JP5826788B2 - Manufacturing method of wheel bearing device - Google Patents

Manufacturing method of wheel bearing device Download PDF

Info

Publication number
JP5826788B2
JP5826788B2 JP2013088604A JP2013088604A JP5826788B2 JP 5826788 B2 JP5826788 B2 JP 5826788B2 JP 2013088604 A JP2013088604 A JP 2013088604A JP 2013088604 A JP2013088604 A JP 2013088604A JP 5826788 B2 JP5826788 B2 JP 5826788B2
Authority
JP
Japan
Prior art keywords
convex
hub wheel
fitting
wheel
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013088604A
Other languages
Japanese (ja)
Other versions
JP2013189195A (en
Inventor
祐一 淺野
祐一 淺野
小澤 仁博
仁博 小澤
中川 亮
亮 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2013088604A priority Critical patent/JP5826788B2/en
Publication of JP2013189195A publication Critical patent/JP2013189195A/en
Application granted granted Critical
Publication of JP5826788B2 publication Critical patent/JP5826788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置製造方法に関する。 The present invention relates to a method of manufacturing a wheel bearing device for rotatably supporting a wheel relative to a vehicle body in a vehicle such as an automobile.

車輪用軸受装置には、複列の転がり軸受を組み合わせて使用する第1世代と称される構造から、外方部材に車体取付フランジを一体に設けた第2世代に進化し、さらに、複列の転がり軸受の2つの内側軌道面のうち、一方をハブ輪の外周に形成した第3世代、さらには、複列の転がり軸受の2つの内側軌道面のうち、一方をハブ輪の外周に形成すると共に、他方を等速自在継手の外側継手部材の外周に形成した第4世代のものまで開発されている。   The wheel bearing device has evolved from a structure called the first generation, which uses a combination of double row rolling bearings, to a second generation in which the body mounting flange is integrally provided on the outer member. One of the two inner raceways of the rolling bearing is formed on the outer circumference of the hub ring, and one of the two inner raceways of the double row rolling bearing is formed on the outer circumference of the hub ring. At the same time, a fourth-generation one having the other formed on the outer periphery of the outer joint member of the constant velocity universal joint has been developed.

例えば、特許文献1には、第3世代と呼ばれるものが記載されている。第3世代と呼ばれる車輪用軸受装置は、図36に示すように、外径方向に延びるフランジ151を有するハブ輪152と、このハブ輪152に外側継手部材153が固定される等速自在継手154と、ハブ輪152の外周側に配設される外方部材155とを備える。   For example, Patent Document 1 describes what is called a third generation. As shown in FIG. 36, the wheel bearing device called the third generation includes a hub wheel 152 having a flange 151 extending in the outer diameter direction, and a constant velocity universal joint 154 to which an outer joint member 153 is fixed. And an outer member 155 disposed on the outer peripheral side of the hub wheel 152.

等速自在継手154は、外側継手部材153と、この外側継手部材153のマウス部157内に配設される内側継手部材158と、この内側継手部材158と外側継手部材153との間に配設されるボール159と、このボール159を保持する保持器160とを備える。また、内側継手部材158の中心孔の内周面には雌スプライン161が形成され、この中心孔に図示省略のシャフトの端部に形成した雄スプラインが挿入される。内側継手部材158側の雌スプライン161とシャフト側の雄スプラインとを嵌合することで、内側継手部材158とシャフトがトルク伝達可能に結合される。   The constant velocity universal joint 154 is disposed between the outer joint member 153, the inner joint member 158 disposed in the mouth portion 157 of the outer joint member 153, and the inner joint member 158 and the outer joint member 153. And a cage 160 for holding the ball 159. A female spline 161 is formed on the inner peripheral surface of the center hole of the inner joint member 158, and a male spline formed at the end of the shaft (not shown) is inserted into the center hole. By fitting the female spline 161 on the inner joint member 158 side and the male spline on the shaft side, the inner joint member 158 and the shaft are coupled so that torque can be transmitted.

また、ハブ輪152は、筒部163と前記フランジ151とを有し、フランジ151の外端面164(アウトボード側の端面)には、図示省略のホイールおよびブレーキロータを装着するための短筒状のパイロット部165が突設されている。パイロット部165は、大径部165aと小径部165bとからなり、大径部165aにホイールが外嵌され、小径部165bにブレーキロータが外嵌される。   The hub wheel 152 has a cylindrical portion 163 and the flange 151, and a short cylindrical shape for mounting a wheel and a brake rotor (not shown) on the outer end surface 164 (end surface on the outboard side) of the flange 151. The pilot portion 165 is projected. The pilot portion 165 includes a large diameter portion 165a and a small diameter portion 165b, and a wheel is fitted on the large diameter portion 165a, and a brake rotor is fitted on the small diameter portion 165b.

筒部163のインボード側端部の外周面に嵌合部166が設けられ、この嵌合部166に内輪167が嵌合されている。筒部163の外周面のフランジ151近傍には第1内側軌道面168が設けられ、内輪167の外周面に第2内側軌道面169が設けられている。また、ハブ輪152のフランジ151にはボルト装着孔162が設けられており、フランジ151にホイールおよびブレーキロータを固定するためのハブボルトがボルト装着孔162に装着される。   A fitting portion 166 is provided on the outer peripheral surface of the end portion on the inboard side of the cylindrical portion 163, and the inner ring 167 is fitted to the fitting portion 166. A first inner raceway surface 168 is provided in the vicinity of the flange 151 on the outer peripheral surface of the cylindrical portion 163, and a second inner raceway surface 169 is provided on the outer peripheral surface of the inner ring 167. The flange 151 of the hub wheel 152 is provided with a bolt mounting hole 162, and a hub bolt for fixing the wheel and the brake rotor to the flange 151 is mounted in the bolt mounting hole 162.

転がり軸受の外方部材155は、その内周に2列の外側軌道面170、171が設けられると共に、その外周にフランジ(車体取付フランジ)182が設けられている。外方部材155の第1外側軌道面170とハブ輪152の第1内側軌道面168とが対向し、外方部材155の第2外側軌道面171と、内輪167の軌道面169とが対向し、これらの間に転動体172が介装される。   The outer member 155 of the rolling bearing is provided with two rows of outer raceways 170 and 171 on the inner periphery thereof, and a flange (vehicle body mounting flange) 182 on the outer periphery thereof. The first outer raceway surface 170 of the outer member 155 and the first inner raceway surface 168 of the hub wheel 152 face each other, and the second outer raceway surface 171 of the outer member 155 and the raceway surface 169 of the inner ring 167 face each other. The rolling elements 172 are interposed between these.

ハブ輪152の筒部163に外側継手部材153の軸部173が挿入される。軸部173の軸端部にはねじ部174が形成され、このねじ部174よりもインボード側の外径部に雄スプライン175が形成されている。また、ハブ輪152の筒部163の内径面に雌スプライン176が形成され、軸部173をハブ輪152の筒部163に圧入することで、軸部173側の雄スプライン175とハブ輪152側の雌スプライン176とが嵌合する。   The shaft portion 173 of the outer joint member 153 is inserted into the tube portion 163 of the hub wheel 152. A screw portion 174 is formed at the shaft end of the shaft portion 173, and a male spline 175 is formed at the outer diameter portion on the inboard side of the screw portion 174. In addition, a female spline 176 is formed on the inner diameter surface of the cylindrical portion 163 of the hub wheel 152, and the shaft portion 173 is press-fitted into the cylindrical portion 163 of the hub wheel 152, so that the male spline 175 on the shaft portion 173 side and the hub wheel 152 side. The female spline 176 is fitted.

そして、軸部173のねじ部174にナット部材177が螺着され、ハブ輪152と外側継手部材153とが固定される。この際、ナット部材177の座面178と筒部163の外端面179とが当接し、マウス部157のアウトボード側の端面180と内輪167の端面181とが当接する。これにより、ハブ輪152が内輪167を介してナット部材177とマウス部157とで挟持される。
特開2004−340311号公報
Then, the nut member 177 is screwed to the screw portion 174 of the shaft portion 173, and the hub wheel 152 and the outer joint member 153 are fixed. At this time, the seat surface 178 of the nut member 177 and the outer end surface 179 of the cylindrical portion 163 come into contact with each other, and the end surface 180 on the outboard side of the mouse portion 157 and the end surface 181 of the inner ring 167 come into contact with each other. As a result, the hub wheel 152 is sandwiched between the nut member 177 and the mouth portion 157 via the inner ring 167.
JP 2004340403 A

従来では、前記したように、外側継手部材153とハブ輪152は、軸部173に設けられた雄スプライン175を、ハブ輪152に設けられた雌スプライン176に圧入することで結合される。このため、軸部173及びハブ輪152の両者にスプライン加工を施す必要があって、コスト高となる。また、圧入時には、軸部173の雄スプライン175とハブ輪152の雌スプライン176との凹凸を合わせる必要がある。この際、歯面合わせで圧入すれば、歯面がむしれ等によって損傷するおそれがある。また、大径合わせで圧入すれば、円周方向のガタが生じやすい。円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれがある。このように、スプライン嵌合による場合、圧入時の歯面の損傷、及び使用時のガタの発生という問題があり、両者を同時に回避することは困難であった。   Conventionally, as described above, the outer joint member 153 and the hub wheel 152 are coupled by press-fitting the male spline 175 provided on the shaft portion 173 into the female spline 176 provided on the hub wheel 152. For this reason, it is necessary to perform spline processing on both the shaft portion 173 and the hub wheel 152, which increases the cost. Further, at the time of press-fitting, it is necessary to match the unevenness of the male spline 175 of the shaft portion 173 and the female spline 176 of the hub wheel 152. At this time, if press-fitting is performed by tooth surface alignment, the tooth surface may be damaged due to peeling or the like. Moreover, if it press-fits by large diameter matching, it will be easy to produce the play of the circumferential direction. If there is play in the circumferential direction, the transmission performance of the rotational torque is inferior and abnormal noise may be generated. Thus, in the case of spline fitting, there are problems of tooth surface damage during press-fitting and generation of play during use, and it is difficult to avoid both at the same time.

また、筒部163から突出した軸部173のねじ部174にナット部材177を螺着する必要がある。このため、組立時にはねじ締結作業を有し、作業性に劣るとともに、部品点数も多く、部品管理性も劣ることになっていた。   Further, it is necessary to screw the nut member 177 to the screw portion 174 of the shaft portion 173 protruding from the cylindrical portion 163. For this reason, it has a screw fastening operation at the time of assembly, which is inferior in workability, has a large number of parts, and inferior in part manageability.

本発明は、上記課題に鑑みて、円周方向のガタの抑制を図ることができ、しかも、ハブ輪と等速自在継手の外側継手部材との連結作業性に優れるとともに、ハブ輪と等速自在継手の外側継手部材とが強固に結合された車輪用軸受装置製造方法を提供する。 In view of the above problems, the present invention can suppress circumferential backlash, and is excellent in connection workability between the hub wheel and the outer joint member of the constant velocity universal joint, and at the same time with the hub wheel and the constant velocity. an outer joint member of the universal joint to provide a method of manufacturing a tightly coupled wheel bearing apparatus.

本発明は、内周に複列の軌道面を有する外方部材と、車輪取付用のフランジを有するハブ輪およびハブ輪の外周に圧入される内輪からなり、前記軌道面に対向する複列の軌道面を外周に有する内方部材と、これら外方部材と内方部材の軌道面間に介在した複列の転動体とを備えた車輪用軸受と、外側継手部材を有する等速自在継手とを備え、ハブ輪の孔部に嵌挿される外側継手部材の軸部がハブ輪とトルク伝達可能に結合され、ハブ輪および外側継手部材の軸部が何れも鋼材からなる車輪用軸受装置の製造方法であって、外側継手部材の軸部に軸方向に延びる複数の凸部を設け、かつ凸部のうち、前記凹部に嵌合する領域と前記凹部に嵌合しない領域との境界部を通る円から前記凸部の頂部に至るまでの距離の中間点を通る円をピッチ円とし、このピッチ円上において、径方向線と凸部の側面とがなす角度θ1を20°≦θ1≦35°とすると共に、前記凸部のピッチ円径をPCDとし、凸部数をZとして、0.33≦PCD/Z≦0.7にし、ハブ輪の孔部に複数の小凹部を形成し、凸部を軸方向に沿って小凹部に圧入し、ハブ輪の孔部に、圧入した凸部でハブ輪の一部を切削して凹部を形成することで、凸部と凹部との嵌合部位全域が密着する凹凸嵌合構造を構成することを特徴とするものである。
この場合、ハブ輪の表面のうち、凸部と凹部の嵌合部位全域の外径側となる領域に連続する熱処理硬化層を設けるのが好ましい。また、凸部の圧入開始側の端面を軸方向と直交する面にするのが好ましい。
The present invention comprises an outer member having a double-row raceway surface on the inner periphery, a hub wheel having a wheel mounting flange, and an inner ring press-fitted into the outer periphery of the hub wheel, the double-row facing the raceway surface. A wheel bearing provided with an inner member having a raceway surface on the outer periphery, a double row rolling element interposed between the outer member and the raceway surface of the inner member, and a constant velocity universal joint having an outer joint member; the provided, the shaft section of the outer joint member inserted into the hole of the hub wheel is coupled to be able to transmit the wheel hub and torque, the manufacture of the wheel support bearing assembly shaft portion of the hub wheel and the outer joint member is made of both steel In the method , a plurality of convex portions extending in the axial direction are provided on the shaft portion of the outer joint member , and the convex portion passes through a boundary portion between a region that fits into the concave portion and a region that does not fit into the concave portion. A circle that passes through the midpoint of the distance from the circle to the top of the convex portion is defined as a pitch circle. On this pitch circle, the angle θ1 formed by the radial line and the side surface of the convex portion is 20 ° ≦ θ1 ≦ 35 °, the pitch circle diameter of the convex portion is PCD, the number of convex portions is Z, and 33 ≦ PCD / Z ≦ 0.7, a plurality of small concave portions are formed in the hole portion of the hub wheel, the convex portion is press-fitted into the small concave portion along the axial direction, and the convex portion is press-fitted into the hole portion of the hub wheel. By cutting a part of the hub wheel to form a concave portion, a concave-convex fitting structure in which the entire fitting portion between the convex portion and the concave portion is in close contact is configured .
In this case, it is preferable to provide a continuous heat-cured layer in a region on the outer diameter side of the entire region where the convex portion and the concave portion are fitted on the surface of the hub wheel. Moreover, it is preferable that the end surface of the convex portion on the press-fitting start side is a surface orthogonal to the axial direction.

本発明の車輪用軸受装置によれば、凸部を相手側に圧入した際に、凸部は、他方の部材の一部を切り出し、あるいは押出すことで凹部を形成する。凸部がハブ輪の孔部内径面に食い込んでいくことによって、孔部が僅かに拡径した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部が元の径に戻ろうとして縮径することになる。これによって、凸部のうち、凹部との嵌合部位の全体(凸部の頂部からその両側の側面に至るまでの連続領域)が凹部に対して密着し、径方向及び円周方向の双方で、ガタを生じるような隙間が形成されない。そのため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音も生じない。さらには、凸部と凹部が隙間無く密着しているので、トルク伝達部位の強度が向上する。このため、車輪用軸受装置を軽量、コンパクトにすることができる。凹部が形成される部材には、予めスプライン部等を形成しておく必要がないので生産性を向上させ、かつスプライン同士の位相合わせを必要としないので、組立性の向上を図ることができる。また、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。   According to the wheel bearing device of the present invention, when the convex portion is press-fitted to the other side, the convex portion forms a concave portion by cutting out or extruding a part of the other member. If the convex part bites into the hole inner diameter surface of the hub wheel, the hole part is slightly expanded in diameter, allowing the axial movement of the convex part and stopping the axial movement, The diameter of the hole is reduced to return to the original diameter. Thereby, the whole fitting part (continuous area | region from the top part of a convex part to the side surface of the both sides) is closely_contact | adhered with respect to a recessed part among convex parts, and both radial direction and the circumferential direction , No gaps that cause play are formed. Therefore, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated. Furthermore, since the convex portion and the concave portion are in close contact with each other with no gap, the strength of the torque transmitting portion is improved. For this reason, the wheel bearing device can be made lightweight and compact. Since it is not necessary to previously form a spline portion or the like on the member in which the concave portion is formed, productivity is improved, and phase alignment between the splines is not required, so that the assembling property can be improved. Moreover, damage to the tooth surface during press-fitting can be avoided, and a stable fitting state can be maintained.

しかも、前記凸部の側面のピッチ円上において、径方向線と凸部側面とが成す角度をθ1を0°≦θ1≦45°にしているので、圧入後のハブ輪の拡径量を小さくし、圧入性の向上を図ることができる。これは、凸部を圧入することによって、ハブ輪の孔部が拡径するが、上記θ1が大きすぎると、圧入時の拡径力が働き易くなるため、圧入終了時におけるハブ輪外径の拡径量が大きくなり、ハブ輪外径部や軸受の内輪外径部の引張応力(フープ応力)が高くなること、およびトルク伝達時に径方向への分力が大きくなるため、ハブ輪の外径が拡径し、ハブ輪外径部や内輪外径部の引張応力(フープ応力)が高くなること、等による。これら引張応力(フープ応力)の増加は、軸受寿命の低下を招く。   In addition, on the pitch circle on the side surface of the convex portion, the angle formed by the radial line and the side surface of the convex portion is θ1 0 ° ≦ θ1 ≦ 45 °, so the diameter of the hub ring after press-fitting is reduced. In addition, the press fit can be improved. This is because the hole portion of the hub wheel is expanded by press-fitting the convex portion. However, if the above θ1 is too large, the diameter expansion force at the time of press-fit becomes easy to work. As the amount of expansion increases, the tensile stress (hoop stress) of the outer diameter of the hub ring and the inner ring of the bearing increases, and the component force in the radial direction increases during torque transmission. This is because the diameter is increased and the tensile stress (hoop stress) of the outer diameter portion of the hub ring and the outer diameter portion of the inner ring is increased. These increases in tensile stress (hoop stress) lead to a decrease in bearing life.

PCD/Zが小さすぎる場合、凹部を形成すべき部材に対する前記凸部の圧入代の適用範囲が非常に狭く、寸法公差も狭くなるため、圧入が困難となる。また、ハブ輪の孔部と外側継手部材の軸部の芯出しが難しく、圧入時に少しでも傾きが出た場合、圧入した凸部全域が他方に食い込むおそれがある。PCD/Zが1.0以上の場合、1つの凸部1で加工する体積(除体積)が大きくなるため、凸部による凹部成形性が悪化し、圧入荷重も高くなる。   If PCD / Z is too small, the application range of the press-fitting allowance of the convex portion to the member where the concave portion is to be formed is very narrow and the dimensional tolerance is also narrowed, so that press-fitting becomes difficult. Also, it is difficult to center the hole portion of the hub wheel and the shaft portion of the outer joint member, and if there is even a slight tilt during press-fitting, the press-fitted convex portion may bite into the other. When PCD / Z is 1.0 or more, the volume (removed volume) processed by one convex portion 1 is increased, so that the concave formability by the convex portion is deteriorated and the press-fit load is also increased.

特に、20°≦θ1≦35°とするとともに、0.33≦PCD/Z≦0.7とすることによって、凸部において材料に特殊鋼や表面処理を用いなくても、また、鋭利な形状にしなくても、一般的な機械構造用鋼を用いて圧入時に凸部による凹部の成形が可能となり、圧入後のハブ輪の外径の拡径量を低く抑えることが出来る。しかも、θを20°以上とすることにより、ステム側に凸部を設ける場合、転造加工による凸部の成形が可能となる。   In particular, by setting 20 ° ≦ θ1 ≦ 35 ° and 0.33 ≦ PCD / Z ≦ 0.7, a sharp shape can be obtained without using special steel or surface treatment for the material in the convex portion. Even if it does not, it becomes possible to form a concave portion by a convex portion at the time of press-fitting using general mechanical structural steel, and the amount of expansion of the outer diameter of the hub wheel after press-fitting can be kept low. In addition, by setting θ to 20 ° or more, when a convex portion is provided on the stem side, the convex portion can be formed by rolling.

外側継手部材の軸部に前記凸部を設けた場合には、この凸部の少なくとも圧入開始側の端部の硬度をハブ輪の孔部内径部よりも高くするのが望ましい。これにより軸部の剛性を向上させることができ、また、凸部のハブ輪の孔部内径部への食い込み性が増す。   When the convex portion is provided on the shaft portion of the outer joint member, it is desirable that the hardness of at least the end portion on the press-fitting start side of the convex portion is higher than the inner diameter portion of the hole portion of the hub wheel. As a result, the rigidity of the shaft portion can be improved, and the bite property of the convex portion of the hub wheel into the hole inner diameter portion is increased.

この場合、外側継手部材の軸部には、前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を設けることができる。ここで、はみ出し部は、凸部によって形成された凹部の容積に相当する量の材料分であって、形成される凹部から押し出されたもの、凹部を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。ポケット部を設けることによって、はみ出し部をこのポケット部内に保持することができ、はみ出し部が装置外の車両内等へ入り込んだりすることがない。この場合、はみ出し部をポケット部に収納したままにしておくことができ、はみ出し部の除去処理を行う必要がなく、組立作業工数の減少を図ることができて、組立作業性の向上及びコスト低減を図ることができる。   In this case, the shaft portion of the outer joint member can be provided with a pocket portion that accommodates the protruding portion generated by the recess formation by the press-fitting. Here, the protruding portion is an amount of material corresponding to the volume of the concave portion formed by the convex portion, and is extruded from the formed concave portion, cut to form the concave portion, or extruded. It consists of both the cut and the cut. By providing the pocket portion, the protruding portion can be held in the pocket portion, and the protruding portion does not enter the vehicle outside the apparatus. In this case, the protruding portion can be kept stored in the pocket portion, and it is not necessary to perform the removal processing of the protruding portion, the number of assembling work can be reduced, the assembling workability is improved, and the cost is reduced. Can be achieved.

また、ポケット部よりも軸端側の軸部に、軸部とハブ輪の間で調心を行う鍔部を設ければ、ポケット部内に収容されたはみ出し部の鍔部側への飛び出しがなくなって、はみ出し部の収納がより安定したものとなる。しかも、鍔部を調芯用に用いることができ、芯ずれを防止しつつ軸部をハブ輪に確実に圧入することができる。このため、外側継手部材とハブ輪とを高精度に連結でき、安定したトルク伝達が可能となる。   In addition, if a collar part that aligns between the shaft part and the hub wheel is provided on the shaft part closer to the shaft end than the pocket part, the protruding part accommodated in the pocket part will not protrude to the collar part side. Thus, the storage of the protruding portion becomes more stable. In addition, the collar portion can be used for alignment, and the shaft portion can be reliably press-fitted into the hub wheel while preventing misalignment. For this reason, an outer joint member and a hub ring can be connected with high precision, and stable torque transmission becomes possible.

ハブ輪の孔部の内径面に前記凸部を設けた場合には、凸部の少なくとも圧入開始側の端部の硬度を外側継手部材の軸部の外径部よりも高くするのが望ましい。この場合、軸部側の熱硬化処理を行う必要がないので、外側継手部材の生産性に優れる。この場合、前記ポケット部はハブ輪の孔部に形成する。   When the convex portion is provided on the inner diameter surface of the hole portion of the hub wheel, it is desirable that the hardness of at least the end portion on the press-fitting start side of the convex portion is higher than the outer diameter portion of the shaft portion of the outer joint member. In this case, since it is not necessary to perform the thermosetting treatment on the shaft side, the productivity of the outer joint member is excellent. In this case, the pocket portion is formed in the hole portion of the hub wheel.

凹部を形成すべき部材に対する前記凸部の圧入代をΔdとし、前記凸部の高さをhとしたときに、0.3<Δd/2h<0.86とすることにより、凸部の圧入代を十分にとることができる。Δd/2hが0.3以下である場合、捩り強度が低くなり(図33参照)、また、Δd/2hが0.86を越えれば、微小な圧入時の芯ずれや圧入傾きにより、円周方向の一部領域で凸部の全体が相手側に食い込み易くなるため、凹凸嵌合構造の成形性が悪化し(図34参照)、圧入荷重が急激に増大する(図32参照)。凹凸嵌合構造の成形性が悪化した場合、捩り強度が低下するだけでなく、ハブ輪外径の膨張量も増大するため、ハブ輪に装着される軸受の機能に影響し、回転寿命が低下する等の問題もある。これに対して、Δd/2hを0.3〜0.86にすることにより、凹凸嵌合構造の成形性が安定し、圧入荷重のばらつきも無く、安定した捩り強度が得られる。   When the press-fitting allowance of the convex portion with respect to the member to form the concave portion is Δd and the height of the convex portion is h, 0.3 <Δd / 2h <0.86, so that the convex portion is press-fitted. You can get enough money. When Δd / 2h is 0.3 or less, the torsional strength is low (see FIG. 33), and when Δd / 2h exceeds 0.86, the circumference is reduced due to misalignment or press-fit inclination during minute press-fitting. Since the entire convex portion easily bites into the other side in a partial region in the direction, the formability of the concave-convex fitting structure deteriorates (see FIG. 34), and the press-fit load increases rapidly (see FIG. 32). When the formability of the concave / convex fitting structure deteriorates, not only the torsional strength decreases, but also the expansion amount of the outer diameter of the hub ring increases, which affects the function of the bearing mounted on the hub ring and shortens the rotational life. There are also problems such as. On the other hand, by setting Δd / 2h to 0.3 to 0.86, the formability of the concave-convex fitting structure is stabilized, there is no variation in press-fit load, and stable torsional strength is obtained.

凸部を円周方向の複数箇所に設けた場合には、凸部の高さ方向の中間部において、凸部の周方向厚さを、隣接する凸部との間の溝幅よりも小さくするのが好ましい。この場合、隣接する凸部間の溝に入り込んだ相手側の肉が周方向で大きな厚さを有するため、前記肉のせん断面積を大きくすることができ、ねじり強度の向上を図ることができる。しかも、凸部の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部の高さ方向の中間部において、各凸部の周方向厚さの総和を、隣接する凸部との間の溝幅の総和よりも小さくすることでも同様の効果が達成される。   When the convex portions are provided at a plurality of locations in the circumferential direction, the circumferential thickness of the convex portion is made smaller than the groove width between the adjacent convex portions at the intermediate portion in the height direction of the convex portion. Is preferred. In this case, since the mating meat entering the groove between the adjacent convex portions has a large thickness in the circumferential direction, the shear area of the meat can be increased, and the torsional strength can be improved. And since the tooth thickness of a convex part is small, a press-fit load can be made small and a press-fit property can be aimed at. The same effect can be achieved by making the sum of the circumferential thicknesses of the respective convex portions smaller than the sum of the groove widths between the adjacent convex portions at the intermediate portion in the height direction of the convex portions.

外側継手部材の軸部とハブ輪の内径面との間に軸部の抜けを規制する抜け止め構造を設けてもよい。抜け止め構造を設けることによって、ハブ輪に対する外側継手部材の軸方向に抜けることを防止でき、安定した連結状態が維持される。   A retaining structure for restricting the shaft portion from coming off may be provided between the shaft portion of the outer joint member and the inner diameter surface of the hub wheel. By providing the retaining structure, it is possible to prevent the outer joint member from coming off in the axial direction with respect to the hub wheel, and a stable connected state is maintained.

内方部材は、例えば、外周に前記車輪取り付け用のフランジを有するハブ輪と、前記ハブ輪のインボード側の端部の外周に圧入される内輪とで構成される。この場合、ハブ輪の外周および内輪の外周にそれぞれ前記軌道面を形成することができる。これにより、車輪用軸受装置の軽量・コンパクト化を図ることができる。さらに、ハブ輪の端部を加締めることで軸受に予圧を付与すれば、外側継手部材のマウス部によって軸受に予圧を付与する必要がなくなる。このため、軸受への予圧を考慮することなく、外側継手部材の軸部を圧入することができ、ハブ輪と外側継手部材との連結性(組み付け性)の向上を図ることができる。   The inner member includes, for example, a hub wheel having a wheel mounting flange on the outer periphery, and an inner ring press-fitted to the outer periphery of the end portion on the inboard side of the hub wheel. In this case, the raceway surfaces can be formed on the outer periphery of the hub wheel and the outer periphery of the inner ring, respectively. As a result, the wheel bearing device can be reduced in weight and size. Furthermore, if a preload is applied to the bearing by crimping the end of the hub wheel, it is not necessary to apply a preload to the bearing by the mouth portion of the outer joint member. For this reason, it is possible to press-fit the shaft portion of the outer joint member without considering the preload to the bearing, and it is possible to improve the connectivity (assembly property) between the hub wheel and the outer joint member.

前記凹凸嵌合構造に軸方向の引き抜き力付与による分離を許容し、ハブ輪と外側継手部材の軸部とをボルト部材を介してボルト固定するものであってもよい。この場合、ボルト固定を解除して、外側継手部材の軸部に軸方向の引き抜き力を付与すれば、ハブ輪の孔部から外側継手部材を取外すことができるので、各部品の修理・点検の作業性(メンテナンス性)の向上を図ることができる。また、ボルト固定することによって、ハブ輪からの外側継手部材の軸方向の抜けが規制され、長期にわたって安定したトルク伝達が可能となる。   The uneven fitting structure may be allowed to be separated by applying an axial pull-out force, and the hub wheel and the shaft portion of the outer joint member may be bolted via a bolt member. In this case, if the bolt fixing is released and an axial pull-out force is applied to the shaft portion of the outer joint member, the outer joint member can be removed from the hole of the hub wheel. The workability (maintenance) can be improved. Further, by fixing with bolts, the axial disconnection of the outer joint member from the hub wheel is restricted, and stable torque transmission is possible over a long period of time.

ハブ輪と外側継手部材の軸部とをボルト部材で固定した状態において、前記ボルト部材の頭部の座面となる内壁をハブ輪の孔部に設けることで、ボルト固定が安定する。   In a state where the hub wheel and the shaft portion of the outer joint member are fixed by the bolt member, the bolt fixing is stabilized by providing the inner wall serving as the seating surface of the head portion of the bolt member in the hole portion of the hub wheel.

前記ボルト部材の座面と前記内壁との間にシール材を介在させれば、ボルト部材からの凹凸嵌合構造へ雨水や異物の侵入が防止され、品質向上を図ることができる。   If a sealing material is interposed between the seat surface of the bolt member and the inner wall, rainwater and foreign matter can be prevented from entering the concave-convex fitting structure from the bolt member, and quality can be improved.

本発明によれば、車輪用軸受装置において、使用時のガタの発生を抑制を図ることができ、しかも、ハブ輪と外側継手部材との連結作業性に優れる。また、ハブ輪と等速自在継手の外側継手部材との嵌合が安定しており、強度的にも優れた車輪用軸受装置を提供することができる。   According to the present invention, in the wheel bearing device, it is possible to suppress the occurrence of backlash during use, and the connection workability between the hub wheel and the outer joint member is excellent. Moreover, the fitting of the hub wheel and the outer joint member of the constant velocity universal joint is stable, and a wheel bearing device excellent in strength can be provided.

以下本発明の実施の形態を図1〜図35に基づいて説明する。図1に第1実施形態の車輪用軸受装置を示す。この車輪用軸受装置は、ハブ輪1を含む複列の車輪用軸受2と、等速自在継手3とが一体化されてなる。なお、以下の説明において、インボード側とは、車両に取り付けた状態で、車両の車幅方向内側となる側を意味し、アウトボード側とは、車両に取り付けた状態で車両の車幅方向外側となる側を意味する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a wheel bearing device according to a first embodiment. In this wheel bearing device, a double row wheel bearing 2 including a hub wheel 1 and a constant velocity universal joint 3 are integrated. In the following description, the inboard side means the side that is inside the vehicle width direction of the vehicle when attached to the vehicle, and the outboard side means the vehicle width direction of the vehicle when attached to the vehicle. This means the outside side.

等速自在継手3は、外側継手部材としての継手外輪5と、継手外輪5の内側に配された内側継手部材としての継手内輪6と、継手外輪5と継手内輪6との間に介在してトルクを伝達する複数のボール7と、継手外輪5と継手内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。継手内輪6はその孔部内径6aにシャフト10の端部10aを圧入することによりスプライン嵌合してシャフト10とトルク伝達可能に結合されている。なお、シャフト10の端部10aには、シャフト抜け止め用の止め輪9が嵌合されている。   The constant velocity universal joint 3 is interposed between a joint outer ring 5 as an outer joint member, a joint inner ring 6 as an inner joint member disposed inside the joint outer ring 5, and a joint outer ring 5 and a joint inner ring 6. A plurality of balls 7 that transmit torque and a cage 8 that is interposed between the joint outer ring 5 and the joint inner ring 6 and holds the balls 7 are configured as main members. The joint inner ring 6 is spline-fitted by press-fitting the end portion 10a of the shaft 10 into the hole inner diameter 6a and is coupled to the shaft 10 so as to be able to transmit torque. Note that a retaining ring 9 for retaining the shaft is fitted to the end portion 10a of the shaft 10.

継手外輪5はマウス部11と軸部(ステム部とも呼ばれる)12とからなり、マウス部11は一端にて開口した椀状で、その内球面13に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。そのトラック溝14はマウス部11の開口端まで延びている。継手内輪6は、その外球面15に、軸方向に延びた複数のトラック溝16が円周方向等間隔に形成されている。   The joint outer ring 5 includes a mouth portion 11 and a shaft portion (also referred to as a stem portion) 12. The mouth portion 11 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction on the inner spherical surface 13 thereof. Are formed at equal intervals in the circumferential direction. The track groove 14 extends to the open end of the mouse portion 11. In the joint inner ring 6, a plurality of track grooves 16 extending in the axial direction are formed on the outer spherical surface 15 at equal intervals in the circumferential direction.

継手外輪5のトラック溝14と継手内輪6のトラック溝16とは対をなし、各対のトラック溝14,16で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール7が転動可能に組み込んである。ボール7は継手外輪5のトラック溝14と継手内輪6のトラック溝16との間に介在してトルクを伝達する。ケージ8は継手外輪5と継手内輪6との間に摺動可能に介在し、外球面8aにて継手外輪5の内球面13と嵌合し、内球面8bにて継手内輪6の外球面15と嵌合する。なお、この場合の等速自在継手3は、マウス部11の開口側で外輪トラック溝14を直線状とし、マウス部11の奥部側で継手内輪トラック溝16をストレートにしたアンダーカットフリー型を示しているが、ツェパー型等の他の等速自在継手であってもよい。   The track groove 14 of the joint outer ring 5 and the track groove 16 of the joint inner ring 6 make a pair, and one ball 7 as a torque transmission element rolls on each of the ball tracks constituted by the pair of track grooves 14 and 16. Incorporated as possible. The ball 7 is interposed between the track groove 14 of the joint outer ring 5 and the track groove 16 of the joint inner ring 6 to transmit torque. The cage 8 is slidably interposed between the joint outer ring 5 and the joint inner ring 6, and is fitted to the inner spherical surface 13 of the joint outer ring 5 by the outer spherical surface 8a, and the outer spherical surface 15 of the joint inner ring 6 by the inner spherical surface 8b. Mates with. The constant velocity universal joint 3 in this case is an undercut-free type in which the outer ring track groove 14 is linear on the opening side of the mouth portion 11 and the inner ring track groove 16 is straight on the back side of the mouth portion 11. Although shown, other constant velocity universal joints such as a Zepper type may be used.

また、マウス部11の開口部はブーツ60にて塞がれている。ブーツ60は、大径部60aと、小径部60bと、大径部60aと小径部60bとを連結する蛇腹部60cとからなる。大径部60aがマウス部11の開口部に外嵌され、この状態でブーツバンド61にて締結される。また、小径部60bがシャフト10のブーツ装着部10bに外嵌され、この状態でブーツバンド62にて締結されている。   Further, the opening of the mouse part 11 is closed by a boot 60. The boot 60 includes a large-diameter portion 60a, a small-diameter portion 60b, and a bellows portion 60c that connects the large-diameter portion 60a and the small-diameter portion 60b. The large-diameter portion 60a is fitted around the opening of the mouse portion 11, and is fastened by the boot band 61 in this state. Further, the small-diameter portion 60b is externally fitted to the boot mounting portion 10b of the shaft 10, and is fastened by the boot band 62 in this state.

ハブ輪1は、筒部20と、筒部20のアウトボード側の端部に設けられる車輪取り付け用のフランジ21とを有する。筒部20の孔部22は、軸方向中間部の軸部嵌合孔22aと、アウトボード側のテーパ孔22bと、インボード側の大径孔22cとを備える。軸部嵌合孔22aにおいて、後述する凹凸嵌合構造Mを介して継手外輪5の軸部12とハブ輪1とが結合される。また、軸部嵌合孔22aと大径孔22cとの間には、テーパ部(テーパ孔)22dが設けられている。このテーパ部22dは、継手外輪5の軸部12の軸端側に向けて縮径している。テーパ部22dのテーパ角度θ3(図4参照)は、例えば15°〜75°とされる。   The hub wheel 1 includes a tube portion 20 and a wheel mounting flange 21 provided at an end portion of the tube portion 20 on the outboard side. The hole portion 22 of the cylindrical portion 20 includes a shaft portion fitting hole 22a in the middle portion in the axial direction, a tapered hole 22b on the outboard side, and a large diameter hole 22c on the inboard side. In the shaft portion fitting hole 22a, the shaft portion 12 of the joint outer ring 5 and the hub wheel 1 are coupled to each other through an uneven fitting structure M described later. A tapered portion (tapered hole) 22d is provided between the shaft portion fitting hole 22a and the large diameter hole 22c. The tapered portion 22 d is reduced in diameter toward the shaft end side of the shaft portion 12 of the joint outer ring 5. The taper angle θ3 (see FIG. 4) of the taper portion 22d is, for example, 15 ° to 75 °.

ハブ輪1のインボード側の外周面には、小径の段差部23が形成される。この段差部23に内輪24を嵌合することで複列の内側軌道面(インナレース)28,29を有する内方部材が構成される。複列の内側軌道面のうち、アウトボード側の内側軌道面28はハブ輪1の外周面に形成され、インボード側の内側軌道面29は、内輪24の外周面に形成されている。車輪用軸受2は、この内方部材と、内方部材の外径側に配置され、内周に複列の外側軌道面(アウタレース)26,27を有する外方部材25と、外方部材25のアウトボード側の外側軌道面26とハブ輪1の内側軌道面28との間、および外方部材25のインボード側の外側軌道面27と内輪24の内側軌道面29との間に配置された転動体30としてのボールとで構成される。外方部材25は、車体の懸架装置から延びるナックル34(図27及び図28参照)に取り付けられる。ハブ輪1と、ハブ輪1の外周に圧入される内輪24とで、内側軌道面28,29を有する内方部材を構成するので、車輪用軸受装置の軽量・コンパクト化を図ることができる。なお、外方部材25の両開口部にはシール部材S1,S2が装着されている。   On the outer peripheral surface of the hub wheel 1 on the inboard side, a step portion 23 having a small diameter is formed. An inner member having double-row inner raceways (inner races) 28 and 29 is formed by fitting the inner ring 24 to the stepped portion 23. Of the double-row inner raceway surfaces, the outboard side inner raceway surface 28 is formed on the outer peripheral surface of the hub wheel 1, and the inboard side inner raceway surface 29 is formed on the outer peripheral surface of the inner ring 24. The wheel bearing 2 is disposed on the outer diameter side of the inner member, the inner member, and an outer member 25 having double-row outer raceways (outer races) 26 and 27 on the inner periphery, and the outer member 25. Between the outer raceway surface 26 on the outboard side and the inner raceway surface 28 of the hub wheel 1, and between the outer raceway surface 27 on the inboard side of the outer member 25 and the inner raceway surface 29 of the inner ring 24. And a ball as the rolling element 30. The outer member 25 is attached to a knuckle 34 (see FIGS. 27 and 28) that extends from the suspension device of the vehicle body. Since the hub ring 1 and the inner ring 24 press-fitted into the outer periphery of the hub ring 1 constitute an inner member having the inner raceways 28 and 29, the wheel bearing device can be reduced in weight and size. Seal members S1 and S2 are attached to both openings of the outer member 25.

この車輪用軸受2は、ハブ輪1のインボード側の円筒状端部を加締め、加締めによって形成された加締部31で内輪24を押圧することによって軸受内部に予圧を付与する構造である。これによって、内輪24をハブ輪1に固定することができる。ハブ輪1の端部に形成した加締め部31で軸受2に予圧を付与した場合、継手外輪5のマウス部11で予圧を付与する必要がない。従って、予圧量を考慮せずに継手外輪5の軸部12を圧入することができ、ハブ輪1と継手外輪5との連結性(組み付け性)の向上を図ることができる。この場合、マウス部11をハブ輪1の端部(本実施形態では加締め部31)と非接触にすることができる。これに対応して、ハブ輪1の加締め部31とマウス部11のバック面11aとの間に隙間98が設けられる。マウス部11とハブ輪1を非接触とすることで、両者の接触による異音の発生を防止することができる。   The wheel bearing 2 has a structure in which a cylindrical end portion on the inboard side of the hub wheel 1 is swaged and a preload is applied to the inside of the bearing by pressing the inner ring 24 with a swaged portion 31 formed by swaged. is there. Thereby, the inner ring 24 can be fixed to the hub ring 1. When preload is applied to the bearing 2 by the crimped portion 31 formed at the end of the hub wheel 1, it is not necessary to apply preload at the mouth portion 11 of the joint outer ring 5. Therefore, the shaft portion 12 of the joint outer ring 5 can be press-fitted without considering the amount of preload, and the connectivity (assembleability) between the hub wheel 1 and the joint outer ring 5 can be improved. In this case, the mouse part 11 can be brought into non-contact with the end part of the hub wheel 1 (the caulking part 31 in this embodiment). Correspondingly, a gap 98 is provided between the caulking portion 31 of the hub wheel 1 and the back surface 11 a of the mouse portion 11. By making the mouse part 11 and the hub wheel 1 non-contact, generation | occurrence | production of the noise by both contact can be prevented.

図35に示すように、ハブ輪1の加締め部31とマウス部11のバック面11aとは当接させてもよい。この場合、継手外輪5の軸部12の位置決めが行われるので、車輪軸受装置の寸法精度が安定すると共に、凹凸嵌合構造Mの軸方向長さを安定化させて、トルク伝達性の向上を図ることができる。このようにハブ輪1の加締め部31とマウス部11のバック面11aとを当接させる場合、両者の接触面圧は100MPa以下とするのが望ましい。接触面圧が100MPaを超えると、大トルク負荷時に継手外輪5とハブ輪1との捩れ量に差が生じ、この差によって接触部に急激なスリップが生じて異音を発生するおそれがあるからである。従って、接触面圧を100MPa以下とすることで、異音の発生を防止して静粛な車輪用軸受装置を提供することができる。   As shown in FIG. 35, the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouse portion 11 may be brought into contact with each other. In this case, since the shaft portion 12 of the joint outer ring 5 is positioned, the dimensional accuracy of the wheel bearing device is stabilized, and the axial length of the concave-convex fitting structure M is stabilized to improve torque transmission. Can be planned. When the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouse portion 11 are brought into contact with each other in this way, it is desirable that the contact surface pressure between them is 100 MPa or less. If the contact surface pressure exceeds 100 MPa, there will be a difference in the torsional amount between the joint outer ring 5 and the hub wheel 1 when a large torque is applied, and this difference may cause a sudden slip at the contact portion and generate noise. It is. Therefore, by setting the contact surface pressure to 100 MPa or less, it is possible to provide a quiet wheel bearing device that prevents the generation of abnormal noise.

ハブ輪1のフランジ21にはボルト装着孔32が設けられて、ホイールおよびブレーキロータをこのフランジ21に固定するためのハブボルト33がこのボルト装着孔32に装着される。ハブ輪1には、従来の車輪軸受装置のハブ輪に設けられていたパイロット部165(図36参照)が設けられていない。   Bolt mounting holes 32 are provided in the flange 21 of the hub wheel 1, and hub bolts 33 for fixing the wheel and brake rotor to the flange 21 are mounted in the bolt mounting holes 32. The hub wheel 1 is not provided with the pilot portion 165 (see FIG. 36) provided in the hub wheel of the conventional wheel bearing device.

凹凸嵌合構造Mは、図2(a)および図2(b)に示すように、例えば、軸部12のアウトボード側の端部に設けられた軸方向に延びる凸部35と、ハブ輪1の孔部22の内径面(本実施形態では、軸部嵌合孔22aの内径面37)に形成される凹部36とで構成される。凸部35とその凸部35に嵌合するハブ輪1の凹部36との嵌合部位38全域が密着している。軸部12のアウトボード側の端部の外周面に雄スプライン41を形成することで、軸方向に延びる複数の凸部35が周方向に沿って所定ピッチで配設され、ハブ輪1の孔部22の軸部嵌合孔22aの内径面37に、凸部35が嵌合する軸方向の複数の凹部36が周方向に沿って形成されている。凸部35と凹部36とは、周方向全周にわたってタイトフィットしている。   As shown in FIGS. 2 (a) and 2 (b), the concave-convex fitting structure M includes, for example, a convex portion 35 provided in an end portion of the shaft portion 12 on the outboard side and extending in the axial direction, and a hub wheel. It is comprised with the recessed part 36 formed in the internal-diameter surface (In this embodiment, the internal-diameter surface 37 of the axial part fitting hole 22a) of the 1 hole part 22. As shown in FIG. The entire fitting portion 38 between the convex portion 35 and the concave portion 36 of the hub wheel 1 fitted to the convex portion 35 is in close contact. By forming the male spline 41 on the outer peripheral surface of the end portion of the shaft portion 12 on the outboard side, a plurality of convex portions 35 extending in the axial direction are arranged at a predetermined pitch along the circumferential direction, and the holes of the hub wheel 1 are formed. A plurality of axially recessed portions 36 into which the protruding portions 35 are fitted are formed along the circumferential direction on the inner diameter surface 37 of the shaft portion fitting hole 22a of the portion 22. The convex portion 35 and the concave portion 36 are tight-fitted over the entire circumference.

この場合、凸部35は、図2(b)に示すように、その断面が凸アール状の頂部を有する三角形状(山形状)であり、各凸部35の凹部との嵌合領域は、同図に示す範囲Aである。断面における凸部35の円周方向両側の中腹部から頂部41aに至る範囲で各凸部35と凹部36が嵌合している。周方向の隣り合う凸部35間において、ハブ輪1の内径面37よりも内径側に隙間40が形成されており、そのため各凸部35の側面35bには、凹部36と嵌合しない領域Bが形成されている。   In this case, as shown in FIG.2 (b), the convex part 35 is the triangle shape (mountain shape) in which the cross section has a convex round-shaped top part, The fitting area | region with the recessed part of each convex part 35 is It is a range A shown in FIG. Each convex part 35 and the recessed part 36 are fitted in the range from the middle part on both sides in the circumferential direction of the convex part 35 in the cross section to the top part 41a. Between the adjacent convex portions 35 in the circumferential direction, a gap 40 is formed on the inner diameter side with respect to the inner diameter surface 37 of the hub wheel 1, so that the side surface 35 b of each convex portion 35 does not fit into the concave portion 36. Is formed.

凹凸嵌合構造Mでは、図3(a)に示すように、凸部35のピッチ円上において、径方向線R(半径線)と凸部の側面35bとが成す角度をθ1としたときに、0°<θ1<45°に設定する。ここで、凸部ピッチ円とは、凸部35の側面35bのうち、凹部36に嵌合する領域と凹部36に嵌合しない領域との境界部を通る円C1から、凸部35の頂部41aに至るまでの距離の中間点を通る円C2である。なお、図3(a)では、θ1を30°程度とした場合を例示している。また、凸部ピッチ円C2の直径をPCDとし、凸部数をZとしたときの比であるPCD/ZをPとしたときに、0.30<P<1.0とする。   In the concave-convex fitting structure M, as shown in FIG. 3A, when the angle formed by the radial line R (radial line) and the side surface 35b of the convex portion is θ1 on the pitch circle of the convex portion 35. , 0 ° <θ1 <45 °. Here, the convex pitch circle refers to a top 41a of the convex portion 35 from a circle C1 passing through a boundary portion between a region fitted into the concave portion 36 and a region not fitted into the concave portion 36 in the side surface 35b of the convex portion 35. It is a circle C2 that passes through the midpoint of the distance to reach. FIG. 3A illustrates a case where θ1 is about 30 °. Further, when the diameter of the convex pitch circle C2 is PCD and the PCD / Z which is a ratio when the convex number is Z is P, 0.30 <P <1.0.

凸部35の断面形状として、図3(a)Aでは、頂部をアール状にした断面三角形状を例示しているが、図3(b),および図3(c)に示すような他の形状の凸部35を採用することもできる。図3(b)は、凸部35の断面形状を矩形状としたもの、図3(c)は歯先が約90°をなす三角形状としたものである。図3(b)の例ではθ1は約0°であり、図3(c)の例ではθ1は約45°である。   As a cross-sectional shape of the convex portion 35, FIG. 3A illustrates a triangular shape with a rounded top, but other shapes as shown in FIG. 3B and FIG. A convex portion 35 having a shape may be employed. FIG. 3 (b) shows the convex portion 35 having a rectangular cross-sectional shape, and FIG. 3 (c) shows a triangular shape having a tooth tip of about 90 °. In the example of FIG. 3B, θ1 is about 0 °, and in the example of FIG. 3C, θ1 is about 45 °.

図1に示すように、継手外輪5の軸部12の端部とハブ輪1の内径面37との間に軸部の抜けを規制するための抜け止め構造M1が設けられている。この抜け止め構造M1は、継手外輪5の軸部12の端部からアウトボード側に延びてテーパ孔22bと軸方向で係合するテーパ状係止片65で構成される。テーパ状係止片65は、インボード側からアウトボード側に向かって拡径するリング状体からなり、その外周面65aの少なくとも一部がテーパ孔22bに圧接もしくは接触している。   As shown in FIG. 1, a retaining structure M <b> 1 is provided between the end of the shaft portion 12 of the joint outer ring 5 and the inner diameter surface 37 of the hub wheel 1 to restrict the shaft portion from coming off. The retaining structure M1 includes a tapered locking piece 65 that extends from the end of the shaft portion 12 of the joint outer ring 5 to the outboard side and engages with the tapered hole 22b in the axial direction. The tapered locking piece 65 is a ring-shaped body whose diameter increases from the inboard side to the outboard side, and at least a part of the outer peripheral surface 65a is in pressure contact with or in contact with the tapered hole 22b.

この車輪用軸受装置では、凹凸嵌合構造Mへの異物侵入防止手段Wを、凹凸嵌合構造Mよりもインボード側、及びアウトボード側にそれぞれ設けている。   In this wheel bearing device, the foreign matter intrusion preventing means W for the concave / convex fitting structure M is provided on the inboard side and the outboard side of the concave / convex fitting structure M, respectively.

インボード側では、図8(a)及び図8(b)に示すように、ハブ輪1の加締部31とマウス部11のバック面11aとの間の隙間98にシール部材99が嵌着され、このシール部材99でインボード側の異物侵入防止手段W1が構成されている。隙間98は、ハブ輪1の加締部31とマウス部11のバック面11aとの間から、ハブ輪1の大径孔22cと軸部12との間に至るまで形成される。このように、隙間98のコーナ部、すなわちハブ輪1の加締部31と大径部12cとの境界部分にシール部材99を配置し、ハブ輪1の端部とマウス部11の底部との間の隙間98を塞ぐことで、この隙間98からの凹凸嵌合構造Mへの雨水や異物の侵入を防止することができる。シール部材99としては、例えば、図8(a)に示すような市販のOリング等を使用することができる。シール部材99は、ハブ輪1の端部とマウス部11の底部との間に介在可能である限り任意のものが使用可能であり、Oリング以外にも、例えば図8(b)に示すようなガスケット等のようなものも使用可能である。   On the inboard side, as shown in FIGS. 8A and 8B, the seal member 99 is fitted in the gap 98 between the crimping portion 31 of the hub wheel 1 and the back surface 11 a of the mouth portion 11. The seal member 99 constitutes the inboard side foreign matter intrusion preventing means W1. The gap 98 is formed from the space between the caulking portion 31 of the hub wheel 1 and the back surface 11 a of the mouth portion 11 to the space between the large-diameter hole 22 c of the hub wheel 1 and the shaft portion 12. In this way, the seal member 99 is disposed at the corner portion of the gap 98, that is, at the boundary portion between the caulking portion 31 of the hub wheel 1 and the large diameter portion 12c, and the end portion of the hub wheel 1 and the bottom portion of the mouth portion 11 are located. By closing the gap 98 therebetween, it is possible to prevent rainwater and foreign matter from entering the concave-convex fitting structure M from the gap 98. As the seal member 99, for example, a commercially available O-ring as shown in FIG. 8A can be used. Any seal member 99 can be used as long as it can be interposed between the end portion of the hub wheel 1 and the bottom portion of the mouth portion 11, and other than the O-ring, for example, as shown in FIG. Something like a gasket can also be used.

アウトボード側の異物侵入防止手段W2は、係合部であるテーパ状係止片65と、テーパ孔22bの内径面との間に介在されるシール材(図示省略)とで構成することできる。この場合、テーパ状係止片65にシール材が塗布されることになる。すなわち、塗布後に硬化してテーパ状係止片65と、テーパ孔22bの内径面の間において密封性を発揮できる種々の樹脂からなるシール材をテーパ状係止片65に塗布すればよい。なお、このシール材としては、この車輪用軸受装置が使用される雰囲気中において劣化しないものが選択される。   The outboard-side foreign matter intrusion preventing means W2 can be constituted by a taper-shaped locking piece 65 as an engaging portion and a sealing material (not shown) interposed between the inner diameter surface of the tapered hole 22b. In this case, the sealing material is applied to the tapered locking piece 65. That is, a sealing material made of various resins that can be cured after application and can exhibit sealing performance between the tapered locking piece 65 and the inner diameter surface of the tapered hole 22 b may be applied to the tapered locking piece 65. In addition, as this sealing material, the thing which does not deteriorate in the atmosphere where this wheel bearing apparatus is used is selected.

凹凸嵌合構造Mの凸部35と凹部36との間にシール材を介在させ、これによって、異物侵入防止手段W(W3)を構成してもよい。この場合、凸部35の表面に、塗布後に硬化して、嵌合接触部位38間において密封性を発揮できる種々の樹脂からなるシール材を塗布すればよい。   A foreign material intrusion prevention means W (W3) may be configured by interposing a sealing material between the convex portion 35 and the concave portion 36 of the concave-convex fitting structure M. In this case, a sealing material made of various resins that can be cured after application and exhibit sealing properties between the fitting contact portions 38 may be applied to the surface of the convex portion 35.

上記凹凸嵌合構造Mは、以下の手順で得ることができる。   The uneven fitting structure M can be obtained by the following procedure.

先ず、継手外輪5の軸部12に、公知の加工方法(転造加工、切削加工、プレス加工、引き抜き加工等)を用いて、軸方向に延びた多数の歯を有する雄スプライン41を形成する。雄スプライン41のうち、歯底41bを通る円、歯先(頂部)41a、および歯先41aにつながる両側面35bで囲まれた領域が凸部35となる。軸部12の凸部35を雄スプライン41で形成することにより、この種のシャフトにスプラインを形成するための加工設備を活用することができ、低コストに凸部35を形成することが可能である。   First, a male spline 41 having a large number of teeth extending in the axial direction is formed on the shaft portion 12 of the joint outer ring 5 using a known processing method (rolling, cutting, pressing, drawing, etc.). . In the male spline 41, a region surrounded by a circle passing through the tooth bottom 41 b, a tooth tip (top) 41 a, and both side surfaces 35 b connected to the tooth tip 41 a becomes the convex portion 35. By forming the convex portion 35 of the shaft portion 12 with the male spline 41, it is possible to utilize processing equipment for forming a spline on this type of shaft, and the convex portion 35 can be formed at low cost. is there.

次いで、図4にクロスハッチングで示すように、軸部12の外径面およびハブ輪の外径面に熱硬化処理を施して硬化層H、H1を形成する。軸部12の外径面の硬化層Hは、凸部35の全体および歯底41bも含めて円周方向に連続して形成される。なお、硬化層Hの軸方向の形成範囲は、少なくとも雄スプライン41のアウトボード側の端縁から、継手外輪5のマウス部11の底壁の内径部に至るまでの連続領域を含んだ範囲とする。ハブ輪の外径面に形成された硬化層H1は、凹凸嵌合構造Mの外径側の領域を含むように連続して形成される。熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。 Next, as shown by cross-hatching in FIG. 4, the outer diameter surface of the shaft portion 12 and the outer diameter surface of the hub wheel are subjected to thermosetting treatment to form the hardened layers H 1 and H 1 . The hardened layer H on the outer diameter surface of the shaft portion 12 is continuously formed in the circumferential direction including the entire convex portion 35 and the tooth bottom 41b. In addition, the axial formation range of the hardened layer H is a range including at least a continuous region from the edge on the outboard side of the male spline 41 to the inner diameter portion of the bottom wall of the mouth portion 11 of the joint outer ring 5. To do. The hardened layer H1 formed on the outer diameter surface of the hub wheel is continuously formed so as to include a region on the outer diameter side of the uneven fitting structure M. As the thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. In addition, carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched.

その一方、ハブ輪1の内径側は未焼き状態に維持される。すなわち、ハブ輪1の孔部22の内径面37は熱硬化処理を行わない未硬化部(未焼き状態)とする。継手外輪5の軸部12の硬化層Hとハブ輪1の未硬化部との硬度差は、HRCで20ポイント以上とする。例えば、硬化層Hの硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。ハブ輪1の内径面37のうち、少なくとも軸部嵌合孔22aの内径面37が未硬化部であれば足り、その他の内径面には熱硬化処理を施しても構わない。また、上記硬度差が確保されるのであれば、「未硬化部」とすべき上記領域に熱硬化処理を施してもよい。   On the other hand, the inner diameter side of the hub wheel 1 is maintained in an unburned state. That is, the inner diameter surface 37 of the hole portion 22 of the hub wheel 1 is an uncured portion (unburned state) that is not subjected to thermosetting. The hardness difference between the hardened layer H of the shaft portion 12 of the joint outer ring 5 and the uncured portion of the hub wheel 1 is 20 points or more in HRC. For example, the hardness of the hardened layer H is about 50 HRC to 65 HRC, and the hardness of the uncured portion is about 10 HRC to about 30 HRC. Of the inner diameter surface 37 of the hub wheel 1, it is sufficient that at least the inner diameter surface 37 of the shaft portion fitting hole 22 a is an uncured portion, and the other inner diameter surface may be subjected to thermosetting treatment. Further, if the hardness difference is ensured, the region to be the “uncured portion” may be subjected to a heat curing treatment.

凸部35の高さ方向の中間部は、凹部形成前のハブ輪1の軸部嵌合孔22の内径面37の位置に対応している。図4および図7に示すように、軸部嵌合孔22aの内径面37の内径寸法Dを、雄スプライン41の凸部35の最大外径寸法(雄スプライン41の歯先41aをとおる外接円の直径寸法)D1よりも小さく、雄スプライン41の歯底41bを結ぶ円の直径寸法D2よりも大きくなるように設定する(D2<D<D1)。   The intermediate portion in the height direction of the convex portion 35 corresponds to the position of the inner diameter surface 37 of the shaft portion fitting hole 22 of the hub wheel 1 before the concave portion is formed. As shown in FIGS. 4 and 7, the inner diameter dimension D of the inner diameter surface 37 of the shaft fitting hole 22a is the maximum outer diameter dimension of the convex portion 35 of the male spline 41 (the circumscribed circle passing through the tooth tip 41a of the male spline 41). Is set to be smaller than the diameter dimension D1 and larger than the diameter dimension D2 of the circle connecting the tooth bottom 41b of the male spline 41 (D2 <D <D1).

図4に示すように、軸部12の端面12aには、その外周縁部から前記テーパ状係止片65を構成するための短円筒部66が軸方向に沿って突出して形成される。短円筒部66の外径D4は孔部22の軸部嵌合孔22aの内径寸法Dよりも小さく設定されている。この短円筒部66は、後述するように、軸部12のハブ輪1の孔部22への圧入時の調芯部材となる。   As shown in FIG. 4, a short cylindrical portion 66 for forming the tapered locking piece 65 is formed on the end surface 12 a of the shaft portion 12 so as to protrude from the outer peripheral edge portion along the axial direction. The outer diameter D4 of the short cylindrical portion 66 is set to be smaller than the inner diameter dimension D of the shaft portion fitting hole 22a of the hole portion 22. As will be described later, the short cylindrical portion 66 serves as an alignment member at the time of press-fitting into the hole 22 of the hub wheel 1 of the shaft portion 12.

次いで、継手外輪5の軸部12の付け根部(マウス部側)にOリング等のシール部材99を外嵌し、ハブ輪1の軸心と等速自在継手3の継手外輪5の軸心とを合わせた状態で、ハブ輪1の孔22に継手外輪5の軸部12を圧入する。この際、軸部12のうち、雄スプライン部41および短円筒部66を含むアウトボード側領域の外径面に予めシール材を塗布しておく。上記のように、ハブ輪1の孔部22に圧入方向に沿って縮径するテーパ部22dを形成しているので、このテーパ部22dが圧入開始時のハブ輪孔部22と軸部12との芯出しを行なう。軸部嵌合孔22aの内径寸法D、凸部35の最大外径寸法D1、および雄スプライン41の歯底の最小外径寸法D2とが前記のような関係であるので、軸部12をハブ輪1の軸部嵌合孔22aに圧入することにより、この凸部35がハブ輪1のインボード側端面の内径部に食い込み、ハブ輪1の肉を切り込む。軸部12を押し進めることで、ハブ輪1の軸部嵌合孔22aの内径面37が凸部35で切り出され、又は押出されて、内径面37に軸部12の凸部35に対応した形状の凹部36が形成される。この際、軸部12の凸部35の硬度をハブ輪1の軸部嵌合孔22aの内径面37よりも20ポイント以上高くしているので、ハブ輪1の内径面37への凹部形成が容易となる。軸部側の硬度を高くすることで、軸部12の捩り強度を向上させることもできる。   Next, a seal member 99 such as an O-ring is externally fitted to the base portion (mouse portion side) of the shaft portion 12 of the joint outer ring 5, and the shaft center of the hub wheel 1 and the shaft center of the joint outer ring 5 of the constant velocity universal joint 3 are , The shaft portion 12 of the joint outer ring 5 is press-fitted into the hole 22 of the hub wheel 1. At this time, a seal material is previously applied to the outer diameter surface of the outboard side region including the male spline portion 41 and the short cylindrical portion 66 in the shaft portion 12. As described above, since the tapered portion 22d having a diameter reduced along the press-fitting direction is formed in the hole portion 22 of the hub wheel 1, the tapered portion 22d is provided with the hub ring hole portion 22 and the shaft portion 12 at the start of press-fitting. Perform centering. Since the inner diameter dimension D of the shaft fitting hole 22a, the maximum outer diameter dimension D1 of the convex portion 35, and the minimum outer diameter dimension D2 of the tooth bottom of the male spline 41 are as described above, the shaft section 12 is connected to the hub. By press-fitting into the shaft portion fitting hole 22 a of the wheel 1, the convex portion 35 bites into the inner diameter portion of the end surface on the inboard side of the hub wheel 1 and cuts the meat of the hub wheel 1. By pushing the shaft portion 12 forward, the inner diameter surface 37 of the shaft portion fitting hole 22 a of the hub wheel 1 is cut out or extruded by the convex portion 35, and the shape corresponding to the convex portion 35 of the shaft portion 12 is formed on the inner diameter surface 37. A recess 36 is formed. At this time, since the hardness of the convex portion 35 of the shaft portion 12 is higher by 20 points or more than the inner diameter surface 37 of the shaft portion fitting hole 22a of the hub wheel 1, the concave portion is formed on the inner diameter surface 37 of the hub wheel 1. It becomes easy. By increasing the hardness of the shaft portion side, the torsional strength of the shaft portion 12 can be improved.

この圧入工程を経ることによって、図2(a)および図2(b)に示すように、軸部12の凸部35で、これに嵌合する凹部36が形成される。凸部35が、ハブ輪1の内径面37に食い込んでいくことによって、孔部22が僅かに拡径した状態となり、凸部35の軸方向の移動を許容する。その一方で、軸方向の移動が停止すれば、内径面37が元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時にハブ輪1が外径方向に弾性変形し、この弾性変形分の予圧が凸部35のうち、凹部36と嵌合する部分の表面に付与される。このため、凹部36は、その軸方向全体にわたって凸部35の表面と密着する。これによって凹凸嵌合構造Mが構成される。凸部35と凹部36の嵌合部38には、シール材が介在しているので、この嵌合部38への異物の侵入防止を図ることができる。   Through this press-fitting step, as shown in FIGS. 2A and 2B, a concave portion 36 that fits into the convex portion 35 of the shaft portion 12 is formed. As the convex portion 35 bites into the inner diameter surface 37 of the hub wheel 1, the hole portion 22 is slightly expanded in diameter, and the convex portion 35 is allowed to move in the axial direction. On the other hand, if the movement in the axial direction stops, the inner diameter surface 37 is reduced in diameter to return to the original diameter. In other words, when the convex portion 35 is press-fitted, the hub wheel 1 is elastically deformed in the outer diameter direction, and a preload corresponding to the elastic deformation is applied to the surface of a portion of the convex portion 35 that fits the concave portion 36. For this reason, the recessed part 36 closely_contact | adheres to the surface of the convex part 35 over the whole axial direction. Thereby, the concave-convex fitting structure M is configured. Since a sealing material is interposed in the fitting portion 38 of the convex portion 35 and the concave portion 36, it is possible to prevent foreign matter from entering the fitting portion 38.

また、軸部12の圧入に伴い、ハブ輪1側で塑性変形が生じるため、凹部36の表面には加工硬化が生じる。このため、凹部36側のハブ輪1の内径面37が硬化して、回転トルク伝達性の向上を図ることができる。   Further, as the shaft portion 12 is press-fitted, plastic deformation occurs on the hub wheel 1 side, so that work hardening occurs on the surface of the recess 36. For this reason, the inner diameter surface 37 of the hub wheel 1 on the concave portion 36 side is hardened, and the rotational torque transmission can be improved.

テーパ部22dは、軸部12の圧入を開始する際のガイドとして機能させることができる。そのため、ハブ輪1の孔部22に対して継手外輪5の軸部12を、芯ずれを生じさせることなく圧入させることができる。また、短円筒部66の外径D4を、孔部22の嵌合孔22aの内径寸法Dよりも小さく設定しているので、短円筒部66を調芯部材として機能させることができ、芯ずれを防止しつつ軸部12をハブ輪1に圧入することができ、より安定した圧入が可能となる。   The tapered portion 22d can function as a guide when starting the press-fitting of the shaft portion 12. Therefore, the shaft portion 12 of the joint outer ring 5 can be pressed into the hole portion 22 of the hub wheel 1 without causing misalignment. Further, since the outer diameter D4 of the short cylindrical portion 66 is set to be smaller than the inner diameter dimension D of the fitting hole 22a of the hole portion 22, the short cylindrical portion 66 can function as an alignment member, and misalignment occurs. It is possible to press-fit the shaft portion 12 into the hub wheel 1 while preventing the above-described problem, and more stable press-fitting is possible.

凹凸嵌合構造Mは、極力、軸受2の軌道面26、27、28、29の内径側を避けて配置することが求められる。特にインナレース28、29上における接触角が通る線との交点の内径側を避け、これらの交点の間の軸方向一部領域に凹凸嵌合造Mを形成することが望まれる。これにより、軸受軌道面におけるフープ応力の発生を抑えることができる。従って、転がり疲労寿命の低下、クラック発生、及び応力腐食割れ等の軸受の不具合発生を防止することができ、高品質な軸受を提供することができる。   The concave / convex fitting structure M is required to be disposed so as to avoid the inner diameter side of the raceway surfaces 26, 27, 28, and 29 of the bearing 2 as much as possible. In particular, it is desired to avoid the inner diameter side of the intersection with the line through which the contact angle passes on the inner races 28 and 29, and to form the uneven fitting structure M in a partial region in the axial direction between these intersections. Thereby, generation | occurrence | production of the hoop stress in a bearing raceway surface can be suppressed. Therefore, it is possible to prevent bearing failures such as a decrease in rolling fatigue life, occurrence of cracks, and stress corrosion cracking, and a high-quality bearing can be provided.

継手外輪5の軸部12をハブ輪1の孔部22に圧入する際には、継手外輪5のマウス部11の外径面に、図16等に示すように段差面Gを設け、仮想線で示す圧入用治具Kをこの段差面Gに係合させて、この圧入用治具Kから段差面Gに圧入荷重(軸方向荷重)を付与すればよい。なお、段差面Gとしては周方向全周に設けても、周方向に沿って所定ピッチで設けてもよい。使用する圧入用治具も、これらの段差面Gの形状に対応して軸方向荷重を付与できるものであればよい。   When press-fitting the shaft portion 12 of the joint outer ring 5 into the hole portion 22 of the hub wheel 1, a step surface G is provided on the outer diameter surface of the mouth portion 11 of the joint outer ring 5 as shown in FIG. A press-fitting load (axial load) may be applied from the press-fitting jig K to the stepped surface G by engaging the press-fitting jig K shown in FIG. The stepped surface G may be provided on the entire circumference in the circumferential direction or at a predetermined pitch along the circumferential direction. The press-fitting jig to be used only needs to be able to apply an axial load corresponding to the shape of these stepped surfaces G.

凹凸嵌合構造Mを介して継手外輪5の軸部12とハブ輪1とが一体化された状態では、図5に示すように、短円筒部66が嵌合孔22aからアウトボード側に突出する。   In a state in which the shaft portion 12 of the joint outer ring 5 and the hub wheel 1 are integrated through the concave / convex fitting structure M, as shown in FIG. 5, the short cylindrical portion 66 protrudes from the fitting hole 22a to the outboard side. To do.

この短円筒部66は、治具67を使用して拡径方向に塑性変形される。治具67は、円柱状の本体部68と、この本体部68の先端部に連設される円錐台部69とを備える。治具67の円錐台部69は、その傾斜面69aの傾斜角度がテーパ孔22bの傾斜角度と略同一され、かつ、その先端の外径が短円筒部66の内径と同一乃至僅かに短円筒部66の内径よりも小さい寸法に設定されている。治具67の円錐台部69を、テーパ孔22bを介してアウトボード側から嵌入することによって矢印α方向の荷重を付加し、これによって、図6に示すように、短円筒部66に矢印β方向の拡径力を付与する。この際、治具67の円錐台部69によって、短円筒部66が外径側に塑性変形し、テーパ孔22bの内径面に押し付けされる。これに伴い、予め短円筒部66の外径面に塗布されたシール材がテーパ孔22bの内径面に密着し、異物侵入防止手段W2を構成する。また、塑性変形した短円筒部66がテーパ孔22bの内径面と係合するテーパ状係止片65となり、軸部12の抜け止め構造M1を構成する。なお、治具67により矢印α方向の荷重を付加する際には、ハブ輪1や等速自在継手3等の一部を図示しない固定部材で支持して荷重を受ければよい。短円筒部66の内径面は軸端側に拡径するテーパ形状でも良い。このような形状にしておけば、鍛造で軸部12の内径面を成形することが可能となり、コスト低減に繋がる。   The short cylindrical portion 66 is plastically deformed in the diameter expansion direction using a jig 67. The jig 67 includes a columnar main body 68 and a truncated cone 69 connected to the tip of the main body 68. The frustoconical portion 69 of the jig 67 has an inclined surface 69a whose inclination angle is substantially the same as the inclination angle of the tapered hole 22b, and whose outer diameter is the same as or slightly shorter than the inner diameter of the short cylindrical portion 66. The dimension is set to be smaller than the inner diameter of the portion 66. By inserting the truncated cone part 69 of the jig 67 from the outboard side through the tapered hole 22b, a load in the direction of the arrow α is applied, and as a result, as shown in FIG. Gives direction expansion force. At this time, the short cylindrical portion 66 is plastically deformed to the outer diameter side by the truncated cone portion 69 of the jig 67 and is pressed against the inner diameter surface of the tapered hole 22b. Along with this, the sealing material previously applied to the outer diameter surface of the short cylindrical portion 66 is brought into close contact with the inner diameter surface of the tapered hole 22b, thereby constituting the foreign matter intrusion prevention means W2. Further, the plastically deformed short cylindrical portion 66 becomes a tapered locking piece 65 that engages with the inner diameter surface of the tapered hole 22b, and constitutes a retaining structure M1 of the shaft portion 12. In addition, when applying the load in the direction of the arrow α by the jig 67, a part of the hub wheel 1, the constant velocity universal joint 3 and the like may be supported by a fixing member (not shown) to receive the load. The inner cylindrical surface of the short cylindrical portion 66 may have a tapered shape that expands toward the shaft end. With such a shape, the inner diameter surface of the shaft portion 12 can be formed by forging, which leads to cost reduction.

また、治具67の矢印α方向の荷重を低減させるため、短円筒部66に切り欠きを入れても良いし、治具67の円錐台部69の円錐面を周方向で部分的に配置するものでも良い。短円筒部66に切り欠きを入れた場合、短円筒部66を拡径し易くなる。また、治具67の円錐台部69の円錐面を周方向で部分的に配置するものである場合、短円筒部66を拡径させる部位が円周上の一部になるため、治具67の押し込み荷重を低減させることができる。   Further, in order to reduce the load of the jig 67 in the direction of the arrow α, the short cylindrical portion 66 may be notched, and the conical surface of the truncated cone portion 69 of the jig 67 is partially arranged in the circumferential direction. Things can be used. When the short cylindrical portion 66 is notched, the short cylindrical portion 66 can be easily expanded in diameter. Further, in the case where the conical surface of the truncated cone part 69 of the jig 67 is partially arranged in the circumferential direction, a part where the diameter of the short cylindrical part 66 is enlarged becomes a part on the circumference. The indentation load can be reduced.

この凹凸嵌合構造Mでは、ハブ輪1に対する凸部35の圧入代をΔdとし、凸部の高さをhとして、0.3<Δd/2h<0.86の範囲に設定する。ここで、圧入代Δdは、図7に示すように、軸部12の最大外径寸法D1(凸部35の歯先41aを通る外接円直径)と、ハブ輪1の軸部嵌合孔22aの内径寸法Dとの径差(D1−D)で表される。これにより、凸部35の高さ方向中間部付近がハブ輪1の内径面に食い込むことになるので、凸部35の圧入代を十分に確保することができ、凹部36を確実に形成することが可能となる。   In the concave / convex fitting structure M, the press-fitting allowance of the convex portion 35 to the hub wheel 1 is set as Δd, and the height of the convex portion is set as h, and is set in a range of 0.3 <Δd / 2h <0.86. Here, as shown in FIG. 7, the press-fitting allowance Δd is the maximum outer diameter D1 of the shaft portion 12 (the circumscribed circle diameter passing through the tooth tip 41a of the convex portion 35) and the shaft portion fitting hole 22a of the hub wheel 1. It is represented by a diameter difference (D1-D) from the inner diameter dimension D of Thereby, since the vicinity of the intermediate portion in the height direction of the convex portion 35 bites into the inner diameter surface of the hub wheel 1, a sufficient press-fitting allowance for the convex portion 35 can be ensured, and the concave portion 36 can be reliably formed. Is possible.

Δd/2hが0.3以下である場合、捩り強度が低くなり、また、Δd/2hが0.86を越えれば、微小な圧入時の芯ずれや圧入傾きにより、凸部35の全体が相手側に食い込み、凹凸嵌合構造Mの成形性が悪化し、圧入荷重が急激に増大するおそれがある。凹凸嵌合構造Mの成形性が悪化した場合、捩り強度が低下するだけでなく、ハブ輪外径の膨張量も増大するため、ハブ輪1に装着される軸受2の機能に影響し、回転寿命が低下する等の問題もある。これに対して、Δd/2hを0.3〜0.86の範囲に設定することにより、凹凸嵌合構造Mの成形性が安定し、圧入荷重のばらつきも無く、安定した捩り強度が得られる。   When Δd / 2h is 0.3 or less, the torsional strength is low, and when Δd / 2h exceeds 0.86, the entire convex portion 35 is not mated due to a slight misalignment or press-fit inclination. There is a possibility that the moldability of the concave-convex fitting structure M is deteriorated and the press-fitting load is rapidly increased. When the formability of the concave-convex fitting structure M is deteriorated, not only the torsional strength is reduced, but also the expansion amount of the outer diameter of the hub wheel is increased, which affects the function of the bearing 2 attached to the hub wheel 1 and rotates. There is also a problem such as a decrease in life. On the other hand, by setting Δd / 2h in the range of 0.3 to 0.86, the formability of the concave-convex fitting structure M is stabilized, there is no variation in press-fit load, and stable torsional strength is obtained. .

以上に述べた凹凸嵌合構造Mでは、凸部35と凹部36との嵌合部位38の全体が密着しているので、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生もない。   In the concave / convex fitting structure M described above, since the entire fitting portion 38 of the convex portion 35 and the concave portion 36 is in close contact with each other, there is no gap between the radial direction and the circumferential direction. For this reason, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.

また、凹部36が形成される部材(この場合、ハブ輪1)には、雌スプライン等を予め形成しておく必要がない。従って、生産性に優れ、かつスプライン同士の位相合わせを必要としないことから組立性の向上を図ることができる。さらに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。また、ハブ輪1の内径側は比較的軟らかいため、ハブ輪1の凹部36は、軸部12の凸部35と高い密着性をもって嵌合する。そのため、径方向及び円周方向におけるガタの防止により一層有効となる。   Further, it is not necessary to previously form a female spline or the like on the member (in this case, the hub wheel 1) in which the recess 36 is formed. Therefore, the productivity is excellent and the phase alignment between the splines is not required, so that the assemblability can be improved. Furthermore, damage to the tooth surface during press-fitting can be avoided, and a stable fitting state can be maintained. Further, since the inner diameter side of the hub wheel 1 is relatively soft, the concave portion 36 of the hub wheel 1 is fitted with the convex portion 35 of the shaft portion 12 with high adhesion. Therefore, it becomes more effective by preventing play in the radial direction and the circumferential direction.

特に本発明では、上記のように、各凸部35のピッチ円C上において、径方向線(半径線)と凸部側面35bとが成す角度θを0°≦θ1≦45°の範囲に設定しているので、圧入後のハブ輪1の拡径量を小さくし、圧入性の向上を図ることができる。これは、凸部35を圧入することによって、ハブ輪1の孔部22が拡径するが、θ1が大きすぎると、圧入時の拡径力が働き易くなるため、圧入終了時におけるハブ輪1外径の拡径量が大きくなり、ハブ輪1外径部や軸受の内輪24外径部の引張応力(フープ応力)が高くなること、およびトルク伝達時に径方向への分力が大きくなるため、ハブ輪1の外径が拡径し、ハブ輪1外径部や内輪24外径部の引張応力(フープ応力)が高くなること、等による。これら引張応力(フープ応力)の増加は、軸受寿命の低下を招く。   In particular, in the present invention, as described above, on the pitch circle C of each convex portion 35, the angle θ formed by the radial line (radial line) and the convex side surface 35b is set in a range of 0 ° ≦ θ1 ≦ 45 °. Therefore, the diameter of the hub wheel 1 after press-fitting can be reduced and the press-fitting property can be improved. This is because when the convex portion 35 is press-fitted, the hole portion 22 of the hub wheel 1 expands in diameter. However, if θ1 is too large, the diameter expansion force at the time of press-fitting becomes easy to work. Because the amount of expansion of the outer diameter increases, the tensile stress (hoop stress) of the outer diameter portion of the hub wheel 1 or the inner ring 24 of the bearing increases, and the component force in the radial direction increases during torque transmission. This is because the outer diameter of the hub wheel 1 is increased, and the tensile stress (hoop stress) of the outer diameter portion of the hub wheel 1 and the outer diameter portion of the inner ring 24 is increased. These increases in tensile stress (hoop stress) lead to a decrease in bearing life.

また、本発明では、凸部35のピッチ円径をPCDとし、凸部数をZとして、0.30≦PCD/Z≦1.0にしている。PCD/Zが小さすぎる場合、凹部36を形成すべき部材(例えばハブ輪1)に対する凸部35の圧入代の適用範囲が非常に狭く、寸法公差も狭くなるため、圧入が困難となる。また、ハブ輪1の孔部22と継手外輪5の軸部12との芯出しが難しく、圧入時に少しでも傾きが出た場合、圧入した凸部全域が他方に食い込むおそれがある。PCD/Zが1.0以上の場合、1つの凸部35で加工する体積(除体積)が大きくなるため、凸部35による凹部36の成形性が悪化し、圧入荷重も高くなる。   In the present invention, the pitch circle diameter of the protrusions 35 is PCD, and the number of protrusions is Z, so that 0.30 ≦ PCD / Z ≦ 1.0. When the PCD / Z is too small, the application range of the press-fitting allowance of the convex portion 35 to the member (for example, the hub wheel 1) where the concave portion 36 is to be formed is very narrow, and the dimensional tolerance is also narrowed. In addition, it is difficult to center the hole portion 22 of the hub wheel 1 and the shaft portion 12 of the joint outer ring 5, and if there is a slight inclination during press-fitting, the entire press-fitted convex portion may bite into the other. When PCD / Z is 1.0 or more, the volume (removed volume) processed by one convex portion 35 is increased, so that the formability of the concave portion 36 by the convex portion 35 is deteriorated and the press-fit load is also increased.

特に、20°≦θ1≦35°とするとともに、0.33≦PCD/Z≦0.7とすることによって、凸部35において材料に特殊鋼や表面処理を用いなくても、また、鋭利な形状にしなくても、一般的な機械構造用鋼を用いて圧入時に凸部35による凹部36の成形が可能となり、圧入後のハブ輪の外径の拡径量を低く抑えることが出来る。しかも、θ1を20°以上とすることにより、軸部12側に凸部35を設ける場合、転造加工による凸部35の成形が可能となる。   In particular, by setting 20 ° ≦ θ1 ≦ 35 ° and 0.33 ≦ PCD / Z ≦ 0.7, the projection 35 can be sharp without using special steel or surface treatment as a material. Even if it is not made into a shape, the concave portion 36 can be formed by the convex portion 35 at the time of press-fitting using general mechanical structural steel, and the amount of expansion of the outer diameter of the hub wheel after press-fitting can be kept low. In addition, by setting θ1 to 20 ° or more, when the convex portion 35 is provided on the shaft portion 12 side, the convex portion 35 can be formed by rolling.

車輪用軸受装置では、継手外輪5の軸部12の端部からアウトボード側に延びるテーパ状係止片65をテーパ孔22bの内径面に圧接もしくは接触させることで、継手外輪5の軸部12の端部とハブ輪1の内径面37との間に軸部12の抜け止め構造M1を設けている。この抜け止め構造M1によって、ハブ輪1からの継手外輪5の軸部12のインボード側への抜けを防止し、安定した連結状態を維持することができる。また、抜け止め構造M1がテーパ状係止片65であるので、従来のようなねじ締結を省略できる。このため、軸部12にハブ輪1の孔部22から突出するねじ部を形成する必要がなく、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組立作業性の向上を図ることができる。しかも、テーパ状係止片65では、継手外輪5の軸部12の一部を拡径させればよく、抜け止め構造M1の形成を容易に行うことができる。なお、継手外輪5の軸部12のアウトボード側への移動は、軸部12をさらに圧入する方向への押圧力が必要であり、継手外輪5の軸部12のアウトボード側への位置ズレは極めて生じにくく、かつ、たとえこの方向に位置ズレしたとしても、継手外輪5のマウス部11の底部がハブ輪1の加締部31に当接するので、ハブ輪1から継手外輪5の軸部12が抜けることがない。   In the wheel bearing device, the shaft portion 12 of the joint outer ring 5 is brought into pressure contact with or brought into contact with the inner diameter surface of the taper hole 22b from the end of the shaft portion 12 of the joint outer ring 5 to the outboard side. A retaining structure M1 for the shaft portion 12 is provided between the end portion of the shaft portion 12 and the inner diameter surface 37 of the hub wheel 1. With this retaining structure M1, it is possible to prevent the shaft portion 12 of the joint outer ring 5 from coming off from the hub wheel 1 to the inboard side and maintain a stable connected state. Moreover, since the retaining structure M1 is the tapered locking piece 65, conventional screw fastening can be omitted. For this reason, it is not necessary to form the screw part which protrudes from the hole part 22 of the hub wheel 1 in the shaft part 12, and while being able to achieve weight reduction, a screw fastening operation | work can be abbreviate | omitted and aiming at the improvement of assembly workability | operativity. Can do. Moreover, in the tapered locking piece 65, it is only necessary to increase the diameter of a part of the shaft portion 12 of the joint outer ring 5, and the retaining structure M1 can be easily formed. The movement of the shaft portion 12 of the joint outer ring 5 to the outboard side requires a pressing force in a direction in which the shaft portion 12 is further press-fitted, and the position shift of the shaft portion 12 of the joint outer ring 5 to the outboard side is necessary. Since the bottom of the mouth portion 11 of the joint outer ring 5 abuts against the caulking portion 31 of the hub wheel 1 even if it is misaligned in this direction, the shaft portion of the joint outer ring 5 from the hub wheel 1 12 will not come off.

また、以上に述べた車輪用軸受装置では、凹凸嵌合構造Mのインボード側およびアウトボード側にそれぞれ異物侵入防止手段W1、W2を設けているので、凹凸嵌合構造Mへの軸方向両端側からの雨水や異物の侵入が防止され、凸部35と凹部36との密着性を長期間安定して維持することが可能となる。   Further, in the wheel bearing device described above, the foreign matter intrusion prevention means W1 and W2 are provided on the inboard side and the outboard side of the uneven fitting structure M, respectively. Intrusion of rainwater and foreign matter from the side is prevented, and the adhesion between the convex portion 35 and the concave portion 36 can be stably maintained for a long period of time.

図9に、抜け止め構造M1の他の構成例を示す。この車輪用軸受装置では、軸部12に図4に示す短円筒部66を形成せず、軸部12の中実状の一端部に外径方向へ突出するテーパ状係止片70を設けて軸部12の抜け止め構造M1を構成している。   FIG. 9 shows another configuration example of the retaining structure M1. In this wheel bearing device, the shaft portion 12 is not formed with the short cylindrical portion 66 shown in FIG. 4, and the shaft portion 12 is provided with a tapered locking piece 70 protruding in the outer diameter direction at one solid end portion of the shaft portion 12. A retaining structure M1 of the portion 12 is configured.

このテーパ状係止片70は、図10に示す治具71を使用して形成することができる。治具71は、円柱状の本体部72と、この本体部72の先端部に連設される円筒部73とを備え、円筒部73の外周面の先端に切欠部74を設けることで、円筒部73の先端にくさび部75が形成されている。くさび部75を軸部12のアウトボード側の端部に打ち込めば(矢印α方向の荷重を付加すれば)、切欠部74によって、図11に示すように、軸部12の軸端の外径側領域が外径側に塑性変形する。これによって、テーパ状係止片70が形成され、テーパ状係止片70の少なくとも一部がテーパ孔22bの内径面に圧接もしくは接触することになる。このため、図1等に示すテーパ状係止片65と同様に、ハブ輪1からの軸部12の抜けを確実に防止することができる。図示例では、円筒部73の外径面に切欠部74を設けてくさび部75を形成しているが、内径面に切欠部を設けてくさび部75を形成してもよい。テーパ状係止片70の外径面とテーパ孔部22bの内径面との間にシール材を介在させて異物侵入防止手段W2を構成することもできる。   The tapered locking piece 70 can be formed using a jig 71 shown in FIG. The jig 71 includes a columnar main body 72 and a cylindrical portion 73 provided continuously to the distal end portion of the main body portion 72, and a cylindrical portion 73 is provided by providing a notch 74 at the distal end of the outer peripheral surface of the cylindrical portion 73. A wedge part 75 is formed at the tip of the part 73. If the wedge portion 75 is driven into the end portion on the outboard side of the shaft portion 12 (if a load in the direction of arrow α is applied), the outer diameter of the shaft end of the shaft portion 12 is caused by the notch portion 74 as shown in FIG. The side region is plastically deformed to the outer diameter side. As a result, a tapered locking piece 70 is formed, and at least a part of the tapered locking piece 70 comes into pressure contact with or comes into contact with the inner diameter surface of the tapered hole 22b. For this reason, similarly to the tapered locking piece 65 shown in FIG. 1 and the like, it is possible to reliably prevent the shaft portion 12 from coming off from the hub wheel 1. In the illustrated example, the notched portion 74 is provided on the outer diameter surface of the cylindrical portion 73 to form the wedge portion 75, but the wedge portion 75 may be formed by providing a notched portion on the inner diameter surface. The foreign matter intrusion preventing means W2 can be configured by interposing a sealing material between the outer diameter surface of the tapered locking piece 70 and the inner diameter surface of the tapered hole portion 22b.

図12に、抜け止め構造M1の他の構成例を示す。この抜け止め構造M1は、軸部12の一部を外径方向へ突出するように加締めることによって、外鍔状係止片76を構成したものであるハブ輪1の軸部嵌合孔22aとテーパ孔22bとの間に段付面22eを介在させ、この段付面22eに外鍔状係止片76を圧接もしくは接触させている。   FIG. 12 shows another configuration example of the retaining structure M1. The retaining structure M1 includes a shaft portion fitting hole 22a of the hub wheel 1 that constitutes the outer collar-shaped locking piece 76 by caulking a part of the shaft portion 12 so as to protrude in the outer diameter direction. A stepped surface 22e is interposed between the taper hole 22b and the outer surface of the stepped surface 22e.

この外鍔状係止片76は、図13に示す治具77を使用して形成することができる。この治具77は円筒体78を備える。円筒体78の外径D5を軸部12の端部の外径D7よりも大きく設定するとともに、円筒体78の内径D6を軸部12の端部の外径D7より小さく設定している。   The outer hook-shaped locking piece 76 can be formed using a jig 77 shown in FIG. The jig 77 includes a cylindrical body 78. The outer diameter D5 of the cylindrical body 78 is set larger than the outer diameter D7 of the end portion of the shaft portion 12, and the inner diameter D6 of the cylindrical body 78 is set smaller than the outer diameter D7 of the end portion of the shaft portion 12.

このため、この治具77と継手外輪5の軸部12との軸心を合わせ、この状態で治具77の端面77aによって、軸部12の端面12aに矢印α方向に荷重を付加すれば、図14に示すように、軸部12の端面12aの外周側が圧潰して、外鍔状係止片76を形成することができる。   For this reason, if the axial center of this jig | tool 77 and the axial part 12 of the joint outer ring | wheel 5 is match | combined and a load is added to the end surface 12a of the axial part 12 by the arrow (alpha) direction by the end surface 77a of the jig | tool 77 in this state, As shown in FIG. 14, the outer peripheral side of the end surface 12 a of the shaft portion 12 can be crushed to form an outer hook-shaped locking piece 76.

この外鍔状係止片76が段付面22eと軸方向で係合することにより、図1等に示すテーパ状係止片65と同様に、ハブ輪1からの軸部12の抜けを確実に防止することができる。外鍔状係止片76と段付面22eとの間にシール材を介在させて、異物侵入防止手段W2を構成してもよい。   The outer hook-shaped locking piece 76 is engaged with the stepped surface 22e in the axial direction, so that the shaft portion 12 can be securely removed from the hub wheel 1 in the same manner as the tapered locking piece 65 shown in FIG. Can be prevented. The foreign matter intrusion prevention means W2 may be configured by interposing a sealing material between the outer hook-shaped locking piece 76 and the stepped surface 22e.

外鍔状係止片76は、図15(a)に示すように、環状に連続して形成する他、図15(b)に示すように、複数の外鍔状係止片76を周方向に沿って所定ピッチで間欠配置してもよい。図14(b)に示す外鍔状係止片76は、押圧部が周方向に沿って所定ピッチ(例えば、90°ピッチ)で配設された治具を使用することによって形成することができる。   As shown in FIG. 15A, the outer hook-shaped locking piece 76 is formed continuously in an annular shape, and as shown in FIG. 15B, a plurality of outer hook-shaped locking pieces 76 are arranged in the circumferential direction. May be intermittently arranged at a predetermined pitch. The outer hook-shaped locking piece 76 shown in FIG. 14B can be formed by using a jig in which the pressing portions are arranged at a predetermined pitch (for example, 90 ° pitch) along the circumferential direction. .

ハブ輪1に対して継手外輪5の軸部12を圧入する際には、図16および図17に示すように、凸部35の切り出しまたは押し出し作用で凹部36から材料がはみ出し、はみ出し部45が形成される。はみ出し部45は、凸部35のうち、凹部36と嵌合する部分の容積に相当する量が生じる。   When the shaft portion 12 of the joint outer ring 5 is press-fitted into the hub wheel 1, as shown in FIGS. 16 and 17, the material protrudes from the recessed portion 36 by the cutting or pushing action of the protruding portion 35, and the protruding portion 45 is It is formed. The protruding portion 45 has an amount corresponding to the volume of the portion of the convex portion 35 that fits into the concave portion 36.

このはみ出し部45を放置すれば、これが脱落して車両の内部に入り込むおそれがある。これに対し、図16および図17に示すように、軸部12の外径面に、はみ出し部45を収納するポケット部50を形成すれば、はみ出し部45は、カールしつつポケット部50内に収納され、保持されるため、はみ出し部45の脱落を防止して、上記不具合を解消することができる。   If the protruding portion 45 is left unattended, it may fall off and enter the vehicle. On the other hand, as shown in FIGS. 16 and 17, if the pocket portion 50 that accommodates the protruding portion 45 is formed on the outer diameter surface of the shaft portion 12, the protruding portion 45 is curled in the pocket portion 50. Since it is stored and held, it is possible to prevent the protrusion 45 from falling off and to solve the above problems.

ポケット部50は、例えば軸部12の雄スプライン41よりもアウトボード側の外径面に周方向溝51を設けることによって形成することができる。この場合、硬化層Hは、図18のクロスハッチングで示すように、ポケット部50には設けず、雄スプライン41のアウトボード側の端縁から継手外輪5のマウス部11の底壁の一部までの連続領域に形成する。図18では、硬化層Hをポケット部50まで到達させていないが、ポケット部にまで硬化層Hを到達させてもよい。この場合でも、外鍔状係止片76を形成する短円筒部66には硬化層を形成しない。   The pocket portion 50 can be formed, for example, by providing a circumferential groove 51 on the outer diameter surface on the outboard side of the male spline 41 of the shaft portion 12. In this case, the hardened layer H is not provided in the pocket portion 50 as shown by cross-hatching in FIG. 18, and a part of the bottom wall of the mouth portion 11 of the joint outer ring 5 from the edge on the outboard side of the male spline 41. Form up to a continuous region. In FIG. 18, the hardened layer H does not reach the pocket portion 50, but the hardened layer H may reach the pocket portion. Even in this case, no hardened layer is formed on the short cylindrical portion 66 that forms the outer hook-shaped locking piece 76.

図19〜図21に、軸部12の抜け止め構造M1の他の構成例を示す。このうち、図19はボルトナット結合を用いた抜け止め構造M1を表す。詳細には、軸部12にねじ軸部80を連設し、このねじ軸部80にナット部材81を螺着して、ナット部材81を孔部22の段付面22eに当接させたものである。図20は、止め輪85で軸部12の抜け止め構造M1を構成したものであり、雄スプライン41よりもアウトボード側に軸延長部83を設けるとともに、この軸延長部83に周方向溝84を設け、この周方向溝84に止め輪85を嵌着している。図21は、軸部の外径面とハブ輪の内径面との間を溶接して抜け止め構造M1を構成したものであり、軸部12のアウトボード側の外径面と、ハブ輪1の孔部22のうちアウトボード側の開口部端縁とを溶接にて接合している。   19 to 21 show other configuration examples of the retaining structure M1 of the shaft portion 12. Of these, FIG. 19 shows a retaining structure M1 using a bolt and nut connection. Specifically, a screw shaft portion 80 is connected to the shaft portion 12, a nut member 81 is screwed onto the screw shaft portion 80, and the nut member 81 is brought into contact with the stepped surface 22 e of the hole portion 22. It is. In FIG. 20, the retaining ring 85 constitutes the retaining structure M <b> 1 of the shaft portion 12. A shaft extension portion 83 is provided on the outboard side of the male spline 41, and a circumferential groove 84 is provided in the shaft extension portion 83. And a retaining ring 85 is fitted in the circumferential groove 84. FIG. 21 shows a structure M1 in which the outer diameter surface of the shaft portion and the inner diameter surface of the hub wheel are welded to form a retaining structure M1, and the outer diameter surface on the outboard side of the shaft portion 12 and the hub wheel 1 Of the holes 22, the edge of the opening on the outboard side is joined by welding.

軸部12の抜け止め構造M1は、図22に示すように省略することもできる。この場合、図23に示すように、周方向溝51は、その雄スプライン41側の側面51aが、軸方向に対して直交する平面であり、その反対側の側面51bは、溝底51cからアウトボード側に向かって拡径するテーパ面である。周方向溝51の側面51bよりもアウトボード側には、調芯用の円盤状の鍔部52が設けられている。   The retaining structure M1 of the shaft portion 12 can be omitted as shown in FIG. In this case, as shown in FIG. 23, in the circumferential groove 51, the side surface 51a on the male spline 41 side is a plane orthogonal to the axial direction, and the opposite side surface 51b is out of the groove bottom 51c. It is a taper surface which expands toward the board side. A disc-shaped flange 52 for alignment is provided on the outboard side of the side surface 51b of the circumferential groove 51.

鍔部52の外径寸法が嵌合孔22aの孔径よりも大きいと、鍔部52自体が嵌合孔22aに圧入されることになる。この際、芯ずれがあれば、このまま凸部35がハブ輪1に圧入され、軸部12の軸心とハブ輪1の軸心とが合っていない状態で軸部1とハブ輪1とが連結されることになる。かかる不具合を防止するため、鍔部52の外径寸法D4a(図23参照)は、孔部22の嵌合孔22aの孔径よりも僅かに小さく設定され、鍔部52の外径面52aと孔部22の嵌合孔22aの内径面との間に微小隙間tが設けられている。その一方で、鍔部52の外径寸法が嵌合孔22aの孔径よりも小さすぎると、調芯用として機能しない。従って、鍔部52の外径面52aと孔部22の嵌合孔22aの内径面との間の微小隙間tは、0.01mm〜0.2mm程度に設定するのが好ましい。鍔部52の外径寸法D4aを嵌合孔22aの孔径と同一にしてもよい。   If the outer diameter dimension of the collar part 52 is larger than the hole diameter of the fitting hole 22a, the collar part 52 itself is press-fitted into the fitting hole 22a. At this time, if there is a misalignment, the convex portion 35 is pressed into the hub wheel 1 as it is, and the shaft portion 1 and the hub wheel 1 are connected to each other in a state where the shaft center of the shaft portion 12 and the shaft center of the hub wheel 1 are not aligned. Will be linked. In order to prevent such inconvenience, the outer diameter D4a (see FIG. 23) of the flange portion 52 is set slightly smaller than the hole diameter of the fitting hole 22a of the hole portion 22, and the outer diameter surface 52a of the flange portion 52 and the hole A minute gap t is provided between the inner diameter surface of the fitting hole 22 a of the portion 22. On the other hand, if the outer diameter of the flange 52 is too small than the diameter of the fitting hole 22a, it does not function for alignment. Therefore, it is preferable that the minute gap t between the outer diameter surface 52a of the flange portion 52 and the inner diameter surface of the fitting hole 22a of the hole portion 22 is set to about 0.01 mm to 0.2 mm. The outer diameter D4a of the flange 52 may be the same as the hole diameter of the fitting hole 22a.

このように、ポケット部50のアウトボード側に、ハブ輪1の孔部22との調芯用の鍔部52を設けることによって、ポケット部50内のはみ出し部45の鍔部52側への飛び出しがなくなり、はみ出し部45をより確実にポケット部50内に収納することができる。しかも、鍔部52は調芯機能を有するので、芯ずれを防止しつつ軸部12をハブ輪1に圧入することができる。このため、外側継手部材5とハブ輪1とを高精度に連結でき、安定したトルク伝達が可能となる。   In this way, by providing the flange 52 for alignment with the hole 22 of the hub wheel 1 on the outboard side of the pocket 50, the protruding portion 45 in the pocket 50 protrudes toward the flange 52. Therefore, the protruding portion 45 can be stored in the pocket portion 50 more reliably. Moreover, since the flange portion 52 has a centering function, the shaft portion 12 can be press-fitted into the hub wheel 1 while preventing misalignment. For this reason, the outer joint member 5 and the hub wheel 1 can be connected with high precision, and stable torque transmission becomes possible.

なお、図22に示す抜け止め構造M1を有しない車輪用軸受装置において、軸部12に設けた調芯用の鍔部52を省略することもできる。   In the wheel bearing device that does not have the retaining structure M1 shown in FIG. 22, the alignment flange portion 52 provided on the shaft portion 12 may be omitted.

図24は継手外輪5の軸部12とハブ輪1との分離を許容した実施形態を示す。この実施形態では、図24と図25に示すように、ハブ輪1は、筒部20と、筒部20のアウトボード側の端部に設けられフランジ21とを有する。筒部20の孔部22は、軸方向中間部の軸部嵌合孔22aと、アウトボード側のテーパ孔22bとを有し、軸部嵌合孔22aとテーパ孔22bとの間に、内径方向へ突出する内壁22gが設けられている。継手外輪5の軸部12とハブ輪1は、凹凸嵌合構造Mを介して結合されている。内壁22gのアウトボード側の端面には凹窪部91が設けられている。   FIG. 24 shows an embodiment in which the shaft portion 12 of the joint outer ring 5 and the hub wheel 1 are allowed to be separated. In this embodiment, as shown in FIGS. 24 and 25, the hub wheel 1 includes a tubular portion 20 and a flange 21 provided at an end portion of the tubular portion 20 on the outboard side. The hole portion 22 of the cylindrical portion 20 has a shaft portion fitting hole 22a in the intermediate portion in the axial direction and a taper hole 22b on the outboard side, and has an inner diameter between the shaft portion fitting hole 22a and the tapered hole 22b. An inner wall 22g protruding in the direction is provided. The shaft portion 12 of the joint outer ring 5 and the hub wheel 1 are coupled to each other through the concave / convex fitting structure M. A recessed portion 91 is provided on the end face of the inner wall 22g on the outboard side.

孔部22は、軸部嵌合孔22aよりもインボード側に大径部86を有し、軸部嵌合孔22aよりもアウトボード側に小径部88を有する。大径部86と軸部嵌合孔22aとの間には、テーパ部(テーパ孔)89aが設けられている。このテーパ部89aは、ハブ輪1と継手外輪5の軸部12を結合する際の圧入方向に沿って縮径している。テーパ部89aのテーパ角度θ3は、例えば15°〜75°とされる。なお、軸部嵌合孔22aと小径部88との間にもテーパ部89bが設けられている。   The hole portion 22 has a large-diameter portion 86 on the inboard side with respect to the shaft portion fitting hole 22a, and has a small-diameter portion 88 on the outboard side with respect to the shaft portion fitting hole 22a. A tapered portion (tapered hole) 89a is provided between the large diameter portion 86 and the shaft portion fitting hole 22a. The tapered portion 89a is reduced in diameter along the press-fitting direction when the hub wheel 1 and the shaft portion 12 of the joint outer ring 5 are coupled. The taper angle θ3 of the taper portion 89a is, for example, 15 ° to 75 °. A tapered portion 89 b is also provided between the shaft portion fitting hole 22 a and the small diameter portion 88.

この実施形態では、上記と同様で凹凸嵌合部Mが構成される。すなわち、軸部12に凸部35を形成した上で、この軸部12をハブ輪1の軸部嵌合孔22aに圧入し、ハブ輪1の軸部嵌合孔22aの内径面37に、凸部35と密着嵌合する凹部36を形成する。   In this embodiment, the concave-convex fitting portion M is configured in the same manner as described above. That is, after the convex portion 35 is formed on the shaft portion 12, the shaft portion 12 is press-fitted into the shaft portion fitting hole 22 a of the hub wheel 1, and the inner diameter surface 37 of the shaft portion fitting hole 22 a of the hub wheel 1 is A concave portion 36 is formed to closely fit with the convex portion 35.

軸部12の圧入後には、アウトボード側から軸部12のねじ孔90にボルト部材94を螺着する。ボルト部材94は、フランジ付き頭部94aと、ねじ軸部94bとからなる。ねじ軸部94bは、大径の基部95aと、小径の本体部95bと、先端側のねじ部95cとを有する。この場合、内壁22gに貫通孔96が設けられ、この貫通孔96にボルト部材94の軸部94bが挿通されて、ねじ部95cが軸部12のねじ孔90に螺着される。図25に示すように、貫通孔96の孔径d1は、軸部94bの大径の基部95aの外径d2よりも僅かに大きく設定される。具体的には、0.05mm<d1−d2<0.5mm程度とされる。なお、ねじ部95cの最大外径は、大径の基部95aの外径と同じか基部95aの外径よりも僅かに小さい程度とする。   After the press fitting of the shaft portion 12, the bolt member 94 is screwed into the screw hole 90 of the shaft portion 12 from the outboard side. The bolt member 94 includes a flanged head portion 94a and a screw shaft portion 94b. The screw shaft portion 94b has a large-diameter base portion 95a, a small-diameter main body portion 95b, and a tip-side screw portion 95c. In this case, a through hole 96 is provided in the inner wall 22g, the shaft portion 94b of the bolt member 94 is inserted into the through hole 96, and the screw portion 95c is screwed into the screw hole 90 of the shaft portion 12. As shown in FIG. 25, the hole diameter d1 of the through hole 96 is set to be slightly larger than the outer diameter d2 of the large base portion 95a of the shaft portion 94b. Specifically, 0.05 mm <d1−d2 <0.5 mm or so. The maximum outer diameter of the screw portion 95c is set to be the same as or slightly smaller than the outer diameter of the large-diameter base portion 95a.

このように、ボルト部材94を軸部12のねじ孔90に螺着することによって、ボルト部材94の頭部94aのフランジ部100が内壁22gの凹窪部91に当接する。これによって、軸部12のアウトボード側の端面92とボルト部材94の頭部94aとで内壁22gが挟持され、ハブ輪1と継手外輪5の軸方向の位置決めが行われる。同時に軸部の小径部12dの外径面、内壁22gの端面、およびハブ輪1の内径面の小径部88とで囲まれた空間にポケット部97が形成される。   Thus, by screwing the bolt member 94 into the screw hole 90 of the shaft portion 12, the flange portion 100 of the head portion 94a of the bolt member 94 comes into contact with the recessed portion 91 of the inner wall 22g. As a result, the inner wall 22g is sandwiched between the end face 92 of the shaft portion 12 on the outboard side and the head portion 94a of the bolt member 94, and the hub wheel 1 and the joint outer ring 5 are positioned in the axial direction. At the same time, a pocket portion 97 is formed in a space surrounded by the outer diameter surface of the small diameter portion 12d of the shaft portion, the end surface of the inner wall 22g, and the small diameter portion 88 of the inner diameter surface of the hub wheel 1.

図24では、軸部12のアウトボード側の端面92とボルト部材94の頭部94aとで内壁22gを挟持しているが、必ずしも内壁22gを挾持する必要はなく、例えば、ボルト部材94の頭部94aと凹凸嵌合構造Mとでハブ輪1の位置決めを行うことができる。また、ハブ輪1の加締め部31とマウス部11のバック面11aとを当接させた場合(図35参照)には、ボルト部材94の頭部94aとマウス部11のバック面11aとでハブ輪1を挾持してもよい。これにより、軸方向の曲げ剛性が向上して曲げに強くなり、耐久性に優れた高品質な車輪用軸受装置を提供することができる。しかも、この接触によって、圧入時のハブ輪1の位置決めも行えるので、車輪用軸受装置の寸法精度の安定化を図ると共に、凹凸嵌合構造Mの軸方向長さを安定化させることができ、トルク伝達性の向上を図ることができる。さらに、この接触によってシール構造を構成できるので、加締め部31側からの異物の侵入を防止することができ、凹凸嵌合構造Mの嵌合状態を長期間安定して維持することができる。   In FIG. 24, the inner wall 22g is sandwiched between the end surface 92 of the shaft portion 12 on the outboard side and the head portion 94a of the bolt member 94. However, the inner wall 22g is not necessarily clamped. The hub wheel 1 can be positioned by the portion 94a and the concave-convex fitting structure M. When the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouse portion 11 are brought into contact with each other (see FIG. 35), the head 94a of the bolt member 94 and the back surface 11a of the mouse portion 11 The hub wheel 1 may be held. Thereby, the bending rigidity of an axial direction improves, it becomes strong to bending, and the high-quality wheel bearing apparatus excellent in durability can be provided. Moreover, since the hub wheel 1 can be positioned by press-fitting by this contact, the dimensional accuracy of the wheel bearing device can be stabilized, and the axial length of the concave-convex fitting structure M can be stabilized. Torque transmission can be improved. Further, since the seal structure can be configured by this contact, the entry of foreign matter from the crimped portion 31 side can be prevented, and the fitting state of the concave-convex fitting structure M can be stably maintained for a long time.

ボルト部材94の座面100aと内壁22gとの間にシール材(図示省略)を介在させることにより、座面100aと内壁22gの凹窪部91の底面との間の密封性を確保することができる。これにより、アウトボード側からの凹凸嵌合構造Mへ雨水や異物の侵入が防止される。シール材としては、かかる密封性を確保できるように、種々の樹脂からなるシール材を選択して塗布すればよい。   By interposing a sealing material (not shown) between the seating surface 100a of the bolt member 94 and the inner wall 22g, it is possible to ensure the sealing performance between the seating surface 100a and the bottom surface of the recessed portion 91 of the inner wall 22g. it can. This prevents rainwater and foreign matter from entering the concave-convex fitting structure M from the outboard side. What is necessary is just to select and apply | coat the sealing material which consists of various resin as a sealing material so that this sealing performance can be ensured.

軸部12をハブ輪1の孔部22に圧入していけば、凸部35で孔部22の内径面から削り取られたり、押し出されたりした材料がはみ出し部45となり、図26に示すように、軸部12の小径部12dの外径側に設けられたポケット部97にカールした状態で収納される。このように、はみ出し部45を収納する収納部97を設けることによって、はみ出し部45をこの収納部97内に保持(維持)することができ、はみ出し部45が装置外の車両内等へ入り込んだりすることがない。これにより、はみ出し部45を収納部97に収納したままにしておくことができ、はみ出し部45の除去処理を行う必要がなく、組立作業工数の減少を通じて、組立作業性の向上及びコスト低減を図ることができる。   If the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the material scraped off or pushed out from the inner diameter surface of the hole portion 22 by the convex portion 35 becomes the protruding portion 45, as shown in FIG. The shaft portion 12 is stored in a curled state in a pocket portion 97 provided on the outer diameter side of the small diameter portion 12 d of the shaft portion 12. In this way, by providing the storage portion 97 for storing the protruding portion 45, the protruding portion 45 can be held (maintained) in the storage portion 97, and the protruding portion 45 can enter the vehicle outside the apparatus or the like. There is nothing to do. As a result, the protruding portion 45 can be kept stored in the storage portion 97, and it is not necessary to perform the removal process of the protruding portion 45, and the assembly workability is improved and the cost is reduced by reducing the number of assembling operations. be able to.

継手外輪5とハブ輪1を分離する際には、図24に示す状態から、ボルト部材94を取外した後、ハブ輪1と継手外輪5の間に凹凸嵌合構造Mの嵌合力以上の引抜き力を与えてハブ輪1から継手外輪5を引き抜く。この引き抜きは、図27に示すような治具120を用いて行うことができる。治具120は、基盤121と、この基盤121のねじ孔122に螺合する押圧用ボルト部材123と、軸部12のねじ孔90に螺合されるねじ軸126とを備える。基盤121には貫孔124が設けられ、この貫孔124にハブ輪1のボルト33が挿通され、ナット部材125がこのボルト33に螺合される。この際、基盤121とハブ輪1のフランジ21とが重ね合わされて、基盤121がハブ輪1に取り付けられる。   When the joint outer ring 5 and the hub ring 1 are separated, the bolt member 94 is removed from the state shown in FIG. A force is applied to pull out the joint outer ring 5 from the hub wheel 1. This extraction can be performed using a jig 120 as shown in FIG. The jig 120 includes a base 121, a pressing bolt member 123 that is screwed into the screw hole 122 of the base 121, and a screw shaft 126 that is screwed into the screw hole 90 of the shaft portion 12. A through hole 124 is provided in the base 121, and the bolt 33 of the hub wheel 1 is inserted into the through hole 124, and the nut member 125 is screwed into the bolt 33. At this time, the base 121 and the flange 21 of the hub wheel 1 are overlapped, and the base 121 is attached to the hub wheel 1.

このように、基盤121をハブ輪1に取り付けた後、基部126aが内壁22gからアウトボード側へ突出するように、軸部12のねじ孔90にねじ軸126を螺合させる。この基部126aの突出量は、凹凸嵌合構造Mの軸方向長さよりも長く設定される。また、ねじ軸126と、押圧用ボルト部材123とは、同一軸心上に配設される。   Thus, after attaching the base 121 to the hub wheel 1, the screw shaft 126 is screwed into the screw hole 90 of the shaft portion 12 so that the base portion 126a protrudes from the inner wall 22g to the outboard side. The protruding amount of the base 126a is set longer than the axial length of the concave-convex fitting structure M. The screw shaft 126 and the pressing bolt member 123 are disposed on the same axis.

その後は、図27に示すように、押圧用ボルト部材123をアウトボード側から基盤121のねじ孔122に螺着し、この状態で、矢印方向にボルト部材123を螺進させる。この際、ねじ軸126と、押圧用ボルト部材123とは、同一軸心上に配設されているので、ボルト部材123がねじ軸126をインボード側に押圧する。これによって、継手外輪5がハブ輪1に対してインボード側へ移動して、ハブ輪1から継手外輪5が外れる。   Thereafter, as shown in FIG. 27, the pressing bolt member 123 is screwed into the screw hole 122 of the base 121 from the outboard side, and in this state, the bolt member 123 is screwed in the direction of the arrow. At this time, since the screw shaft 126 and the pressing bolt member 123 are disposed on the same axis, the bolt member 123 presses the screw shaft 126 toward the inboard side. As a result, the joint outer ring 5 moves toward the inboard side with respect to the hub wheel 1, and the joint outer ring 5 is detached from the hub wheel 1.

また、ハブ輪1から継手外輪5が外れた状態からは、例えば、図25に示すボルト部材94を使用して再度、ハブ輪1と継手外輪5とを連結することができる。すなわち、ハブ輪1から基盤121を取外すとともに、軸部12からねじ軸126を取外した状態として、ボルト部材94を貫通孔96を介して軸部12のねじ孔90に螺合させる。この状態では、軸部12側の雄スプライン41と、前回の圧入によって形成されたハブ輪1の雌スプライン42との位相を合わせる。   Further, from the state in which the joint outer ring 5 is detached from the hub wheel 1, for example, the hub wheel 1 and the joint outer ring 5 can be connected again using the bolt member 94 shown in FIG. That is, the base 121 is removed from the hub wheel 1 and the screw shaft 126 is removed from the shaft 12, and the bolt member 94 is screwed into the screw hole 90 of the shaft 12 through the through hole 96. In this state, the phases of the male spline 41 on the shaft portion 12 side and the female spline 42 of the hub wheel 1 formed by the previous press fitting are matched.

次いで、この状態にて、ボルト部材94をねじ孔90に対して螺進させる。これによって、軸部12がハブ輪1内へ嵌入していく。この際、孔部22が僅かに拡径した状態となって、軸部12の軸方向の進入を許容し、軸方向の移動が停止すれば、孔部22が元の径に戻ろうとして縮径することになる。これによって、前回の圧入と同様、凸部35の凹部との嵌合部位の全体が対応する凹部36に対して密着する凹凸嵌合構造Mが再度構成され、継手外輪5とハブ輪1が再結合される。以上に述べたハブ輪1と継手外輪5の分離、および再結合は、図27および図28に示すように、軸受2の外方部材25を車両のナックル34に取り付けたままの状態で行うことができる。   Next, in this state, the bolt member 94 is screwed into the screw hole 90. As a result, the shaft portion 12 is fitted into the hub wheel 1. At this time, if the hole portion 22 is slightly expanded in diameter, allowing the shaft portion 12 to enter in the axial direction and stopping the movement in the axial direction, the hole portion 22 is compressed to return to the original diameter. Will be diameter. As a result, similar to the previous press-fitting, the concave / convex fitting structure M in which the entire fitting portion of the convex portion 35 with the concave portion is in close contact with the corresponding concave portion 36 is formed again, and the joint outer ring 5 and the hub ring 1 are re-established. Combined. Separation and reconnection of the hub wheel 1 and the joint outer ring 5 described above should be performed with the outer member 25 of the bearing 2 attached to the knuckle 34 of the vehicle, as shown in FIGS. Can do.

特に、ボルト部材94をねじ孔90に対して螺進させる際に、図28に示すように、ボルト部材94の基部95aが、貫通孔96に対応した状態となる。しかも、図25に示すように、貫通孔96の孔径d1は、軸部94bの大径の基部95aの外径d2よりも僅かに大きく設定される(具体的には、0.05mm<d1−d2<0.5mm程度とされる)ので、ボルト部材94の基部95aの外径と、貫通孔96の内径とが、ボルト部材94がねじ孔90を螺進する際のガイドを構成することができ、芯ずれすることなく、軸部12をハブ輪1の孔部22に圧入することができる。なお、貫通孔96の軸方向長さが短すぎると、安定したガイド機能を発揮できず、逆に長すぎると、内壁22gの厚さ寸法が大となって、凹凸嵌合構造Mの軸方向長さを確保できず、かつハブ輪1の重量が大となる。貫通孔96の長さは、以上の事情を勘案して決定する。   In particular, when the bolt member 94 is screwed into the screw hole 90, the base portion 95a of the bolt member 94 is in a state corresponding to the through hole 96 as shown in FIG. Moreover, as shown in FIG. 25, the hole diameter d1 of the through hole 96 is set slightly larger than the outer diameter d2 of the large base portion 95a of the shaft portion 94b (specifically, 0.05 mm <d1− d2 <about 0.5 mm), the outer diameter of the base 95a of the bolt member 94 and the inner diameter of the through hole 96 constitute a guide when the bolt member 94 is screwed through the screw hole 90. The shaft portion 12 can be press-fitted into the hole portion 22 of the hub wheel 1 without misalignment. If the axial length of the through-hole 96 is too short, a stable guide function cannot be exhibited. Conversely, if the through-hole 96 is too long, the thickness dimension of the inner wall 22g becomes large, and the axial direction of the uneven fitting structure M The length cannot be secured, and the weight of the hub wheel 1 is increased. The length of the through hole 96 is determined in consideration of the above circumstances.

なお、図26に示すように、軸部12のねじ孔90の開口部に、開口側に向かって拡開するテーパ部90aを形成すれば、ねじ軸126やボルト部材94をねじ孔90に螺合させさせ易くなる。   As shown in FIG. 26, if a tapered portion 90 a that expands toward the opening side is formed in the opening portion of the screw hole 90 of the shaft portion 12, the screw shaft 126 and the bolt member 94 are screwed into the screw hole 90. It is easy to match.

1回目(孔部22の内径面37に凹部36を成形する圧入)の圧入では、圧入荷重が比較的大きいので、軸部12の圧入に際しては、プレス機等を使用する必要がある。これに対して、このような再度の圧入では、圧入荷重が1回目の圧入荷重よりも小さいため、プレス機等を使用することなく、安定して正確に軸部12をハブ輪1の孔部22に圧入することができる。このため、現場での継手外輪5とハブ輪1との分離・連結が可能となる。   In the first press-fitting (press-fitting for forming the recess 36 in the inner diameter surface 37 of the hole 22), the press-fitting load is relatively large. Therefore, when the shaft 12 is press-fitted, it is necessary to use a press machine or the like. On the other hand, in such re-pressing, since the press-fitting load is smaller than the first press-fitting load, the shaft 12 can be stably and accurately inserted into the hole of the hub wheel 1 without using a press machine or the like. 22 can be press-fitted. For this reason, the joint outer ring 5 and the hub ring 1 can be separated and connected in the field.

図2(a)に示す雄スプライン41では、一例として、凸部35のピッチと凹部36のピッチとが同一値に設定されている。このため、図2(b)に示すように、凸部35の高さ方向の中間部において、凸部35の周方向厚さLと、隣接する凸部間の溝幅L0とがほぼ同一となっている。   In the male spline 41 shown in FIG. 2A, as an example, the pitch of the convex portions 35 and the pitch of the concave portions 36 are set to the same value. For this reason, as shown in FIG. 2B, the circumferential thickness L of the convex portion 35 and the groove width L0 between the adjacent convex portions are substantially the same at the intermediate portion in the height direction of the convex portion 35. It has become.

これに対して、図29(a)に示すように、凸部35の高さ方向の中間部において、凸部35の周方向厚さL2を、隣接する凸部間の溝幅L1よりも小さくしてもよい。換言すれば、凸部35の高さ方向の中間部において、軸部12側の凸部35の周方向厚さ(歯厚)L2を、ハブ輪1側の凸部43の周方向厚さ(歯厚)L1よりも小さくする。   On the other hand, as shown in FIG. 29A, the circumferential thickness L2 of the convex portion 35 is smaller than the groove width L1 between the adjacent convex portions at the intermediate portion in the height direction of the convex portion 35. May be. In other words, in the intermediate portion of the convex portion 35 in the height direction, the circumferential thickness (tooth thickness) L2 of the convex portion 35 on the shaft portion 12 side is set to the circumferential thickness of the convex portion 43 on the hub wheel 1 side ( Tooth thickness) is smaller than L1.

各凸部35において上記関係を満たすことにより、軸部12側の凸部35の周方向厚さL2の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の凸部43の周方向厚さの総和Σ(A1+A2+A3+・・・)よりも小さく設定することが可能となる。これによって、ハブ輪1側の凸部43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。   By satisfying the above relationship in each convex portion 35, the sum Σ (B1 + B2 + B3 +...) Of the circumferential thickness L2 of the convex portion 35 on the shaft portion 12 side is obtained as the circumferential thickness of the convex portion 43 on the hub wheel 1 side. Can be set smaller than the total sum Σ (A1 + A2 + A3 +...). As a result, the shear area of the convex portion 43 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at.

この場合、全ての凸部35,43について、L2<L1の関係を満足させる必要はなく、周方向厚さの総和がハブ輪1側の凸部43における周方向厚さの総和よりも小さくなる限り、一部の凸部35、43については、L2=L1とし、あるいはL2>L1に設定することができる。   In this case, it is not necessary to satisfy the relationship of L2 <L1 for all the convex portions 35 and 43, and the sum of the circumferential thicknesses is smaller than the sum of the circumferential thicknesses of the convex portions 43 on the hub wheel 1 side. As long as some of the convex portions 35 and 43 are set, L2 = L1 or L2> L1 can be set.

図29(a)では、凸部35を断面台形に形成しているが、図29(b)に示すように、インボリュート形状の断面に形成することもできる。   In FIG. 29 (a), the convex portion 35 is formed in a trapezoidal cross section, but as shown in FIG. 29 (b), it may be formed in an involute cross section.

以上の各実施形態では、軸部12に雄スプライン41を形成することで、軸部側に凸部35を形成した場合を例示しているが、これとは逆に、図30(a)及び図30(b)に示すように、ハブ輪1の孔部22の内径面に雌スプライン61を形成することで、ハブ輪1側に凸部35を形成してもよい。この場合、軸部12に雄スプライン41を形成した場合と同様に、例えば、ハブ輪1に雌スプライン61に熱硬化処理を施し、軸部12の外径面は未焼き状態とする等の手段で、ハブ輪1の凸部35の硬度を軸部の外径面よりもHRCで20ポイント以上硬くする。雌スプライン61は、公知のブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することができる。熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   In each of the above-described embodiments, the case where the male spline 41 is formed on the shaft portion 12 and the convex portion 35 is formed on the shaft portion side is illustrated, but conversely, FIG. 30A and FIG. As shown in FIG. 30 (b), a convex portion 35 may be formed on the hub wheel 1 side by forming a female spline 61 on the inner diameter surface of the hole 22 of the hub wheel 1. In this case, as in the case where the male spline 41 is formed on the shaft portion 12, for example, a means for subjecting the hub wheel 1 to a thermosetting treatment on the female spline 61 and setting the outer diameter surface of the shaft portion 12 to an unbaked state, etc. Thus, the hardness of the convex portion 35 of the hub wheel 1 is made 20 points or more harder by HRC than the outer diameter surface of the shaft portion. The female spline 61 can be formed by various processing methods such as known broaching, cutting, pressing, and drawing. As the thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed.

その後、軸部12をハブ輪1の孔部22に圧入すれば、ハブ輪1側の凸部35で、軸部12の外周面に凸部35と嵌合する凹部36が形成され、これによって、凸部35と凹部36の嵌合部位全体を密着させた凹凸嵌合構造Mが構成される。凸部35と凹部36の嵌合部位38は、図30(b)に示す範囲Aである。凸部35のうち、その他の領域は凹部36と嵌合しない領域Bとなる。軸部12の外周面よりも外径側で、かつ周方向に隣り合う凸部35間には隙間62が形成される。   Thereafter, when the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the convex portion 35 on the hub wheel 1 side forms a concave portion 36 that fits the convex portion 35 on the outer peripheral surface of the shaft portion 12. The concave-convex fitting structure M is configured in which the entire fitting portion of the convex portion 35 and the concave portion 36 is in close contact. The fitting part 38 of the convex part 35 and the recessed part 36 is the range A shown in FIG.30 (b). The other region of the convex portion 35 is a region B that does not fit into the concave portion 36. A gap 62 is formed between the convex portions 35 that are on the outer diameter side of the outer peripheral surface of the shaft portion 12 and adjacent in the circumferential direction.

凸部35の高さ方向の中間部が、凹部形成前の軸部12の外径面の位置に対応する。すなわち、軸部12の外径寸法D10は、雌スプライン61の凸部35の最小内径寸法D8(雌スプライン61の歯先61aをとおる外接円の直径寸法)よりも大きく、雌スプライン61の最大内径寸法D9(雌スプライン61の歯底6aを結ぶ円の直径寸法)よりも小さく設定される(D8<D10<D9)。また、図31に示すように、軸部12に対する凸部35の圧入代をΔdとし、凸部の高さをhとして、0.3<Δd/2h<0.86の範囲に設定する。ここで、圧入代Δdは、図30(a)および図31に示すように、軸部12の外径寸法D10と、ハブ輪の最小内径寸法D8(凸部35の歯先61aを通る円の直径)との径差(D10−D8)で表される。これにより、凸部35の高さ方向中間部付近が軸部12の外径面に食い込むことになるので、凸部35の圧入代を十分に確保することができ、凹部36を確実に形成することが可能となる。   The intermediate portion in the height direction of the convex portion 35 corresponds to the position of the outer diameter surface of the shaft portion 12 before the concave portion is formed. That is, the outer diameter dimension D10 of the shaft portion 12 is larger than the minimum inner diameter dimension D8 of the convex portion 35 of the female spline 61 (diameter dimension of a circumscribed circle passing through the tooth tip 61a of the female spline 61). It is set smaller than the dimension D9 (diameter dimension of a circle connecting the roots 6a of the female spline 61) (D8 <D10 <D9). Further, as shown in FIG. 31, assuming that the press-fitting allowance of the convex portion 35 with respect to the shaft portion 12 is Δd and the height of the convex portion is h, a range of 0.3 <Δd / 2h <0.86 is set. Here, as shown in FIG. 30A and FIG. 31, the press-fitting allowance Δd is the outer diameter dimension D10 of the shaft portion 12 and the minimum inner diameter dimension D8 of the hub wheel (the circle passing through the tooth tip 61a of the convex portion 35). The diameter difference (D10−D8). Thereby, since the vicinity of the intermediate portion in the height direction of the convex portion 35 bites into the outer diameter surface of the shaft portion 12, the press-fitting allowance of the convex portion 35 can be sufficiently secured, and the concave portion 36 is reliably formed. It becomes possible.

この凹凸嵌合構造Mでも、図30(b)に示すように、凸部35のうち、凹部36に嵌合する領域と凹部36に嵌合しない領域との境界部を通る円C1から凸部35の頂部61aに至るまでの距離の中間点を通る円C2をピッチ円とし、このピッチ円上において、径方向線と凸部の側面とがなす角度θ1が0°≦θ1≦45°に設定される。また、凸部35のピッチ円C2の直径をPCDとし、凸部35の数をZとして、0.30≦PCD/Z≦1.0に設定される.   Also in the concave-convex fitting structure M, as shown in FIG. 30B, the convex portion extends from a circle C <b> 1 passing through the boundary portion between the region fitting into the concave portion 36 and the region not fitting into the concave portion 36. A circle C2 passing through the midpoint of the distance to the top 61a of 35 is defined as a pitch circle, and an angle θ1 formed by the radial line and the side surface of the convex portion is set to 0 ° ≦ θ1 ≦ 45 ° on the pitch circle. Is done. Further, the diameter of the pitch circle C2 of the convex portion 35 is set to PCD, the number of the convex portions 35 is set to Z, and 0.30 ≦ PCD / Z ≦ 1.0 is set.

この構成でも、圧入によってはみ出し部45が形成されるので、このはみ出し部45を収納するポケット部97を設けるのが好ましい。はみ出し部45は軸部12のインボード側に形成されるので、ポケット部は、凹凸嵌合構造Mよりもインボード側で、かつハブ輪1側に設ける。   Even in this configuration, since the protruding portion 45 is formed by press-fitting, it is preferable to provide a pocket portion 97 for accommodating the protruding portion 45. Since the protruding portion 45 is formed on the inboard side of the shaft portion 12, the pocket portion is provided on the inboard side with respect to the uneven fitting structure M and on the hub wheel 1 side.

このように、ハブ輪1の孔部22の内径面に凹凸嵌合構造Mの凸部35を設ける場合、軸部12側の熱硬化処理を行う必要がないので、等速自在継手3の継手外輪5の生産性に優れる、という利点が得られる。   As described above, when the convex portion 35 of the concave-convex fitting structure M is provided on the inner diameter surface of the hole portion 22 of the hub wheel 1, it is not necessary to perform the thermosetting treatment on the shaft portion 12 side. The advantage that the productivity of the outer ring 5 is excellent is obtained.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部35の断面形状として、図2、図3(a)〜(c)、図29(a)(b)に示す形状以外にも、半円形状、半楕円形状、矩形形状等の種々の断面形状を有する凸部35を採用することができ、凸部35の面積、数、周方向配設ピッチ等も任意に変更できる。凸部35は、軸部12やハブ輪11とは別体のキーのようなもので形成することもできる。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, as the cross-sectional shape of the convex portion 35 of the concave-convex fitting structure M, FIG. 2. In addition to the shapes shown in FIGS. 3A to 3C and FIGS. 29A and 29B, convex portions 35 having various cross-sectional shapes such as a semicircular shape, a semi-elliptical shape, and a rectangular shape are employed. The area and number of the convex portions 35, the circumferential arrangement pitch, and the like can be arbitrarily changed. The convex portion 35 can also be formed of a key separate from the shaft portion 12 and the hub wheel 11.

また、ハブ輪1の孔部22としては円孔以外の多角形孔等の異形孔であってよく、この孔部22に嵌挿する軸部12の端部の断面形状も円形断面以外の多角形等の異形断面であってもよい。さらに、ハブ輪1に軸部12を圧入する際には、凸部35の少なくとも圧入開始側の端面を含む端部領域の硬度が、圧入される側の硬度よりも高ければよく、必ずしも凸部35の全体の硬度を高くする必要がない。図2(b)および図30(b)では、凸部35を有するスプラインの歯底と凹部36が形成された部材との間に隙間40,62が形成されているが、凸部35間の溝の全体を相手側の部材で充足させてもよい。   Further, the hole portion 22 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion of the shaft portion 12 to be inserted into the hole portion 22 may be other than a circular cross section. An irregular cross section such as a square may be used. Further, when the shaft portion 12 is press-fitted into the hub wheel 1, it is sufficient that the hardness of the end region including at least the end surface on the press-fitting start side of the convex portion 35 is higher than the hardness of the press-fitted side. It is not necessary to increase the overall hardness of 35. In FIG. 2B and FIG. 30B, gaps 40 and 62 are formed between the root of the spline having the convex portion 35 and the member in which the concave portion 36 is formed. The entire groove may be filled with the mating member.

凹部が形成される部材の凹部形成面には、予め、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部36の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができるので、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、ポケット部50の容積を小さくでき、ポケット部50の加工性及び軸部12の強度の向上を図ることができる。なお、小凹部の形状は、三角形状、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。   You may provide the small recessed part arrange | positioned by the predetermined pitch along the circumferential direction previously in the recessed part formation surface of the member in which a recessed part is formed. The small recess needs to be smaller than the volume of the recess 36. By providing such a small concave portion, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, so that the press-fit resistance can be reduced. Moreover, since the protrusion part 45 can be decreased, the volume of the pocket part 50 can be made small and the workability of the pocket part 50 and the intensity | strength of the axial part 12 can be aimed at. In addition, the shape of a small recessed part can employ | adopt various things, such as a triangle shape, semi-ellipse shape, and a rectangle, and can also set the number arbitrarily.

図21に示す結合手段としては、溶接の結合手段を用いていたが、溶接に代えて接着剤を使用してもよい。また、軸受2の転動体30として、ボール以外にころを使用することもできる。さらに、前記実施形態では、本発明を第3世代の車輪用軸受装置に適用しているが、第1世代や第2世代、さらには第4世代の車輪軸受装置にも同様に適用することができる。なお、凸部35を圧入する場合、凹部36が形成される側を固定して、凸部35を形成している側を移動させても、逆に、凸部35を形成している側を固定して、凹部36が形成される側を移動させてもよい。あるいは、両者を移動させてもよい。等速自在継手3において、内輪6とシャフト10とを前記各実施形態に記載した凹凸嵌合構造Mを介して一体化してもよい。   As the coupling means shown in FIG. 21, a welding coupling means is used, but an adhesive may be used instead of welding. In addition to the balls, rollers can be used as the rolling elements 30 of the bearing 2. Furthermore, in the above-described embodiment, the present invention is applied to the third generation wheel bearing device. However, the present invention can be similarly applied to the first generation, second generation, and further fourth generation wheel bearing devices. it can. In addition, when press-fitting the convex portion 35, even if the side where the concave portion 36 is formed is fixed and the side where the convex portion 35 is formed is moved, the side where the convex portion 35 is formed is reversed. It may be fixed and moved on the side where the recess 36 is formed. Alternatively, both may be moved. In the constant velocity universal joint 3, the inner ring 6 and the shaft 10 may be integrated through the concave-convex fitting structure M described in each of the above embodiments.

なお、軸部12の抜け止め構造M1において、例えば、図21に示すような止め輪85等を使用する場合、軸部12の端部に抜け止め構造M1を設けず、軸部12の付け根部側(マウス側)に設けることもできる。   In the retaining structure M1 of the shaft portion 12, for example, when a retaining ring 85 as shown in FIG. 21 is used, the retaining structure M1 is not provided at the end portion of the shaft portion 12, and the root portion of the shaft portion 12 is provided. It can also be provided on the side (mouse side).

図24に示す実施形態において、ハブ輪1と軸部12とのボルト固定を行うボルト部材94の座面100aと、内壁22gとの間に介在されるシール材は、ボルト部材94の座面100a側に樹脂を塗布して構成する他、逆に、内壁22g側に樹脂を塗布して構成してもよい。また、座面100a側および内壁22g側の双方に樹脂を塗布するようにしてもよい。なお、ボルト部材94を螺着する際において、ボルト部材94の座面100aと、内壁22gの凹窪部91の底面とが密着性に優れるものであれば、このようなシール材を省略することも可能である。例えば、凹窪部91の底面を研削すれば、ボルト部材94の座面100aとの密着性が向上するので、シール材の塗布を省略することが可能となる。密着性が確保される限り、凹窪部91への研削加工を省略し、鍛造肌や旋削仕上げ状態を、そのまま残すこともできる。   In the embodiment shown in FIG. 24, the seal material interposed between the seat surface 100a of the bolt member 94 that fixes the bolts between the hub wheel 1 and the shaft portion 12 and the inner wall 22g is the seat surface 100a of the bolt member 94. In addition to applying the resin on the side, the resin may be applied on the inner wall 22g side. Moreover, you may make it apply | coat resin to both the seat surface 100a side and the inner wall 22g side. When the bolt member 94 is screwed, such a sealing material is omitted if the seat surface 100a of the bolt member 94 and the bottom surface of the recessed portion 91 of the inner wall 22g are excellent in adhesion. Is also possible. For example, if the bottom surface of the recessed portion 91 is ground, the adhesiveness with the seat surface 100a of the bolt member 94 is improved, so that application of the sealing material can be omitted. As long as the adhesion is ensured, the grinding process to the recessed portion 91 can be omitted, and the forged skin and the turning finish state can be left as they are.

また、ポケット部50の形状は、生じるはみ出し部45を収納(収容)できるものであれば足り、その形状は問わない。また、ポケット部50の容量は、少なくとも予想されるはみ出し部45の発生量よりも、大きくする。   Moreover, the shape of the pocket part 50 should just be what can accommodate (accommodate) the protruding part 45 which arises, and the shape is not ask | required. Further, the capacity of the pocket portion 50 is set to be larger than at least an expected amount of the protruding portion 45 generated.

軸部12にモジュール0.48、歯数59の雄スプライン41を成形し、Δd/2hを変化させて圧入荷重を測定した。また、それぞれの凹凸嵌合構造について捩り強度試験を行うと共に、凹凸嵌合構造の成形性を評価した。圧入荷重の測定結果を図32に、捩り強度試験の結果を図33に、凹凸嵌合構造の成形性の評価結果を図34に示す。   A male spline 41 having a module 0.48 and 59 teeth was formed on the shaft portion 12, and Δd / 2h was varied to measure the press-fit load. Moreover, while performing the torsional strength test about each uneven | corrugated fitting structure, the moldability of the uneven | corrugated fitting structure was evaluated. FIG. 32 shows the measurement result of the press-fitting load, FIG. 33 shows the result of the torsional strength test, and FIG. 34 shows the evaluation result of the formability of the uneven fitting structure.

図32と図33から明らかなように、Δd/2hが0.86を越えれば、圧入荷重が急激に増加するとともに、捩り強度が低下する。また、Δd/2hが0.3以下では捩り強度が低下する。このため、0.3<Δd/2h<0.86が好ましい。なお、圧入荷重のみを考慮すれば、0.3以下のほうがよいが、捩り強度が低下するので、0.3以下は避けるべきである。また、図34から明らかなように、凹凸嵌合構造Mの成形性についても、Δd/2hが0.28から0.86の範囲において良好であった。これに対して、0.86を越えた0.89や0.95では悪化していた。ここで、悪化とは、「凸部と凹部との嵌合接触部位の全体が密着しているので、この嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されない。」という作用効果が得られない嵌合構造であることを意味する。   As is apparent from FIGS. 32 and 33, when Δd / 2h exceeds 0.86, the press-fit load increases rapidly and the torsional strength decreases. Further, when Δd / 2h is 0.3 or less, the torsional strength is lowered. For this reason, 0.3 <Δd / 2h <0.86 is preferable. If only the press-fit load is taken into consideration, 0.3 or less is better, but since the torsional strength is reduced, 0.3 or less should be avoided. As is clear from FIG. 34, the formability of the concave-convex fitting structure M was also good when Δd / 2h was in the range of 0.28 to 0.86. On the other hand, it worsened at 0.89 and 0.95 exceeding 0.86. Here, the deterioration means that “the entire fitting contact portion between the convex portion and the concave portion is in close contact with each other, so that no gap in which play occurs in the radial direction and the circumferential direction is not formed in this fitting structure”. It means that it is a fitting structure in which an operational effect cannot be obtained.

車輪用軸受装置の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the wheel bearing apparatus. (a)図は前記車輪用軸受装置の凹凸嵌合構造の拡大断面図であり、(b)図は図2(a)のX部拡大図である。(A) The figure is an expanded sectional view of the uneven | corrugated fitting structure of the said wheel bearing apparatus, (b) A figure is the X section enlarged view of Fig.2 (a). (a)図は図2(b)に示す凸部の正面図であり、(b)および(c)図は凸部の他例を示す正面図である。(A) A figure is a front view of the convex part shown in Drawing 2 (b), and (b) and (c) figure are front views showing other examples of a convex part. 前記車輪用軸受装置の組立前における軸受、ハブ輪、および継手外輪の断面図である。It is sectional drawing of the bearing before the assembly of the said wheel bearing apparatus, a hub ring, and a coupling outer ring. 前記車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said bearing apparatus for wheels. 前記車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said bearing apparatus for wheels. 前記車輪用軸受装置の凹凸嵌合構造の拡大断面図である。It is an expanded sectional view of the uneven | corrugated fitting structure of the said bearing apparatus for wheels. (a)図はシール部材としてOリングを用いたときの拡大断面図であり、(b)図はシール部材としてガスケットを用いたときの拡大断面図である。(A) is an enlarged sectional view when an O-ring is used as a sealing member, and (b) is an enlarged sectional view when a gasket is used as a sealing member. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図9の車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the wheel bearing apparatus of FIG. 図9の車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the wheel bearing apparatus of FIG. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図12の車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the wheel bearing apparatus of FIG. 図12の車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the wheel bearing apparatus of FIG. 図12の車輪用軸受装置の継手外輪の軸部端面を示す正面図で、(a)図は全周にわたって形成した外鍔状係止部、(b)図は周方向に沿って所定ピッチで配設した外鍔状係止部を示す。It is a front view which shows the axial part end surface of the joint outer ring | wheel of the wheel bearing apparatus of FIG. The outer hook-shaped latching | locking part arrange | positioned is shown. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図16の車輪用軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the wheel bearing apparatus of FIG. 図16の車輪用軸受装置の組立前における継手外輪の断面図である。It is sectional drawing of the coupling outer ring | wheel before the assembly of the wheel bearing apparatus of FIG. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図22の車輪用軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the wheel bearing apparatus of FIG. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 図24の車輪用軸受装置の組立前を示す断面図である。It is sectional drawing which shows the assembly before the wheel bearing apparatus of FIG. 図24の車輪用軸受装置の要部拡大断面図である。It is principal part expanded sectional drawing of the wheel bearing apparatus of FIG. 図24の車輪用軸受装置における凹凸嵌合構造の分離工程を示す断面図である。It is sectional drawing which shows the isolation | separation process of the uneven | corrugated fitting structure in the wheel bearing apparatus of FIG. 図24の車輪用軸受装置における再圧入工程を示す断面図である。It is sectional drawing which shows the re-pressing process in the wheel bearing apparatus of FIG. (a)図および(b)図のいずれも凹凸嵌合構造の凸部の他例を示す断面図である。Both (a) figure and (b) figure are sectional drawings which show the other example of the convex part of an uneven | corrugated fitting structure. (a)図は凹凸嵌合構造の他例を示す断面図であり、(b)図は同(a)図におけるY部の拡大図である。(A) A figure is sectional drawing which shows the other example of an uneven | corrugated fitting structure, (b) A figure is an enlarged view of the Y section in the figure (a). 図30(a)に示す凹凸嵌合構造の拡大断面図である。It is an expanded sectional view of the uneven | corrugated fitting structure shown to Fig.30 (a). Δd/2hを変化させた時の、圧入荷重の測定結果を示すグラフである。It is a graph which shows the measurement result of press-fit load when (DELTA) d / 2h is changed. Δd/2hを変化させた時の、捩り強度の測定結果を示すグラフである。It is a graph which shows the measurement result of torsional strength when (DELTA) d / 2h is changed. Δd/2hを変化させた時の、凹凸嵌合構造の成形性の評価結果を示す表である。It is a table | surface which shows the evaluation result of the moldability of an uneven | corrugated fitting structure when (DELTA) d / 2h is changed. 車輪用軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the wheel bearing apparatus. 従来の車輪用軸受装置の断面図である。It is sectional drawing of the conventional wheel bearing apparatus.

1 ハブ輪
2 軸受
3 等速自在継手
5 継手外輪
11 マウス部
11a バック面
12 軸部
22 孔部
22g 内壁
26,27 外側軌道面(アウタレース)
28,29 内側軌道面(インナレース)
30 転動体
31 加締部
35 凸部
35b 凸部側面
36 凹部
37 内径面
38 嵌合部位
45 はみ出し部
50 ポケット部
52 鍔部
90 ねじ孔
94 ボルト部材
94a 頭部
98 隙間
99 シール部材
100a 座面
M 凹凸嵌合構造
M1 抜け止め構造
DESCRIPTION OF SYMBOLS 1 Hub wheel 2 Bearing 3 Constant velocity universal joint 5 Joint outer ring 11 Mouse | mouth part 11a Back surface 12 Shaft part 22 Hole part 22g Inner wall 26, 27 Outer raceway surface (outer race)
28, 29 Inner raceway surface (inner race)
30 Rolling element 31 Caulking portion 35 Convex portion 35b Convex portion side surface 36 Concave portion 37 Inner diameter surface 38 Fitting portion 45 Protruding portion 50 Pocket portion 52 Gutter portion 90 Screw hole 94 Bolt member 94a Head portion 98 Clearance 99 Seal member 100a Seat surface M Concave and convex fitting structure M1 retaining structure

Claims (7)

内周に複列の軌道面を有する外方部材と、車輪取付用のフランジを有するハブ輪およびハブ輪の外周に圧入される内輪からなり、前記軌道面に対向する複列の軌道面を外周に有する内方部材と、これら外方部材と内方部材の軌道面間に介在した複列の転動体とを備えた車輪用軸受と、外側継手部材を有する等速自在継手とを備え、ハブ輪の孔部に嵌挿される外側継手部材の軸部がハブ輪とトルク伝達可能に結合され、ハブ輪および外側継手部材の軸部が何れも鋼材からなる車輪用軸受装置の製造方法であって、
外側継手部材の軸部に軸方向に延びる複数の凸部を設け、かつ凸部のうち、前記凹部に嵌合する領域と前記凹部に嵌合しない領域との境界部を通る円から前記凸部の頂部に至るまでの距離の中間点を通る円をピッチ円とし、このピッチ円上において、径方向線と凸部の側面とがなす角度θ1を20°≦θ1≦35°とすると共に、前記凸部のピッチ円径をPCDとし、凸部数をZとして、0.33≦PCD/Z≦0.7にし、
ハブ輪の孔部に複数の小凹部を形成し、
凸部を軸方向に沿って小凹部に圧入し、ハブ輪の孔部に、圧入した凸部でハブ輪の一部を切削して凹部を形成することで、凸部と凹部との嵌合部位全域が密着する凹凸嵌合構造を構成することを特徴とする車輪用軸受装置の製造方法。
An outer member having a double-row raceway surface on the inner periphery, a hub wheel having a wheel mounting flange, and an inner ring that is press-fitted into the outer periphery of the hub wheel. An inner member, a wheel bearing having a double row rolling element interposed between the outer member and the raceway surface of the inner member, a constant velocity universal joint having an outer joint member, and a hub. A method of manufacturing a wheel bearing device in which a shaft portion of an outer joint member inserted into a hole portion of a wheel is coupled to a hub wheel so as to be able to transmit torque, and the shaft portion of the hub wheel and the outer joint member is made of a steel material. ,
A plurality of convex portions extending in the axial direction are provided on the shaft portion of the outer joint member, and the convex portion from a circle passing through a boundary portion between a region that fits into the concave portion and a region that does not fit into the concave portion. A circle passing through the intermediate point of the distance to the top of the pitch is defined as a pitch circle, and on this pitch circle, the angle θ1 formed by the radial line and the side surface of the convex portion is 20 ° ≦ θ1 ≦ 35 °, and The pitch circle diameter of the protrusions is PCD, the number of protrusions is Z, and 0.33 ≦ PCD / Z ≦ 0.7,
A plurality of small recesses are formed in the hole of the hub wheel,
The convex part is press-fitted into the small concave part along the axial direction, and a part of the hub wheel is cut into the hole part of the hub ring by the press-fitted convex part to form the concave part, thereby fitting the convex part and the concave part. The manufacturing method of the wheel bearing apparatus characterized by comprising the uneven | corrugated fitting structure in which the whole site | part adheres closely.
ハブ輪の表面のうち、凸部と凹部の嵌合部位全域の外径側となる領域に連続する熱処理硬化層を設けた請求項1に記載の車輪用軸受装置の製造方法 The manufacturing method of the wheel bearing apparatus of Claim 1 which provided the heat processing hardened layer continuous in the area | region used as the outer diameter side of the whole fitting site | part of a convex part and a recessed part among the surfaces of a hub ring. 凸部の圧入開始側の端面を軸方向と直交する面にしたことを特徴とする請求項1または2に記載の車輪用軸受装置の製造方法3. The method for manufacturing a wheel bearing device according to claim 1, wherein an end surface on the press-fitting start side of the convex portion is a surface orthogonal to the axial direction. 凸部の少なくとも圧入開始側の端部の硬度を、ハブ輪の孔部内径部よりも高くした請求項1〜請求項3のいずれか1項に記載の車輪用軸受装置の製造方法The method for manufacturing a wheel bearing device according to any one of claims 1 to 3, wherein a hardness of at least an end portion on the press-fitting start side of the convex portion is higher than an inner diameter portion of the hole portion of the hub wheel. 外側継手部材の軸部に、前記圧入による凹部の形成によって生じるはみ出し部を収納するポケット部を設けたことを特徴とする請求項1〜請求項4のいずれか1項に記載の車輪用軸受装置の製造方法The wheel bearing device according to any one of claims 1 to 4, wherein a pocket portion is provided in the shaft portion of the outer joint member to accommodate a protruding portion generated by the formation of the concave portion by the press-fitting. Manufacturing method . 前記凹凸嵌合構造に軸方向の引き抜き力付与による分離を許容し、ハブ輪と外側継手部材の軸部とをボルト部材を介してボルト固定したことを特徴とする請求項1〜請求項5のいずれか1項に記載の車輪用軸受装置の製造方法6. The separation of the concave-convex fitting structure by allowing an axial pull-out force to be allowed, and the hub wheel and the shaft portion of the outer joint member are bolted via a bolt member. A manufacturing method of the bearing device for wheels given in any 1 paragraph. 前記ボルト部材の頭部の座面となる内壁をハブ輪の孔部に設けたことを特徴とする請求項6に記載の車輪用軸受装置の製造方法The method for manufacturing a wheel bearing device according to claim 6, wherein an inner wall serving as a seating surface of a head portion of the bolt member is provided in a hole portion of the hub wheel.
JP2013088604A 2007-10-22 2013-04-19 Manufacturing method of wheel bearing device Active JP5826788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088604A JP5826788B2 (en) 2007-10-22 2013-04-19 Manufacturing method of wheel bearing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007274073 2007-10-22
JP2007274073 2007-10-22
JP2013088604A JP5826788B2 (en) 2007-10-22 2013-04-19 Manufacturing method of wheel bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008272300A Division JP5701478B2 (en) 2007-10-22 2008-10-22 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2013189195A JP2013189195A (en) 2013-09-26
JP5826788B2 true JP5826788B2 (en) 2015-12-02

Family

ID=40812805

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008272300A Expired - Fee Related JP5701478B2 (en) 2007-10-22 2008-10-22 Wheel bearing device
JP2013088604A Active JP5826788B2 (en) 2007-10-22 2013-04-19 Manufacturing method of wheel bearing device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008272300A Expired - Fee Related JP5701478B2 (en) 2007-10-22 2008-10-22 Wheel bearing device

Country Status (1)

Country Link
JP (2) JP5701478B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062013A (en) 2010-09-17 2012-03-29 Ntn Corp Vehicle-wheel bearing device
JP2012201230A (en) * 2011-03-25 2012-10-22 Ntn Corp Wheel bearing device
KR101950390B1 (en) * 2016-12-22 2019-02-20 재단법인 포항산업과학연구원 Brake disk and method for manufacturing the same
KR101951400B1 (en) * 2016-12-22 2019-05-10 재단법인 포항산업과학연구원 Brake disk and method for manufacturing the same
KR101950391B1 (en) * 2016-12-22 2019-02-20 재단법인 포항산업과학연구원 Brake disk and method for manufacturing the same
JP6912578B2 (en) 2016-12-22 2021-08-04 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Brake disc and its manufacturing method
JP2018155291A (en) * 2017-03-16 2018-10-04 株式会社ショーワ Spline fitting body

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551924A (en) * 1978-06-21 1980-01-09 Hitachi Ltd Joint structure of metal and its jointing method
DE3636243A1 (en) * 1986-10-24 1988-05-11 Loehr & Bromkamp Gmbh WHEEL BEARING (NY) SMOOTH JOINT UNIT
JPH0629019Y2 (en) * 1988-08-11 1994-08-10 株式会社ボンビ Dog toilet
JPH06312322A (en) * 1993-04-26 1994-11-08 Mitsubishi Materials Corp Hollow movable shaft and manufacture thereof
JP2001150905A (en) * 1998-02-16 2001-06-05 Nsk Ltd Bearing unit for driving wheel
JP2003004060A (en) * 2001-06-21 2003-01-08 Toyota Industries Corp Coupling and power transmission shaft and method of manufacturing coupling
JP2003065316A (en) * 2001-08-27 2003-03-05 Toyota Industries Corp Joining structure between two members and propeller shaft
JP4157323B2 (en) * 2002-05-16 2008-10-01 Ntn株式会社 Drive wheel bearing device
JP2004336965A (en) * 2003-05-12 2004-11-25 Denso Corp Rotor for rotary electric machine and rotor for magnet type ac generator
JP2005081868A (en) * 2003-09-04 2005-03-31 Nsk Ltd Drive wheel hub unit
JP4315819B2 (en) * 2004-01-06 2009-08-19 Ntn株式会社 Drive wheel bearing device
JP4455182B2 (en) * 2004-06-24 2010-04-21 Ntn株式会社 Wheel bearing device
JP2006010006A (en) * 2004-06-28 2006-01-12 Ntn Corp Wheel bearing device

Also Published As

Publication number Publication date
JP5701478B2 (en) 2015-04-15
JP2013189195A (en) 2013-09-26
JP2009120186A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5826788B2 (en) Manufacturing method of wheel bearing device
EP2517897B1 (en) Wheel bearing device
WO2012035925A1 (en) Vehicle-wheel bearing device
WO2009125657A1 (en) Bearing device for wheel
JP5683774B2 (en) Wheel bearing device
JP5683773B2 (en) Wheel bearing device
JP5160358B2 (en) Wheel bearing device
JP2010137766A (en) Joining method and joining jig for wheel bearing device
JP5642343B2 (en) Wheel bearing device
JP5683772B2 (en) Wheel bearing device
JP5301129B2 (en) Wheel bearing device
JP5826781B2 (en) Manufacturing method of wheel bearing device
WO2010058719A1 (en) Bearing device for wheel
JP5826451B2 (en) Manufacturing method of wheel bearing device
JP5301128B2 (en) Wheel bearing device
JP5410267B2 (en) Wheel bearing device
JP5425610B2 (en) Wheel bearing device
JP5823437B2 (en) Manufacturing method of wheel bearing device
WO2011132706A1 (en) Bearing device for wheel
JP5410265B2 (en) Wheel bearing device
JP2010158957A (en) Wheel bearing device
JP2010260475A (en) Bearing device for driving wheel
JP2013154878A (en) Wheel bearing device, and method of manufacturing the same
JP2010242781A (en) Assembling method for wheel bearing device
JP5301136B2 (en) Axle module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140729

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R150 Certificate of patent or registration of utility model

Ref document number: 5826788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250