exhibit sealing properties between the fitting contact portions 38 may be applied to the surface of the convex portion 35.

上記凹凸嵌合構造Mは、以下の手順で得ることができる。   The uneven fitting structure M can be obtained by the following procedure.

先ず、継手外輪5の軸部12に、公知の加工方法(転造加工、切削加工、プレス加工、引き抜き加工等)を用いて、軸方向に延びた多数の歯を有する雄スプライン41を形成する。雄スプライン41のうち、歯底41bを通る円、歯先41a、および歯先41aにつながる両側面で囲まれた領域が凸部35となる。   First, a male spline 41 having a large number of teeth extending in the axial direction is formed on the shaft portion 12 of the joint outer ring 5 using a known processing method (rolling, cutting, pressing, drawing, etc.). . Of the male spline 41, a region surrounded by a circle passing through the tooth bottom 41b, the tooth tip 41a, and both side surfaces connected to the tooth tip 41a is the convex portion 35.

雄スプライン41は、モジュールを0.5以下とし、通常使用されるスプラインのモジュールよりも小さい歯とするのが望ましい。これにより、スプライン41の成形性の向上を図ることができるとともに、雄スプライン41をハブ輪1の軸部嵌合孔22aに圧入する際の圧入荷重を小さくすることができる。軸部12の凸部35を雄スプライン41で形成することにより、この種のシャフトにスプラインを形成するための加工設備を活用することができ、低コストに凸部35を形成することが可能である。   The male spline 41 has a module of 0.5 or less, and preferably has a smaller tooth than a normally used spline module. As a result, the moldability of the spline 41 can be improved, and the press-fit load when the male spline 41 is press-fitted into the shaft portion fitting hole 22a of the hub wheel 1 can be reduced. By forming the convex portion 35 of the shaft portion 12 with the male spline 41, it is possible to utilize processing equipment for forming a spline on this type of shaft, and the convex portion 35 can be formed at low cost. is there.

次いで、図5(b)にクロスハッチングで示すように、軸部12の外径面に熱硬化処理を施して硬化層Hを形成する。硬化層Hは、凸部35の全体および歯底41bも含めて円周方向に連続して形成される。なお、硬化層Hの軸方向の形成範囲は、少なくとも雄スプライン41のアウトボード側の端縁から、継手外輪5のマウス部11の底壁の内径部に至るまでの連続領域を含んだ範囲とする。熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。   Next, as shown by cross-hatching in FIG. 5B, a thermosetting process is performed on the outer diameter surface of the shaft portion 12 to form a hardened layer H. The hardened layer H is continuously formed in the circumferential direction including the entire convex portion 35 and the tooth bottom 41b. In addition, the axial formation range of the hardened layer H is a range including at least a continuous region from the edge on the outboard side of the male spline 41 to the inner diameter portion of the bottom wall of the mouth portion 11 of the joint outer ring 5. To do. As the thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. In addition, carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched.

その一方、ハブ輪1の内径側は未焼き状態に維持される。すなわち、ハブ輪1の孔部22の内径面37は熱硬化処理を行わない未硬化部(未焼き状態)とする。継手外輪5の軸部12の硬化層Hとハブ輪1の未硬化部との硬度差は、HRCで20ポイント以上とする。例えば、硬化層Hの硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。ハブ輪1の内径面37のうち、少なくとも軸部嵌合孔22aの内径面37が未硬化部であれば足り、その他の内径面には熱硬化処理を施しても構わない。また、上記硬度差が確保されるのであれば、「未硬化部」とすべき上記領域に熱硬化処理を施してもよい。   On the other hand, the inner diameter side of the hub wheel 1 is maintained in an unburned state. That is, the inner diameter surface 37 of the hole portion 22 of the hub wheel 1 is an uncured portion (unburned state) that is not subjected to thermosetting. The hardness difference between the hardened layer H of the shaft portion 12 of the joint outer ring 5 and the uncured portion of the hub wheel 1 is 20 points or more in HRC. For example, the hardness of the hardened layer H is about 50 HRC to 65 HRC, and the hardness of the uncured portion is about 10 HRC to about 30 HRC. Of the inner diameter surface 37 of the hub wheel 1, it is sufficient that at least the inner diameter surface 37 of the shaft portion fitting hole 22 a is an uncured portion, and the other inner diameter surface may be subjected to thermosetting treatment. Further, if the hardness difference is ensured, the region to be the “uncured portion” may be subjected to a heat curing treatment.

この際、凸部35の高さ方向の中間部を、凹部形成前のハブ輪1の軸部嵌合孔22の内径面37の位置に対応させる。すなわち、図8に示すように、軸部嵌合孔22aの内径面37の内径寸法Dを、雄スプライン41の凸部35の最大外径寸法(雄スプライン41の歯先41aをとおる外接円の直径寸法)D1よりも小さく、雄スプライン41の歯底を結ぶ円の直径寸法D2よりも大きくなるように設定する(D2<D<D1)。これにより、少なくとも丸みのない角部39は凸部の端面35aの縁のうち、凹部36を形成する部位に配置される。   At this time, the intermediate portion in the height direction of the convex portion 35 is made to correspond to the position of the inner diameter surface 37 of the shaft portion fitting hole 22 of the hub wheel 1 before the concave portion is formed. That is, as shown in FIG. 8, the inner diameter dimension D of the inner diameter surface 37 of the shaft fitting hole 22a is set to the maximum outer diameter dimension of the convex portion 35 of the male spline 41 (the circumscribed circle passing through the tooth tip 41a of the male spline 41). The diameter dimension is set to be smaller than D1 and larger than the diameter dimension D2 of the circle connecting the tooth bottoms of the male spline 41 (D2 <D <D1). Accordingly, at least the non-rounded corner portion 39 is disposed in a portion of the edge of the end surface 35a of the convex portion where the concave portion 36 is formed.

図5(b)に示すように、軸部12の端面12aには、その外周縁部から前記テーパ状係止片65を構成するための短円筒部66が軸方向に沿って突出して形成される。短円筒部66の外径D4は孔部22の嵌合孔22aの内径寸法Dよりも小さく設定されている。この短円筒部66は、後述するように、軸部12のハブ輪1の孔部22への圧入時の調芯部材となる。   As shown in FIG. 5B, a short cylindrical portion 66 for forming the tapered locking piece 65 is formed on the end surface 12a of the shaft portion 12 so as to protrude from the outer peripheral edge portion along the axial direction. The The outer diameter D4 of the short cylindrical portion 66 is set smaller than the inner diameter dimension D of the fitting hole 22a of the hole portion 22. As will be described later, the short cylindrical portion 66 serves as an alignment member at the time of press-fitting into the hole 22 of the hub wheel 1 of the shaft portion 12.

次いで、ハブ輪1の軸心と等速自在継手3の継手外輪5の軸心とを合わせた状態で、ハブ輪1の孔22に継手外輪5の軸部12を圧入する。この際、軸部12のうち、雄スプライン部41および短円筒部66を含むアウトボード側領域の外径面に予めシール材を塗布しておく。上記のように、ハブ輪1の孔部22に圧入方向に沿って縮径するテーパ部22dを形成しているので、このテーパ部22dが圧入開始時のハブ輪孔部22と軸部12との芯出しを行なう。また、軸部嵌合孔22aの内径寸法D、凸部35の最大外径寸法D1、および雄スプライン41の歯底の最小外径寸法D2とが前記のような関係であるので、軸部12をハブ輪1の軸部嵌合孔22aに圧入することにより、この凸部35がハブ輪1のインボード側端面の内径部に食い込み、ハブ輪1の肉を切り込む。軸部12を押し進めることで、ハブ輪1の軸部嵌合孔22aの内径面37が凸部35で切り出され、又は押出されて、内径面37に軸部12の凸部35に対応した形状の凹部36が形成される。この際、凸部35の端面35aの縁に丸みのない角部39が形成されているので、凸部35によるハブ輪1の切り込みがスムーズに行われ、圧入荷重の増大を防止することができる。また、軸部12の凸部35の硬度をハブ輪1の軸部嵌合孔22aの内径面37よりも20ポイント以上高くしているので、ハブ輪1の内径面37への凹部形成が容易となる。また、軸部側の硬度を高くすることで、軸部12の捩り強度を向上させることができる。 Next, with the shaft center of the hub wheel 1 and the shaft center of the joint outer ring 5 of the constant velocity universal joint 3 aligned with each other, the shaft portion 12 of the joint outer ring 5 is press-fitted into the hole 22 of the hub wheel 1. At this time, a seal material is previously applied to the outer diameter surface of the outboard side region including the male spline portion 41 and the short cylindrical portion 66 in the shaft portion 12. As described above, since the tapered portion 22d having a diameter reduced along the press-fitting direction is formed in the hole portion 22 of the hub wheel 1, the tapered portion 22d is provided with the hub ring hole portion 22 and the shaft portion 12 at the start of press-fitting. Perform centering. Further, since the inner diameter dimension D of the shaft fitting hole 22a, the maximum outer diameter dimension D1 of the convex portion 35, and the minimum outer diameter dimension D2 of the tooth bottom of the male spline 41 are as described above, the shaft section 12 Is inserted into the shaft fitting hole 22a of the hub wheel 1 so that the convex portion 35 bites into the inner diameter portion of the end face on the inboard side of the hub wheel 1 and cuts the meat of the hub wheel 1. By pushing the shaft portion 12 forward, the inner diameter surface 37 of the shaft portion fitting hole 22 a of the hub wheel 1 is cut out or extruded by the convex portion 35, and the shape corresponding to the convex portion 35 of the shaft portion 12 is formed on the inner diameter surface 37. A recess 36 is formed. At this time, since the rounded corner portion 39 is formed at the edge of the end surface 35a of the convex portion 35, the hub wheel 1 is smoothly cut by the convex portion 35, and an increase in press-fit load can be prevented. . Further, since the hardness of the convex portion 35 of the shaft portion 12 is 20 points or more higher than the inner diameter surface 37 of the shaft portion fitting hole 22a of the hub wheel 1, it is easy to form a recess on the inner diameter surface 37 of the hub wheel 1. It becomes. Moreover, the torsional strength of the shaft portion 12 can be improved by increasing the hardness of the shaft portion side.

この圧入工程を経ることによって、図3(a)および図3(b)に示すように、軸部12の凸部35で、これに嵌合する凹部36が形成される。凸部35が、ハブ輪1の内径面37に食い込んでいくことによって、孔部22が僅かに拡径した状態となり、凸部35の軸方向の移動を許容する。その一方で、軸方向の移動が停止すれば、内径面37が元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時にハブ輪1が外径方向に弾性変形し、この弾性変形分の予圧が凸部35のうち、凹部36と嵌合する部分の表面に付与される。このため、凹部36は、その軸方向全体にわたって凸部35の表面と密着する。これによって凹凸嵌合構造Mが構成される。凸部35と凹部36の嵌合部38には、シール材が介在しているので、この嵌合部38への異物の侵入防止を図ることができる。   By passing through this press-fitting process, as shown in FIG. 3A and FIG. 3B, a concave portion 36 fitted to the convex portion 35 of the shaft portion 12 is formed. As the convex portion 35 bites into the inner diameter surface 37 of the hub wheel 1, the hole portion 22 is slightly expanded in diameter, and the convex portion 35 is allowed to move in the axial direction. On the other hand, if the movement in the axial direction stops, the inner diameter surface 37 is reduced in diameter to return to the original diameter. In other words, when the convex portion 35 is press-fitted, the hub wheel 1 is elastically deformed in the outer diameter direction, and a preload corresponding to the elastic deformation is applied to the surface of a portion of the convex portion 35 that fits the concave portion 36. For this reason, the recessed part 36 closely_contact | adheres to the surface of the convex part 35 over the whole axial direction. Thereby, the concave-convex fitting structure M is configured. Since a sealing material is interposed in the fitting portion 38 of the convex portion 35 and the concave portion 36, it is possible to prevent foreign matter from entering the fitting portion 38.

また、軸部12の圧入に伴い、凹部36の表面には加工硬化が生じる。このため、凹部36側のハブ輪1の内径面37が硬化して、回転トルク伝達性の向上を図ることができる。   Further, with the press-fitting of the shaft portion 12, work hardening occurs on the surface of the recess 36. For this reason, the inner diameter surface 37 of the hub wheel 1 on the concave portion 36 side is hardened, and the rotational torque transmission can be improved.

テーパ部22dは、軸部12の圧入を開始する際のガイドとして機能させることができる。そのため、ハブ輪1の孔部22に対して継手外輪5の軸部12を、芯ずれを生じさせることなく圧入させることができる。また、短円筒部66の外径D4を、孔部22の嵌合孔22aの内径寸法Dよりも小さく設定しているので、短円筒部66を調芯部材として機能させることができ、芯ずれを防止しつつ軸部12をハブ輪1に圧入することができ、より安定した圧入が可能となる。   The tapered portion 22d can function as a guide when starting the press-fitting of the shaft portion 12. Therefore, the shaft portion 12 of the joint outer ring 5 can be pressed into the hole portion 22 of the hub wheel 1 without causing misalignment. Further, since the outer diameter D4 of the short cylindrical portion 66 is set to be smaller than the inner diameter dimension D of the fitting hole 22a of the hole portion 22, the short cylindrical portion 66 can function as an alignment member, and misalignment occurs. It is possible to press-fit the shaft portion 12 into the hub wheel 1 while preventing the above-described problem, and more stable press-fitting is possible.

凹凸嵌合構造Mは、極力、軸受2の軌道面26、27、28、29の内径側を避けて配置することが求められる。特にインナレース28、29上における接触角が通る線との交点の内径側を避け、これらの交点の間の軸方向一部領域に凹凸嵌合構造Mを形成することが望まれる。これにより、軸受軌道面におけるフープ応力の発生を抑えることができる。従って、転がり疲労寿命の低下、クラック発生、及び応力腐食割れ等の軸受の不具合発生を防止することができ、高品質な軸受を提供することができる。   The concave / convex fitting structure M is required to be disposed so as to avoid the inner diameter side of the raceway surfaces 26, 27, 28, and 29 of the bearing 2 as much as possible. In particular, it is desirable to avoid the inner diameter side of the intersection with the line through which the contact angle passes on the inner races 28 and 29, and to form the concave / convex fitting structure M in a partial region in the axial direction between these intersections. Thereby, generation | occurrence | production of the hoop stress in a bearing raceway surface can be suppressed. Therefore, it is possible to prevent bearing failures such as a decrease in rolling fatigue life, occurrence of cracks, and stress corrosion cracking, and a high-quality bearing can be provided.

継手外輪5の軸部12をハブ輪1の孔部22に圧入する際には、継手外輪5のマウス部11の外径面に設けられた周方向溝16の側壁18に、図18に示すような仮想線で示す圧入用治具Kを係合させて、この圧入用治具Kから側壁18に圧入荷重(軸方向荷重)を付与すればよい。さらに、マウス部11の開口端面を図示省略の押圧用治具にて押圧力を付与すればよい。なお、周方向溝16としては周方向全周に設けても、周方向に沿って所定ピッチで設けてもよい。使用する圧入用治具も、これらの周方向溝16の形状に対応して軸方向荷重を付与できるものであればよい。   When the shaft portion 12 of the joint outer ring 5 is press-fitted into the hole portion 22 of the hub wheel 1, the side wall 18 of the circumferential groove 16 provided on the outer diameter surface of the mouth portion 11 of the joint outer ring 5 is shown in FIG. A press-fitting load (axial load) may be applied from the press-fitting jig K to the side wall 18 by engaging the press-fitting jig K indicated by the virtual line. Furthermore, a pressing force may be applied to the opening end surface of the mouse portion 11 with a pressing jig (not shown). In addition, as the circumferential groove | channel 16, you may provide in the circumferential direction whole periphery, and may be provided in the predetermined pitch along the circumferential direction. The press-fitting jig to be used may be any one that can apply an axial load corresponding to the shape of the circumferential grooves 16.

凹凸嵌合構造Mを介して継手外輪5の軸部12とハブ輪1とが一体化された状態では、図6に示すように、短円筒部66が嵌合孔22aからアウトボード側に突出する。   In a state where the shaft portion 12 of the joint outer ring 5 and the hub wheel 1 are integrated through the concave / convex fitting structure M, as shown in FIG. 6, the short cylindrical portion 66 protrudes from the fitting hole 22a to the outboard side. To do.

この短円筒部66は、治具67を使用して拡径方向に塑性変形される。治具67は、円柱状の本体部68と、この本体部68の先端部に連設される円錐台部69とを備える。治具67の円錐台部69は、その傾斜面69aの傾斜角度がテーパ孔22bの傾斜角度と略同一とされ、かつ、その先端の外径が短円筒部66の内径と同一乃至僅かに短円筒部66の内径よりも小さい寸法に設定されている。治具67の円錐台部69を、テーパ孔22bを介してアウトボード側から嵌入することによって矢印α方向の荷重を付加し、これによって、図7に示すように、短円筒部66に矢印β方向の拡径力を付与する。この際、治具67の円錐台部69によって、短円筒部66が外径側に塑性変形し、テーパ孔22bの内径面に押し付けされる。これに伴い、予め短円筒部66の外径面に塗布されたシール材がテーパ孔22bの内径面に密着し、異物侵入防止手段W2を構成する。また、塑性変形した短円筒部66がテーパ孔22bの内径面と係合するテーパ状係止片65となり、軸部12の抜け止め構造M1を構成する。なお、治具67により矢印α方向の荷重を付加する際には、ハブ輪1や等速自在継手3等の一部を図示しない固定部材で支持して荷重を受ければよい。短円筒部66の内径面は軸端側に拡径するテーパ形状でも良い。このような形状にしておけば、鍛造で軸部12の内径面を成形することが可能となり、コスト低減に繋がる。   The short cylindrical portion 66 is plastically deformed in the diameter expansion direction using a jig 67. The jig 67 includes a columnar main body 68 and a truncated cone 69 connected to the tip of the main body 68. The frustoconical part 69 of the jig 67 has an inclined surface 69a whose inclination angle is substantially the same as that of the tapered hole 22b, and whose outer diameter at the tip is the same as or slightly shorter than the inner diameter of the short cylindrical part 66. The dimension is set smaller than the inner diameter of the cylindrical portion 66. By inserting the truncated cone part 69 of the jig 67 from the outboard side through the taper hole 22b, a load in the direction of arrow α is applied, and as shown in FIG. Gives direction expansion force. At this time, the short cylindrical portion 66 is plastically deformed to the outer diameter side by the truncated cone portion 69 of the jig 67 and is pressed against the inner diameter surface of the tapered hole 22b. Along with this, the sealing material previously applied to the outer diameter surface of the short cylindrical portion 66 is brought into close contact with the inner diameter surface of the tapered hole 22b, thereby constituting the foreign matter intrusion prevention means W2. Further, the plastically deformed short cylindrical portion 66 becomes a tapered locking piece 65 that engages with the inner diameter surface of the tapered hole 22b, and constitutes a retaining structure M1 of the shaft portion 12. In addition, when applying the load in the direction of the arrow α by the jig 67, a part of the hub wheel 1, the constant velocity universal joint 3 and the like may be supported by a fixing member (not shown) to receive the load. The inner cylindrical surface of the short cylindrical portion 66 may have a tapered shape that expands toward the shaft end. With such a shape, the inner diameter surface of the shaft portion 12 can be formed by forging, which leads to cost reduction.

また、治具67の矢印α方向の荷重を低減させるため、短円筒部66に切り欠きを入れても良いし、治具67の円錐台部69の円錐面を周方向で部分的に配置するものでも良い。短円筒部66に切り欠きを入れた場合、短円筒部66を拡径し易くなる。また、治具67の円錐台部69の円錐面を周方向で部分的に配置するものである場合、短円筒部66を拡径させる部位が円周上の一部になるため、治具67の押し込み荷重を低減させることができる。   Further, in order to reduce the load of the jig 67 in the direction of the arrow α, the short cylindrical portion 66 may be notched, and the conical surface of the truncated cone portion 69 of the jig 67 is partially arranged in the circumferential direction. Things can be used. When the short cylindrical portion 66 is notched, the short cylindrical portion 66 can be easily expanded in diameter. Further, in the case where the conical surface of the truncated cone part 69 of the jig 67 is partially arranged in the circumferential direction, a part where the diameter of the short cylindrical part 66 is enlarged becomes a part on the circumference. The indentation load can be reduced.

この凹凸嵌合構造Mでは、ハブ輪1に対する凸部35の圧入代をΔdとし、凸部の高さをhとして、圧入代Δdは、図8に示すように、軸部12の最大外径寸法D1(凸部35の歯先41aを通る外接円直径)と、ハブ輪1の軸部嵌合孔22aの内径寸法Dとの径差(D1−D)で表される。これにより、凸部35の高さ方向中間部付近がハブ輪1の内径面に食い込むことになるので、凸部35の圧入代を十分に確保することができ、凹部36を確実に形成することが可能となる。   In this uneven fitting structure M, the press-fitting allowance of the convex portion 35 to the hub wheel 1 is Δd, the height of the convex portion is h, and the press-fitting allowance Δd is the maximum outer diameter of the shaft portion 12 as shown in FIG. It is represented by a diameter difference (D1-D) between the dimension D1 (the circumscribed circle diameter passing through the tooth tip 41a of the convex portion 35) and the inner diameter dimension D of the shaft portion fitting hole 22a of the hub wheel 1. Thereby, since the vicinity of the intermediate portion in the height direction of the convex portion 35 bites into the inner diameter surface of the hub wheel 1, a sufficient press-fitting allowance for the convex portion 35 can be ensured, and the concave portion 36 can be reliably formed. Is possible.

以上に述べた凹凸嵌合構造Mでは、凸部35と凹部36との嵌合部位38の全体が密着しているので、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生もない。   In the concave / convex fitting structure M described above, since the entire fitting portion 38 of the convex portion 35 and the concave portion 36 is in close contact with each other, there is no gap between the radial direction and the circumferential direction. For this reason, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.

また、凹部36が形成される部材(この場合、ハブ輪1)には、雌スプライン等を予め形成しておく必要がない。従って、生産性に優れ、かつスプライン同士の位相合わせを必要としないことから組立性の向上を図ることができる。さらに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。   Further, it is not necessary to previously form a female spline or the like on the member (in this case, the hub wheel 1) in which the recess 36 is formed. Therefore, the productivity is excellent and the phase alignment between the splines is not required, so that the assemblability can be improved. Furthermore, damage to the tooth surface during press-fitting can be avoided, and a stable fitting state can be maintained.

特に、凸部35に設けた丸みのない角部39によって、ハブ輪1の孔部22の内径面37を切り出す、又は押出すことができるので、圧入荷重の増大を防止できる。また、ハブ輪1の内径側は比較的軟らかいため、ハブ輪1の凹部は、軸部12の凸部35と高い密着性をもって嵌合する。そのため、径方向及び円周方向におけるガタの防止により一層有効となる。   In particular, since the inner surface 37 of the hole 22 of the hub wheel 1 can be cut out or extruded by the non-round corner 39 provided on the convex portion 35, an increase in press-fit load can be prevented. Further, since the inner diameter side of the hub wheel 1 is relatively soft, the concave portion of the hub wheel 1 is fitted with the convex portion 35 of the shaft portion 12 with high adhesion. Therefore, it becomes more effective by preventing play in the radial direction and the circumferential direction.

以上に述べた車輪用軸受装置では、継手外輪5の軸部12の端部からアウトボード側に延びるテーパ状係止片65をテーパ孔22bの内径面に圧接もしくは接触させることで、継手外輪5の軸部12の端部とハブ輪1の内径面37との間に軸部12の抜け止め構造M1を設けている。この抜け止め構造M1によって、ハブ輪1からの継手外輪5の軸部12のインボード側への抜けを防止し、安定した連結状態を維持することができる。また、抜け止め構造M1がテーパ状係止片65であるので、従来のようなねじ締結を省略できる。このため、軸部12にハブ輪1の孔部22から突出するねじ部を形成する必要がなく、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組立作業性の向上を図ることができる。しかも、テーパ状係止片65では、継手外輪5の軸部12の一部を拡径させればよく、抜け止め構造M1の形成を容易に行うことができる。なお、継手外輪5の軸部12のアウトボード側への移動は、軸部12をさらに圧入する方向への押圧力が必要であり、継手外輪5のマウス部11の底部がハブ輪1の加締部31に当接しているので、ハブ輪1から継手外輪5の軸部12が抜けることがない。   In the wheel bearing device described above, the joint outer ring 5 is formed by pressing or contacting the tapered locking piece 65 extending from the end of the shaft portion 12 of the joint outer ring 5 toward the outboard side to the inner diameter surface of the taper hole 22b. A retaining structure M1 for the shaft portion 12 is provided between the end portion of the shaft portion 12 and the inner diameter surface 37 of the hub wheel 1. With this retaining structure M1, it is possible to prevent the shaft portion 12 of the joint outer ring 5 from coming off from the hub wheel 1 to the inboard side and maintain a stable connected state. Moreover, since the retaining structure M1 is the tapered locking piece 65, conventional screw fastening can be omitted. For this reason, it is not necessary to form the screw part which protrudes from the hole part 22 of the hub wheel 1 in the shaft part 12, and while being able to achieve weight reduction, a screw fastening operation | work can be abbreviate | omitted and aiming at improvement of assembly workability | operativity. Can do. Moreover, in the tapered locking piece 65, it is only necessary to increase the diameter of a part of the shaft portion 12 of the joint outer ring 5, and the retaining structure M1 can be easily formed. The movement of the shaft portion 12 of the joint outer ring 5 toward the outboard side requires a pressing force in the direction in which the shaft portion 12 is further press-fitted, and the bottom portion of the mouth portion 11 of the joint outer ring 5 is added to the hub wheel 1. Since it is in contact with the tightening portion 31, the shaft portion 12 of the joint outer ring 5 does not come off from the hub wheel 1.

また、以上に述べた車輪用軸受装置では、凹凸嵌合構造Mのインボード側およびアウトボード側にそれぞれ異物侵入防止手段W2を設けているので、凹凸嵌合構造Mへの軸方向両端側からの雨水や異物の侵入が防止され、凸部35と凹部36との密着性を長期間安定して維持することが可能となる。   Further, in the wheel bearing device described above, the foreign matter intrusion prevention means W2 is provided on the inboard side and the outboard side of the concave / convex fitting structure M, respectively. Intrusion of rainwater or foreign matter is prevented, and the adhesion between the convex portion 35 and the concave portion 36 can be stably maintained for a long period of time.

軸部12に形成される凸部35として、図9(a)〜図9(c)に示すように、凸部35の圧入開始側の端面35aの頂部に切欠部53を設けたものも使用することができる。図9(a)はC面取りで形成した切欠部53(図10(a)参照)、図9(b)はR面取りで形成した切欠部53(図10(b)参照)を例示している。この他、図9(c)及び図10(c)に示すように、外径側の一つのコーナ部にC面取り状の切欠部53を形成してもよい。なお、丸みのない角部39は、図9(a)、9(b)の場合には切欠部53を除く端面35aの両斜辺で構成することができ、図9(c)の場合には切欠部53を除く端面35aの両斜辺および頂辺で構成することができる。   As the convex part 35 formed in the shaft part 12, as shown in FIG. 9A to FIG. 9C, the one provided with a notch 53 at the top of the end face 35a on the press-fitting start side of the convex part 35 is also used. can do. 9A illustrates a notch 53 (see FIG. 10A) formed by C chamfering, and FIG. 9B illustrates a notch 53 (see FIG. 10B) formed by R chamfering. . In addition, as shown in FIGS. 9C and 10C, a C-chamfered cutout 53 may be formed in one corner portion on the outer diameter side. The rounded corner portion 39 can be constituted by both oblique sides of the end surface 35a excluding the cutout portion 53 in the case of FIGS. 9A and 9B, and in the case of FIG. 9C. It can be constituted by both the oblique sides and the apex side of the end surface 35a excluding the notch 53.

このように切欠部53を設けることによって、圧入時等における凸部35の圧入開始側の端面35aにおいて、頂部の欠けや変形等の損傷を防止することができる。このため、雄スプライン41の取扱いが容易となり、凸部35の圧入開始端において保護対策を別途施す必要がなく、管理工数を削減できて低コスト化を図ることができる。しかも、凸部35に硬度をあげるための焼入れ処理を行う場合、焼き割れの発生を防止することもできる。   By providing the notch 53 in this way, it is possible to prevent damage such as chipping or deformation at the top of the end face 35a on the press-fitting start side of the convex part 35 at the time of press-fitting or the like. For this reason, the handling of the male spline 41 is facilitated, and it is not necessary to separately take a protective measure at the press-fitting start end of the convex portion 35, so that the number of management steps can be reduced and the cost can be reduced. In addition, when a quenching process for increasing the hardness of the convex portion 35 is performed, the occurrence of quenching cracks can be prevented.

切欠部53を設けた場合、図10(a)〜図10(c)に示すように、凸部35の頂部54から切欠部53の反頂部側の端縁53aまでの径方向長さaは、ハブ輪1に対する凸部35の圧入代をΔd(軸部12の最大外径寸法D1と、ハブ輪1の軸部嵌合孔22aの内径寸法Dとの径差(D1−D)で表される:図8参照)として、0<a<Δd/2の範囲に設定される。これは、図9(a)〜図9(c)に示すTUVWの平面上に凸部35を投影したとき、図10(a)〜図10(c)に示すように、ハブ輪1の内径面37よりも外径側に、切欠部53の反頂部側の端縁53aが存在することを意味する。この場合、丸みのない角部39が内径面37よりも外径側に形成されるので、内径面37を確実に切り込むことができる。具体的には、凸部35の頂部から切欠部53の反頂部側の端縁までの径方向長さaは0.3mm以下とするのが好ましい。図9(a)および図9(c)に示すC面取りの傾斜角度や、図9(b)に示すR面取りの曲率半径は、0<a<Δd/2の関係式を満たす範囲で任意に設定できる。   When the cutout portion 53 is provided, as shown in FIGS. 10A to 10C, the radial length a from the top portion 54 of the convex portion 35 to the edge 53 a on the opposite top side of the cutout portion 53 is , The press-fitting allowance of the convex portion 35 to the hub wheel 1 is represented by Δd (the difference in diameter (D1-D) between the maximum outer diameter dimension D1 of the shaft portion 12 and the inner diameter dimension D of the shaft portion fitting hole 22a of the hub wheel 1). Is set to a range of 0 <a <Δd / 2. This is because when the projection 35 is projected onto the plane of the TUVW shown in FIGS. 9A to 9C, the inner diameter of the hub wheel 1 is as shown in FIGS. 10A to 10C. This means that an edge 53 a on the opposite side of the notch 53 is present on the outer diameter side of the surface 37. In this case, since the corner portion 39 without roundness is formed on the outer diameter side with respect to the inner diameter surface 37, the inner diameter surface 37 can be cut reliably. Specifically, it is preferable that the radial length a from the top of the convex portion 35 to the edge on the opposite side of the notch 53 is 0.3 mm or less. The inclination angle of C chamfering shown in FIGS. 9A and 9C and the radius of curvature of R chamfering shown in FIG. 9B are arbitrarily set within the range satisfying the relational expression of 0 <a <Δd / 2. Can be set.

図10(a)〜図10(c)では、軸方向の断面において凸部35の圧入開始側端面35aと軸線とがなす交差角を90°としているが、図11と図12(a)に示すように、交差角θ1を90°よりも小さくし、あるいは図12(b)に示すように、θ1を90°よりも大きく設定することも可能である。   10 (a) to 10 (c), the crossing angle formed by the press-fitting start side end surface 35a of the convex portion 35 and the axis in the axial section is 90 °, but in FIGS. 11 and 12 (a). As shown, the intersection angle θ1 can be made smaller than 90 °, or θ1 can be set larger than 90 ° as shown in FIG.

この交差角θ1は、50°≦θ1≦110°の範囲に設定するのが望ましい。交差角θ1が50°未満では、圧入荷重が増大すると共に、凹凸嵌合構造Mの成形性が悪化し、交差角θ1が110°を越えれば、端面35aが圧入方向側へ傾斜しすぎて凸部35に欠けが生じるおそれがあるからである。より好ましくは、交差角θ1を70°≦θ1≦110°の範囲に設定する。   The intersection angle θ1 is desirably set in a range of 50 ° ≦ θ1 ≦ 110 °. If the crossing angle θ1 is less than 50 °, the press-fit load increases and the moldability of the concave-convex fitting structure M deteriorates. If the crossing angle θ1 exceeds 110 °, the end face 35a is excessively inclined toward the press-fitting direction. This is because the portion 35 may be chipped. More preferably, the intersection angle θ1 is set in a range of 70 ° ≦ θ1 ≦ 110 °.

凹凸嵌合構造Mでは、図13(a)に示すように、凸部35のピッチ円上において、径方向線(半径線)と凸部の側面35bとが成す角度をθ2としたときに、0°<θ2<45°とする。ここで、凸部ピッチ円とは、凸部35の側面35bのうち、凹部36に嵌合する領域と凹部36に嵌合しない領域との境界部を通る円C1から、凸部35の頂部41aに至るまでの距離の中間点を通る円C2である。なお、図13(a)では、θ2を30°程度としている。   In the concave-convex fitting structure M, as shown in FIG. 13A, when the angle formed by the radial line (radial line) and the side surface 35b of the convex portion is θ2 on the pitch circle of the convex portion 35, It is assumed that 0 ° <θ2 <45 °. Here, the convex pitch circle refers to a top 41a of the convex portion 35 from a circle C1 passing through a boundary portion between a region fitted into the concave portion 36 and a region not fitted into the concave portion 36 in the side surface 35b of the convex portion 35. It is a circle C2 that passes through the midpoint of the distance to reach. In FIG. 13A, θ2 is about 30 °.

凸部35の断面形状として、前記図13(a)では、頂部をアール状にした断面三角形状を例示しているが、図13(b),図13(c)に示すような他の形状の凸部35を採用することもできる。図13(b)は、凸部35の断面形状を矩形状としたもの、図13(c)は歯先が約90°をなす三角形状としたものである。図13(b)の例ではθ2は約0°であり、図13(c)の例ではθ2は約45°である。   As the cross-sectional shape of the convex portion 35, FIG. 13A illustrates a triangular shape with a rounded top, but other shapes as shown in FIG. 13B and FIG. 13C. Alternatively, the convex portion 35 can be employed. FIG. 13B shows a case where the cross-sectional shape of the convex portion 35 is a rectangular shape, and FIG. 13C shows a triangular shape whose tooth tips form about 90 °. In the example of FIG. 13B, θ2 is about 0 °, and in the example of FIG. 13C, θ2 is about 45 °.

図14に、抜け止め構造M1の他の構成例を示す。この車輪用軸受装置では、軸部12に図5に示す短円筒部66を形成せず、軸部12の中実状の一端部に外径方向へ突出するテーパ状係止片70を設けて軸部12の抜け止め構造M1を構成している。   FIG. 14 shows another configuration example of the retaining structure M1. In this wheel bearing device, the shaft portion 12 does not form the short cylindrical portion 66 shown in FIG. 5, and the shaft portion 12 is provided with a tapered locking piece 70 projecting in the outer diameter direction at one solid end portion of the shaft portion 12. A retaining structure M1 of the portion 12 is configured.

このテーパ状係止片70は、図15に示す治具71を使用して形成することができる。治具71は、円柱状の本体部72と、この本体部72の先端部に連設される円筒部73とを備え、円筒部73の外周面の先端に切欠部74を設けることで、円筒部73の先端にくさび部75が形成されている。くさび部75を軸部12のアウトボード側の端部に打ち込めば(矢印α方向の荷重を付加すれば)、切欠部74によって、図16に示すように、軸部12の軸端の外径側領域が外径側に塑性変形する。これによって、テーパ状係止片70が形成され、テーパ状係止片70の少なくとも一部がテーパ孔22bの内径面に圧接もしくは接触することになる。このため、図1等に示すテーパ状係止片65と同様に、ハブ輪1からの軸部12の抜けを確実に防止することができる。図示例では、円筒部73の外径面に切欠部74を設けてくさび部75を形成しているが、内径面に切欠部を設けてくさび部75を形成してもよい。テーパ状係止片70の外径面とテーパ孔部22bの内径面との間にシール材を介在させて異物侵入防止手段W2を構成することもできる。   The tapered locking piece 70 can be formed using a jig 71 shown in FIG. The jig 71 includes a columnar main body 72 and a cylindrical portion 73 provided continuously to the distal end portion of the main body portion 72, and a cylindrical portion 73 is provided by providing a notch 74 at the distal end of the outer peripheral surface of the cylindrical portion 73. A wedge part 75 is formed at the tip of the part 73. If the wedge portion 75 is driven into the end portion of the shaft portion 12 on the outboard side (if a load in the direction of arrow α is applied), the outer diameter of the shaft end of the shaft portion 12 is caused by the notch 74 as shown in FIG. The side region is plastically deformed to the outer diameter side. As a result, a tapered locking piece 70 is formed, and at least a part of the tapered locking piece 70 comes into pressure contact with or comes into contact with the inner diameter surface of the tapered hole 22b. For this reason, similarly to the tapered locking piece 65 shown in FIG. 1 and the like, it is possible to reliably prevent the shaft portion 12 from coming off from the hub wheel 1. In the illustrated example, the notched portion 74 is provided on the outer diameter surface of the cylindrical portion 73 to form the wedge portion 75, but the wedge portion 75 may be formed by providing a notched portion on the inner diameter surface. The foreign matter intrusion preventing means W2 can be configured by interposing a sealing material between the outer diameter surface of the tapered locking piece 70 and the inner diameter surface of the tapered hole portion 22b.

このテーパ状係止片70は、図1等に示すテーパ状係止片65と同様に、ハブ輪1からの軸部12の抜けを確実に防止することができる。テーパ状係止片70と段付面22eとの間にシール材を介在させて、異物侵入防止手段W2を構成してもよい。   The tapered locking piece 70 can reliably prevent the shaft portion 12 from coming off from the hub wheel 1 as in the tapered locking piece 65 shown in FIG. The foreign matter intrusion prevention means W2 may be configured by interposing a sealing material between the tapered locking piece 70 and the stepped surface 22e.

テーパ状係止片70は、図17(a)に示すように、環状に連続して形成する他、図17(b)に示すように、複数のテーパ状係止片70を周方向に沿って所定ピッチで間欠配置してもよい。図17(b)に示すテーパ状係止片70は、押圧部が周方向に沿って所定ピッチ(例えば、90°ピッチ)で配設された治具を使用することによって形成することができる。   As shown in FIG. 17A, the tapered locking piece 70 is formed continuously in an annular shape, and as shown in FIG. 17B, a plurality of tapered locking pieces 70 are arranged along the circumferential direction. And may be intermittently arranged at a predetermined pitch. The tapered locking piece 70 shown in FIG. 17B can be formed by using a jig in which the pressing portions are arranged at a predetermined pitch (for example, 90 ° pitch) along the circumferential direction.

ハブ輪1に対して継手外輪5の軸部12を圧入する際には、図18および図19に示すように、凸部35の切り出しまたは押し出し作用で凹部36から材料がはみ出し、はみ出し部45が形成される。はみ出し部45は、凸部35のうち、凹部36と嵌合する部分の容積に相当する量が生じる。   When the shaft portion 12 of the joint outer ring 5 is press-fitted into the hub wheel 1, as shown in FIGS. 18 and 19, the material protrudes from the recessed portion 36 by the cutting or pushing action of the protruding portion 35, and the protruding portion 45 is It is formed. The protruding portion 45 has an amount corresponding to the volume of the portion of the convex portion 35 that fits into the concave portion 36.

このはみ出し部45を放置すれば、これが脱落して車両の内部に入り込むおそれがある。これに対し、図18および図19に示すように、軸部12の外径面に、はみ出し部45を収納するポケット部50を形成すれば、はみ出し部45は、カールしつつポケット部50内に収納され、保持されるため、はみ出し部45の脱落を防止して、上記不具合を解消することができる。   If the protruding portion 45 is left unattended, it may fall off and enter the vehicle. On the other hand, as shown in FIGS. 18 and 19, if the pocket portion 50 that accommodates the protruding portion 45 is formed on the outer diameter surface of the shaft portion 12, the protruding portion 45 is curled in the pocket portion 50. Since it is stored and held, it is possible to prevent the protrusion 45 from falling off and to solve the above problems.

ポケット部50は、例えば軸部12の雄スプライン41よりもアウトボード側の外径面に周方向溝51を設けることによって形成することができる。この場合、硬化層Hは、図20のクロスハッチングで示すように、ポケット部50には設けず、雄スプライン41のアウトボード側の端縁から継手外輪5のマウス部11の底壁の一部までの連続領域に形成する。図20では、硬化層Hをポケット部50まで到達させていないが、ポケット部にまで硬化層Hを到達させてもよい。   The pocket portion 50 can be formed, for example, by providing a circumferential groove 51 on the outer diameter surface on the outboard side of the male spline 41 of the shaft portion 12. In this case, as shown by cross hatching in FIG. 20, the hardened layer H is not provided in the pocket portion 50, and a part of the bottom wall of the mouth portion 11 of the joint outer ring 5 from the edge on the outboard side of the male spline 41. Form up to a continuous region. In FIG. 20, the hardened layer H does not reach the pocket portion 50, but the hardened layer H may reach the pocket portion.

図3に示す雄スプライン41では、一例として、凸部35のピッチと凹部36のピッチとが同一値に設定されている。このため、図3(b)に示すように、凸部35の高さ方向の中間部において、凸部35の周方向厚さLと、隣接する凸部間の溝幅L0とがほぼ同一となっている。   In the male spline 41 shown in FIG. 3, the pitch of the convex part 35 and the pitch of the recessed part 36 are set to the same value as an example. For this reason, as shown in FIG. 3B, the circumferential thickness L of the convex portion 35 and the groove width L0 between the adjacent convex portions are substantially the same at the intermediate portion in the height direction of the convex portion 35. It has become.

これに対して、図21(a)に示すように、凸部35の高さ方向の中間部において、凸部35の周方向厚さL2を、隣接する凸部間の溝幅L1よりも小さくしてもよい。換言すれば、凸部35の高さ方向の中間部において、軸部12側の凸部35の周方向厚さ(歯厚)L2を、ハブ輪1側の凸部43の周方向厚さ(歯厚)L1よりも小さくする。   On the other hand, as shown in FIG. 21A, in the intermediate portion in the height direction of the convex portion 35, the circumferential thickness L2 of the convex portion 35 is smaller than the groove width L1 between the adjacent convex portions. May be. In other words, in the intermediate portion of the convex portion 35 in the height direction, the circumferential thickness (tooth thickness) L2 of the convex portion 35 on the shaft portion 12 side is set to the circumferential thickness of the convex portion 43 on the hub wheel 1 side ( Tooth thickness) is smaller than L1.

各凸部35において上記関係を満たすことにより、軸部12側の凸部35の周方向厚さL2の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の凸部43の周方向厚さの総和Σ(A1+A2+A3+・・・)よりも小さく設定することが可能となる。これによって、ハブ輪1側の凸部43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。   By satisfying the above relationship in each convex portion 35, the sum Σ (B1 + B2 + B3 +...) Of the circumferential thickness L2 of the convex portion 35 on the shaft portion 12 side is obtained as the circumferential thickness of the convex portion 43 on the hub wheel 1 side. Can be set smaller than the total sum Σ (A1 + A2 + A3 +...). As a result, the shear area of the convex portion 43 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at.

この場合、全ての凸部35,43について、L2<L1の関係を満足させる必要はなく、周方向厚さの総和がハブ輪1側の凸部43における周方向厚さの総和よりも小さくなる限り、一部の凸部35、43については、L2=L1とし、あるいはL2>L1に設定することができる。   In this case, it is not necessary to satisfy the relationship of L2 <L1 for all the convex portions 35 and 43, and the sum of the circumferential thicknesses is smaller than the sum of the circumferential thicknesses of the convex portions 43 on the hub wheel 1 side. As long as some of the convex portions 35 and 43 are set, L2 = L1 or L2> L1 can be set.

図21(a)では、凸部35を断面台形に形成しているが、図21(b)に示すように、インボリュート形状の断面に形成することもできる。   In FIG. 21A, the convex portion 35 is formed in a trapezoidal cross section, but as shown in FIG. 21B, it may be formed in an involute-shaped cross section.

以上の各実施形態では、軸部12に雄スプライン41を形成することで、軸部側に凸部35を形成した場合を例示しているが、これとは逆に、図22(a)及び25(b)に示すように、ハブ輪1の孔部22の内径面に雌スプライン61を形成することで、ハブ輪1側に凸部35を形成してもよい。この場合、軸部12に雄スプライン41を形成した場合と同様に、例えば、ハブ輪1に雌スプライン61に熱硬化処理を施し、軸部12の外径面は未焼き状態とする等の手段で、ハブ輪1の凸部35の硬度を軸部の外径面よりもHRCで20ポイント以上硬くする。雌スプライン61は、公知の転造、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することができる。熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。凸部35のうち、圧入開始側の端面の縁には、丸みのない角部39を形成する。   In each of the above embodiments, the case where the male spline 41 is formed on the shaft portion 12 and the convex portion 35 is formed on the shaft portion side is illustrated, but conversely, FIG. 22A and FIG. As shown in FIG. 25 (b), a convex portion 35 may be formed on the hub wheel 1 side by forming a female spline 61 on the inner diameter surface of the hole 22 of the hub wheel 1. In this case, as in the case where the male spline 41 is formed on the shaft portion 12, for example, a means for subjecting the hub wheel 1 to a thermosetting treatment on the female spline 61 and setting the outer diameter surface of the shaft portion 12 to an unbaked state, etc. Thus, the hardness of the convex portion 35 of the hub wheel 1 is made 20 points or more harder by HRC than the outer diameter surface of the shaft portion. The female spline 61 can be formed by various processing methods such as known rolling, cutting, pressing, and drawing. As the thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. A corner 39 having no roundness is formed on the edge of the end face on the press-fitting start side of the convex part 35.

その後、軸部12をハブ輪1の孔部22に圧入すれば、ハブ輪1側の凸部35で、軸部12の外周面に凸部35と嵌合する凹部36が形成され、これによって、凸部35と凹部36の嵌合部位全体を密着させた凹凸嵌合構造Mが構成される。凸部35と凹部36の嵌合部位38は、図22(b)に示す範囲Aである。凸部35のうち、その他の領域は凹部36と嵌合しない領域Bとなる。軸部12の外周面よりも外径側で、かつ周方向に隣合う凸部35間には隙間62が形成される。   Thereafter, when the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the convex portion 35 on the hub wheel 1 side forms a concave portion 36 that fits the convex portion 35 on the outer peripheral surface of the shaft portion 12. The concave-convex fitting structure M is configured in which the entire fitting portion of the convex portion 35 and the concave portion 36 is in close contact. The fitting part 38 of the convex part 35 and the recessed part 36 is the range A shown in FIG.22 (b). The other region of the convex portion 35 is a region B that does not fit into the concave portion 36. A gap 62 is formed between the convex portions 35 that are on the outer diameter side of the outer peripheral surface of the shaft portion 12 and adjacent in the circumferential direction.

凸部35の高さ方向の中間部が、凹部形成前の軸部12の外径面の位置に対応する。すなわち、軸部12の外径寸法D10は、雌スプライン61の凸部35の最小内径寸法D8(雌スプライン61の歯先61aをとおる外接円の直径寸法)よりも大きく、雌スプライン61の最大内径寸法D9(雌スプライン61の歯底6aを結ぶ円の直径寸法)よりも小さく設定される(D8<D10<D9)。圧入代Δdは、図22(b)および図23に示すように、軸部12の外径寸法D10と、ハブ輪の最小内径寸法D8(凸部35の歯先61aを通る円の直径)との径差(D10−D8)で表される。これにより、凸部35の高さ方向中間部付近が軸部12の外径面に食い込むことになるので、凸部35の圧入代を十分に確保することができ、凹部36を確実に形成することが可能となる。   The intermediate portion in the height direction of the convex portion 35 corresponds to the position of the outer diameter surface of the shaft portion 12 before the concave portion is formed. That is, the outer diameter dimension D10 of the shaft portion 12 is larger than the minimum inner diameter dimension D8 of the convex portion 35 of the female spline 61 (the diameter dimension of the circumscribed circle passing through the tooth tip 61a of the female spline 61). It is set smaller than the dimension D9 (diameter dimension of a circle connecting the roots 6a of the female spline 61) (D8 <D10 <D9). As shown in FIGS. 22B and 23, the press-fitting allowance Δd includes the outer diameter dimension D10 of the shaft portion 12, the minimum inner diameter dimension D8 of the hub wheel (the diameter of a circle passing through the tooth tip 61a of the convex portion 35), and The diameter difference (D10-D8). Thereby, since the vicinity of the intermediate portion in the height direction of the convex portion 35 bites into the outer diameter surface of the shaft portion 12, a sufficient press-fitting allowance for the convex portion 35 can be secured, and the concave portion 36 is reliably formed. It becomes possible.

この場合であっても、圧入によってはみ出し部45が形成されるので、このはみ出し部45を収納するポケット部97を設けるのが好ましい。はみ出し部45は軸部12のインボード側に形成されるので、ポケット部は、凹凸嵌合構造Mよりもインボード側で、かつハブ輪1側に設ける。   Even in this case, since the protruding portion 45 is formed by press-fitting, it is preferable to provide a pocket portion 97 for storing the protruding portion 45. Since the protruding portion 45 is formed on the inboard side of the shaft portion 12, the pocket portion is provided on the inboard side with respect to the uneven fitting structure M and on the hub wheel 1 side.

このように、ハブ輪1の孔部22の内径面に凹凸嵌合構造Mの凸部35を設ける場合、軸部12側の熱硬化処理を行う必要がないので、等速自在継手3の継手外輪5の生産性に優れる、という利点が得られる。   As described above, when the convex portion 35 of the concave-convex fitting structure M is provided on the inner diameter surface of the hole portion 22 of the hub wheel 1, it is not necessary to perform the thermosetting treatment on the shaft portion 12 side. The advantage that the productivity of the outer ring 5 is excellent is obtained.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部35の断面形状として、図3、図21に示す形状以外にも、半円形状、半楕円形状、矩形形状等の種々の断面形状を有する凸部35を採用することができ、凸部35の面積、数、周方向配設ピッチ等も任意に変更できる。凸部35は、軸部12やハブ輪11とは別体のキーのようなもので形成することもできる。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, as the cross-sectional shape of the convex portion 35 of the concave-convex fitting structure M, FIG. 3. In addition to the shape shown in FIG. 21, convex portions 35 having various cross-sectional shapes such as a semicircular shape, a semi-elliptical shape, and a rectangular shape can be adopted. The installation pitch can be arbitrarily changed. The convex portion 35 can also be formed of a key separate from the shaft portion 12 and the hub wheel 11.

また、ハブ輪1の孔部22としては円孔以外の多角形孔等の異形孔であってよく、この孔部22に嵌挿する軸部12の端部の断面形状も円形断面以外の多角形等の異形断面であってもよい。さらに、ハブ輪1に軸部12を圧入する際には、凸部35の少なくとも圧入開始側の端面を含む端部領域の硬度が、圧入される側の硬度よりも高ければよく、必ずしも凸部35の全体の硬度を高くする必要がない。図3(b)および図21(b)では、スプラインの歯底と凹部36が形成された部材との間に隙間40,62が形成されているが、凸部35間の溝の全体を相手側の部材で充足させてもよい。   Further, the hole portion 22 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion of the shaft portion 12 to be inserted into the hole portion 22 may be other than a circular cross section. An irregular cross section such as a square may be used. Further, when the shaft portion 12 is press-fitted into the hub wheel 1, it is sufficient that the hardness of the end region including at least the end surface on the press-fitting start side of the convex portion 35 is higher than the hardness of the press-fitted side. It is not necessary to increase the overall hardness of 35. In FIG. 3B and FIG. 21B, gaps 40 and 62 are formed between the spline root and the member in which the concave portion 36 is formed. You may make it satisfy with the member of the side.

凹部が形成される部材の凹部形成面には、予め、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部36の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができるので、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、ポケット部50の容積を小さくでき、ポケット部50の加工性及び軸部12の強度の向上を図ることができる。なお、小凹部の形状は、三角形状、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。   You may provide the small recessed part arrange | positioned by the predetermined pitch along the circumferential direction previously in the recessed part formation surface of the member in which a recessed part is formed. The small recess needs to be smaller than the volume of the recess 36. By providing such a small concave portion, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, so that the press-fit resistance can be reduced. Moreover, since the protrusion part 45 can be decreased, the volume of the pocket part 50 can be made small and the workability of the pocket part 50 and the intensity | strength of the axial part 12 can be aimed at. In addition, the shape of a small recessed part can employ | adopt various things, such as a triangle shape, semi-ellipse shape, and a rectangle, and can also set the number arbitrarily.

前記実施形態では、本発明を第3世代の車輪用軸受装置に適用しているが、第1世代や第2世代、さらには第4世代の車輪軸受装置にも同様に適用することができる。なお、凸部35を圧入する場合、凹部36が形成される側を固定して、凸部35を形成している側を移動させても、逆に、凸部35を形成している側を固定して、凹部36が形成される側を移動させてもよい。あるいは、両者を移動させてもよい。等速自在継手3において、内輪6とシャフト10とを前記各実施形態に記載した凹凸嵌合構造Mを介して一体化してもよい。   In the above embodiment, the present invention is applied to the third-generation wheel bearing device. However, the present invention can also be applied to the first-generation, second-generation, and fourth-generation wheel bearing devices. In addition, when press-fitting the convex portion 35, even if the side where the concave portion 36 is formed is fixed and the side where the convex portion 35 is formed is moved, the side where the convex portion 35 is formed is reversed. It may be fixed and moved on the side where the recess 36 is formed. Alternatively, both may be moved. In the constant velocity universal joint 3, the inner ring 6 and the shaft 10 may be integrated through the concave-convex fitting structure M described in each of the above embodiments.

また、ポケット部50の形状は、生じるはみ出し部45を収納(収容)できるものであれば足り、その形状は問わない。また、ポケット部50の容量は、少なくとも予想されるはみ出し部45の発生量よりも、大きくする。   Moreover, the shape of the pocket part 50 should just be what can accommodate (accommodate) the protruding part 45 which arises, and the shape is not ask | required. Further, the capacity of the pocket portion 50 is set to be larger than at least an expected amount of the protruding portion 45 generated.

車輪用軸受装置の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the wheel bearing apparatus. 前記車輪用軸受装置の組立前における軸受とハブ輪の断面図である。It is sectional drawing of the bearing and hub wheel before the assembly of the said bearing apparatus for wheels. 前記車輪用軸受装置の断面図であり、(a)は凹凸嵌合構造の拡大断面図、(b)はそのX部拡大図である。It is sectional drawing of the said wheel bearing apparatus, (a) is an expanded sectional view of an uneven | corrugated fitting structure, (b) is the X section enlarged view. 凹凸嵌合構造の斜視図であり、(a)は凸部の斜視図、(b)は凹凸嵌合構造の凸部の他例を示す斜視図である。It is a perspective view of an uneven | corrugated fitting structure, (a) is a perspective view of a convex part, (b) is a perspective view which shows the other example of the convex part of an uneven | corrugated fitting structure. 前記車輪用軸受装置の組立前において、(a)は軸受とハブ輪の断面図、(b)は前記車輪用軸受装置の組立前における継手外輪の断面図である。Before assembling the wheel bearing device, (a) is a sectional view of the bearing and the hub wheel, and (b) is a sectional view of the joint outer ring before assembling the wheel bearing device. 前記車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said bearing apparatus for wheels. 前記車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said bearing apparatus for wheels. 前記車輪用軸受装置の凹凸嵌合構造の拡大断面図である。It is an expanded sectional view of the uneven | corrugated fitting structure of the said bearing apparatus for wheels. 凹凸嵌合構造について、(a)〜(c)は凸部の他例を示す斜視図である。(A)-(c) is a perspective view which shows the other example of a convex part about an uneven | corrugated fitting structure. (a)は図10(a)の投影図、(b)は図10(b)の投影図、(c)は図10(c)の投影図である。10A is a projection view of FIG. 10A, FIG. 10B is a projection view of FIG. 10B, and FIG. 10C is a projection view of FIG. 凹凸嵌合構造の凸部の他例を示す斜視図である。It is a perspective view which shows the other examples of the convex part of an uneven | corrugated fitting structure. (a)は図12の投影図、(b)は凹凸嵌合構造の凸部の他例を示す投影図である。(A) is a projection view of FIG. 12, (b) is a projection view showing another example of the convex portion of the concave-convex fitting structure. 図4(a)に示す凸部の正面図、(b)、(c)は凸部の他例を示す正面図である。FIG. 4A is a front view of the convex portion shown in FIG. 4A, and FIG. 4B and FIG. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図15の車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the wheel bearing apparatus of FIG. 図15の車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the wheel bearing apparatus of FIG. (a)は車輪用軸受装置の継手外輪の軸部の端面を示し、全周にわたって形成したテーパ状係止部の正面図、(b)は車輪用軸受装置の継手外輪の軸部の端面を示し、周方向に沿って所定ピッチで配設したテーパ状係止部の正面図である。(A) shows the end face of the shaft part of the joint outer ring of the wheel bearing device, front view of the tapered locking part formed over the entire circumference, (b) the end face of the shaft part of the joint outer ring of the wheel bearing device. It is a front view of the taper-shaped latching | locking part shown and arrange | positioned with the predetermined pitch along the circumferential direction. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図18の車輪用軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the wheel bearing apparatus of FIG. 図18の車輪用軸受装置の組立前における継手外輪の断面図である。It is sectional drawing of the joint outer ring | wheel before the assembly of the wheel bearing apparatus of FIG. (a)、(b)は凹凸嵌合構造の凸部の他例を示す断面図である。(A), (b) is sectional drawing which shows the other example of the convex part of an uneven | corrugated fitting structure. (a)は凹凸嵌合構造の他例を示す断面図、(b)は(a)におけるY部の拡大図である。(A) is sectional drawing which shows the other example of an uneven | corrugated fitting structure, (b) is an enlarged view of the Y section in (a). 図22(a)に示す凹凸嵌合構造の拡大断面図である。It is an expanded sectional view of the uneven | corrugated fitting structure shown to Fig.22 (a). 従来の車輪用軸受装置の断面図である。It is sectional drawing of the conventional wheel bearing apparatus. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図25の車輪用軸受装置のシール部材として(a)はOリングを用いたときの拡大断面図、(b)はシール部材としてガスケットを用いたときの拡大断面図である。25A is an enlarged cross-sectional view when an O-ring is used as the seal member of the wheel bearing device of FIG. 25, and FIG. 25B is an enlarged cross-sectional view when a gasket is used as the seal member.

符号の説明Explanation of symbols

1 ハブ輪
2 軸受
3 等速自在継手
5 継手外輪
11 マウス部
11a バック面
12 軸部
22 孔部
22g 内壁
26,27 外側軌道面(アウタレース)
28,29 内側軌道面(インナレース)
30 転動体
31 加締部
35 凸部
35a 凸部端面
35b 凸部側面
36 凹部
37 内径面
38 嵌合部位
39 角部
45 はみ出し部
50 ポケット部
52 鍔部
53 切欠部
90 ねじ孔
94 ボルト部材
94a 頭部
98 隙間
99 シール部材
100a 座面
M 凹凸嵌合構造
M1 抜け止め構造
DESCRIPTION OF SYMBOLS 1 Hub wheel 2 Bearing 3 Constant velocity universal joint 5 Joint outer ring 11 Mouse | mouth part 11a Back surface 12 Shaft part 22 Hole part 22g Inner wall 26, 27 Outer raceway surface (outer race)
28, 29 Inner raceway surface (inner race)
30 Rolling element 31 Caulking portion 35 Protruding portion 35a Convex portion end surface 35b Convex portion side surface 36 Concave portion 37 Inner diameter surface 38 Fitting portion 39 Corner portion 45 Projecting portion 50 Pocket portion 52 Gutter portion 53 Notch portion 90 Screw hole 94 Bolt member 94a Head Portion 98 Clearance 99 Seal member 100a Seat surface M Concave and convex fitting structure M1 Retaining structure

Claims (14)

内周に複列の軌道面を有する外方部材と、前記軌道面に対向する複列の軌道面を外周に有し、外周に車輪取り付け用のフランジを有するハブ輪を備えた内方部材と、これら外方部材と内方部材の軌道面間に介在した複列の転動体とを備えた車輪用軸受と、マウス部及び軸部からなる外側継手部材を有する等速自在継手とを備え、ハブ輪の孔部に嵌挿される外側継手部材の軸部がハブ輪と凹部および凸部の嵌合により結合された車輪用軸受装置であって、
外側継手部材の軸部とハブ輪の孔部のうち、どちらか一方に設けられた軸方向に延びる凸部を他方に圧入し、他方に前記凸部により凹部を形成することで、前記凸部と前記凹部との嵌合部位全域が密着する凹凸嵌合構造を構成し、前記ハブ輪の孔部のアウトボード側端部には、アウトボード端部側に向かって拡径するテーパ孔を設け、外側継手部材の軸部と前記テーパ孔の内径面との間に、軸部の抜けを規制する抜け止め構造を設け、前記テーパ孔の継手軸線に対するテーパ角度θを20°≦θ≦60°としたことを特徴とする車輪
用軸受装置。
An outer member having a double-row raceway surface on the inner periphery, and an inner member having a hub ring having a double-row raceway surface facing the raceway surface on the outer periphery and a wheel mounting flange on the outer periphery; A wheel bearing including a double row rolling element interposed between the outer member and the raceway surface of the inner member, and a constant velocity universal joint having an outer joint member composed of a mouth portion and a shaft portion, A wheel bearing device in which a shaft portion of an outer joint member to be inserted into a hole portion of a hub wheel is coupled by fitting of the hub wheel with a concave portion and a convex portion,
Of the shaft part of the outer joint member and the hole part of the hub wheel, the convex part extending in the axial direction provided in either one is press-fitted into the other, and the convex part is formed on the other by the convex part. And a concave / convex fitting structure in which the entire fitting part is closely attached to the concave portion, and a tapered hole is provided at the end portion on the outboard side of the hole portion of the hub wheel. And a retaining structure for restricting the shaft portion from slipping out is provided between the shaft portion of the outer joint member and the inner diameter surface of the tapered hole, and the taper angle θ of the tapered hole with respect to the joint axis is 20 ° ≦ θ ≦ 60 °. A wheel bearing device characterized by that.
前記外側継手部材の軸部のアウトボード側の端部を拡径させて、テーパ孔の内径面に係合させたことを特徴とする請求項1に記載の車輪用軸受装置。   2. The wheel bearing device according to claim 1, wherein the diameter of the end portion on the outboard side of the shaft portion of the outer joint member is increased and engaged with the inner diameter surface of the tapered hole. 前記外側継手部材の軸部のアウトボード側の端部の硬度を、HRc40以下としたことを特徴とする請求項2に記載の車輪用軸受装置。   The wheel bearing device according to claim 2, wherein the hardness of the end portion on the outboard side of the shaft portion of the outer joint member is HRc40 or less. 前記内方部材が、前記ハブ輪と、前記ハブ輪のインボード側の端部の外周に圧入される内輪とで構成され、前記ハブ輪の外周および内輪の外周にそれぞれ前記軌道面が形成されており、ハブ輪のインボード側端部を加締めることによりハブ輪と内輪とを一体化したことを特徴とする請求項1〜請求項3のいずれか1項に記載の車輪用軸受装置。 Said inner member is said hub wheel, wherein is composed of an inner ring press-fitted on the outer periphery of the end portion on the inboard side of the hub wheel, each of the raceway surfaces in the outer and the inner ring of the outer periphery of the hub wheel is formed The wheel bearing device according to any one of claims 1 to 3, wherein the hub wheel and the inner ring are integrated by crimping an inboard side end portion of the hub wheel. 前記外側継手部材の軸部に凹凸嵌合構造を形成する凸部を形成したことを特徴とする請求項1〜請求項4のいずれか1項に記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 4, wherein a convex portion that forms a concave-convex fitting structure is formed on a shaft portion of the outer joint member. 前記凸部の圧入開始側の端部の硬度を、ハブ輪の孔部内径部よりも高くし、その硬度差を、HRc20以上としたことを特徴とする請求項5に記載の車輪用軸受装置。   The wheel bearing device according to claim 5, wherein the hardness of the end portion on the press-fitting start side of the convex portion is made higher than the inner diameter portion of the hole portion of the hub wheel, and the hardness difference is set to HRc20 or more. . 前記ハブ輪の孔部の内径面に凹凸嵌合構造を形成する凸部を形成したことを特徴とする請求項1〜請求項4のいずれか1項に記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 4, wherein a convex portion that forms a concave-convex fitting structure is formed on an inner diameter surface of a hole portion of the hub wheel. 前記凸部の圧入開始側の端部の硬度を外側継手部材の軸部の外径部よりも高くし、その硬度差を、HRc20以上としたことを特徴とする請求項7に記載の車輪用軸受装置。   8. The wheel according to claim 7, wherein a hardness of an end portion on the press-fitting start side of the convex portion is made higher than an outer diameter portion of a shaft portion of the outer joint member, and a hardness difference thereof is set to HRc20 or more. Bearing device. 前記圧入による凹部の形成によって生じるはみ出し部を収納するポケット部を設けたことを特徴とする請求項1〜請求項8のいずれか1項に記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 8, further comprising a pocket portion that accommodates a protruding portion generated by the formation of the concave portion by the press-fitting. ハブ輪の孔部の内径面の内径寸法を、凸部の頂点を結ぶ円の直径寸法よりも小さく、凸部間の谷底の直径寸法よりも大きく設定したことを特徴とする請求項5又は請求項6に記載の車輪用軸受装置。 The inner diameter of the inner surface of the hole portion of the hub wheel, smaller than the diameter dimension of a circle connecting vertexes of the projections, according to claim 5 or claim, characterized in that set to be larger than the diameter of the root between the convex portions Item 7. The wheel bearing device according to Item 6 . 外側継手部材の軸部の外径寸法を、ハブ輪の複数の凸部の頂点を結ぶ円弧の直径寸法よりも大きく、凸部間の谷底の直径寸法よりも小さくしたことを特徴とする請求項7又は請求項8に記載の車輪用軸受装置。 The outer diameter dimension of the shaft part of the outer joint member is larger than the diameter dimension of the arc connecting the vertices of the plurality of convex parts of the hub wheel, and smaller than the diameter dimension of the valley bottom between the convex parts. The wheel bearing apparatus of Claim 7 or Claim 8 . 外側継手部材の軸部に前記凸部を円周方向の複数箇所に設け、凸部の高さ方向の中間部において、凸部の周方向厚さの総和を、隣接する凸部との間の溝幅の総和よりも小さくしたことを特徴とする請求項5、請求項6、又は請求項10のいずれか1項に記載の車輪用軸受装置。 The convex portion is provided at a plurality of locations in the circumferential direction on the shaft portion of the outer joint member, and in the intermediate portion in the height direction of the convex portion, the sum of the circumferential thicknesses of the convex portions is determined between the adjacent convex portions. claim 5, characterized in that it has less than the total groove width, wheel bearing device according to any one of claims 6, or claim 10. ハブ輪の孔部に前記凸部を円周方向の複数箇所に設け、凸部の高さ方向の中間部において、各凸部の周方向厚さの総和を、隣接する凸部との間の溝幅の総和よりも小さくしたことを特徴とする請求項7、請求項8、又は請求項11のいずれか1項に記載の車輪用軸受装置。 The protrusions are provided in a plurality of locations in the circumferential direction in the hole portion of the hub wheel, and the sum of the circumferential thicknesses of the respective protrusions is determined between the adjacent protrusions at the intermediate portion in the height direction of the protrusions. The wheel bearing device according to any one of claims 7 , 8, or 11, wherein the wheel width is smaller than a total sum of groove widths. 外側継手部材のバック面と内方部材との隙間部に異物の浸入防止用のシール部材を設けたことを特徴とする請求項1〜請求項13のいずれか1項に記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 13, wherein a seal member for preventing entry of foreign matter is provided in a gap portion between the back surface of the outer joint member and the inner member. .
JP2008294533A 2008-11-18 2008-11-18 Wheel bearing device Expired - Fee Related JP5430909B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008294533A JP5430909B2 (en) 2008-11-18 2008-11-18 Wheel bearing device
PCT/JP2009/069161 WO2010058719A1 (en) 2008-11-18 2009-11-11 Bearing device for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294533A JP5430909B2 (en) 2008-11-18 2008-11-18 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2010120461A JP2010120461A (en) 2010-06-03
JP5430909B2 true JP5430909B2 (en) 2014-03-05

Family

ID=42322189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294533A Expired - Fee Related JP5430909B2 (en) 2008-11-18 2008-11-18 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP5430909B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4338095B2 (en) * 2006-06-14 2009-09-30 Ntn株式会社 Drive wheel bearing unit
JP2008001243A (en) * 2006-06-22 2008-01-10 Ntn Corp Bearing unit for driving wheel
JP2008002579A (en) * 2006-06-22 2008-01-10 Ntn Corp Bearing unit for drive wheel
JP4302730B2 (en) * 2006-12-27 2009-07-29 Ntn株式会社 Wheel bearing device
JP5236201B2 (en) * 2007-04-12 2013-07-17 Ntn株式会社 Rear wheel axle module

Also Published As

Publication number Publication date
JP2010120461A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US8360655B2 (en) Bearing device for wheel
JP5323337B2 (en) Wheel bearing device
JP4302758B2 (en) Wheel bearing device
WO2012035925A1 (en) Vehicle-wheel bearing device
JP5826788B2 (en) Manufacturing method of wheel bearing device
JP5683773B2 (en) Wheel bearing device
JP5160358B2 (en) Wheel bearing device
JP5683774B2 (en) Wheel bearing device
JP5236348B2 (en) Wheel bearing device
JP5398999B2 (en) Wheel bearing device
JP5323339B2 (en) Wheel bearing device
JP2011225153A (en) Bearing device for wheel
WO2010058719A1 (en) Bearing device for wheel
JP2010137766A (en) Joining method and joining jig for wheel bearing device
JP5301129B2 (en) Wheel bearing device
JP5683772B2 (en) Wheel bearing device
JP5826451B2 (en) Manufacturing method of wheel bearing device
JP5642343B2 (en) Wheel bearing device
JP5826781B2 (en) Manufacturing method of wheel bearing device
JP5430909B2 (en) Wheel bearing device
JP5425610B2 (en) Wheel bearing device
JP5301128B2 (en) Wheel bearing device
JP5823437B2 (en) Manufacturing method of wheel bearing device
JP2010143529A (en) Bearing device for wheel
JP2010023800A (en) Bearing device for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees