JP4157323B2 - Drive wheel bearing device - Google Patents

Drive wheel bearing device Download PDF

Info

Publication number
JP4157323B2
JP4157323B2 JP2002141307A JP2002141307A JP4157323B2 JP 4157323 B2 JP4157323 B2 JP 4157323B2 JP 2002141307 A JP2002141307 A JP 2002141307A JP 2002141307 A JP2002141307 A JP 2002141307A JP 4157323 B2 JP4157323 B2 JP 4157323B2
Authority
JP
Japan
Prior art keywords
bearing device
drive wheel
wheel
hub
joint member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002141307A
Other languages
Japanese (ja)
Other versions
JP2003329047A (en
Inventor
茂明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2002141307A priority Critical patent/JP4157323B2/en
Publication of JP2003329047A publication Critical patent/JP2003329047A/en
Application granted granted Critical
Publication of JP4157323B2 publication Critical patent/JP4157323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/187Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with all four raceways integrated on parts other than race rings, e.g. fourth generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22326Attachments to the outer joint member, i.e. attachments to the exterior of the outer joint member or to the shaft of the outer joint member

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の駆動車輪を支持するための駆動車輪用軸受装置に関するものである。
【0002】
【従来の技術】
近年、自動車の懸架装置に対して車輪を回転自在に支持する車輪用軸受装置は、燃費向上のための軽量化が進んでいる。特に、FR車の後輪、FF車の前輪、あるいは4WD車の全輪といった自動車の駆動車輪用軸受装置においては、さらに操縦安定性のため、剛性アップを図るユニット化が急速に進んでいる。
【0003】
従来の駆動車輪用軸受装置は、図7に示すように、ハブ輪50と複列の転がり軸受60と等速自在継手70とをユニット化して構成している。複列の内側転走面のうち一方の内側転走面51をハブ輪50の外周に形成し、他方の内側転走面72を等速自在継手70の外側継手部材71の外周にそれぞれ形成している。ハブ輪50は、円筒部52の一端部に車輪(図示せず)を取り付けるための車輪取付フランジ53を一体に有し、この車輪取付フランジ53の円周等配位置には車輪を固定するためのハブボルト54を植設している。円筒部52の車輪取付フランジ寄りの外周に前記内側転走面51を形成している。
【0004】
等速自在継手70は外側継手部材71と、図示しない継手内輪、ケージ、およびトルク伝達ボールとからなる。外側継手部材71はカップ状のマウス部73と、このマウス部73の底部をなす肩部74と、この肩部74から軸方向に延びるステム部75を有し、マウス部73の内周には軸方向に延びる曲線状のトラック溝76を形成すると共に、肩部74の外周に前記内側転走面72を形成している。この肩部74にハブ輪50の円筒部52の端面を突合せた状態で、ステム部75をハブ輪50の円筒部52に内嵌している。このようにハブ輪50と外側継手部材71との軸方向の位置決めをすることにより、内側転走面51、72の溝ピッチを規定し、軸受内部すきまを設定している。また、ステム部75は、マウス部73と連通した貫通孔77を設けることにより中空としている。このため、マウス部73に充填した潤滑グリースの漏洩を防止するため、貫通孔77のマウス部73側端部にはエンドプレート78を装着している。
【0005】
複列の転がり軸受60は、外方部材61と複列の転動体62を備えている。外方部材61は外周に車体(図示せず)に取り付けるための車体取付フランジ63を一体に有し、内周には複列の外側転走面64、64を形成している。これら外側転走面64、64と、これに対向するハブ輪50の内側転走面51、および外側継手部材71の内側転走面72間に、保持器65、65によって複列の転動体62、62を転動自在に保持している。また、外方部材61の端部にはシール66、67を装着し、軸受内部に封入した潤滑グリースの漏洩と、外部からの雨水やダスト等の侵入を防止している。
【0006】
ハブ輪50の内径には硬化させた凹凸部55を形成し、ステム部75の嵌合部75bを拡径することにより、この嵌合部75bを凹凸部55に食い込ませ、外側継手部材71とハブ輪50とを一体に塑性結合している。このような拡径をプレス加工により行う場合、図8に示すように、ステム部75をハブ輪50の円筒部52に内嵌した後、受け部材80によりハブ輪50の車輪取付フランジ53の側面を支持すると共に、ハブ輪50の外径部を拘束した状態で、加締治具(ポンチ)81を貫通孔77に押し込むことにより拡径させる。この加締治具81は、ステム部75の貫通孔77の内径よりも僅かに大径に形成した大径部81aを有している(特願2001−50846号参照)。
【0007】
【発明が解決しようとする課題】
駆動車輪用軸受装置において、車両旋回時、装置に曲げモーメント荷重が負荷された場合、車輪取付フランジ53側(アウトボード側)の荷重は塑性結合部で受けることになる。この塑性結合部を含む外側継手部材71のステム部75が曲げられ、繰返し応力が発生する。こうした回転曲げ外力が作用する条件下で、塑性結合部に充分な強度を確保する必要がある。一方、この塑性結合部に充分な強度がある場合は、ステム部75に形成した小径段部75aと嵌合部75bの繋ぎ部Aが最弱部となり疲労破損する恐れがある。これは切欠き効果による応力集中が発生するためで、繋ぎ部Aの強度アップを図る必要があった。
【0008】
ここで、装置のサイズを変更せずにステム部75の肉厚を厚くすることによって強度を増大させようとすると、貫通孔77の径が小さくなってプレス加工に支障を来たすだけでなく、装置の軽量化を阻害することになり強度アップには限界がある。また、ステム部75の外径を上げて強度を増大させるには、転がり軸受の負荷容量不足等、レイアウト上の制約があり困難な場合が多い。
【0009】
本発明は、このような事情に鑑みてなされたもので、軽量・コンパクト化を達成すると共に、大きなモーメント荷重が装置に作用しても塑性結合部が充分な強度を有し、かつステム部の強度アップが図れ、耐久性のある駆動車輪用軸受装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
係る目的を達成すべく、本発明のうち請求項1記載の発明は、一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、別体の内輪を前記ハブ輪の円筒部に圧入し、このハブ輪に前記等速自在継手の外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食い込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、前記周方向溝の縦断面における凸部先端角度が略90度で、かつアウトボード側の傾斜角が鋭角となる非対称形状に形成した構成を採用した。
【0011】
このように、1〜3世代の駆動車輪用軸受装置において、車両旋回時、装置に曲げモーメント荷重が負荷され、塑性結合部を含む外側継手部材のステム部が曲げられ、繰返し応力が発生しても、凹凸部に嵌合部を充分食い込ませることできると共に、引抜き方向の凸部のせん断面積を大きくして引抜き耐力等の静的結合力を増大させると共に、塑性結合部の疲労寿命を向上させることができる。
【0012】
また、請求項2に記載の発明は、一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、前記複列の転がり軸受の一方の内側転走面を前記ハブ輪の外周に、他方の内側転走面を前記等速自在継手の外側継手部材の外周にそれぞれ形成し、前記ハブ輪に前記外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食い込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、前記周方向溝の縦断面における凸部先端角度が略90度で、かつアウトボード側の傾斜角が鋭角となる非対称形状に形成した構成を採用した。
【0013】
このような4世代の駆動車輪用軸受装置において、さらなる軽量・コンパクト化を達成すると共に、大きなモーメント荷重が装置に作用しても塑性結合部が充分な強度を有し、かつステム部の強度アップが図れ、耐久性のある駆動車輪用軸受装置を提供することができる。
【0014】
さらに、請求項3に記載の発明のように、前記軸方向溝の横断面における凸部の先端角度を略90度に形成すれば、嵌合部の凹凸部への食い込み量が充分確保でき、塑性結合部のトルク伝達能力等の静的結合力と疲労寿命を向上させることができる。
【0015】
また、請求項4に記載の発明のように、前記ステム部に形成した小径段部から嵌合部への立上げ部の表面に圧縮残留応力を付与することにより、装置に回転曲げ外力が作用する条件下で、塑性結合部に充分強度がある場合、繰返し応力に対し最弱部となる小径段部と嵌合部との繋ぎ部の耐久性を向上させることができる。
【0016】
また、請求項5に記載の発明のように、前記圧縮残留応力を、高周波焼入れによる所定の硬化層を形成することにより付与すれば、ステム部における最弱部の強度アップを図ることができ、ステム部の耐久性を向上させることができる。
