JP4302730B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP4302730B2
JP4302730B2 JP2006352786A JP2006352786A JP4302730B2 JP 4302730 B2 JP4302730 B2 JP 4302730B2 JP 2006352786 A JP2006352786 A JP 2006352786A JP 2006352786 A JP2006352786 A JP 2006352786A JP 4302730 B2 JP4302730 B2 JP 4302730B2
Authority
JP
Japan
Prior art keywords
convex
diameter
wheel
shaft
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006352786A
Other languages
Japanese (ja)
Other versions
JP2008162359A5 (en
JP2008162359A (en
Inventor
亮 中川
仁博 小澤
清茂 山内
浩志 河村
祐一 淺野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to JP2006352786A priority Critical patent/JP4302730B2/en
Priority claimed from EP07850011A external-priority patent/EP2103450B1/en
Publication of JP2008162359A publication Critical patent/JP2008162359A/en
Publication of JP2008162359A5 publication Critical patent/JP2008162359A5/ja
Application granted granted Critical
Publication of JP4302730B2 publication Critical patent/JP4302730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Description

本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置に関する。   The present invention relates to a wheel bearing device for rotatably supporting a wheel with respect to a vehicle body in a vehicle such as an automobile.
車輪用軸受装置には、第1世代と称される複列の転がり軸受を単独に使用する構造から、外方部材に車体取付フランジを一体に有する第2世代に進化し、さらに、車輪取付フランジを一体に有するハブ輪の外周に複列の転がり軸受の一方に内側転走面が一体に形成された第3世代、さらには、ハブ輪に等速自在継手が一体化され、この等速自在継手を構成する外側継手部材の外周に複列の転がり軸受の他方の内側転走面が一体に形成された第4世代のものまで開発されている。   The wheel bearing device has evolved from a structure in which a double row rolling bearing called a first generation is used alone to a second generation in which a vehicle body mounting flange is integrated with an outer member. The third generation in which the inner raceway is integrally formed on one of the double row rolling bearings on the outer periphery of the hub wheel having an integral, and the constant velocity universal joint is integrated with the hub wheel. A fourth generation type has been developed in which the other inner rolling surface of the double row rolling bearing is integrally formed on the outer periphery of the outer joint member constituting the joint.
例えば、特許文献1には、第3世代と呼ばれるものが記載されている。第3世代と呼ばれる車輪用軸受装置は、図11に示すように、外径方向に延びるフランジ101を有するハブ輪102と、このハブ輪102に外側継手部材103が固定される等速自在継手104と、ハブ輪102の外周側に配設される外方部材105とを備える。   For example, Patent Document 1 describes what is called a third generation. As shown in FIG. 11, the wheel bearing device called the third generation includes a hub wheel 102 having a flange 101 extending in the outer diameter direction, and a constant velocity universal joint 104 in which an outer joint member 103 is fixed to the hub wheel 102. And an outer member 105 disposed on the outer peripheral side of the hub wheel 102.
等速自在継手104は、前記外側継手部材103と、この外側継手部材103の椀形部107内に配設される内側継手部材108と、この内側継手部材108と外側継手部材103との間に配設されるボール109と、このボール109を保持する保持器110とを備える。また、内側継手部材108の中心孔の内周面にはスプライン部111が形成され、この中心孔に図示省略のシャフトの端部スプライン部が挿入されて、内側継手部材108側のスプライン部111とシャフト側のスプライン部とが係合される。   The constant velocity universal joint 104 includes an outer joint member 103, an inner joint member 108 disposed in the bowl-shaped portion 107 of the outer joint member 103, and the inner joint member 108 and the outer joint member 103. A ball 109 is provided, and a holder 110 that holds the ball 109. Further, a spline portion 111 is formed on the inner peripheral surface of the center hole of the inner joint member 108, and an end spline portion of a shaft (not shown) is inserted into the center hole, and the spline portion 111 on the inner joint member 108 side The spline portion on the shaft side is engaged.
また、ハブ輪102は、筒部113と前記フランジ101とを有し、フランジ101の外端面114(反継手側の端面)には、図示省略のホイールおよびブレーキロータが装着される短筒状のパイロット部115が突設されている。なお、パイロット部115は、大径の第1部115aと小径の第2部115bとからなり、第1部115aにホイールが外嵌され、第2部115bにブレーキロータが外嵌される。   The hub wheel 102 has a cylindrical portion 113 and the flange 101, and a short cylindrical shape in which a wheel and a brake rotor (not shown) are mounted on the outer end surface 114 (end surface on the opposite joint side) of the flange 101. A pilot part 115 is provided in a protruding manner. The pilot portion 115 includes a large-diameter first portion 115a and a small-diameter second portion 115b. A wheel is externally fitted to the first portion 115a, and a brake rotor is externally fitted to the second portion 115b.
そして、筒部113の椀形部107側端部の外周面に切欠部116が設けられ、この切欠部116に内輪117が嵌合されている。ハブ輪102の筒部113の外周面のフランジ近傍には第1内側軌道面118が設けられ、内輪117の外周面に第2内側軌道面119が設けられている。また、ハブ輪102のフランジ101にはボルト装着孔112が設けられて、ホイールおよびブレーキロータをこのフランジ101に固定するためのハブボルトがこのボルト装着孔112に装着される。   A notch 116 is provided on the outer peripheral surface of the end portion of the cylindrical portion 113 on the side of the flange portion 107, and an inner ring 117 is fitted into the notch 116. A first inner raceway surface 118 is provided in the vicinity of the flange on the outer peripheral surface of the cylindrical portion 113 of the hub wheel 102, and a second inner raceway surface 119 is provided on the outer peripheral surface of the inner ring 117. Further, a bolt mounting hole 112 is provided in the flange 101 of the hub wheel 102, and a hub bolt for fixing the wheel and the brake rotor to the flange 101 is mounted in the bolt mounting hole 112.
外方部材105は、その内周に2列の外側軌道面120、121が設けられると共に、その外周にフランジ(車体取付フランジ)132が設けられている。そして、外方部材105の第1外側軌道面120とハブ輪102の第1内側軌道面118とが対向し、外方部材105の第2外側軌道面121と、内輪117の軌道面119とが対向し、これらの間に転動体122が介装される。   The outer member 105 is provided with two rows of outer raceway surfaces 120 and 121 on its inner periphery, and a flange (vehicle body mounting flange) 132 on its outer periphery. Then, the first outer raceway surface 120 of the outer member 105 and the first inner raceway surface 118 of the hub wheel 102 face each other, and the second outer raceway surface 121 of the outer member 105 and the raceway surface 119 of the inner ring 117 are formed. Opposing and the rolling element 122 is interposed between these.
ハブ輪102の筒部113に外側継手部材103の軸部123が挿入される。軸部123は、その反椀形部の端部にねじ部124が形成され、このねじ部124と椀形部107との間にスプライン部125が形成されている。また、ハブ輪102の筒部113の内周面(内径面)にスプライン部126が形成され、この軸部123がハブ輪102の筒部1
13に挿入された際には、軸部123側のスプライン部125とハブ輪102側のスプライン部126とが係合する。
The shaft portion 123 of the outer joint member 103 is inserted into the tube portion 113 of the hub wheel 102. The shaft portion 123 has a threaded portion 124 formed at the end of the ridged portion, and a spline portion 125 is formed between the threaded portion 124 and the hooked portion 107. Further, a spline portion 126 is formed on the inner peripheral surface (inner diameter surface) of the tube portion 113 of the hub wheel 102, and the shaft portion 123 serves as the tube portion 1 of the hub wheel 102.
13, the spline portion 125 on the shaft portion 123 side and the spline portion 126 on the hub wheel 102 side engage with each other.
そして、筒部113から突出した軸部123のねじ部124にナット部材127が螺着され、ハブ輪102と外側継手部材103とが連結される。この際、ナット部材127の内端面(裏面)128と筒部113の外端面129とが当接するとともに、椀形部107の軸部側の端面130と内輪117の外端面131とが当接する。すなわち、ナット部材127を締付けることによって、ハブ輪102が内輪117を介してナット部材127と椀形部107とで挟持される。
特開2004−340311号公報
Then, the nut member 127 is screwed onto the threaded portion 124 of the shaft portion 123 protruding from the cylindrical portion 113, and the hub wheel 102 and the outer joint member 103 are connected. At this time, the inner end surface (back surface) 128 of the nut member 127 and the outer end surface 129 of the cylindrical portion 113 are in contact with each other, and the end surface 130 on the shaft portion side of the hook-shaped portion 107 and the outer end surface 131 of the inner ring 117 are in contact with each other. That is, by tightening the nut member 127, the hub wheel 102 is sandwiched between the nut member 127 and the hook-shaped portion 107 via the inner ring 117.
JP 2004340403 A
従来では、前記したように、軸部123側のスプライン部125とハブ輪102側のスプライン部126とが係合するものである。このため、軸部123側及びハブ輪102側の両者にスプライン加工を施す必要があって、コスト高となるとともに、圧入時には、軸部123側のスプライン部125とハブ輪102側のスプライン部126との凹凸を合わせる必要があり、この際、歯面を合わせることによって、圧入すれば、この凹凸歯が損傷(むしれる)おそれがある。また、歯面を合わせることなく、凹凸歯の大径合わせにて圧入すれば、円周方向のガタが生じやすい。このように、円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれもあった。このため、従来のように、スプライン嵌合による場合、凹凸歯の損傷及び円周方向のガタの両者を成立させることは困難であった。   Conventionally, as described above, the spline portion 125 on the shaft portion 123 side and the spline portion 126 on the hub wheel 102 side are engaged. For this reason, it is necessary to perform spline processing on both the shaft portion 123 side and the hub wheel 102 side, which increases the cost. It is necessary to match the unevenness of the teeth, and at this time, if the teeth are pressed by matching the tooth surfaces, the uneven teeth may be damaged (peeled). Moreover, if it press-fits by matching the large diameter of an uneven | corrugated tooth | gear, without matching a tooth surface, the play of a circumferential direction will arise easily. As described above, when there is a backlash in the circumferential direction, the transmission performance of the rotational torque is inferior and abnormal noise may occur. For this reason, it has been difficult to establish both the damage to the concavo-convex teeth and the play in the circumferential direction in the case of spline fitting as in the prior art.
また、筒部113から突出した軸部123のねじ部124にナット部材127を螺着する必要がある。このため、組み立て時にはねじ締結作業を有し、作業性に劣るとともに、部品点数も多く、部品管理性も劣ることになっていた。   Further, it is necessary to screw the nut member 127 to the screw portion 124 of the shaft portion 123 protruding from the cylindrical portion 113. For this reason, it has a screw fastening operation at the time of assembly, which is inferior in workability, has a large number of parts, and inferior in part manageability.
本発明は、上記課題に鑑みて、円周方向のガタの抑制を図ることができ、しかも、ハブ輪と等速自在継手の外側継手部材との連結作業性に優れた車輪用軸受装置を提供する。   SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a wheel bearing device that can suppress circumferential backlash and is excellent in connection workability between a hub wheel and an outer joint member of a constant velocity universal joint. To do.
上記課題を解決するため、本発明では、内周に複数のアウタレースを有する外方部材と、車輪に取り付けられるハブ輪を有し、該ハブ輪の筒部上に前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された複数列の転動体と、外側継手部材を有する等速自在継手とを備え、ハブ輪の孔部に嵌挿される外側継手部材の軸部とハブ輪とが連結される車輪用軸受装置であって、前記外側継手部材の軸部の外径面と前記ハブ輪の孔部の内径面とのどちらか一方に設けられて軸方向に延びる凸部を、軸方向に沿って他方に圧入することにより、この他方に凸部にて凹部を形成して、凹部と凸部が両者の嵌合部の全域で密着する凹凸嵌合構造を構成し、前記凹部が凸部で削り取られた部分を有することことを特徴とする。
周方向に隣り合う凸部間の歯底部と、前記他方に形成された、前記歯底部と半径方向で対向する突出部分との間には、隙間を形成するのが望ましい。
In order to solve the above-mentioned problems, in the present invention, an outer member having a plurality of outer races on the inner periphery and a hub wheel attached to the wheel, a plurality of inner members facing the outer race on a cylindrical portion of the hub wheel. An inner member having a race, a plurality of rows of rolling elements arranged between the outer race and the inner race facing each other, and a constant velocity universal joint having an outer joint member are fitted into a hole of the hub wheel. A bearing device for a wheel in which a shaft portion of an outer joint member and a hub ring are connected to each other, provided on one of an outer diameter surface of the shaft portion of the outer joint member and an inner diameter surface of a hole portion of the hub ring. The convex portion extending in the axial direction is press-fitted into the other along the axial direction, thereby forming a concave portion in the convex portion on the other side, and the concave portion and the convex portion are in close contact with each other in the entire fitting portion. Constructed a concave-convex fitting structure, the concave part was scraped off by the convex part It characterized in that it has a minute.
It is desirable to form a gap between the tooth bottom portion between the convex portions adjacent in the circumferential direction and the protruding portion formed on the other side and facing the tooth bottom portion in the radial direction.
本発明の車輪用軸受装置によれば、凹凸嵌合構造は、凸部と凹部が両者の嵌合部の全体で密着しているので、この嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されない。 According to the wheel bearing device of the present invention, in the concave / convex fitting structure , the convex part and the concave part are in close contact with each other in the whole fitting part . In this fitting structure, in the radial direction and the circumferential direction, There is no gap in which play occurs.
外側継手部材の軸部の外径面とハブ輪の孔部の内径面とのうち、一方に形成した凸部を、軸方向に沿って他方に圧入すると、相手側の凹部形成面に凸部の形状が転写される。この際、凸部が相手側の凹部形成面に食い込んでいくことによって、軸孔が僅かに拡径した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、軸孔が元の径に戻ろうとして縮径することになる。これによって、凸部と凹部が嵌合部の全体密着する。 When a convex portion formed on one of the outer diameter surface of the shaft portion of the outer joint member and the inner diameter surface of the hole portion of the hub wheel is press-fitted into the other along the axial direction, the convex portion is formed on the other concave formation surface. shape is transferred. At this time, the convex portion bites into the concave-part forming surface on the other side, so that the shaft hole is slightly expanded in diameter, allowing the convex portion to move in the axial direction and stopping the axial movement. In this case, the diameter of the shaft hole is reduced to return to the original diameter. Thereby, the convex portion and the concave portion are in close contact with each other in the entire fitting portion .
等速自在継手の外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けた場合この凸部の少なくとも軸方向端部の硬度をハブ輪の孔部内径部よりも高くする。 Case in which the convex portion of the concavo-convex fitting structure on the shaft section of the outer joint member of the constant velocity universal joint, the hardness of at least the axial end portion of the convex portion higher than the hole inside diameter portion of the hub wheel.
この場合、前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を、外側継手部材の軸部に設けるのが好ましい。ここで、はみ出し部は、凸部の凹部嵌合部位が嵌入(嵌合)する凹部の容量の材料分であって、形成される凹部から押し出されたもの、凹部を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。ポケット部よりも軸端側の軸部に、軸部とハブ輪との間で調芯を行う鍔部を設けてもよい。ハブ輪の軸部嵌合孔の内径寸法は、外側継手部材の軸部に設けた複数の凸部の最大径部を結ぶ円の直径寸法よりも小さく、前記凸部間の最小径部を結ぶ円の直径寸法よりも大きくする。 In this case, it is preferable to provide a pocket portion for accommodating a protruding portion generated by forming the concave portion by the press- fitting in the shaft portion of the outer joint member . Here, the protruding portion is the material of the capacity of the concave portion into which the concave portion fitting portion of the convex portion is fitted (fitted), and is extruded from the formed concave portion, or cut to form the concave portion. It is comprised from what was extruded, what was extruded, and what was cut. You may provide the collar part which aligns between a shaft part and a hub ring in the axial part of a shaft end side rather than a pocket part. The inner diameter dimension of the shaft part fitting hole of the hub wheel is smaller than the diameter dimension of the circle connecting the maximum diameter parts of the plurality of convex parts provided in the shaft part of the outer joint member, and connects the minimum diameter parts between the convex parts. Make it larger than the diameter of the circle.
ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けた場合、この凸部の少なくとも軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くする。When the convex portion of the concave / convex fitting structure is provided on the inner diameter surface of the hole portion of the hub ring, the hardness of at least the axial end portion of the convex portion is larger than the outer diameter portion of the shaft portion of the outer joint member of the constant velocity universal joint. Also make it high.
この場合、前記圧入によって生じるはみ出し部を収納するポケット部を、ハブ輪の孔部の内径面に設けるのが好ましい。外側継手部材の軸部の外径寸法は、ハブ輪の孔部に設けた複数の凸部の最小径部を結ぶ円の直径寸法よりも大きく、凸部間の最大径部を結ぶ円の直径寸法よりも小さくする。 In this case, it is preferable that a pocket portion for accommodating the protruding portion generated by the press-fitting is provided on the inner diameter surface of the hole portion of the hub wheel. The outer diameter of the shaft portion of the outer joint member is larger than the diameter of the circle connecting the minimum diameter portions of the plurality of convex portions provided in the hole of the hub wheel, and the diameter of the circle connecting the maximum diameter portions between the convex portions. Make it smaller than the dimensions .
前記凸部の突出方向中間部位において、前記凸部の周方向寸法を、周方向に隣り合う凸部間の溝幅よりも小さくするのが望ましい。また、前記凸部の突出方向中間部位において、前記凸部の周方向寸法の総和を、周方向に隣り合う凸部間の溝幅の総和よりも小さくするのが望ましい。 In the projecting direction intermediate portion of the convex portion, it is desirable that the circumferential dimension of the convex portion is smaller than the groove width between the convex portions adjacent in the circumferential direction. Further, in the projecting direction intermediate portion of the convex portion, the sum of the circumferential dimension of the convex portion, to be smaller than the total groove width between the convex portions adjacent to each other in the circumferential direction it is preferable.
前記凸部に鋸歯部を設けてもよい You may provide a sawtooth part in the said convex part .
前記内方部材は、一方の内側軌道面を有する前記ハブ輪と、ハブ輪に外嵌され、他方の内側軌道面を有する内輪とで構成することができる。ハブ輪の端部を加締めることで軸受に予圧を付与することが可能である。前記等速自在継手の外側継手部材は、内側継手部材が内装されるマウス部と、このマウス部の底部から突設される前記軸部とを備えるものとする。この場合、前記マウス部をハブ輪の加締め部と非接触状態にすることができる。 The inward member can be constituted by the hub ring having one inner raceway surface and the inner ring that is fitted on the hub ring and has the other inner raceway surface. It is possible to apply a preload to the bearing by caulking the end of the hub wheel. The outer joint member of the constant velocity universal joint includes a mouth portion in which the inner joint member is housed, and the shaft portion protruding from the bottom portion of the mouth portion . In this case, the mouse part can be brought into a non-contact state with the caulking part of the hub wheel .
本発明の車輪用軸受装置では、嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されないので、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生も生じさせない。さらには、隙間無く密着しているので、トルク伝達部位の強度が向上する。このため、駆動車輪用軸受ユニットを軽量、コンパクトにすることができる。   In the wheel bearing device of the present invention, in the fitting structure, there is no gap in which play occurs in the radial direction and the circumferential direction. Therefore, all of the fitting parts contribute to rotational torque transmission and stable torque transmission is possible. In addition, no abnormal noise is generated. Furthermore, since the contact is made without a gap, the strength of the torque transmitting portion is improved. For this reason, the bearing unit for drive wheels can be made lightweight and compact.
外側継手部材の軸部の外径面とハブ輪の孔部の内径面とのどちらか一方に設けられる凸部を、軸方向に沿って他方に圧入することによって、この凸部に密着嵌合する凹部を形成することができる。このため、凹凸嵌合構造を確実に形成することができる。しかも、凹部が形成される部材には、スプライン部等を形成しておく必要がなく、生産性に優れ、かつスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができて、安定した嵌合状態を維持できる。   A convex portion provided on either the outer diameter surface of the shaft portion of the outer joint member or the inner diameter surface of the hole portion of the hub wheel is press-fitted into the other along the axial direction, thereby closely fitting to this convex portion. A concave portion to be formed can be formed. For this reason, an uneven | corrugated fitting structure can be formed reliably. Moreover, it is not necessary to form a spline portion or the like on the member where the recess is formed, and it is excellent in productivity and does not require the phase alignment between the splines. Damage to the tooth surface can be avoided and a stable fitting state can be maintained.
また、等速自在継手の外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くすれば、軸部側の硬度を高くでき、軸部の剛性を向上させることができる。また、ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くすれば、軸部側の硬度処理(熱処理)を行う必要がないので、等速自在継手の外側継手部材の生産性に優れる。 Moreover, while providing the convex portion of the concave-convex fitting structure on the shaft portion of the outer joint member of the constant velocity universal joint, and making the hardness of the axial end portion of the convex portion higher than the hole inner diameter portion of the hub ring , The shaft side hardness can be increased, and the shaft portion rigidity can be improved. In addition, a convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and the hardness of the axial end portion of the convex portion is determined from the outer diameter portion of the shaft portion of the outer joint member of the constant velocity universal joint. If it is higher, it is not necessary to perform the hardness treatment (heat treatment) on the shaft side, so that the productivity of the outer joint member of the constant velocity universal joint is excellent.
前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を設けることによって、はみ出し部をこのポケット内に保持(維持)することができ、はみ出し部が装置外の車両内等へ入り込んだりすることがない。すなわち、はみ出し部をポケット部に収納したままにしておくことができ、はみ出し部の除去処理を行う必要がなく、組み立て作業工数の減少を図ることができて、組み立て作業性の向上及びコスト低減を図ることができる。   By providing a pocket portion for storing the protruding portion generated by forming the concave portion by the press-fitting, the protruding portion can be held (maintained) in the pocket, and the protruding portion may enter the vehicle outside the apparatus. Absent. In other words, the protruding portion can be kept stored in the pocket portion, and it is not necessary to perform the removal processing of the protruding portion, the number of assembling work can be reduced, and the assembling workability can be improved and the cost can be reduced. Can be planned.
また、ポケット部よりも軸端側の軸部に、軸部とハブ輪との間で調芯を行う鍔部を設けることによって、ポケット部内のはみ出し部の鍔部側への飛び出しがなくなって、はみ出し部の収納がより安定したものとなる。しかも、鍔部は調芯用であるので、芯ずれを防止しつつ軸部をハブ輪に圧入することができる。このため、外側継手部材とハブ輪とを高精度に連結でき、安定したトルク伝達が可能となる。 In addition, by providing a collar portion that performs alignment between the shaft portion and the hub wheel on the shaft end side of the shaft portion relative to the pocket portion, there is no protrusion of the protruding portion in the pocket portion to the collar portion side, Storage of the protruding portion becomes more stable. In addition, since the collar portion is used for alignment, the shaft portion can be press-fitted into the hub wheel while preventing misalignment. For this reason, an outer joint member and a hub ring can be connected with high precision, and stable torque transmission becomes possible.
また、凸部の突出方向中間部位が、凹部形成前の凹部形成面上に配置されるようにすることによって、凸部が圧入時に凹部形成面に食い込んでいき、凹部を確実に形成することができる。   In addition, by arranging the intermediate part in the protruding direction of the convex part on the concave part forming surface before forming the concave part, the convex part bites into the concave part forming surface during press-fitting, so that the concave part can be reliably formed. it can.
凸部の突出方向中間部位において、凸部の周方向寸法を、周方向に隣り合う凸部間の溝幅よりも小さくすることによって、凹部が形成される側の突出部分(凹部が形成される側で、凹部間に生じる突出部分)の突出方向中間部位の周方向寸法を大きくすることができる。このため、前記突出部分のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、硬度が高い側の凸部の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。 By making the circumferential dimension of the convex portion smaller than the groove width between the convex portions adjacent to each other in the circumferential direction, the protruding portion on the side where the concave portion is formed (the concave portion is formed). On the side, the circumferential dimension of the intermediate portion in the protruding direction of the protruding portion generated between the recesses can be increased. For this reason, the shear area of the protruding portion can be increased, and the torsional strength can be ensured. Moreover, since the tooth thickness of the convex portion on the higher hardness side is small, the press-fitting load can be reduced and the press-fitting property can be improved.
凸部に鋸歯部を設けたことによって、圧入した際に、硬度が小である側(凹部が形成される側)に鋸歯部が軸方向に沿って食い込むことになる。この食い込みによって、ハブ輪に対する等速自在継手の外側継手部材の軸方向の抜け止めを構成することができる。このため、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。しかも、鋸歯部にて抜け止めを構成することができるので、従来のようなねじ締結を省略できる。このため、軸部にハブ輪の孔部から突出するねじ部を形成する必要がなくなって、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組み立て作業性の向上を図ることができる。 By providing the sawtooth portion on the convex portion, when press-fitting, the sawtooth portion bites in the axial direction on the side having a small hardness ( side on which the concave portion is formed). By this bite-in, it is possible to constitute an axial stopper for the outer joint member of the constant velocity universal joint with respect to the hub wheel. For this reason, the stable connection state can be maintained and the quality improvement of the wheel bearing apparatus can be achieved. In addition, since the stopper can be configured by the sawtooth portion, the conventional screw fastening can be omitted. For this reason, it is not necessary to form a screw portion protruding from the hole portion of the hub wheel in the shaft portion, and it is possible to reduce the weight and to omit the screw fastening operation and to improve the assembly workability. .
内方部材を、一方の内側軌道面を有する前記ハブ輪と、ハブ輪に外嵌され、他方の内側軌道面を有する内輪とで構成し、ハブ輪の端部を加締めることで軸受に予圧を付与することにより、外側継手部材のマウス部によって軸受に予圧を付与する必要がなくなる。このため、軸受への予圧を考慮することなく、外側継手部材の軸部を圧入することができ、ハブ輪と外側継手部材との連結性(組み付け性)の向上を図ることができる。 The inner member is composed of the hub ring having one inner raceway surface and the inner ring fitted on the hub ring and having the other inner raceway surface, and the bearing is preloaded by crimping the end of the hub ring. Therefore, it is not necessary to apply a preload to the bearing by the mouth portion of the outer joint member. For this reason, it is possible to press-fit the shaft portion of the outer joint member without considering the preload to the bearing, and it is possible to improve the connectivity (assembly property) between the hub wheel and the outer joint member.
以下本発明の実施の形態を図1〜図10に基づいて説明する。図1に第1実施形態の車輪用軸受装置を示し、この車輪用軸受装置は、ハブ輪1と、複列の転がり軸受2と、等速自在継手3とが一体化されてなる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a wheel bearing device according to the first embodiment. The wheel bearing device comprises a hub wheel 1, a double row rolling bearing 2 and a constant velocity universal joint 3 integrated with each other.
等速自在継手3は、外側継手部材としての外輪5と、外輪5の内側に配された内側継手部材としての内輪6と、外輪5と内輪6との間に介在してトルクを伝達する複数のボール7と、外輪5と内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。内輪6はその軸孔内径6aにシャフト10の端部10aを圧入することによりスプライン嵌合してシャフト10とトルク伝達可能に結合されている。なお、シャフト10の端部10aには、シャフト抜け止め用の止め輪9が嵌合されている。   The constant velocity universal joint 3 includes a plurality of outer rings 5 serving as outer joint members, an inner ring 6 serving as an inner joint member disposed on the inner side of the outer ring 5, and a plurality of torque transmissions interposed between the outer ring 5 and the inner ring 6. The ball 7 and the cage 8 that is interposed between the outer ring 5 and the inner ring 6 and holds the ball 7 are configured as main members. The inner ring 6 is spline-fitted by press-fitting the end 10a of the shaft 10 into the inner diameter 6a of the shaft hole, and is coupled to the shaft 10 so that torque can be transmitted. Note that a retaining ring 9 for retaining the shaft is fitted to the end portion 10a of the shaft 10.
外輪5はマウス部11とステム部(軸部)12とからなり、マウス部11は一端にて開口した椀状で、その内球面13に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。そのトラック溝14はマウス部11の開口端まで延びている。内輪6は、その外球面15に、軸方向に延びた複数のトラック溝16が円周方向等間隔に形成されている。   The outer ring 5 is composed of a mouse part 11 and a stem part (shaft part) 12. The mouse part 11 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction are circumferentially formed on the inner spherical surface 13 thereof. It is formed at equal intervals in the direction. The track groove 14 extends to the open end of the mouse portion 11. In the inner ring 6, a plurality of track grooves 16 extending in the axial direction are formed on the outer spherical surface 15 at equal intervals in the circumferential direction.
外輪5のトラック溝14と内輪6のトラック溝16とは対をなし、各対のトラック溝14,16で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール7が転動可能に組み込んである。ボール7は外輪5のトラック溝14と内輪6のトラック溝16との間に介在してトルクを伝達する。ケージ8は外輪5と内輪6との間に摺動可能に介在し、外球面8aにて外輪5の内球面13と接し、内球面8bにて内輪6の外球面15と接する。なお、この場合の等速自在継手は、各トラック溝14、16の溝底に直線状のストレート部を有するアンダーカットフリー型を示しているが、ツェパー型等の他の等速自在継手であってもよい。   The track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 make a pair, and one ball 7 as a torque transmitting element can roll on each ball track constituted by the pair of track grooves 14 and 16. It is incorporated. The ball 7 is interposed between the track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 to transmit torque. The cage 8 is slidably interposed between the outer ring 5 and the inner ring 6, is in contact with the inner spherical surface 13 of the outer ring 5 at the outer spherical surface 8a, and is in contact with the outer spherical surface 15 of the inner ring 6 at the inner spherical surface 8b. In this case, the constant velocity universal joint is an undercut free type having a straight straight portion at the bottom of each of the track grooves 14 and 16, but is another constant velocity universal joint such as a Zepper type. May be.
ハブ輪1は、筒部20と、筒部20の反継手側の端部に設けられるフランジ21とを有する。筒部20の孔部22は、軸方向中間部の軸部嵌合孔22aと、反継手側のテーパ孔22bと、継手側の大径孔22cとを備える。すなわち、軸部嵌合孔22aにおいて、後述する凹凸嵌合構造Mを介して等速自在継手3の外輪5の軸部12とハブ輪1とが結合される。   The hub wheel 1 includes a cylindrical portion 20 and a flange 21 provided at an end of the cylindrical portion 20 on the side opposite to the joint. The hole portion 22 of the cylindrical portion 20 includes a shaft portion fitting hole 22a in the middle portion in the axial direction, a tapered hole 22b on the anti-joint side, and a large-diameter hole 22c on the joint side. That is, the shaft portion 12 of the outer ring 5 of the constant velocity universal joint 3 and the hub wheel 1 are coupled to each other through the concave-convex fitting structure M described later in the shaft portion fitting hole 22a.
転がり軸受2は、ハブ輪1、およびハブ輪1の筒部20の継手側に設けられた段差部23に嵌合する内輪24からなる内方部材と、ハブ輪1の筒部20に外嵌される外方部材25とを備える。外方部材25は、その内周に2列の外側軌道面(アウタレース)26、27が設けられ、第1外側軌道面26とハブ輪1の軸部外周に設けられる第1内側軌道面(インナレース)28とが対向し、第2外側軌道面27と、内輪24の外周面に設けられる第2内側軌道面(インナレース)29とが対向し、これらの間に転動体30としてのボールが介装される。なお、外方部材25の両開口部にはシール部材Sが装着されている。 The rolling bearing 2 is externally fitted to the hub ring 1 and an inner member 24 including an inner ring 24 fitted to a stepped portion 23 provided on the joint side of the tube portion 20 of the hub wheel 1 and the tube portion 20 of the hub wheel 1. The outer member 25 is provided. The outer member 25 is provided with two rows of outer raceways (outer races) 26 and 27 on its inner circumference, and a first inner raceway (inner race) provided on the outer circumference of the shaft portion of the first outer raceway 26 and the hub wheel 1. Race) 28 is opposed to the second outer raceway surface 27 and a second inner raceway surface (inner race) 29 provided on the outer peripheral surface of the inner ring 24, and a ball as the rolling element 30 is interposed therebetween. Intervened. Note that seal members S are attached to both openings of the outer member 25.
この場合、ハブ輪1の継手側の端部を加締めて、その加締部31にて転がり軸受2に予圧を付与するものである。これによって、内輪24をハブ輪1に締結することができる。またハブ輪1のフランジ21にはボルト装着孔32が設けられて、ホイールおよびブレーキロータをこのフランジ21に固定するためのハブボルト33がこのボルト装着孔32に装着される。 In this case, the end of the hub wheel 1 on the joint side is swaged, and a preload is applied to the rolling bearing 2 by the swaged portion 31. As a result, the inner ring 24 can be fastened to the hub wheel 1. The flange 21 of the hub wheel 1 is provided with a bolt mounting hole 32, and a hub bolt 33 for fixing the wheel and the brake rotor to the flange 21 is mounted in the bolt mounting hole 32.
凹凸嵌合構造Mは、図2に示すように、例えば、軸部12の端部に設けられて軸方向に延びる凸部35と、ハブ輪1の孔部22の内径面(この場合、軸部嵌合孔22aの内径面37)に形成される凹部36とからなり、凸部35の凹部嵌合部位38の全体がその対応する凹部36に対して密着している。すなわち、軸部12の反マウス部側の外周面に、複数の凸部35が周方向に沿って所定ピッチで配設され、ハブ輪1の孔部22の軸部嵌合孔22aの内径面37に凸部35が嵌合する複数の凹部36が周方向に沿って形成されている。つまり、周方向全周にわたって、凸部35とこれに嵌合する凹部36とがタイトフィットしている。   As shown in FIG. 2, the concave-convex fitting structure M includes, for example, a convex portion 35 provided at an end portion of the shaft portion 12 and extending in the axial direction, and an inner diameter surface of the hole portion 22 of the hub wheel 1 (in this case, the shaft The concave portion 36 is formed in the inner surface 37) of the portion fitting hole 22a, and the entire concave portion fitting portion 38 of the convex portion 35 is in close contact with the corresponding concave portion 36. That is, a plurality of convex portions 35 are arranged at a predetermined pitch along the circumferential direction on the outer peripheral surface of the shaft portion 12 on the side opposite to the mouse portion, and the inner diameter surface of the shaft portion fitting hole 22a of the hole portion 22 of the hub wheel 1 A plurality of concave portions 36 into which the convex portions 35 are fitted to 37 are formed along the circumferential direction. That is, the convex part 35 and the concave part 36 fitted to this are tight-fitted over the entire circumference in the circumferential direction.
この場合、各凸部35は、その断面が凸アール状の頂点を有する三角形状(山形状)であり、各凸部35の凹部嵌合部位38とは、図2(b)に示す範囲Aであり、断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、ハブ輪1の内径面37よりも内径側に隙間40が形成されている。すなわち、この隙間40は、凸部35間の歯底部と、ハブ輪1の孔部22に設けられた、前記歯底部と半径方向に対向する突出部分との間に設けられる。 In this case, each convex portion 35 has a triangular shape (mountain shape) having a convex rounded apex in the cross section, and the concave portion fitting portion 38 of each convex portion 35 is a range A shown in FIG. It is the range from the middle part of the mountain shape to the mountaintop in the cross section. Further, a gap 40 is formed on the inner diameter side with respect to the inner diameter surface 37 of the hub wheel 1 between the adjacent convex portions 35 in the circumferential direction. That is, the gap 40 is provided between the tooth bottom portion between the convex portions 35 and the protruding portion provided in the hole portion 22 of the hub wheel 1 and facing the tooth bottom portion in the radial direction.
このように、ハブ輪1と等速自在継手3の外輪5の軸部12とを凹凸嵌合構造Mを介して連結できる。この際、ハブ輪1の継手側の端部を加締めて、その加締部31にて軸受2に予圧を付与するものであるので、外輪5のマウス部11にて軸受2に予圧を付与する必要がなく、ハブ輪1の端部(この場合、加締部31)に対してマウス部11を接触させない非接触状態としている。 In this way, the hub wheel 1 and the shaft portion 12 of the outer ring 5 of the constant velocity universal joint 3 can be connected via the concave-convex fitting structure M. In this case, caulked end portion of the joint side of the hub wheel 1, since those that confer a preload to the bearing 2 at its crimping portion 31, applying a preload at the mouth portion 11 of the outer race 5 into the bearing 2 This is not necessary, and the mouse part 11 is not in contact with the end part of the hub wheel 1 (in this case, the caulking part 31).
本発明では、凹凸嵌合構造Mは、凸部35の凹部嵌合部位38の全体がその対応する凹部36に対して密着しているので、この嵌合構造Mにおいて、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生も生じさせない。   In the present invention, the concave-convex fitting structure M is in close contact with the corresponding concave portion 36 of the concave portion fitting portion 38 of the convex portion 35. Therefore, in the fitting structure M, the radial direction and the circumferential direction are provided. In this case, there is no gap in which play occurs. For this reason, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.
マウス部11がハブ輪1と非接触状であるので、マウス部11とハブ輪1との接触による異音の発生を防止できる。また、ハブ輪1の端部が加締られて転がり軸受2の内輪24に対して予圧が付与されるので、外側継手部材のマウス部11によって軸受2に予圧を付与する必要がなくなる。このため、軸受2への予圧を考慮することなく、外側継手部材の軸部12を圧入することができ、ハブ輪1と外側継手部材との連結性(組み付け性)の向上を図ることができる。 Since the mouse part 11 is not in contact with the hub wheel 1, it is possible to prevent the generation of noise due to the contact between the mouse part 11 and the hub wheel 1. Further, since the end portion of the hub wheel 1 is crimped and preload is applied to the inner ring 24 of the rolling bearing 2, it is not necessary to apply preload to the bearing 2 by the mouth portion 11 of the outer joint member. For this reason, it is possible to press-fit the shaft portion 12 of the outer joint member without considering the preload to the bearing 2, and to improve the connectivity (assembly property) between the hub wheel 1 and the outer joint member. .
次に、凹凸嵌合構造Mの嵌合方法を説明する。この場合、図3に示すように、軸部12の外径部には、熱硬化処理を施し、この硬化層Hにスプライン41を形成する。このため、スプライン41の山部が硬化処理されて、この山部が凹凸嵌合構造Mの凸部35となる。ハブ輪1の孔部22の内径面37においては熱硬化処理を行わない未硬化部とする。なお、図3において、クロスハッチング部が硬化層Hを示している。硬化層Hとハブ輪1の孔部22の内径面37の未硬化部との硬度差は、HRCで30ポイント以上とする。軸部12のスプライン41のモジュールを0.5以下の小さい歯とする。ここで、モジュールとは、ピッチ円直径を歯数で割ったものである。 Next, the fitting method of the uneven fitting structure M will be described. In this case, as shown in FIG. 3, the outer diameter portion of the shaft portion 12 is subjected to thermosetting treatment, and the spline 41 is formed in the cured layer H. For this reason, the peak part of the spline 41 is hardened, and this peak part becomes the convex part 35 of the concave-convex fitting structure M. The inner diameter surface 37 of the hole 22 of the hub wheel 1 is an uncured portion that is not subjected to thermosetting. In FIG. 3, the cross hatched portion indicates the hardened layer H. The hardness difference between the hardened layer H and the uncured portion of the inner diameter surface 37 of the hole 22 of the hub wheel 1 is 30 points or more in HRC. The module of the spline 41 of the shaft portion 12 is a small tooth of 0.5 or less. Here, the module is a pitch circle diameter divided by the number of teeth.
この際、凸部35の突出方向中間部位を、凹部形成前の凹部形成面(この場合、ハブ輪1の軸部嵌合孔22aの内径面37)の位置に対応させる。軸部嵌合孔22aの内径面37の内径寸法Dは、凸部35の最大径部を結ぶ円の直径寸法(外接円直径)D1よりも小さく、凸部間の最小径部を結ぶ円の直径寸法D2よりも大きく設定される。すなわち、D2<D<D1とされる。 At this time, the projecting direction intermediate portion of the convex portion 35 is made to correspond to the position of the concave portion forming surface (in this case, the inner diameter surface 37 of the shaft portion fitting hole 22a) of the hub wheel 1. The inner diameter dimension D of the inner diameter surface 37 of the shaft fitting hole 22a is smaller than the diameter dimension (circumscribed circle diameter) D1 of the circle connecting the maximum diameter portions of the convex portions 35 , and the circle connecting the minimum diameter portions between the convex portions. It is set larger than the diameter dimension D2. That is, D2 <D <D1.
スプライン41は、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   The spline 41 can be formed by various processing methods such as rolling processing, cutting processing, press processing, and drawing processing, which are known publicly known means. Moreover, various heat processing, such as induction hardening and carburizing hardening, can be employ | adopted as a thermosetting process.
そして、図3に示すように、ハブ輪1の軸心と等速自在継手3の外輪5の軸心とを合わせた状態で、ハブ輪1に対して、外輪5の軸部12を挿入(圧入)していく。この際、孔部22の内径面37の径寸法Dと、凸部35の最大外径寸法D1と、スプライン41の凹部の最小外径寸法D2とが前記のような関係であり、しかも、凸部35の硬度が孔部22の内径面37の硬度よりも30ポイント以上大きいので、軸部12をハブ輪1の孔部22に圧入していけば、この凸部35が内径面37に食い込んでいき、凸部35が、この凸部35が嵌合する凹部36を、軸方向に沿って形成していくことになる。   Then, as shown in FIG. 3, the shaft portion 12 of the outer ring 5 is inserted into the hub wheel 1 with the shaft center of the hub wheel 1 aligned with the shaft center of the outer ring 5 of the constant velocity universal joint 3 ( Press fit). At this time, the diameter D of the inner diameter surface 37 of the hole 22, the maximum outer diameter D 1 of the convex portion 35, and the minimum outer diameter D 2 of the concave portion of the spline 41 are as described above. Since the hardness of the portion 35 is 30 points or more larger than the hardness of the inner diameter surface 37 of the hole portion 22, if the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the convex portion 35 bites into the inner diameter surface 37. Thus, the convex portion 35 forms the concave portion 36 into which the convex portion 35 is fitted along the axial direction.
これによって、図2に示すように、軸部12の端部の凸部35と凹部36の嵌合部位38の全体が密着している嵌合状態を構成することができる。すなわち、相手側の凹部形成面(この場合、孔部22内径面37)に凸部35の形状の転写を行うことになる。この際、凸部35が孔部22の内径面37に食い込んでいくことによって、孔部22が僅かに拡径した状態となって、凸部35の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部22が元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時にハブ輪1が径方向に弾性変形し、この弾性変形分の予圧が凸部35の歯面(凹部嵌合部位38の表面)に付与される。このため、凸部35の凹部嵌合部位38の全体がその対応する凹部36に対して密着する凹凸嵌合構造Mを確実に形成することができる。しかも、凹部36が形成される部材(この場合、ハブ輪1)には、スプライン部等を形成しておく必要がなく、生産性に優れ、かつスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。 As a result, as shown in FIG. 2, it is possible to configure a fitting state in which the entire convex portion 35 of the end portion of the shaft portion 12 and the fitting portion 38 of the concave portion 36 are in close contact with each other. That is, the shape of the convex portion 35 is transferred to the concave portion forming surface on the other side (in this case, the inner diameter surface 37 of the hole portion 22). At this time, the convex portion 35 bites into the inner diameter surface 37 of the hole portion 22, so that the hole portion 22 is slightly expanded in diameter, and the convex portion 35 is allowed to move in the axial direction. When the movement stops, the hole 22 is reduced in diameter to return to the original diameter. In other words, the hub wheel 1 is elastically deformed in the radial direction when the convex portion 35 is press-fitted, and a preload corresponding to this elastic deformation is applied to the tooth surface of the convex portion 35 (surface of the concave portion fitting portion 38). For this reason, the concave / convex fitting structure M in which the entire concave portion fitting portion 38 of the convex portion 35 is in close contact with the corresponding concave portion 36 can be reliably formed. In addition, the member (in this case, the hub wheel 1) in which the concave portion 36 is formed does not need to have a spline portion or the like formed therein, is excellent in productivity, and does not require phase alignment between the splines. In addition, it is possible to avoid damage to the tooth surface during press-fitting and maintain a stable fitting state.
前記実施形態のように、軸部12に形成するスプライン41は、モジュールが0.5以下の小さい歯を用いたので、このスプライン41の成形性の向上を図ることができるとともに、圧入荷重の低減を図ることができる。なお、凸部35を、この種のシャフトに通常形成されるスプラインをもって構成することができるので、低コストにて簡単にこの凸部35を形成することができる。   As in the above-described embodiment, the spline 41 formed on the shaft portion 12 uses small teeth with a module of 0.5 or less, so that the formability of the spline 41 can be improved and the press-fit load is reduced. Can be achieved. In addition, since the convex part 35 can be comprised with the spline normally formed in this kind of shaft, this convex part 35 can be easily formed at low cost.
また、軸部12をハブ輪1に圧入していくとによって、凹部36を形成していくと、この凹部36側に加工硬化が生じる。ここで、加工硬化とは、物体に塑性変形(塑性加工)を与えると,変形の度合が増すにつれて変形に対する抵抗が増大し,変形を受けていない材料よりも硬くなることをいう。このため、圧入時に塑性変形することによって、凹部36側のハブ輪1の内径面37が硬化して、回転トルク伝達性の向上を図ることができる。   Further, when the concave portion 36 is formed by press-fitting the shaft portion 12 into the hub wheel 1, work hardening occurs on the concave portion 36 side. Here, work hardening means that when plastic deformation (plastic processing) is applied to an object, the resistance to deformation increases as the degree of deformation increases, and it becomes harder than a material that has not undergone deformation. For this reason, by plastically deforming at the time of press-fitting, the inner diameter surface 37 of the hub wheel 1 on the concave portion 36 side is hardened, and the rotational torque transmission performance can be improved.
ところで、前記図3に示すスプライン41では、軸部12の凸部35のピッチとハブ輪1の凹部36のピッチとが同一設定される。このため、前記実施形態では、図2に示すように、凸部35の突出方向中間部位において、凸部35の周方向寸法Lと、周方向に隣り合う凸部35間の溝幅L0とがほぼ同一となっている。 By the way, in the spline 41 shown in FIG. 3, the pitch of the convex portion 35 of the shaft portion 12 and the pitch of the concave portion 36 of the hub wheel 1 are set to be the same. Therefore, in the embodiment, as shown in FIG. 2, the circumferential dimension L of the convex portion 35 and the groove width L0 between the convex portions 35 adjacent to each other in the circumferential direction at the intermediate portion in the projecting direction of the convex portion 35. It is almost the same.
これに対して、図4に示すように、凸部35の突出方向中間部位において、凸部35の周方向寸法L2、周方向に隣り合う凸部35間の溝幅L1よりも小さいものであってもよい。すなわち、軸部12に形成されるスプライン41において、凸部35の突出方向中間部位の周方向寸法(歯厚)L2を、凸部35間に嵌合するハブ輪1側の突出部分43の突出方向中間部位の周方向寸法(歯厚)L1よりも小さくしている。 In contrast, as shown in FIG. 4, in the projecting direction intermediate region of the projections 35, the circumferential length L2 of the projections 35, be smaller than the groove width L1 between the projecting portions 35 adjacent to each other in the circumferential direction There may be. In other words, in the spline 41 formed on the shaft portion 12, the circumferential dimension (tooth thickness) L <b> 2 of the projecting portion 35 in the projecting direction is projected from the projecting portion 43 on the hub wheel 1 side that fits between the projecting portions 35. It is made smaller than the circumferential dimension (tooth thickness) L1 of the direction intermediate part.
また、凸部35の突出方向中間部位において、軸部12側の全周における凸部35の歯厚の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の突出部分43(凸歯)の歯厚の総和Σ(A1+A2+A3+・・・)よりも小さく設定するのが望ましい。これによって、ハブ輪1側の突出部分43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部35の周方向寸法の総和を、相手側の突出部分43における周方向寸法の総和よりも小さくする場合、全ての凸部35の周方向寸法L2を、周方向に隣り合う凸部35間の溝幅L1よりも小さくする必要がない。すなわち、複数の凸部35のうち、任意の凸部35の周方向寸法L2が周方向に隣り合う凸部間の溝幅L1と同一であっても、この溝幅L1よりも大きくても、総和で小さければよい。なお、図4における凸部35は、断面台形(富士山形状)としている。 Further, at the intermediate portion in the protruding direction of the protruding portion 35, the sum Σ (B1 + B2 + B3 +...) Of the tooth thickness of the protruding portion 35 on the entire circumference on the shaft portion 12 side is set to the protruding portion 43 (convex tooth) on the hub wheel 1 side. It is desirable to set it smaller than the total tooth thickness Σ (A1 + A2 + A3 +...). As a result, the shear area of the protruding portion 43 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at. The sum of the circumferential dimension of the projections 35, to less than the sum of the circumferential dimension of the projecting portion 43 of the mating, the circumferential dimension L2 of the projections 35 of all the hands, convex circumferentially adjacent portion 35 It is not necessary to make it smaller than the groove width L1 between them. That is, even if the circumferential dimension L2 of any convex part 35 among the plurality of convex parts 35 is the same as the groove width L1 between the convex parts adjacent in the circumferential direction, or larger than this groove width L1 , The sum is small. In addition, the convex part 35 in FIG. 4 is made into the cross-sectional trapezoid (Mt. Fuji shape).
ところで、ハブ輪1に対して外輪5の軸部12を圧入していけば、凸部35にて形成される凹部36から材料がはみ出して第2実施形態の図5に示すようなはみ出し部45が形成される。はみ出し部45は、凸部35の凹部嵌合部位38が嵌入(嵌合)する凹部36の容量の材料分であって、形成される凹部36から押し出されたもの、凹部36を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。その際、嵌合部の極く一部領域に凸部による凹部成形過程で不可避的に隙間が生じる場合がある。 By the way, if the shaft portion 12 of the outer ring 5 is press-fitted into the hub wheel 1, the material protrudes from the concave portion 36 formed by the convex portion 35 and the protruding portion 45 as shown in FIG. 5 of the second embodiment. Is formed. The protruding portion 45 is the material of the capacity of the concave portion 36 into which the concave portion fitting portion 38 of the convex portion 35 is fitted (fitted), and is pushed out from the formed concave portion 36 to form the concave portion 36. It is composed of what has been cut or both extruded and cut. At that time, a gap may be inevitably generated in the concave portion forming process by the convex portion in a very partial region of the fitting portion.
このため、前記図1に示す車輪用軸受装置では、ハブ輪1に等速自在継手を組み付けた後、このはみ出し部45の除去作業を必要としていた。そこで、図5に示す他の実施形態では、はみ出し部45を収納するポケット部50を軸部12に設けている。   For this reason, in the wheel bearing device shown in FIG. 1, after the constant velocity universal joint is assembled to the hub wheel 1, it is necessary to remove the protruding portion 45. Therefore, in another embodiment shown in FIG. 5, a pocket portion 50 that accommodates the protruding portion 45 is provided in the shaft portion 12.
すなわち、軸部12のスプライン41の軸端縁に周方向溝51を設けることによって、ポケット部50を形成している。図6に示すように、周方向溝51は、そのスプライン41側の側壁51aは、軸方向に対して直交する平面であり、反スプライン側の側面51bは、溝底51cから反スプライン側に向かって拡径するテーパ面である。   That is, the pocket portion 50 is formed by providing the circumferential groove 51 at the shaft end edge of the spline 41 of the shaft portion 12. As shown in FIG. 6, in the circumferential groove 51, the side wall 51a on the spline 41 side is a plane orthogonal to the axial direction, and the side surface 51b on the anti-spline side faces from the groove bottom 51c to the anti-spline side. This is a tapered surface that expands in diameter.
また、この側面51bよりも反スプライン側(軸端側)には、調芯用の円盤状の鍔部52が設けられている。鍔部52の外径寸法が孔部22の嵌合孔22aの孔径と同一乃至嵌合孔22aの孔径よりも僅かに小さく設定される。この場合、鍔部52の外径面52aと孔部22の嵌合孔22aの内径面との間に微小隙間tが設けられている。 Further, a disc-shaped flange 52 for alignment is provided on the side opposite to the spline (shaft end side) from the side surface 51b. The outer diameter of the flange 52 is set to be the same as the diameter of the fitting hole 22a of the hole 22 or slightly smaller than the diameter of the fitting hole 22a. In this case, a minute gap t is provided between the outer diameter surface 52 a of the flange portion 52 and the inner diameter surface of the fitting hole 22 a of the hole portion 22.
この図6に示す外輪5であっても、軸部12をハブ輪1の孔部22に圧入していけば、軸部12側の凸部35によって、ハブ輪1側に凹部36を形成することができる。この際、形成されるはみ出し部45は、図6に示すように、カールしつつポケット部50内に収納されて行く。すなわち、孔部22の内径面から削り取られたり、押し出されたりした材料の一部がポケット部50内に入り込んでいく。   Even in the outer ring 5 shown in FIG. 6, if the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, a concave portion 36 is formed on the hub wheel 1 side by the convex portion 35 on the shaft portion 12 side. be able to. At this time, the protruding portion 45 to be formed is housed in the pocket portion 50 while curling as shown in FIG. That is, a part of the material scraped off or pushed out from the inner diameter surface of the hole portion 22 enters the pocket portion 50.
このように、前記圧入による凹部形成によって生じるはみ出し部45を収納するポケット部50を設けることによって、はみ出し部45をこのポケット部50内に保持(維持)することができ、はみ出し部45が装置外の車両内等へ入り込んだりすることがない。すなわち、はみ出し部45をポケット部50に収納したままにしておくことができ、はみ出し部45の除去処理を行う必要がなく、組み立て作業工数の減少を図ることができて、組み立て作業性の向上及びコスト低減を図ることができる。   In this way, by providing the pocket portion 50 for accommodating the protruding portion 45 generated by forming the concave portion by the press-fitting, the protruding portion 45 can be held (maintained) in the pocket portion 50, and the protruding portion 45 is outside the apparatus. Never get into any other vehicle. That is, the protruding portion 45 can be kept stored in the pocket portion 50, and it is not necessary to perform the removal process of the protruding portion 45, the number of assembling work can be reduced, and the assembling workability can be improved. Cost reduction can be achieved.
また、ポケット部50の軸方向反スプライン(軸端側)にハブ輪1の孔部22との調芯用の鍔部52を設けることによって、ポケット部50内のはみ出し部45の鍔部52側への飛び出しがなくなって、はみ出し部45の収納がより安定したものとなる。しかも、鍔部52は調芯用であるので、芯ずれを防止しつつ軸部12をハブ輪1に圧入することができる。このため、外側継手部材5とハブ輪1とを高精度に連結でき、安定したトルク伝達が可能となる。 Further, by providing a flange 52 for alignment with the hole 22 of the hub wheel 1 on the axially opposite spline side (shaft end side) of the pocket 50, the flange 52 of the protruding portion 45 in the pocket 50 is provided. The protrusion to the side is eliminated, and the storage of the protruding portion 45 becomes more stable. Moreover, since the flange portion 52 is for alignment, the shaft portion 12 can be press-fitted into the hub wheel 1 while preventing misalignment. For this reason, the outer joint member 5 and the hub wheel 1 can be connected with high precision, and stable torque transmission becomes possible.
鍔部52は圧入時の調芯用であるので、その外径寸法は、ハブ輪1の孔部22の嵌合孔22aの孔径よりも僅かに小さい程度に設定するが好ましい。すなわち、鍔部52の外径寸法が嵌合孔22aの孔径よりも大きければ、鍔部52自体を嵌合孔22aを圧入することになる。この際、芯ずれしていれば、このまま凹凸嵌合構造Mの凸部35が圧入され、軸部12の軸心とハブ輪1の軸心とが合っていない状態で軸部1とハブ輪1とが連結されることになる。また、鍔部52の外径寸法が嵌合孔22aの孔径よりも小さすぎると、調芯用として機能しない。このため、鍔部52の外径面52aと孔部22の嵌合孔22aの内径面との間の微小隙間tとしては、0.01mm〜0.2mm程度に設定するのが好ましい。 Since the flange 52 is used for aligning during press-fitting, the outer diameter is preferably set to be slightly smaller than the diameter of the fitting hole 22a of the hole 22 of the hub wheel 1. That is, if the outer diameter of the flange 52 is larger than the hole diameter of the fitting hole 22a , the flange 52 itself is press-fitted into the fitting hole 22a. At this time, if the center is misaligned, the convex portion 35 of the concave-convex fitting structure M is pressed in as it is, and the shaft portion 1 and the hub wheel 1 are not aligned with the shaft center of the shaft portion 12 and the hub wheel 1. 1 is connected. Moreover, if the outer diameter dimension of the collar part 52 is too smaller than the hole diameter of the fitting hole 22a, it will not function for alignment. For this reason, it is preferable that the minute gap t between the outer diameter surface 52a of the flange portion 52 and the inner diameter surface of the fitting hole 22a of the hole portion 22 is set to about 0.01 mm to 0.2 mm.
図5に示す車輪用軸受装置の他の構成は図1に示す車輪用軸受装置と同様であるので、同一部材については図1の符号と同一の符号を付してそれらの説明を省略する。このため、図5に示す車輪用軸受装置は、図1に示す車輪用軸受装置と同様の作用効果を奏する。   Since the other structure of the wheel bearing device shown in FIG. 5 is the same as that of the wheel bearing device shown in FIG. 1, the same members as those in FIG. For this reason, the wheel bearing apparatus shown in FIG. 5 has the same effect as the wheel bearing apparatus shown in FIG.
次に、図7は第3実施形態を示し、この凹凸嵌合構造Mは、軸部12の凸部35、つまりスプライン41の凸部35に鋸歯部55が形成される。鋸歯部55とは、凸部41aの頂部の長手方向に沿って形成される小凹凸部である。この場合、凸部(凸歯)55aはその断面がポケット側を傾斜面とした直角三角形状とされるものである。この図例の鋸歯部55はポケット部50側に設けている。 Next, FIG. 7 shows a third embodiment. In this concave-convex fitting structure M, a sawtooth portion 55 is formed on the convex portion 35 of the shaft portion 12, that is, the convex portion 35 of the spline 41. The saw-tooth part 55 is a small uneven part formed along the longitudinal direction of the top part of the convex part 41a. In this case, the convex portion (convex tooth) 55a has a cross-sectional shape of a right triangle having the pocket side as an inclined surface. The sawtooth portion 55 in this example is provided on the pocket portion 50 side.
図7に示すように鋸歯部55を備えた軸部12をハブ輪1の孔部22に圧入すれば、鍔部52にて調芯しつつ、図8に示すように、軸部12側の凸部35によってハブ輪1側に凹部36を形成してはみ出し部45が形成されていく。そして、このはみ出し部45がカールしつつポケット部50内に収納されて行く。   As shown in FIG. 7, when the shaft portion 12 having the sawtooth portion 55 is press-fitted into the hole portion 22 of the hub wheel 1, the shaft portion 12 side is aligned as shown in FIG. A protrusion 36 is formed by forming a recess 36 on the hub wheel 1 side by the protrusion 35. The protruding portion 45 is stored in the pocket portion 50 while curling.
また、この圧入の際に、鋸歯部55がハブ輪1側に形成される凹部36の底部に食い込む。すなわち、圧入の際に拡径していたハブ輪1の孔部22が拡径しているが、圧入完了時には元の状態に戻るように縮径する。このため、ハブ輪1の孔部22の内径面側から図9の矢印のように鋸歯部55に対して押圧力(縮径力)が作用して、ハブ輪1の孔部22の内径面に鋸歯部55の凸部55aが食い込む。   Further, at the time of the press-fitting, the sawtooth portion 55 bites into the bottom portion of the concave portion 36 formed on the hub wheel 1 side. That is, the hole 22 of the hub wheel 1 that has been expanded at the time of press-fitting is enlarged, but when the press-fitting is completed, the diameter is reduced so as to return to the original state. Therefore, a pressing force (diameter reducing force) acts on the sawtooth portion 55 as shown by the arrow in FIG. 9 from the inner diameter surface side of the hole portion 22 of the hub wheel 1, and the inner diameter surface of the hole portion 22 of the hub wheel 1. The convex part 55a of the saw-tooth part 55 bites into.
このように、凸部35側に鋸歯部55を設けたことによって、圧入した際に、鋸歯部55(つまり複数の凸部55a)が軸方向に沿って食い込むことになる。この食い込みによって、ハブ輪1に対する等速自在継手の外側継手部材5の軸方向の抜け止めを構成することができる。これにより、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。しかも、鋸歯部55にて抜け止めを構成することができるので、従来のようなねじ締結を省略できる。このため、軸部12にハブ輪1の孔部22から突出するねじ部を形成する必要がなくなって、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組み立て作業性の向上を図ることができる。   Thus, by providing the sawtooth portion 55 on the convex portion 35 side, the sawtooth portion 55 (that is, the plurality of convex portions 55a) bites in along the axial direction when press-fitted. By this bite-in, it is possible to configure the axial joint of the outer joint member 5 of the constant velocity universal joint with respect to the hub wheel 1. Thereby, the stable connection state can be maintained and the quality improvement of the wheel bearing apparatus can be achieved. In addition, since the saw-tooth portion 55 can constitute a retaining member, conventional screw fastening can be omitted. For this reason, it is not necessary to form the screw part which protrudes from the hole part 22 of the hub wheel 1 in the axial part 12, and while being able to achieve weight reduction, a screw fastening operation | work can be abbreviate | omitted and aiming at the improvement of assembly workability | operativity. be able to.
ところで、前記各実施形態では、軸部12側に凸部35を構成するスプライン41を形成するとともに、この軸部12のスプライン41に対して硬化処理を施し、ハブ輪1の内径面を未硬化(生材)としている。これに対して、第4実施形態の図10に示すように、ハブ輪1の孔部22の内径面に硬化処理を施されたスプライン61(凸条61a及び凹条61bとからなる)を形成するとともに、軸部12には硬化処理を施さないものであってもよい。なお、このスプライン61も公知公用の手段であるブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   By the way, in each said embodiment, while forming the spline 41 which comprises the convex part 35 in the axial part 12 side, the hardening process is performed with respect to the spline 41 of this axial part 12, and the internal diameter surface of the hub ring 1 is unhardened. (Raw material). On the other hand, as shown in FIG. 10 of the fourth embodiment, a spline 61 (consisting of ridges 61a and ridges 61b) is formed on the inner diameter surface of the hole 22 of the hub wheel 1 by a hardening process. In addition, the shaft portion 12 may not be subjected to a curing process. The spline 61 can also be formed by various processing methods such as broaching, cutting, pressing, and drawing, which are publicly known means. Further, various heat treatments such as induction hardening and carburizing and quenching can be employed as the thermosetting treatment.
この場合、凸部35の突出方向中間部位、凹部形成前の凹部形成面(軸部12の外径面)の位置に対応させる。すなわち、スプライン61の凸部35最小径部を結ぶ円の径寸法(凸部35の最小径寸法)D4を、軸部12の外径寸法D3よりも小さく、スプライン61の最大径部を結ぶ円の径寸法(凸部間の嵌合用孔内径面の内径寸法)D5を軸部12の外径寸法D3よりも大きく設定する。すなわち、D4<D3<D5とされる。 In this case, the intermediate portion in the protruding direction of the convex portion 35 is made to correspond to the position of the concave portion forming surface (the outer diameter surface of the shaft portion 12) before the concave portion is formed. That is, the diameter of a circle connecting outermost diameter portion of the projections 35 of splines 61 D4 (minimum diameter dimension of projections 35), smaller than the outer diameter D3 of the shaft portion 12, connecting the maximum diameter portion of the spline 61 The diameter dimension of the circle (the inner diameter dimension of the inner diameter surface of the fitting hole between the convex portions) D5 is set to be larger than the outer diameter dimension D3 of the shaft portion 12. That is, D4 <D3 <D5.
軸部12をハブ輪1の孔部22に圧入すれば、ハブ輪1側の凸部35によって、軸部12の外周面にこの凸部35が嵌合する凹部36を形成することができる。これによって、ハブ輪1側の凸部35と軸部12側の凹部36とを、その嵌合部位38の全体で密着させることができる。 If the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the concave portion 36 into which the convex portion 35 is fitted can be formed on the outer peripheral surface of the shaft portion 12 by the convex portion 35 on the hub wheel 1 side. As a result, the convex portion 35 on the hub wheel 1 side and the concave portion 36 on the shaft portion 12 side can be brought into close contact with the entire fitting portion 38.
ここで、凸部35の凹部嵌合部位38とは、図10(b)に示す範囲Bであり、断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、軸部12の外周面よりも外径側に隙間62が形成される。すなわち、この隙間62は、凸部35間の歯底部と、軸部12に設けられた、前記歯底部と半径方向に対向する突出部分との間に設けられる。 Here, the concave portion fitting portion 38 of the convex portion 35 is a range B shown in FIG. 10 (b), and is a range from the middle of the mountain shape to the top of the mountain in the cross section. Further, a gap 62 is formed on the outer diameter side of the outer peripheral surface of the shaft portion 12 between the adjacent convex portions 35 in the circumferential direction. In other words, the gap 62 is provided between the tooth bottom portion between the convex portions 35 and the protruding portion provided in the shaft portion 12 and facing the tooth bottom portion in the radial direction.
この場合であっても、圧入によってはみ出し部45が形成されるので、このはみ出し部45を収納するポケット部50を設けるのが好ましい。はみ出し部45は、図5に示すものと相違して、軸部12のマウス側に形成されることになるので、ポケット部をハブ輪1側に設けることになる。 Even in this case, since the protruding portion 45 is formed by press-fitting, it is preferable to provide a pocket portion 50 for storing the protruding portion 45. Unlike the one shown in FIG. 5, the protruding portion 45 is formed on the mouse side of the shaft portion 12, so that the pocket portion is provided on the hub wheel 1 side.
なお、このようにハブ輪1側に凹凸嵌合構造Mの凸部35を形成したものであっても、軸部12の反マウス側の端部に、その外径寸法がハブ輪1に圧入する際の調芯となる鍔部を設けてもよい。これによって、高精度の圧入が可能となる。また、ハブ輪側に抜け止め機能を発揮する鋸歯部を設けてもよい。   Even if the convex portion 35 of the concave-convex fitting structure M is formed on the hub wheel 1 side in this way, the outer diameter of the shaft portion 12 is press-fitted into the hub wheel 1 at the end of the shaft portion 12 on the anti-mouse side. You may provide the collar part used as the alignment at the time of doing. Thereby, press-fitting with high accuracy becomes possible. Moreover, you may provide the serrated part which exhibits a retaining function in the hub ring | wheel side.
以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部35の形状として、前記図2に示す実施形態では断面三角形状であり、図4に示す実施形態では断面台形(富士山形状)であるが、これら以外の半円形状、半楕円形状、矩形形状等の種々の形状のものを採用でき、凸部35の面積、数、周方向配設ピッチ等も任意に変更できる。すなわち、スプライン41、61を形成し、このスプライン41、61の山部をもって凹凸嵌合構造Mの凸部35とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部35を相手側に圧入し、この凸部35にて凸部35に密着嵌合する凹部36を相手側に形成することができて、凸部35の凹部嵌合部位38の全体がその対応する凹部36に対して密着し、しかも、ハブ輪1と等速自在継手3との間で回転トルクの伝達ができればよい。 As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, as the shape of the convex portion 35 of the concave-convex fitting structure M, FIG. In the embodiment shown in FIG. 2, the cross section is triangular, and in the embodiment shown in FIG. 4, the cross section is trapezoidal (mountain shape), but other shapes such as semicircular, semielliptical, and rectangular are available. The area, the number, the circumferential arrangement pitch, and the like of the convex portions 35 can be arbitrarily changed. That is, it is not necessary to form the splines 41 and 61, and the crests of the splines 41 and 61 to be the convex portions 35 of the concave-convex fitting structure M. It is also possible to form a mating surface. In short, the convex portion 35 disposed along the axial direction can be press-fitted into the mating side, and the concave portion 36 can be formed on the mating side with the convex portion 35 so as to closely fit the convex portion 35. It suffices that the entire recessed portion fitting portion 38 of the portion 35 is in close contact with the corresponding recessed portion 36 and that rotational torque can be transmitted between the hub wheel 1 and the constant velocity universal joint 3.
また、ハブ輪1の軸孔22としては円孔以外の多角形孔等の異形孔であってよく、この軸孔22に嵌挿する軸部12の端部の断面形状も円形断面以外の多角形等の異形断面であってもよい。このため、例えば、ハブ輪1の軸孔22を円孔として、シャフト5の端部5aの断面形状を円形以外の多角形として、このエッジ部を前記凸部35とすることができる。   Further, the shaft hole 22 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion of the shaft portion 12 fitted into the shaft hole 22 may be other than a circular cross section. An irregular cross section such as a square may be used. For this reason, for example, the shaft hole 22 of the hub wheel 1 can be a circular hole, the cross-sectional shape of the end 5a of the shaft 5 can be a polygon other than a circle, and the edge can be the convex portion 35.
前記実施形態では、凸部35に対して熱硬化処理を行い、凸部対応側を未硬化部位として、凸部35の硬度を凹部36が形成される部位よりも高くしたが、硬度差をつけることができれば、両者を熱処理しても、両者を熱処理しなくてもよい。さらに、圧入する際に凸部35の圧入始端部のみが、凹部36が形成される部位より硬度が高ければよいので、凸部35の全体の硬度を高くする必要がない。図2等では隙間40が形成されるが、凸部35間の凹部まで、ハブ輪1の内径面37に食い込むようなものであってもよい。また、なお、凸部35側と、凸部35にて形成される凹部形成面側との硬度差としては、前記したようにHRCで30ポイント以上とするのが好ましいが、凸部35が圧入可能であれば30ポイント未満であってもよい。   In the embodiment, the convex portion 35 is subjected to thermosetting treatment, and the convex portion corresponding side is set as an uncured portion, and the hardness of the convex portion 35 is higher than the portion where the concave portion 36 is formed. If possible, both may be heat treated or both may not be heat treated. Furthermore, since only the press-fitting start end portion of the convex portion 35 needs to be harder than the portion where the concave portion 36 is formed during press-fitting, it is not necessary to increase the overall hardness of the convex portion 35. In FIG. 2 and the like, the gap 40 is formed. However, the gap 40 between the convex portions 35 may bite into the inner diameter surface 37 of the hub wheel 1. In addition, as described above, the hardness difference between the convex portion 35 side and the concave portion forming surface side formed by the convex portion 35 is preferably 30 points or more by HRC, but the convex portion 35 is press-fitted. If possible, it may be less than 30 points.
凸部35の端面(圧入始端)は前記実施形態では軸方向に対して直交する面であったが、軸方向に対して、所定角度で傾斜するものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。   Although the end surface (press-fit start end) of the convex portion 35 is a surface orthogonal to the axial direction in the embodiment, it may be inclined at a predetermined angle with respect to the axial direction. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side.
また、ポケット部50の形状としては、前記実施形態では、その周方向溝51は反スプライン側の側面51bを、溝底51cから反スプライン側に向かって拡径するテーパ面としたが、このようなテーパ面としないものであってもよく、要は、生じるはみ出し部45を収納(収容)できるものであればよく、そのため、ポケット部50の容量として、生じるはみ出し部45に対応できるものであればよい。   Moreover, as the shape of the pocket portion 50, in the above-described embodiment, the circumferential groove 51 has a side surface 51b on the anti-spline side that is a tapered surface that expands from the groove bottom 51c toward the anti-spline side. In other words, it is sufficient that the protruding portion 45 to be generated can be accommodated (accommodated), and therefore, the capacity of the pocket portion 50 can correspond to the generated protruding portion 45. That's fine.
鋸歯部55を設ける場合、図7では、スプライン41の軸方向端部(ポケット部側)に設けたが、反対側のマウス部11側に設けても、スプライン41の軸方向中間部に設けても、さらには、スプライン41の軸方向全長に設けてもよい。また、各鋸歯部55の凸部(凸歯)55aの数及び形状等も任意に変更でき、鋸歯部55としては、周方向全周の凸部35に設けたものであっても、周方向全周の凸部35のうち任意の凸部35に設けるようにしてもよい。なお、実施形態では、凸部35を構成するスプライン41の凸部41aに鋸歯部55を設けていたが、スプライン41の凹部41bに鋸歯部55を設けてもよい。   In the case where the sawtooth portion 55 is provided, in FIG. 7, it is provided at the axial end portion (pocket portion side) of the spline 41, but it is provided at the intermediate portion in the axial direction of the spline 41 even if provided at the opposite mouse portion 11 side. Furthermore, you may provide in the axial direction full length of the spline 41 further. Further, the number and shape of the convex portions (convex teeth) 55a of each sawtooth portion 55 can be arbitrarily changed, and even if the sawtooth portion 55 is provided on the convex portion 35 on the entire circumference in the circumferential direction, the circumferential direction You may make it provide in the arbitrary convex parts 35 among the convex parts 35 of a perimeter. In the embodiment, the sawtooth portion 55 is provided on the convex portion 41 a of the spline 41 constituting the convex portion 35, but the sawtooth portion 55 may be provided on the concave portion 41 b of the spline 41.
さらに、ハブ輪1の孔部22の内径面37に、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部36の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部35の圧入性の向上を図ることができる。すなわち、小凹部を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができて、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、ポケット部50の容積を小さくでき、ポケット部50の加工性及び軸部12の強度の向上を図ることができる。なお、小凹部の形状は、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。   Furthermore, you may provide the small recessed part arrange | positioned by the predetermined pitch along the circumferential direction in the internal diameter surface 37 of the hole 22 of the hub wheel 1. FIG. The small recess needs to be smaller than the volume of the recess 36. Thus, by providing a small recessed part, the press-fit property of the convex part 35 can be aimed at. That is, by providing the small concave portion, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, and the press-fit resistance can be reduced. Moreover, since the protrusion part 45 can be decreased, the volume of the pocket part 50 can be made small and the workability of the pocket part 50 and the intensity | strength of the axial part 12 can be aimed at. Various shapes such as a semi-elliptical shape and a rectangular shape can be adopted as the shape of the small concave portion, and the number can be arbitrarily set.
図1等の実施形態では、ハブ輪1の端部を加締ることによって、内輪24に予圧を付与するようにしていたが、ハブ輪1のインボード側の小径段部先端に雄ねじを設けナットで締付けることにより予圧を付与しても良い。さらに、軸受2の転動体30として、ローラを使用したものであってもよい。また、前記実施形態では、第3世代の車輪用軸受装置を示したが、第1世代や第2世代さらには第4世代であってもよい。なお、凸部35を圧入する場合、凹部36が形成される側を固定して、凸部35を形成している側を移動させても、逆に、凸部35を形成している側を固定して、凹部36が形成される側を移動させても、両者を移動させてもよい。なお、等速自在継手3において、内輪6とシャフト10とを前記各実施形態に記載した凹凸嵌合構造Mを介して一体化してもよい。   In the embodiment of FIG. 1 and the like, a preload is applied to the inner ring 24 by crimping the end of the hub wheel 1, but a male screw is provided at the tip of the small-diameter step portion on the inboard side of the hub wheel 1. A preload may be applied by tightening with a nut. Further, a roller may be used as the rolling element 30 of the bearing 2. In the above-described embodiment, the third generation wheel bearing device is shown. However, the first generation, the second generation, or the fourth generation may be used. In addition, when press-fitting the convex portion 35, even if the side where the concave portion 36 is formed is fixed and the side where the convex portion 35 is formed is moved, the side where the convex portion 35 is formed is reversed. It may be fixed and the side where the recess 36 is formed may be moved or both may be moved. In the constant velocity universal joint 3, the inner ring 6 and the shaft 10 may be integrated via the concave / convex fitting structure M described in the above embodiments.
本発明の第1実施形態を示す車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which shows 1st Embodiment of this invention. 前記車輪用軸受装置の凹凸嵌合構造を示し、(a)は拡大断面図であり、(b)は(a)のX部拡大図である。The uneven | corrugated fitting structure of the said wheel bearing apparatus is shown, (a) is an expanded sectional view, (b) is the X section enlarged view of (a). 前記車輪用軸受装置の等速自在継手の組み付け前の断面図である。It is sectional drawing before the assembly | attachment of the constant velocity universal joint of the said bearing apparatus for wheels. 凹凸嵌合構造の変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of an uneven | corrugated fitting structure. 本発明の第2実施形態を示す車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which shows 2nd Embodiment of this invention. 前記図5の車輪用軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the wheel bearing apparatus of the said FIG. 本発明の第3実施形態を示す車輪用軸受装置の外側継手部材の要部側面図である。It is a principal part side view of the outer joint member of the wheel bearing apparatus which shows 3rd Embodiment of this invention. 前記図7の車輪用軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the wheel bearing apparatus of the said FIG. 前記図7の車輪用軸受装置の凹凸嵌合構造の簡略図である。FIG. 8 is a simplified view of the concave-convex fitting structure of the wheel bearing device of FIG. 7. 本発明の第4実施形態を示す車輪用軸受装置の凹凸嵌合構造を示し、(a)は拡大断面図であり、(b)は(a)のY部拡大断面図である。The uneven | corrugated fitting structure of the wheel bearing apparatus which shows 4th Embodiment of this invention is shown, (a) is an expanded sectional view, (b) is the Y section expanded sectional view of (a). 従来の車輪用軸受装置の断面図である。It is sectional drawing of the conventional wheel bearing apparatus.
符号の説明Explanation of symbols
1 ハブ輪
2 軸受
3 等速自在継手
11 マウス部
12 軸部(ステム部)
22 孔部
24 内輪
35 凸部
36 凹部
38 凹部嵌合部位
50 ポケット部
52 鍔部
55 鋸歯部
M 凹凸嵌合構造
1 Hub Wheel 2 Bearing 3 Constant Velocity Universal Joint 11 Mouse Part 12 Shaft Part (Stem Part)
22 hole 24 inner ring 35 convex part 36 concave part 38 concave part fitting part 50 pocket part 52 collar part 55 serrated part M concave-convex fitting structure

Claims (14)

  1. 内周に複数のアウタレースを有する外方部材と、車輪に取り付けられるハブ輪を有し、該ハブ輪の筒部上に前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された複数列の転動体と、外側継手部材を有する等速自在継手とを備え、ハブ輪の孔部に嵌挿される外側継手部材の軸部とハブ輪とが連結される車輪用軸受装置であって、
    前記外側継手部材の軸部の外径面と前記ハブ輪の孔部の内径面とのどちらか一方に設けられて軸方向に延びる凸部を、軸方向に沿って他方に圧入することにより、この他方に凸部にて凹部を形成して、凹部と凸部が両者の嵌合部の全域で密着する凹凸嵌合構造を構成し、前記凹部が凸部で削り取られた部分を有することを特徴とする車輪用軸受装置。
    An outer member having a plurality of outer races on the inner periphery, a hub ring attached to the wheel, an inner member having a plurality of inner races opposed to the outer race on the cylindrical portion of the hub wheel, and an opposing outer race A plurality of rows of rolling elements disposed between the inner race and the inner race, and a constant velocity universal joint having an outer joint member, and a shaft portion of the outer joint member inserted into a hole of the hub wheel and the hub wheel A wheel bearing device to be coupled,
    By press-fitting a convex portion provided in one of the outer diameter surface of the shaft portion of the outer joint member and the inner diameter surface of the hole portion of the hub wheel and extending in the axial direction into the other along the axial direction, On the other side, a concave portion is formed by a convex portion, and a concave-convex fitting structure in which the concave portion and the convex portion are in close contact with each other in the entire fitting portion is formed, and the concave portion has a portion cut off by the convex portion. A wheel bearing device.
  2. 周方向に隣り合う前記凸部間の歯底部と、前記他方に形成された、前記歯底部と半径方向で対向する突出部分との間に隙間を形成したことを特徴とする請求項1記載の車輪用軸受装置。 The clearance gap was formed between the tooth bottom part between the said convex parts adjacent to the circumferential direction, and the protrusion part which was formed in the said other and opposed to the said tooth bottom part in radial direction. Wheel bearing device.
  3. 等速自在継手の外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の少なくとも軸方向端部の硬度をハブ輪の孔部内径部よりも高くしたことを特徴とする請求項1または2記載の車輪用軸受装置。 A convex portion of the concave-convex fitting structure is provided on the shaft portion of the outer joint member of the constant velocity universal joint, and the hardness of at least the axial end portion of the convex portion is made higher than the inner diameter portion of the hole portion of the hub wheel. The wheel bearing device according to claim 1 or 2 .
  4. 等速自在継手の外側継手部材の軸部に前記凹凸嵌合構造の凸部を設け、前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を、外側継手部材の軸部に設けたことを特徴とする請求項1〜請求項3いずれか1項記載の車輪用軸受装置。 Protruding portions of the concave- convex fitting structure are provided on the shaft portion of the outer joint member of the constant velocity universal joint, and a pocket portion is provided in the shaft portion of the outer joint member for accommodating the protruding portion generated by forming the concave portion by the press-fitting. The wheel bearing device according to any one of claims 1 to 3 , wherein the wheel bearing device is a wheel bearing device.
  5. 前記ポケット部よりも軸端側の軸部に、軸部とハブ輪との間で調芯を行う鍔部を設けたことを特徴とする請求項4記載の車輪用軸受装置。   The wheel bearing device according to claim 4, wherein a flange portion that performs alignment between the shaft portion and the hub wheel is provided at a shaft portion closer to the shaft end than the pocket portion.
  6. ハブ輪の軸部嵌合孔の内径寸法を、外側継手部材の軸部に設けた複数の凸部の最大径部を結ぶ円の直径寸法よりも小さく、前記凸部間の最小径部を結ぶ円の直径寸法よりも大きくしたことを特徴とする請求項1〜請求項5いずれか1項記載の車輪用軸受装置。   The inner diameter dimension of the shaft part fitting hole of the hub wheel is smaller than the diameter dimension of the circle connecting the maximum diameter parts of the plurality of convex parts provided in the shaft part of the outer joint member, and the minimum diameter part between the convex parts is connected. The wheel bearing device according to any one of claims 1 to 5, wherein the wheel bearing device is larger than a diameter of the circle.
  7. ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の少なくとも軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くしたことを特徴とする請求項1,または2記載の車輪用軸受装置。 A convex part of the concave-convex fitting structure is provided on the inner diameter surface of the hole part of the hub wheel, and the hardness of at least the axial end part of the convex part is set to be higher than that of the outer diameter part of the outer joint member of the constant velocity universal joint. The wheel bearing device according to claim 1 , wherein the wheel bearing device is high.
  8. ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設け、前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を、ハブ輪の孔部の内径面に設けたことを特徴とする請求項1,2,または7何れか1項記載の車輪用軸受装置。 A convex portion of the concave / convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and a pocket portion for accommodating the protruding portion generated by the concave portion formation by the press-fitting is provided on the inner diameter surface of the hole portion of the hub wheel. The wheel bearing device according to claim 1 , 2, or 7 .
  9. 外側継手部材の軸部の外径寸法を、ハブ輪の孔部に設けた複数の凸部の最小径部を結ぶ円の直径寸法よりも大きく、凸部間の最大径部を結ぶ円の直径寸法よりも小さくしたことを特徴とする請求項1,2,7または8何れか1項記載の車輪用軸受装置。 The outer diameter of the shaft portion of the outer joint member is larger than the diameter of the circle connecting the minimum diameter portions of the plurality of convex portions provided in the hole of the hub wheel, and the diameter of the circle connecting the maximum diameter portions between the convex portions. according to claim 1, characterized in that it has less than the dimension, the bearing device for a wheel 7 or 8 any one of claims.
  10. 前記凸部の突出方向中間部位において、前記凸部の周方向寸法を、周方向に隣り合う前記凸部間の溝幅よりも小さくしたことを特徴とする請求項1〜請求項9のいずれか1項記載の車輪用軸受装置。 10. The method according to claim 1, wherein a circumferential dimension of the convex portion is made smaller than a groove width between the convex portions adjacent to each other in the circumferential direction at an intermediate portion in the protruding direction of the convex portion. wheel bearing device according to 1, wherein.
  11. 前記凸部の突出方向中間部位において、前記凸部の周方向寸法の総和を、周方向に隣り合う凸部間の溝幅の総和よりも小さくしたことを特徴とする請求項1〜請求項10のいずれか1項記載の車輪用軸受装置。 The sum total of the circumferential direction dimension of the said convex part is made smaller than the sum total of the groove width between the convex parts adjacent to the circumferential direction in the protrusion direction intermediate part of the said convex part. The wheel bearing device according to any one of the above .
  12. 前記凸部に鋸歯部を設けたことを特徴とする請求項1〜請求項11のいずれか1項記載の車輪用軸受装置。 Wheel bearing device according to any one of claims 1 to 11, characterized in that a serrated portion on the convex portion.
  13. 前記内方部材が、一方の内側軌道面を有する前記ハブ輪と、ハブ輪に外嵌され、他方の内側軌道面を有する内輪とからなり、ハブ輪の端部を加締めることで軸受に予圧を付与した請求項1〜12のいずれか1項記載に記載の車輪用軸受装置。 The inner member includes the hub ring having one inner raceway surface and the inner ring fitted on the hub ring and having the other inner raceway surface, and the bearing is preloaded by crimping the end of the hub ring. a bearing device for a wheel according to any one of claims 1 to 12 imparted with.
  14. 前記等速自在継手の外側継手部材が、内側継手部材が内装されるマウス部と、このマウス部の底部から突設される前記軸部とを備え、前記マウス部をハブ輪の加締め部と非接触状態としたことを特徴とする請求項13に記載の車輪用軸受装置。   The outer joint member of the constant velocity universal joint includes a mouth portion in which the inner joint member is housed, and the shaft portion protruding from the bottom portion of the mouth portion, and the mouth portion is a caulking portion of the hub wheel. The wheel bearing device according to claim 13, wherein the wheel bearing device is in a non-contact state.
JP2006352786A 2006-12-27 2006-12-27 Wheel bearing device Active JP4302730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352786A JP4302730B2 (en) 2006-12-27 2006-12-27 Wheel bearing device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006352786A JP4302730B2 (en) 2006-12-27 2006-12-27 Wheel bearing device
EP07850011A EP2103450B1 (en) 2006-12-27 2007-12-04 Bearing device for wheel
CN2007800438086A CN101541560B (en) 2006-12-27 2007-12-04 Bearing device for wheel
PCT/JP2007/073361 WO2008078511A1 (en) 2006-12-27 2007-12-04 Bearing device for wheel
BRPI0722071-5A BRPI0722071B1 (en) 2006-12-27 2007-12-04 Wheel bearing device and assembly method
US12/520,931 US8382378B2 (en) 2006-12-27 2007-12-04 Wheel bearing device

Publications (3)

Publication Number Publication Date
JP2008162359A JP2008162359A (en) 2008-07-17
JP2008162359A5 JP2008162359A5 (en) 2008-11-27
JP4302730B2 true JP4302730B2 (en) 2009-07-29

Family

ID=39692425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352786A Active JP4302730B2 (en) 2006-12-27 2006-12-27 Wheel bearing device

Country Status (2)

Country Link
JP (1) JP4302730B2 (en)
CN (1) CN101541560B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261145B2 (en) 2008-04-10 2016-02-16 Ntn Corporation Bearing device for a wheel
JP2010023800A (en) * 2008-07-24 2010-02-04 Ntn Corp Bearing device for wheel
WO2010021225A1 (en) * 2008-08-18 2010-02-25 Ntn株式会社 Bearing device for wheel, and axle module
JP2010047057A (en) * 2008-08-19 2010-03-04 Ntn Corp Wheel bearing device and axle module
JP2010047058A (en) * 2008-08-19 2010-03-04 Ntn Corp Wheel bearing device and axle module
JP2010116144A (en) * 2008-10-14 2010-05-27 Ntn Corp Wheel bearing device
WO2010044344A1 (en) * 2008-10-14 2010-04-22 Ntn株式会社 Wheel bearing apparatus
JP5349912B2 (en) * 2008-11-05 2013-11-20 Ntn株式会社 Wheel bearing device and separation method thereof
JP5430909B2 (en) * 2008-11-18 2014-03-05 Ntn株式会社 Wheel bearing device
WO2010058719A1 (en) * 2008-11-18 2010-05-27 Ntn株式会社 Bearing device for wheel
JP5182032B2 (en) * 2008-11-19 2013-04-10 アイシン精機株式会社 Load detection device for vehicle seat
JP5182031B2 (en) * 2008-11-19 2013-04-10 アイシン精機株式会社 Load detection device for vehicle seat
JP5641706B2 (en) * 2009-04-02 2014-12-17 Ntn株式会社 Wheel bearing device
KR101064456B1 (en) * 2009-08-28 2011-09-15 엘지이노텍 주식회사 Bearing assembly and spindle motor
JP2011106566A (en) * 2009-11-17 2011-06-02 Ntn Corp Shaft structure for power transmission, intermediate shaft, and outside joint member
JP5719132B2 (en) * 2010-09-21 2015-05-13 Ntn株式会社 In-wheel motor drive device
US9194436B2 (en) * 2012-10-24 2015-11-24 Gm Global Technology Operations, Llc Serrated shaft debris collector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314626A1 (en) * 2002-04-11 2004-01-29 Ntn Corp. Bearing device for a drive wheel of a vehicle

Also Published As

Publication number Publication date
CN101541560B (en) 2012-10-10
JP2008162359A (en) 2008-07-17
CN101541560A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
KR100863833B1 (en) Wheel drive unit
US6146022A (en) Hub unit bearing for wheel
JP5079270B2 (en) Wheel bearing unit
US6957919B2 (en) Double-row angular contact ball bearing
JP4882888B2 (en) Rolling bearing fixing device
WO2009147845A1 (en) Bearing device for driving wheels
US20090108668A1 (en) Wheel support apparatus
KR100695720B1 (en) Bearing Unit for Wheel Drive
US8944694B2 (en) Bearing device for driving wheel, and its assembling method
JP3905398B2 (en) Drive wheel bearing device
JP4474774B2 (en) Wheel drive unit
JP2006207745A (en) Wheel bearing device and its assembling method
JP3942366B2 (en) Wheel bearing device and manufacturing method thereof
US8506202B2 (en) Constant velocity universal joint
US9829048B2 (en) Bearing device for wheel
JP2004068891A (en) Bearing device for driving wheel
US10086648B2 (en) Bearing device for a wheel
JP2004155411A (en) Bearing device for wheel
JP4969980B2 (en) Assembly method for wheel bearing device
US8356943B2 (en) Bearing device for wheel
US8043023B2 (en) Power transmission mechanism of shaft and hub
KR101535439B1 (en) Bearing device for wheel
US8998731B2 (en) Wheel bearing device
US9321309B2 (en) Manufacturing method for a bearing device for a wheel
JP5215601B2 (en) Wheel hub / rotary joint assembly with position locking ring for axial support of tightening

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250