【0017】
好ましくは、請求項6に記載の発明のように、前記硬化層の終縁部の表面硬さを焼戻しにより30〜45HRCの範囲に設定すれば、ステム部の強度アップと共に、嵌合部を拡径させた時の塑性変形に伴うクラックを防止することができる。
【0018】
また、請求項7に記載の発明のように、前記嵌合部の立上げ部の表面に、ローラバニッシュまたはショットピーニングにより圧縮残留応力を形成すれば、立上げ部に応力が集中しても強度アップを図ることができ、疲労寿命を向上させることができる。
【0019】
好ましくは、請求項7に記載の発明のように、前記圧縮残留応力を100MPa以上とすれば、材料の疲労限に対して充分効果が見込める。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明に係る駆動車輪用軸受装置の第1の実施形態を示す縦断面図である。
【0021】
この駆動車輪用軸受装置は、ハブ輪1と、複列の転がり軸受2と、等速自在継手3とをユニット化して構成している。なお、以下の説明では、車両に組み付けた状態で、車両の外側寄りとなる側をアウトボード側(図面左側)、中央寄り側をインボード側(図面右側)という。
【0022】
ハブ輪1は、アウトボード側の端部に車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、円周等配に車輪固定用のハブボルトを植設している。ハブ輪1の内周面には凹凸部5を形成し、熱処理によって表面硬さを54〜64HRCの範囲に硬化層を形成している。熱処理としては、局部加熱ができ、硬化層深さの設定が比較的容易にできる高周波誘導加熱による焼入れが好適である。
【0023】
なお、凹凸部5は、図2に示すような複数列の溝を略直交させた形状を例示することができる。(a)は互いに傾斜した螺旋溝6で、(b)は軸方向溝と独立した環状溝との交叉溝6’でアヤメローレット状を形成することができる。また、凹凸部5の凸部は良好な食い込み性を確保するために、三角形状等の尖塔形状に形成する。
【0024】
複列の転がり軸受2は、外方部材7と内方部材8と複列の転動体9、9とからなる。外方部材7は外周に車体(図示せず)に取り付けるための車体取付フランジ7aを一体に有し、内周には複列の外側転走面7b、7bを形成している。一方、内方部材8は、ハブ輪1と後述する等速自在継手3の外側継手部材14を指し、外方部材7の外側転走面7b、7bに対向するアウトボード側の内側転走面1aをハブ輪1の外周に、またインボード側の内側転走面14aを外側継手部材14の外周にそれぞれ一体に形成している。複列の転動体9、9をこれら転走面7b、1aと7b、14a間にそれぞれ収容し、保持器10、10で転動自在に保持している。複列の転がり軸受2の端部にはシール11a、11bを装着し、軸受内部に封入した潤滑グリースの漏洩と、外部からの雨水やダスト等の侵入を防止している。ここで複列の転がり軸受2は転動体9、9をボールとした複列アンギュラ玉軸受を例示したが、これに限らず転動体に円すいころを使用した複列円すいころ軸受であっても良い。
【0025】
等速自在継手3は外側継手部材14と図示しない継手内輪、ケージ、およびトルク伝達ボールとを備えている。外側継手部材14はカップ状のマウス部15と、このマウス部15の底部をなす肩部16と、この肩部16から軸方向に延びるステム部17を有し、マウス部15の内周には軸方向に延びる曲線状のトラック溝15aを形成している。
【0026】
外側継手部材14を中空に形成し、この肩部16の外周には前記した内側転走面14aを形成している。また、外側継手部材14のステム部17に小径段部17aと嵌合部17bを形成している。ハブ輪1に形成したインロウ部1bをこの小径段部17aに圧入し、インロウ部1bの端面19を外側継手部材14の肩部16に突合せる。次にハブ輪1の内径に嵌合したステム部17の嵌合部17bにマンドレルを挿入・抜脱させる等、適宜な手段で嵌合部17bを拡径してハブ輪1の凹凸部5に食い込ませ、ハブ輪1と外側継手部材14とを一体に塑性結合させる。これにより、この塑性結合部はトルク伝達手段と、ハブ輪1と外側継手部材14の結合手段とを併せ持つため、従来のセレーション等のトルク伝達手段をハブ輪1や外側継手部材14に形成する必要はなく、また、締結ナット等の固定手段も不要となるため、装置の一層の軽量・コンパクト化を実現することができる。
【0027】
ここで、ハブ輪1の内径に形成した凹凸部5において、図3は、前述した交叉溝6’のうち、旋削等で形成した複数の独立した環状溝12の断面形状を示す。(a)に示すように、凸部12aの先端角度2βを鋭角にすれば、拡径時の食い込み量が増し、ハブ輪1とステム部17の嵌合部17bの抜け耐力等、静的結合力は強固となる。しかし、一方、車両旋回時に過大な曲げモーメント荷重が生じた時、ハブ輪1と外側継手部材14との突き合せ部が節となって繰り返し曲げ荷重を受けることになる。こうした繰返し応力が作用した場合、せん断力を受ける凸部12aの断面積が減少するため、個々の凸部12aの疲労寿命は低下して好ましくない。逆に、凸部12aの先端角度を鈍角にすれば、拡径時の食い込み量が減り、静的結合力が低下して好ましくない。したがって、(b)に示すように、凸部12aの先端角度2αは、バランス的に90度前後に設定することが望ましい。
【0028】
図3(c)は、凸部12aの先端角度(β+γ)を90度に設定すると共に、アウトボード側の傾斜角βを30度、一方、インボード側の傾斜角γを60度とし、β<γに設定している。このように、アウトボード側の傾斜角βを立て、非対称形状とすることにより、引抜き方向の凸部12aのせん断面積を大きくして引抜き耐力等の静的結合力を増大させると共に、塑性結合部の疲労寿命を向上させることができる。
【0029】
また、図4は、交叉溝6’のうち、ブローチ加工等で形成した複数の軸方向溝13の断面形状を示す。(a)に示すように、凸部13aの先端角度2βを鋭角にすれば、拡径時の食い込み量が増し、ステム部17からハブ輪1へのトルク伝達能力等、静的結合力が強固になる。しかし、一方、前述した環状溝12と同様、繰返し応力が作用した場合、せん断力を受ける凸部13aの断面積が減少するため、個々の凸部13aの疲労寿命は低下して好ましくない。逆に、(b)に示すように、凸部13aの先端角度2γを鈍角にすれば、拡径時の食い込み量が減り、静的結合力が低下して好ましくない。したがって、(c)に示すように、凸部13aの先端角度2αは、バランス的に90度前後に設定することが望ましい。
【0030】
図4(d)は、凸部13aを、先端角度2αからなる凸部13bと先端角度(β+γ)からなる非対称形状の凸部13cとで構成している。ここで、傾斜角βを30度、傾斜角γを60度とし、β<γに設定すると共に、隣合う凸部13cを対称に配置し、これら凸部13cの両側にそれぞれ凸部13bを設けることにより、円周全体の対称性は損なわない。したがって、回転方向により塑性結合部の強度は変わらず、位相における強度バランスは安定している。このように、軸方向溝13の凸部13aを、先端角度が略90度で、かつ傾斜角が異なる非対称形状と等角形状とで構成することにより、凸部13aの先端角度2αが等角のものと同等のトルク伝達能力等の静的結合力と疲労寿命を確保することができる。
【0031】
外側継手部材14は、S53C等の炭素0.40〜0.60wt%を含む中炭素鋼、あるいは、SCR430等の肌焼き鋼で形成している。ここで、図5(a)に示すように、シール11bが摺接するシールランド部から転走面14a、およびステム部17の小径段部17aに亙って表面に硬化層18を形成している。硬化処理として高周波誘導加熱による焼入れが好適である。また、拡径する嵌合部17bは、鍛造後の素材表面硬さ24HRC以下の未焼入れ部とし、前記したハブ輪1の凹凸部5の表面硬さ54〜64HRCとの硬度差を30HRC以上に設定するのが好ましい。これにより、嵌合部17bが凹凸部5に容易に、かつ深く食い込み、凹凸部5の先端が潰れることなく強固に両者を塑性結合することができる。
【0032】
さらに回転曲げ外力が作用する条件下で、塑性結合部に充分強度がある場合、本出願人が実施した耐久試験等では、ステム部17に形成した小径段部17aと嵌合部17bの繋ぎ部が最弱部となり疲労破損することが検証されている。これは切欠き効果による応力集中が発生するためで、ステム部17のさらなる耐久性向上のためには繋ぎ部の強度アップを図る必要がある。本実施例では、図5(a)の上半分に示すように、硬化層18(クロスハッチングで示す)の範囲を、従来のように小径段部17aの略中央で止めることなく、小径段部17aと嵌合部17bの繋ぎ部まで延長している。
【0033】
図5(b)は、小径段部17aと嵌合部17bの繋ぎ部を示す要部拡大図であるが、硬化層18の範囲を小径段部17aから嵌合部17bへの立上げ部(テーパ部)20で止めている。こうした硬化層18の範囲を最弱部となる繋ぎ部まで延長することにより、硬化による疲労限自体の上昇が見込め、繰返し応力に対して充分な耐久性を発揮することができる。
【0034】
また、図5(c)は、立上げ部20を越え、環状溝12の最初の凸部12aまで硬化層18を形成している。装置に回転曲げ外力が作用する条件下で、塑性結合部に充分強度がある場合、小径段部17aと嵌合部17bの繋ぎ部が曲げ応力の起点となるため、少なくとも最初の凸部12aまで所定の硬化層18を形成することによって、さらに耐久性向上を図れることが判った。ここで、この硬化層18の終縁部18aは、拡径時に環状溝12の凸部12aに食い込み、その表面硬さがバラツキ、ムラがあるとクラック等を発生する恐れがあって好ましくない。したがって終縁部18aの焼入れ後、中周波焼戻し等を行なって表面硬さを30〜45HRCの範囲に規制している。本実施例では、高周波誘導加熱による焼入れ時に、銅合金やアルミニウム合金等、熱誘導性の良いコンセントリングを終縁部18aに配設し、硬化層範囲と表面硬さの公差範囲を規制している。さらに、中空のステム部17に冷却水を流す、所謂通水冷却法を併用しても効果的である。
【0035】
なお、外側継手部材14のシールランド部から転走面14a、およびステム部17の小径段部17a、および小径段部17aから嵌合部17bへの立上げ部20に亙って連続的に形成した硬化層18に限らず、図5(a)の下半分に示すように、硬化層18の範囲を、外側継手部材14のシールランド部、転走面14aから小径段部17aの略中央部で止め、さらに小径段部17aから嵌合部17bへの立上げ部20に不連続的な硬化層18を形成するようにしても良い。
【0036】
また、硬化層18の範囲を、外側継手部材14のシールランド部、転走面14aから小径段部17aの略中央部で止め、さらに小径段部17aから嵌合部17bへの立上げ部20の表面に、ローラバニッシュやショットピーニング法により、圧縮残留応力を形成するようにしても良い。したがって、繰返し曲げ応力により発生する表面の引張応力に対し、付与された少なくとも100MPaの圧縮残留応力が効果的に作用し、耐久性の向上が図れる。
【0037】
21は、中空状の外側継手部材14の内径に装着したエンドプレートで、マウス部15に封入された潤滑グリースの外部への漏洩と外部からのダスト侵入を防止している。
【0038】
図6は本発明に係る駆動車輪用軸受装置の第2の実施形態を示す縦断面図である。なお、前述した実施形態と同一部位、同一部品には同一符号を付け、その詳細な説明を省略する。この駆動車輪用軸受装置は、ハブ輪1’と複列の転がり軸受2’と等速自在継手3’とをユニット化した第3世代構造をなしている。
【0039】
ハブ輪1’は、車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、この車輪取付フランジ4の円周等配位置には車輪を固定するためのハブボルト(図示せず)を植設している。ハブ輪1’の外周にはアウトボード側の内側転走面1aとインロウ部22を形成している。このインロウ部22に別体の内輪23を圧入し、後述する外側継手部材14’の肩部16’と突合せ状態で組立てる。
【0040】
複列の転がり軸受2’は、外方部材7と内方部材8’と複列の転動体9、9を備えている。外方部材7は外周に車体(図示せず)に取り付けるための車体取付フランジ7aを一体に有し、内周には複列の外側転走面7b、7bを形成している。一方、内方部材8’は、ハブ輪1’と別体の内輪23を指し、これら外方部材7の外側転走面7b、7bに対向する複列の内側転走面1a、23aをハブ輪1と内輪23の外周にそれぞれ一体形成している。また、それぞれの転走面7b、1aと7b、23a間には、保持器10によって転動自在に保持した複列の転動体9、9を収容している。
【0041】
ハブ輪1’は、S53C等の炭素0.40〜0.60wt%を含む中炭素鋼で形成している。このハブ輪1’は、シール11aが摺接するシールランド部から内側転走面1a、およびインロウ部22に亙り、高周波焼入れによって表面を硬化処理している。一方、内輪23は、炭素0.95〜1.10wt%からなる高炭素クロム軸受鋼で形成し、芯部まで焼入れ硬化させている。
【0042】
等速自在継手3’の外側継手部材14’は、カップ状をなすマウス部15と、このマウス部15の底部になる肩部16’と、この肩部16’から軸方向に延びるステム部17’とからなっている。ステム部17’はハブ輪1のインロウ部22を圧入する小径段部17a’と嵌合部17bからなり、この嵌合部17bはアウトボード側に開口した中空状に形成している。
【0043】
また、外側継手部材14’は、S53C等の炭素0.40〜0.60wt%を含む中炭素鋼からなる。また、前述した第1の実施形態と同様、マウス部15の内周に形成した軸方向曲線状に延びるトラック溝15aと、肩部16’からステム部17’の小径段部17a’、および小径段部17aから嵌合部17bへの立上げ部20’の表面に高周波焼入れによる硬化層を形成している。なお、嵌合部17b’は未焼入れで生のままとしている。
【0044】
ハブ輪1’のアウトボード側内径に硬化させた凹凸部5を形成し、ステム部17’の嵌合部17b’を拡径させて食い込ませ、ハブ輪1’と外側継手部材14’を一体に塑性結合している。なお、凹凸部5の交叉溝形状については、前述した第1の実施形態と同様のためその説明を省略する。
【0045】
なお、本実施形態では、第3、4世代構造を例示したが、これに限らず、装置のアウトボード側にハブ輪と外側継手部材の塑性結合部を有する構造であれば、従来の第1、2世代構造であっても良い。すなわち、それぞれの構造の特徴を損なうことなく、車両旋回時、装置に曲げモーメント荷重が負荷され、塑性結合部を含む外側継手部材のステム部が曲げられ、繰返し応力が発生しても、塑性結合部の静的、動的な強度アップを図ると共に、さらに回転曲げ外力が作用する条件下で、塑性結合部に充分強度がある場合でも、ステム部に形成した小径段部と嵌合部の繋ぎ部の動的な強度アップを図って、ステム部の疲労寿命を向上させることができる。
【0046】
以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
【0047】
【発明の効果】
以上詳述したように、本発明に係る駆動車輪用軸受装置は、以下に挙げるような格別な効果を奏する。
▲1▼ハブ輪と複列の転がり軸受と等速自在継手をユニット化した駆動車輪用軸受装置において、ハブ輪の内径に形成した凹凸部を、周方向溝と軸方向溝を略直交させて構成し、この周方向溝の縦断面における凸部先端角度が略90度で、かつアウトボード側の傾斜角が鋭角となる非対称形状に形成したので、車両旋回時、装置に曲げモーメント荷重が負荷され、塑性結合部を含む外側継手部材のステム部が曲げられ、繰返し応力が発生しても、凸部のせん断面積を大きくして塑性結合部の静的結合力と疲労寿命を向上させることができる。
▲2▼さらに、回転曲げ外力が作用する条件下で、塑性結合部に充分強度がある場合でも、ステム部に形成した小径段部から嵌合部への立上げ部の表面に圧縮残留応力を付与したので、焼入れ硬化による疲労限自体の上昇、すなわち動的な強度アップを図ることができ、ステム部の疲労寿命を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る駆動車輪用軸受装置の第1の実施形態を示す縦断面図である。
【図2】(a)は本発明に係るハブ輪の凹凸部を示す縦断面図で、互いに傾斜した螺旋溝で構成したアヤメローレット形状を示す。
(b)は同上、軸方向、および独立した環状溝で構成したアヤメローレット形状を示す。
【図3】(a)は、本発明に係るハブ輪の凹凸部を構成する環状溝の形状を説明した縦断面図である。
(b)は、同上環状溝の実施形態を示す縦断面図である。
(c)は、同上環状溝の他の実施形態を示す縦断面図である。
【図4】(a)、(b)は、本発明に係るハブ輪の凹凸部を構成する軸方向溝の形状を説明した横断面図である。
(c)は、同上軸方向溝の実施形態を示す横断面図である。
(d)は、同上軸方向溝の他の実施形態を示す横断面図である。
【図5】(a)は、本発明に係る駆動車輪用軸受装置の第1の実施形態を示す縦断面図である。
(b)、(c)は、(a)の要部拡大図である。
【図6】本発明に係る駆動車輪用軸受装置の第2の実施形態を示す縦断面図である。
【図7】従来の駆動車輪用軸受装置を示す縦断面図である。
【図8】拡径方法を示す説明図である。
【符号の説明】
1、1’・・・・・・・・・・・・ハブ輪
1a、14a、23a・・・・・・内側転走面
1b、22・・・・・・・・・・・インロウ部
2、2’・・・・・・・・・・・・複列の転がり軸受
3、3’・・・・・・・・・・・・等速自在継手
4・・・・・・・・・・・・・・・車輪取付フランジ
5・・・・・・・・・・・・・・・凹凸部
6、6’・・・・・・・・・・・・溝
7・・・・・・・・・・・・・・・外方部材
7a・・・・・・・・・・・・・・車体取付フランジ
7b・・・・・・・・・・・・・・外側転走面
8、8’・・・・・・・・・・・・内方部材
9・・・・・・・・・・・・・・・転動体
10・・・・・・・・・・・・・・保持器
11a、11b・・・・・・・・・シール
12・・・・・・・・・・・・・・環状溝
12a・・・・・・・・・・・・・凸部
13・・・・・・・・・・・・・・軸方向溝
13a、13b、13c・・・・・凸部
14、14’・・・・・・・・・・外側継手部材
15・・・・・・・・・・・・・・マウス部
15a・・・・・・・・・・・・・トラック溝
16、16’・・・・・・・・・・肩部
17、17’・・・・・・・・・・ステム部
17a、17a’・・・・・・・・小径段部
17b、17b’・・・・・・・・嵌合部
18・・・・・・・・・・・・・・硬化層
18a・・・・・・・・・・・・・終縁部
19・・・・・・・・・・・・・・端面
20、20’・・・・・・・・・・立上げ部
21・・・・・・・・・・・・・・エンドプレート
23・・・・・・・・・・・・・・内輪
50・・・・・・・・・・・・・・ハブ輪
51、72・・・・・・・・・・・内側転走面
52・・・・・・・・・・・・・・円筒部
53・・・・・・・・・・・・・・車輪取付フランジ
54・・・・・・・・・・・・・・ハブボルト
55・・・・・・・・・・・・・・凹凸部
60・・・・・・・・・・・・・・複列の転がり軸受
61・・・・・・・・・・・・・・外方部材
62・・・・・・・・・・・・・・転動体
63・・・・・・・・・・・・・・車体取付フランジ
64・・・・・・・・・・・・・・外側転走面
65・・・・・・・・・・・・・・保持器
66、67・・・・・・・・・・・シール
70・・・・・・・・・・・・・・等速自在継手
71・・・・・・・・・・・・・・外側継手部材
73・・・・・・・・・・・・・・マウス部
74・・・・・・・・・・・・・・肩部
75・・・・・・・・・・・・・・ステム部
75a・・・・・・・・・・・・・小径段部
75b・・・・・・・・・・・・・嵌合部
76・・・・・・・・・・・・・・トラック溝
77・・・・・・・・・・・・・・貫通孔
78・・・・・・・・・・・・・・エンドプレート
80・・・・・・・・・・・・・・受け部材
81・・・・・・・・・・・・・・加締治具
81a・・・・・・・・・・・・・大径部
A・・・・・・・・・・・・・・・繋ぎ部
α、β、γ・・・・・・・・・・・傾斜角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive wheel bearing device for supporting a drive wheel of an automobile or the like.
[0002]
[Prior art]
In recent years, a wheel bearing device that rotatably supports a wheel with respect to a suspension device of an automobile has been reduced in weight for improving fuel efficiency. In particular, in drive wheel bearing devices for automobiles such as the rear wheels of FR vehicles, the front wheels of FF vehicles, or all wheels of 4WD vehicles, unitization for increasing rigidity is rapidly progressing for further steering stability.
[0003]
As shown in FIG. 7, the conventional bearing device for a drive wheel comprises a hub wheel 50, a double row rolling bearing 60 and a constant velocity universal joint 70 as a unit. One inner rolling surface 51 of the double row inner rolling surfaces is formed on the outer periphery of the hub wheel 50, and the other inner rolling surface 72 is formed on the outer periphery of the outer joint member 71 of the constant velocity universal joint 70. ing. The hub wheel 50 integrally has a wheel mounting flange 53 for attaching a wheel (not shown) to one end of the cylindrical portion 52, and the wheel mounting flange 53 is fixed at a circumferentially equidistant position. The hub bolt 54 is installed. The inner rolling surface 51 is formed on the outer periphery of the cylindrical portion 52 near the wheel mounting flange.
[0004]
The constant velocity universal joint 70 includes an outer joint member 71, a joint inner ring (not shown), a cage, and a torque transmission ball. The outer joint member 71 includes a cup-shaped mouth portion 73, a shoulder portion 74 that forms the bottom of the mouth portion 73, and a stem portion 75 that extends in the axial direction from the shoulder portion 74. A curved track groove 76 extending in the axial direction is formed, and the inner rolling surface 72 is formed on the outer periphery of the shoulder 74. The stem portion 75 is fitted into the cylindrical portion 52 of the hub wheel 50 in a state where the end surface of the cylindrical portion 52 of the hub wheel 50 is abutted against the shoulder portion 74. By positioning the hub wheel 50 and the outer joint member 71 in the axial direction in this manner, the groove pitch of the inner rolling surfaces 51 and 72 is defined, and the bearing internal clearance is set. The stem portion 75 is hollow by providing a through hole 77 communicating with the mouse portion 73. Therefore, in order to prevent leakage of the lubricating grease filled in the mouse part 73, an end plate 78 is attached to the end part of the through hole 77 on the mouse part 73 side.
[0005]
The double row rolling bearing 60 includes an outer member 61 and a double row rolling element 62. The outer member 61 integrally has a vehicle body attachment flange 63 for attachment to a vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 64 and 64 are formed on the inner periphery. Between these outer rolling surfaces 64, 64, the inner rolling surface 51 of the hub wheel 50 facing the outer rolling surfaces 64, and the inner rolling surface 72 of the outer joint member 71, double row rolling elements 62 are formed by cages 65, 65. , 62 are movably held. Further, seals 66 and 67 are attached to the end portion of the outer member 61 to prevent leakage of the lubricating grease sealed inside the bearing and intrusion of rainwater and dust from the outside.
[0006]
By forming a hardened concave and convex portion 55 on the inner diameter of the hub wheel 50 and expanding the fitting portion 75b of the stem portion 75, the fitting portion 75b is bitten into the concave and convex portion 55, and the outer joint member 71 and The hub wheel 50 is integrally plastically coupled. When such a diameter expansion is performed by press working, as shown in FIG. 8, after the stem portion 75 is fitted into the cylindrical portion 52 of the hub wheel 50, the side surface of the wheel mounting flange 53 of the hub wheel 50 is received by the receiving member 80. In the state where the outer diameter portion of the hub wheel 50 is constrained, the caulking jig (punch) 81 is pushed into the through hole 77 to expand the diameter. The caulking jig 81 has a large-diameter portion 81a formed slightly larger than the inner diameter of the through-hole 77 of the stem portion 75 (see Japanese Patent Application No. 2001-50846).
[0007]
[Problems to be solved by the invention]
In the drive wheel bearing device, when a bending moment load is applied to the device during turning of the vehicle, the load on the wheel mounting flange 53 side (outboard side) is received by the plastic coupling portion. The stem portion 75 of the outer joint member 71 including the plastic coupling portion is bent, and repeated stress is generated. It is necessary to ensure a sufficient strength in the plastic joint portion under the condition where such a rotational bending external force acts. On the other hand, if the plastic joint has sufficient strength, the connecting portion A between the small diameter step 75a and the fitting portion 75b formed in the stem portion 75 may become the weakest portion and may be fatigued. This is because stress concentration occurs due to the notch effect, and it is necessary to increase the strength of the joint A.
[0008]
Here, if the strength is increased by increasing the thickness of the stem portion 75 without changing the size of the device, the diameter of the through-hole 77 is reduced, which not only hinders the press working, but also the device. There is a limit to the increase in strength. Further, increasing the outer diameter of the stem portion 75 to increase the strength is often difficult due to layout restrictions such as insufficient load capacity of the rolling bearing.
[0009]
The present invention has been made in view of such circumstances, and achieves light weight and compactness, and the plastic coupling portion has sufficient strength even when a large moment load acts on the apparatus, and the stem portion An object of the present invention is to provide a bearing device for a drive wheel that can increase strength and is durable.
[0010]
[Means for Solving the Problems]
In order to achieve such an object, the invention according to claim 1 of the present invention is a bearing for a drive wheel in which a hub wheel, a constant velocity universal joint, and a double row rolling bearing which have a wheel mounting flange integrally formed at one end are unitized. A separate inner ring is press-fitted into the cylindrical portion of the hub ring, and a stem portion formed on the outer joint member of the constant velocity universal joint is fitted into the hub ring, and the inner diameter of the hub ring is set. A bearing for a drive wheel in which the hub wheel and the outer joint member are integrally plastically bonded by forming a hardened concavo-convex portion, expanding a fitting portion formed in the stem portion, and biting into the concavo-convex portion. In the apparatus, the concavo-convex portion is formed by a cross groove in which a circumferential groove and an axial groove are substantially orthogonal to each other, the tip angle of the convex portion in the longitudinal section of the circumferential groove is approximately 90 degrees, and the inclination on the outboard side Structure formed in an asymmetrical shape with sharp corners It was adopted.
[0011]
Thus, in the first to third generation drive wheel bearing devices, when the vehicle turns, a bending moment load is applied to the device, the stem portion of the outer joint member including the plastic coupling portion is bent, and repeated stress is generated. In addition, the fitting portion can be sufficiently cut into the uneven portion, and the shear area of the convex portion in the drawing direction is increased to increase the static bonding force such as the pulling strength, and the fatigue life of the plastic bonding portion is improved. be able to.
[0012]
The invention according to claim 2 is a drive wheel bearing device in which a hub wheel integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized. One inner rolling surface of the rolling bearing is formed on the outer periphery of the hub wheel, and the other inner rolling surface is formed on the outer periphery of the outer joint member of the constant velocity universal joint, and the hub wheel is formed on the outer joint member. The hub is formed by internally fitting the formed stem portion, forming a hardened concave and convex portion on the inner diameter of the hub wheel, and enlarging the fitting portion formed on the stem portion to bite into the concave and convex portion. In a drive wheel bearing device in which a wheel and an outer joint member are integrally plastically coupled, the concave and convex portion is formed by a cross groove in which a circumferential groove and an axial groove are substantially orthogonal to each other, and a convex in a longitudinal section of the circumferential groove. tip angle parts are at substantially 90 degrees, and out Inclination angle of over de side is adopted a structure formed asymmetrically to an acute angle.
[0013]
In such a 4th generation drive wheel bearing device, it is possible to achieve further weight reduction and compactness, and the plastic joint has sufficient strength even when a large moment load is applied to the device, and the strength of the stem is increased. Therefore, a durable drive wheel bearing device can be provided.
[0014]
Furthermore, as in the invention according to claim 3, if the tip angle of the convex portion in the cross section of the axial groove is formed at approximately 90 degrees, a sufficient amount of biting into the concave and convex portions of the fitting portion can be secured, The static coupling force such as the torque transmission capability of the plastic coupling part and the fatigue life can be improved.
[0015]
Further, as in the invention described in claim 4, by applying compressive residual stress to the surface of the rising portion from the small diameter step portion formed in the stem portion to the fitting portion, a rotational bending external force acts on the device. When the plastic joint portion has sufficient strength under the above conditions, it is possible to improve the durability of the joint portion between the small-diameter step portion that becomes the weakest portion with respect to repeated stress and the fitting portion.
[0016]
Moreover, if the compressive residual stress is applied by forming a predetermined hardened layer by induction hardening as in the invention described in claim 5, the strength of the weakest part in the stem part can be increased, The durability of the stem portion can be improved.
[0017]
Preferably, when the surface hardness of the end edge portion of the hardened layer is set in a range of 30 to 45 HRC by tempering as in the invention described in claim 6, the fitting portion is expanded with the strength of the stem portion being increased. Cracks associated with plastic deformation when the diameter is made can be prevented.
[0018]
In addition, if compressive residual stress is formed on the surface of the rising portion of the fitting portion by roller burnishing or shot peening as in the invention described in claim 7, the strength is increased even if stress is concentrated on the rising portion. Can be improved, and the fatigue life can be improved.
[0019]
Preferably, as in the invention described in claim 7, if the compressive residual stress is set to 100 MPa or more, a sufficient effect can be expected for the fatigue limit of the material.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a first embodiment of a drive wheel bearing device according to the present invention.
[0021]
This drive wheel bearing device comprises a hub wheel 1, a double row rolling bearing 2 and a constant velocity universal joint 3 as a unit. In the following description, the side closer to the outside of the vehicle in the state assembled to the vehicle is referred to as the outboard side (left side in the drawing), and the side closer to the center is referred to as the inboard side (right side in the drawing).
[0022]
The hub wheel 1 is integrally provided with a wheel mounting flange 4 for mounting a wheel (not shown) at an end portion on the outboard side, and hub bolts for fixing the wheel are implanted on the circumference of the circumference. Concave and convex portions 5 are formed on the inner peripheral surface of the hub wheel 1, and a hardened layer is formed with a surface hardness in the range of 54 to 64 HRC by heat treatment. As the heat treatment, local heating is preferable, and quenching by high-frequency induction heating that can set the hardened layer depth relatively easily is preferable.
[0023]
In addition, the uneven | corrugated | grooved part 5 can illustrate the shape which made the groove | channel of several rows substantially orthogonal as shown in FIG. (A) is a spiral groove 6 inclined with respect to each other, and (b) is an intersecting groove 6 ′ of an annular groove independent of an axial groove and can form an iris knurl. Moreover, the convex part of the uneven part 5 is formed in a spire shape such as a triangular shape in order to ensure good bite.
[0024]
The double row rolling bearing 2 includes an outer member 7, an inner member 8, and double row rolling elements 9 and 9. The outer member 7 integrally has a vehicle body mounting flange 7a for mounting to the vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 7b and 7b are formed on the inner periphery. On the other hand, the inner member 8 refers to the hub wheel 1 and the outer joint member 14 of the constant velocity universal joint 3 described later, and the inner rolling surface on the outboard side facing the outer rolling surfaces 7b, 7b of the outer member 7. 1 a is integrally formed on the outer periphery of the hub wheel 1, and the inner rolling surface 14 a on the inboard side is integrally formed on the outer periphery of the outer joint member 14. Double row rolling elements 9, 9 are accommodated between the rolling surfaces 7b, 1a and 7b, 14a, respectively, and held by the cages 10, 10 so as to be freely rollable. Seals 11a and 11b are attached to the ends of the double-row rolling bearing 2 to prevent leakage of lubricating grease sealed inside the bearing and intrusion of rainwater or dust from the outside. Here, the double-row rolling bearing 2 is exemplified as a double-row angular ball bearing in which the rolling elements 9 and 9 are balls. However, the double-row rolling bearing 2 is not limited to this and may be a double-row tapered roller bearing using a tapered roller as the rolling element. .
[0025]
The constant velocity universal joint 3 includes an outer joint member 14, a joint inner ring, a cage, and a torque transmission ball (not shown). The outer joint member 14 has a cup-shaped mouth portion 15, a shoulder portion 16 that forms the bottom portion of the mouth portion 15, and a stem portion 17 that extends in the axial direction from the shoulder portion 16. A curved track groove 15a extending in the axial direction is formed.
[0026]
The outer joint member 14 is formed in a hollow shape, and the inner rolling surface 14 a described above is formed on the outer periphery of the shoulder portion 16. Further, a small diameter step portion 17 a and a fitting portion 17 b are formed in the stem portion 17 of the outer joint member 14. The inrow portion 1b formed on the hub wheel 1 is press-fitted into the small-diameter step portion 17a, and the end surface 19 of the inrow portion 1b is abutted against the shoulder portion 16 of the outer joint member 14. Next, the fitting portion 17b is expanded in diameter by an appropriate means such as inserting / removing the mandrel into / from the fitting portion 17b of the stem portion 17 fitted to the inner diameter of the hub wheel 1 to form the uneven portion 5 of the hub wheel 1. The hub wheel 1 and the outer joint member 14 are integrally plastically joined. Thereby, since this plastic coupling part has both the torque transmission means and the coupling means for the hub wheel 1 and the outer joint member 14, it is necessary to form torque transmission means such as conventional serrations in the hub wheel 1 and the outer joint member 14. In addition, since fixing means such as a fastening nut is not required, the apparatus can be further reduced in weight and size.
[0027]
Here, in the concavo-convex portion 5 formed on the inner diameter of the hub wheel 1, FIG. 3 shows a cross-sectional shape of a plurality of independent annular grooves 12 formed by turning or the like among the cross grooves 6 ′ described above. As shown in (a), if the tip angle 2β of the convex portion 12a is made acute, the amount of biting when the diameter is expanded increases, and the static coupling such as the pull-out strength of the fitting portion 17b of the hub wheel 1 and the stem portion 17 is increased. Power is strong. However, on the other hand, when an excessive bending moment load is generated during turning of the vehicle, the butted portion between the hub wheel 1 and the outer joint member 14 becomes a node and repeatedly receives the bending load. When such a repeated stress is applied, the cross-sectional area of the convex portion 12a that receives a shearing force is reduced, so that the fatigue life of each convex portion 12a is not preferable. Conversely, if the tip angle of the convex portion 12a is made obtuse, the amount of biting during diameter expansion is reduced, and the static coupling force is lowered, which is not preferable. Therefore, as shown in (b), it is desirable to set the tip angle 2α of the convex portion 12a to around 90 degrees in a balanced manner.
[0028]
In FIG. 3C, the tip angle (β + γ) of the convex portion 12a is set to 90 degrees, the inclination angle β on the outboard side is set to 30 degrees, while the inclination angle γ on the inboard side is set to 60 degrees. <Γ is set. In this way, by setting the inclination angle β on the outboard side to have an asymmetric shape, the shear area of the convex portion 12a in the drawing direction is increased to increase the static bonding force such as the pulling strength, and the plastic bonding portion. The fatigue life of can be improved.
[0029]
FIG. 4 shows a cross-sectional shape of a plurality of axial grooves 13 formed by broaching or the like in the cross groove 6 ′. As shown to (a), if the front-end | tip angle 2 (beta) of the convex part 13a is made into an acute angle, the amount of biting at the time of diameter expansion will increase, and static coupling forces, such as the torque transmission capability from the stem part 17 to the hub wheel 1, will be strong. become. However, similarly to the above-described annular groove 12, when a repeated stress is applied, the cross-sectional area of the convex portion 13 a that receives a shearing force is decreased, so that the fatigue life of each convex portion 13 a is not preferable. On the contrary, as shown in (b), if the tip angle 2γ of the convex portion 13a is made an obtuse angle, the amount of biting at the time of diameter expansion decreases, and the static coupling force decreases, which is not preferable. Therefore, as shown in (c), it is desirable to set the tip angle 2α of the convex portion 13a to around 90 degrees in a balanced manner.
[0030]
In FIG. 4D, the convex portion 13a is composed of a convex portion 13b having a tip angle 2α and an asymmetrical convex portion 13c having a tip angle (β + γ). Here, the inclination angle β is set to 30 degrees, the inclination angle γ is set to 60 degrees, β <γ is set, adjacent protrusions 13c are arranged symmetrically, and protrusions 13b are provided on both sides of these protrusions 13c, respectively. Thus, the symmetry of the entire circumference is not impaired. Therefore, the strength of the plastic coupling portion does not change depending on the rotation direction, and the strength balance in the phase is stable. Thus, by forming the convex portion 13a of the axial groove 13 with an asymmetrical shape and a conformal shape having a tip angle of approximately 90 degrees and different inclination angles, the tip angle 2α of the convex portion 13a is equiangular. It is possible to ensure a static coupling force such as a torque transmission capability equivalent to that of the motor and a fatigue life.
[0031]
The outer joint member 14 is made of medium carbon steel containing 0.40 to 0.60 wt% of carbon such as S53C, or case-hardened steel such as SCR430. Here, as shown in FIG. 5A, a hardened layer 18 is formed on the surface from the seal land portion in which the seal 11b is in sliding contact to the rolling surface 14a and the small-diameter step portion 17a of the stem portion 17. . Quenching by high frequency induction heating is suitable as the curing treatment. Moreover, the fitting part 17b whose diameter is expanded is an unquenched part with a material surface hardness of 24 HRC or less after forging, and the hardness difference between the surface hardness 54 to 64 HRC of the uneven part 5 of the hub wheel 1 is 30 HRC or more. It is preferable to set. Thereby, the fitting part 17b can bite into the uneven | corrugated | grooved part 5 easily and deeply, and both can be firmly plastic-bonded without the front-end | tip of the uneven | corrugated | grooved part 5 being crushed.
[0032]
Further, when the plastic joint portion has sufficient strength under the condition that the rotational bending external force acts, in the durability test conducted by the present applicant, the joint portion between the small diameter step portion 17a formed on the stem portion 17 and the fitting portion 17b. Has been verified to become the weakest part and fatigue failure. This is because stress concentration occurs due to the notch effect, and in order to further improve the durability of the stem portion 17, it is necessary to increase the strength of the joint portion. In the present embodiment, as shown in the upper half of FIG. 5A, the range of the hardened layer 18 (indicated by cross hatching) is not stopped at the approximate center of the small diameter step portion 17a as in the prior art, but the small diameter step portion. It extends to the connecting portion between 17a and the fitting portion 17b.
[0033]
FIG. 5B is an enlarged view of a main part showing a connecting portion between the small-diameter stepped portion 17a and the fitting portion 17b. The range of the hardened layer 18 is raised from the small-diameter stepped portion 17a to the fitting portion 17b ( Tapered part) 20 is used. By extending the range of the hardened layer 18 to the connecting portion which is the weakest portion, an increase in the fatigue limit itself due to hardening can be expected, and sufficient durability against repeated stress can be exhibited.
[0034]
In FIG. 5C, the hardened layer 18 is formed up to the first convex portion 12 a of the annular groove 12 beyond the rising portion 20. If the plastic joint is sufficiently strong under the condition that a rotating bending external force acts on the device, the connecting portion between the small diameter step portion 17a and the fitting portion 17b becomes the starting point of bending stress, so at least the first convex portion 12a is reached. It has been found that the durability can be further improved by forming the predetermined hardened layer 18. Here, if the end edge portion 18a of the hardened layer 18 bites into the convex portion 12a of the annular groove 12 when the diameter is expanded and the surface hardness thereof is uneven or uneven, cracks or the like may be generated. Therefore, after quenching the end edge portion 18a, medium frequency tempering or the like is performed to limit the surface hardness within a range of 30 to 45 HRC. In this embodiment, when quenching by high frequency induction heating, a concentrating ring with good heat induction, such as a copper alloy or an aluminum alloy, is disposed on the end edge 18a, and the tolerance range of the hardened layer range and the surface hardness is regulated. Yes. Furthermore, it is also effective to use a so-called water-cooling method in which cooling water is allowed to flow through the hollow stem portion 17.
[0035]
It is formed continuously from the seal land portion of the outer joint member 14 to the rolling surface 14a, the small diameter step portion 17a of the stem portion 17, and the rising portion 20 from the small diameter step portion 17a to the fitting portion 17b. As shown in the lower half of FIG. 5A, the hardened layer 18 is not limited to the hardened layer 18, and the range of the hardened layer 18 extends from the seal land portion of the outer joint member 14, the rolling surface 14a to the substantially central portion of the small diameter step portion 17a. Further, the discontinuous hardened layer 18 may be formed on the rising portion 20 from the small diameter step portion 17a to the fitting portion 17b.
[0036]
Further, the range of the hardened layer 18 is stopped at the seal land portion of the outer joint member 14 and the substantially central portion of the small diameter step portion 17a from the rolling surface 14a, and the rising portion 20 from the small diameter step portion 17a to the fitting portion 17b. A compressive residual stress may be formed on the surface of the surface by roller burnishing or shot peening. Therefore, the applied compressive residual stress of at least 100 MPa effectively acts on the surface tensile stress generated by repeated bending stress, and the durability can be improved.
[0037]
Reference numeral 21 denotes an end plate attached to the inner diameter of the hollow outer joint member 14 to prevent leakage of the lubricating grease sealed in the mouth portion 15 to the outside and intrusion of dust from the outside.
[0038]
FIG. 6 is a longitudinal sectional view showing a second embodiment of the drive wheel bearing device according to the present invention. In addition, the same code | symbol is attached | subjected to the same site | part and the same component as embodiment mentioned above, and the detailed description is abbreviate | omitted. This drive wheel bearing device has a third generation structure in which a hub wheel 1 ', a double row rolling bearing 2' and a constant velocity universal joint 3 'are unitized.
[0039]
The hub wheel 1 ′ has a wheel mounting flange 4 for mounting a wheel (not shown) integrally, and a hub bolt (not shown) for fixing the wheel at a circumferentially equidistant position of the wheel mounting flange 4. ). On the outer periphery of the hub wheel 1 ′, an inner rolling surface 1 a on the outboard side and an in-row portion 22 are formed. A separate inner ring 23 is press-fitted into the in-row part 22 and assembled in a butted state with a shoulder part 16 'of an outer joint member 14' to be described later.
[0040]
The double row rolling bearing 2 ′ includes an outer member 7, an inner member 8 ′, and double row rolling elements 9 and 9. The outer member 7 integrally has a vehicle body mounting flange 7a for mounting to the vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 7b and 7b are formed on the inner periphery. On the other hand, the inner member 8 ′ indicates the inner ring 23 that is separate from the hub wheel 1 ′, and the double-row inner rolling surfaces 1a, 23a facing the outer rolling surfaces 7b, 7b of the outer member 7 are hubs. The ring 1 and the inner ring 23 are integrally formed on the outer periphery. In addition, between the respective rolling surfaces 7b, 1a and 7b, 23a, double row rolling elements 9, 9 which are movably held by the cage 10 are accommodated.
[0041]
The hub wheel 1 ′ is made of medium carbon steel containing 0.40 to 0.60 wt% of carbon such as S53C. The hub wheel 1 ′ is hardened by induction hardening from the seal land portion in sliding contact with the seal 11 a to the inner rolling surface 1 a and the in-row portion 22. On the other hand, the inner ring 23 is made of high carbon chromium bearing steel made of carbon 0.95 to 1.10 wt%, and is hardened and hardened to the core.
[0042]
The outer joint member 14 ′ of the constant velocity universal joint 3 ′ includes a cup-shaped mouth portion 15, a shoulder portion 16 ′ serving as a bottom portion of the mouth portion 15, and a stem portion 17 extending from the shoulder portion 16 ′ in the axial direction. It's made up of. The stem portion 17 'includes a small-diameter step portion 17a' that press-fits the in-row portion 22 of the hub wheel 1 and a fitting portion 17b. The fitting portion 17b is formed in a hollow shape that opens to the outboard side.
[0043]
The outer joint member 14 'is made of medium carbon steel containing 0.40 to 0.60 wt% of carbon such as S53C. Similarly to the first embodiment described above, the track groove 15a formed on the inner periphery of the mouse portion 15 and extending in the shape of an axial curve, the small diameter step portion 17a ′ of the stem portion 17 ′ from the shoulder portion 16 ′, and the small diameter A hardened layer is formed by induction hardening on the surface of the rising portion 20 'from the stepped portion 17a to the fitting portion 17b. In addition, fitting part 17b 'is unhardened and is left raw.
[0044]
The hardened uneven portion 5 is formed on the inner diameter on the outboard side of the hub wheel 1 ′, and the fitting portion 17 b ′ of the stem portion 17 ′ is expanded to bite in, so that the hub wheel 1 ′ and the outer joint member 14 ′ are integrated. Is plastically bonded. The cross groove shape of the concavo-convex portion 5 is the same as in the first embodiment described above, and a description thereof is omitted.
[0045]
In the present embodiment, the third and fourth generation structures have been exemplified. However, the present invention is not limited to this, and any conventional first structure can be used as long as the structure has the hub wheel and the plastic coupling portion of the outer joint member on the outboard side of the apparatus. A two-generation structure may be used. In other words, without damaging the characteristics of each structure, even when the vehicle is turning, a bending moment load is applied to the device, the stem portion of the outer joint member including the plastic coupling portion is bent, and even if repeated stress occurs, the plastic coupling The joint of the small-diameter step formed on the stem and the fitting part is connected even if the plastic joint has sufficient strength under the condition that the rotating and bending external force is applied, while increasing the static and dynamic strength of the part. The fatigue strength of the stem portion can be improved by increasing the dynamic strength of the portion.
[0046]
The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.
[0047]
【The invention's effect】
As described in detail above, the drive wheel bearing device according to the present invention has the following special effects.
(1) In a drive wheel bearing device in which a hub wheel, a double-row rolling bearing and a constant velocity universal joint are unitized, the concave and convex portions formed on the inner diameter of the hub wheel are arranged so that the circumferential groove and the axial groove are substantially orthogonal to each other. Since the tip end angle of the convex portion in the longitudinal section of the circumferential groove is approximately 90 degrees and the inclination angle on the outboard side is an acute angle , the bending moment load is applied to the device when the vehicle turns. Even if the stem part of the outer joint member including the plastic joint part is bent and a repeated stress occurs, the shear area of the convex part is increased to improve the static joint force and fatigue life of the plastic joint part. Can do.
(2) Furthermore, even if the plastic joint is sufficiently strong under the condition that the rotational bending external force acts, compressive residual stress is applied to the surface of the rising part from the small diameter step formed on the stem to the fitting part. Since it gave, the raise of the fatigue limit itself by quenching hardening, ie, a dynamic strength increase, can be aimed at, and the fatigue life of a stem part can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a bearing device for a drive wheel according to the present invention.
FIG. 2 (a) is a longitudinal sectional view showing an uneven portion of a hub wheel according to the present invention, and shows an iris knurl shape formed by spiral grooves inclined with respect to each other.
(B) shows the same shape as above, the axial direction, and the iris knurl shape formed by independent annular grooves.
FIG. 3 (a) is a longitudinal sectional view for explaining the shape of an annular groove constituting the uneven portion of the hub wheel according to the present invention.
(B) is a longitudinal cross-sectional view which shows embodiment of an annular groove same as the above.
(C) is a longitudinal cross-sectional view which shows other embodiment of an annular groove same as the above.
4 (a) and 4 (b) are cross-sectional views illustrating the shape of an axial groove that constitutes the concavo-convex portion of the hub wheel according to the present invention.
(C) is a cross-sectional view showing an embodiment of the same axial groove.
(D) is a cross-sectional view showing another embodiment of the same axial groove.
FIG. 5 (a) is a longitudinal sectional view showing a first embodiment of a drive wheel bearing device according to the present invention.
(B), (c) is the principal part enlarged view of (a).
FIG. 6 is a longitudinal sectional view showing a second embodiment of the drive wheel bearing device according to the present invention.
FIG. 7 is a longitudinal sectional view showing a conventional drive wheel bearing device.
FIG. 8 is an explanatory diagram showing a diameter expansion method.
[Explanation of symbols]
1, 1 '····················· Hub wheel 1a, 14a, 23a ···· Inner rolling surface 1b, 22 ······················· 2 '················· Double row rolling bearing 3, 3' ··· Wheel mounting flange 5 ·······································································・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Outside member 7a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Car body mounting flange 7b ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Outside rolling surface 8, 8 '・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inner member 9 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Rolling element 10 ·············· Retainer 11a, 11b ················································ ·························································································· ... Outer joint member 15 ... Mouse part 15a ... Track grooves 16, 16 '... ... Shoulders 17, 17 '... Stem parts 17a, 17a' ... Small diameter step parts 17b, 17b '... Fitting Portion 18 ... Hardened layer 18a ... End edge 19 ... End face 20, 20 '... Rising part 21 ... End plate 23 ... Inner ring 50 ・ ・ ・ ・ ・ ・ ・ ・ ・ Hub rings 51, 72 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ Inner rolling surface 52 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Cylindrical part 53 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Wheel mounting flange 54 ・ ・ ・ ・ ・ ・ ・ ・·············································································································・ ・ ・ ・ ・ ・ ・ ・ ・ Outer member 62 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Rolling body 63 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Car body mounting flange 64 ・ ・・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Outer rolling surface 65 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Retainer 66, 67 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Seal 70 ・・ ・ ・ ・ ・ ・ ・ ・ Constant velocity universal joint 71 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Outer joint member 73 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・Mouse part 74 ... shoulder part 75 ... Stem portion 75a ········ Small diameter step portion 75b ·········································・ Track groove 77 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Through hole 78 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ End plate 80 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ Receiving member 81 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Clamping jig 81a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Large diameter part A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ ・ ・ ・ ・ Connecting part α, β, γ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inclination angle

Claims (8)

一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、別体の内輪を前記ハブ輪の円筒部に圧入し、このハブ輪に前記等速自在継手の外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食い込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、前記周方向溝の縦断面における凸部先端角度が略90度で、かつアウトボード側の傾斜角が鋭角となる非対称形状に形成したことを特徴とする駆動車輪用軸受装置。A bearing device for a drive wheel in which a hub ring integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized, and a separate inner ring is press-fitted into the cylindrical portion of the hub ring. The stem portion formed on the outer joint member of the constant velocity universal joint is internally fitted to the hub ring, and the concave and convex portions hardened to the inner diameter of the hub wheel are formed, and the fitting portion formed on the stem portion is formed. In the drive wheel bearing device in which the hub wheel and the outer joint member are integrally plastically bonded by enlarging the diameter and biting into the concave and convex portions, the concave and convex portions are made substantially orthogonal to the circumferential grooves and the axial grooves. A bearing for a drive wheel, characterized in that it is formed of a cross groove, and is formed in an asymmetric shape in which the tip angle of the convex portion in the longitudinal section of the circumferential groove is approximately 90 degrees and the inclination angle on the outboard side is an acute angle. apparatus. 一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、前記複列の転がり軸受の一方の内側転走面を前記ハブ輪の外周に、他方の内側転走面を前記等速自在継手の外側継手部材の外周にそれぞれ形成し、前記ハブ輪に前記外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食い込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、
前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、前記周方向溝の縦断面における凸部先端角度が略90度で、かつアウトボード側の傾斜角が鋭角となる非対称形状に形成したことを特徴とする駆動車輪用軸受装置。
A bearing device for a driving wheel in which a hub wheel integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized, and one inner rolling surface of the double row rolling bearing is provided. On the outer periphery of the hub wheel, the other inner rolling surface is formed on the outer periphery of the outer joint member of the constant velocity universal joint, and the stem portion formed on the outer joint member is fitted in the hub wheel, The hub ring and the outer joint member are integrally plastically bonded by forming a hardened concave / convex portion on the inner diameter of the hub wheel and expanding the fitting portion formed on the stem portion to bite into the concave / convex portion. In the drive wheel bearing device,
The concavo-convex part is constituted by a cross groove in which a circumferential groove and an axial groove are substantially orthogonal to each other, the tip angle of the convex part in the longitudinal section of the circumferential groove is approximately 90 degrees, and the inclination angle on the outboard side is an acute angle. A bearing device for a drive wheel, characterized by being formed in an asymmetric shape.
前記軸方向溝の横断面における凸部の先端角度を略90度に形成した請求項1または2に記載の駆動車輪用軸受装置。The bearing device for a drive wheel according to claim 1 or 2, wherein a tip end angle of a convex portion in a transverse section of the axial groove is formed to be approximately 90 degrees. 前記ステム部に形成した小径段部から嵌合部への立上げ部の表面に圧縮残留応力を付与した請求項1乃至3いずれかに記載の駆動車輪用軸受装置。  The drive wheel bearing device according to any one of claims 1 to 3, wherein a compressive residual stress is applied to a surface of a rising portion from a small diameter step portion formed in the stem portion to a fitting portion. 前記圧縮残留応力を、高周波焼入れによる所定の硬化層を形成することにより付与すると共に、材料の疲労限を高めた請求項4に記載の駆動車輪用軸受装置。  The bearing device for a drive wheel according to claim 4, wherein the compressive residual stress is applied by forming a predetermined hardened layer by induction hardening and the fatigue limit of the material is increased. 前記硬化層の終縁部の表面硬さを焼戻しにより30〜45HRCの範囲に設定した請求項5に記載の駆動車輪用軸受装置。  The bearing device for a drive wheel according to claim 5, wherein the surface hardness of the end edge portion of the hardened layer is set in a range of 30 to 45 HRC by tempering. 前記嵌合部の立上げ部の表面に、ローラバニッシュまたはショットピーニングにより圧縮残留応力を形成した請求項4に記載の駆動車輪用軸受装置。  The drive wheel bearing device according to claim 4, wherein compressive residual stress is formed on the surface of the rising portion of the fitting portion by roller burnishing or shot peening. 前記圧縮残留応力を100MPa以上とした請求項4乃至7いずれかに記載の駆動車輪用軸受装置。  The drive wheel bearing device according to claim 4, wherein the compressive residual stress is 100 MPa or more.
JP2002141307A 2002-05-16 2002-05-16 Drive wheel bearing device Expired - Fee Related JP4157323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141307A JP4157323B2 (en) 2002-05-16 2002-05-16 Drive wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141307A JP4157323B2 (en) 2002-05-16 2002-05-16 Drive wheel bearing device

Publications (2)

Publication Number Publication Date
JP2003329047A JP2003329047A (en) 2003-11-19
JP4157323B2 true JP4157323B2 (en) 2008-10-01

Family

ID=29701934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141307A Expired - Fee Related JP4157323B2 (en) 2002-05-16 2002-05-16 Drive wheel bearing device

Country Status (1)

Country Link
JP (1) JP4157323B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605644B2 (en) * 2005-02-07 2011-01-05 Ntn株式会社 Rear wheel axle module
JP5140965B2 (en) * 2006-08-31 2013-02-13 株式会社ジェイテクト Rolling bearing device for wheels
US8382378B2 (en) 2006-12-27 2013-02-26 Ntn Corporation Wheel bearing device
JP5143442B2 (en) * 2007-02-09 2013-02-13 Ntn株式会社 Drive wheel bearing device
US8801294B2 (en) 2007-09-18 2014-08-12 Ntn Corporation Bearing device for a wheel
JP5701478B2 (en) * 2007-10-22 2015-04-15 Ntn株式会社 Wheel bearing device
JP5223574B2 (en) * 2008-10-01 2013-06-26 日本精工株式会社 Manufacturing method of wheel bearing rolling bearing unit
JP5826451B2 (en) * 2009-01-15 2015-12-02 Ntn株式会社 Manufacturing method of wheel bearing device
DE102009000900B4 (en) * 2009-02-16 2010-10-28 Tedrive Holding B.V. Improved rack housing press connection
FR3052496B1 (en) * 2016-06-09 2018-06-15 Peugeot Citroen Automobiles Sa SYSTEM FOR VARYING THE COMPRESSION RATE OF A THERMAL MOTOR PROVIDED WITH TRANSFER TREES

Also Published As

Publication number Publication date
JP2003329047A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3942366B2 (en) Wheel bearing device and manufacturing method thereof
US7891879B2 (en) Hub wheel of a wheel bearing apparatus and a manufacturing method thereof
JP5134340B2 (en) Wheel bearing device
JP4146308B2 (en) Wheel bearing device
JP2007062647A (en) Bearing device for driving wheel
JP4157323B2 (en) Drive wheel bearing device
JP2010137676A (en) Bearing device for drive wheel
JP4499075B2 (en) Drive wheel bearing device
JP4455182B2 (en) Wheel bearing device
JP4530291B2 (en) Method for manufacturing drive wheel bearing device
JP2007261577A5 (en)
JP4307852B2 (en) Drive wheel bearing device
JP3964721B2 (en) Drive wheel bearing device
JP5252834B2 (en) Manufacturing method of wheel bearing device
JP2007069704A (en) Bearing device for driving wheel
JP2007162826A (en) Wheel bearing device and axle module equipped therewith
JP4170046B2 (en) Drive wheel bearing device
JP2004090732A (en) Bearing device of driving wheel
JP4446336B2 (en) Wheel bearing device
JP4071965B2 (en) Drive wheel bearing device
JP3967653B2 (en) Wheel bearing device
JP4094468B2 (en) Drive wheel bearing device and manufacturing method thereof
JP2004263835A (en) Bearing device for wheel
JP2005119383A (en) Bearing device for wheel
JP2007030689A (en) Bearing device for driving wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees