JP4170046B2 - Drive wheel bearing device - Google Patents

Drive wheel bearing device Download PDF

Info

Publication number
JP4170046B2
JP4170046B2 JP2002239375A JP2002239375A JP4170046B2 JP 4170046 B2 JP4170046 B2 JP 4170046B2 JP 2002239375 A JP2002239375 A JP 2002239375A JP 2002239375 A JP2002239375 A JP 2002239375A JP 4170046 B2 JP4170046 B2 JP 4170046B2
Authority
JP
Japan
Prior art keywords
wheel
hub
convex portion
groove
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002239375A
Other languages
Japanese (ja)
Other versions
JP2004076872A (en
Inventor
仁博 小澤
光 梅木田
博幸 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2002239375A priority Critical patent/JP4170046B2/en
Priority to DE10314626A priority patent/DE10314626A1/en
Priority to US10/411,428 priority patent/US6955475B2/en
Priority to CNB031307957A priority patent/CN100506575C/en
Publication of JP2004076872A publication Critical patent/JP2004076872A/en
Application granted granted Critical
Publication of JP4170046B2 publication Critical patent/JP4170046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等、車両の駆動車輪を支持する駆動車輪用軸受装置に関するものである。
【0002】
【従来の技術】
近年、自動車の懸架装置に対して車輪を回転自在に支持する車輪用軸受装置は、燃費向上のための軽量化が進んでいる。特に、FR車の後輪、FF車の前輪、あるいは4WD車の全輪といった自動車の駆動車輪用軸受装置においては、さらに操縦安定性のため、剛性アップを図るユニット化が急速に進んでいる。
【0003】
従来の駆動車輪用軸受装置は、図15に示すように、ハブ輪50と複列の転がり軸受60と等速自在継手70とをユニット化して構成している。複列の内側転走面のうち、一方の内側転走面51をハブ輪50の外周に形成し、他方の内側転走面72を等速自在継手70の外側継手部材71の外周にそれぞれ形成している。ハブ輪50は、一端部に車輪(図示せず)を取り付けるための車輪取付フランジ53を一体に有し、この車輪取付フランジ53の円周等配位置には車輪を固定するためのハブボルト54を植設している。車輪取付フランジ寄りの外周に前記内側転走面51を形成している。
【0004】
等速自在継手70は外側継手部材71と、図示しない継手内輪、ケージ、およびトルク伝達ボールとからなる。外側継手部材71はカップ状のマウス部73と、このマウス部73の底部をなす肩部74と、この肩部74から軸方向に延びるステム部75を有し、マウス部73の内周には軸方向に延びる曲線状のトラック溝76を形成すると共に、肩部74の外周に前記内側転走面72を形成している。この肩部74にハブ輪50の円筒部52の端面を突合せた状態で、ステム部75をハブ輪50の円筒部52に内嵌している。このようにハブ輪50と外側継手部材71との軸方向の位置決めをすることにより、内側転走面51、72の溝ピッチを規定し、軸受内部すきまを設定している。また、ステム部75は、マウス部73と連通した貫通孔77を設けることにより中空としている。このため、マウス部73に充填した潤滑グリースの漏洩を防止するため、貫通孔77のマウス部73側端部にはエンドプレート78を装着している。
【0005】
複列の転がり軸受60は、外方部材61と複列の転動体62を備えている。外方部材61は外周に車体(図示せず)に取り付けるための車体取付フランジ63を一体に有し、内周には複列の外側転走面64、64を形成している。これら外側転走面64、64と、これに対向するハブ輪50の内側転走面51、および外側継手部材71の内側転走面72間に、保持器65、65によって複列の転動体62、62を転動自在に保持している。また、外方部材61の端部にはシール66、67を装着し、軸受内部に封入した潤滑グリースの漏洩と、外部からの雨水やダスト等の侵入を防止している。
【0006】
ハブ輪50の内径には硬化させた凹凸部55を形成し、ステム部75の嵌合部75bを拡径することにより、この嵌合部75bを凹凸部55に食い込ませ、外側継手部材71とハブ輪50とを一体に塑性結合している。このような拡径をプレス加工により行う場合、図16に示すように、ステム部75をハブ輪50の円筒部52に内嵌した後、受け部材80によりハブ輪50の車輪取付フランジ53の側面を支持すると共に、ハブ輪50の外径部を拘束した状態で、加締治具(ポンチ)81を貫通孔77に押し込むことにより拡径させる。この加締治具81は、ステム部75の貫通孔77の内径よりも僅かに大径に形成した大径部81aを有している(特願2001−50846号参照)。
【0007】
【発明が解決しようとする課題】
駆動車輪用軸受装置において、車両旋回時、装置に曲げモーメント荷重が負荷された場合、車輪取付フランジ53側(アウトボード側)の荷重は塑性結合部で受けることになる。この塑性結合部を含む外側継手部材71のステム部75が曲げられ、繰返し応力が発生する。こうした回転曲げ外力が作用する条件下で、塑性結合部に充分な強度を確保する必要がある。一方、この塑性結合部に充分な強度がある場合は、ステム部75に形成した小径段部75aと嵌合部75bの繋ぎ部Aが最弱部となり疲労破損する恐れがある。これは切欠き効果による応力集中が発生するためで、繋ぎ部Aの強度アップを図る必要があった。
【0008】
ここで、装置のサイズを変更せずにステム部75の肉厚を厚くすることによって強度を増大させようとすると、貫通孔77の径が小さくなってプレス加工に支障を来たすだけでなく、装置の軽量化を阻害することになり強度アップには限界がある。また、ステム部75の外径を上げて強度を増大させるには、転がり軸受の負荷容量不足等、レイアウト上の制約があり困難な場合が多い。
【0009】
本発明は、このような事情に鑑みてなされたもので、軽量・コンパクト化を達成すると共に、大きなモーメント荷重が装置に作用しても塑性結合部が充分な強度を有し、かつステム部の強度アップが図れ、耐久性のある駆動車輪用軸受装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
係る目的を達成すべく、本発明のうち請求項1記載の発明は、一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、別体の内輪を前記ハブ輪の円筒部に圧入し、このハブ輪に前記等速自在継手の外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、前記周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成した。
【0011】
このように、1〜3世代の駆動車輪用軸受装置において、車両旋回時、装置に曲げモーメント荷重が負荷され、塑性結合部を含む外側継手部材のステム部が曲げられ、繰返し応力が発生しても、凹凸部に嵌合部を充分食い込ませることができ、捩り強度と引抜き強度等の動的強度と静的強度を増大させることができると共に、一列目の凸部はステム部の嵌合部に面で接触し、塑性結合部の切欠き効果による応力集中を緩和させて装置の疲労寿命を向上させることができる。
【0012】
また、請求項2に記載の発明は、一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、前記複列の転がり軸受の一方の内側転走面を前記ハブ輪の外周に、他方の内側転走面を前記等速自在継手の外側継手部材の外周にそれぞれ形成し、前記ハブ輪に前記外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食い込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、前記周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成した。
【0013】
このような4世代の駆動車輪用軸受装置において、さらなる軽量・コンパクト化を達成すると共に、大きなモーメント荷重が装置に作用しても塑性結合部が充分な強度を有し、かつステム部の強度アップが図れ、耐久性のある駆動車輪用軸受装置を提供することができる。
【0014】
また、請求項3に記載の発明は、一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、別体の内輪を前記ハブ輪の円筒部に圧入し、この内輪の内径に硬化させた凹凸部を形成すると共に、この凹凸部に前記ハブ輪の円筒部を拡径させて食込ませることにより、前記ハブ輪と内輪とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、前記周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成した。
【0015】
このように、軸受部の内部すきまを維持した状態でハブ輪とサブユニット化した、所謂セルフリテイン形式の第3世代構造の駆動車輪用軸受装置を提供することができる。また、等速自在継手と着脱が可能となり、大きなモーメント荷重が装置に作用しても塑性結合部が充分な強度を有し、耐久性を向上させることができる。
【0016】
また、請求項4に記載の発明のように、前記ハブ輪に前記外側継手部材のステム部をセレーションを介して内嵌すると共に、これらセレーションのアウトボード側に係止溝をそれぞれ形成し、これら係止溝に有端のクリップを係合させて前記ハブ輪と外側継手部材を着脱自在に軸方向に結合するようにしたので、ワンタッチでハブ輪と等速自在継手の着脱ができ、組立分解時の作業性を向上することができ、かつ、装置の軽量・コンパクト化を達成することができる。
【0018】
好ましくは、請求項に記載の発明のように、前記凹凸部を、旋削により形成した独立した複数の環状溝とブローチ加工により形成した複数の軸方向溝とを略直交させた交叉溝で構成すると共に、この交叉溝の凸部最内径を、前記軸方向溝によって設定すれば、BPD(ビトウィンピン直径:Between Pins Diameter)測定で溝径を精度良く管理することができ、所望の凸部先端形状を確保することができる。
【0019】
さらに好ましくは、請求項に記載の発明のように、前記交叉溝の凸部先端形状を略四角錐に形成すれば、捩りおよび引抜き荷重に対して充分な強度を有し、車両旋回時に過大な曲げモーメント荷重が生じても、充分な耐久性を有する塑性結合部を得ることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明に係る駆動車輪用軸受装置の第1の実施形態を示す縦断面図である。
【0021】
この駆動車輪用軸受装置は、ハブ輪1と、複列の転がり軸受2と、等速自在継手3とをユニット化して構成している。なお、以下の説明では、車両に組み付けた状態で、車両の外側寄りとなる側をアウトボード側(図面左側)、中央寄り側をインボード側(図面右側)という。
【0022】
ハブ輪1は、アウトボード側の端部に車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、円周等配に車輪固定用のハブボルト4aを植設している。ハブ輪1の内周面には凹凸部5を形成し、熱処理によって表面に54〜64HRCの範囲の硬化層を形成している。熱処理としては、局部加熱ができ、硬化層深さの設定が比較的容易にできる高周波誘導加熱による焼入れが好適である。
【0023】
なお、凹凸部5は、図2に示すような複数列の溝を略直交させた形状を例示することができる。(a)は互いに傾斜した螺旋溝6で、(b)は軸方向溝と独立した環状溝との交叉溝6’でアヤメローレット状を形成することができる。また、凹凸部5の凸部は良好な食い込み性を確保するために、三角形状等の尖塔形状に形成する。
【0024】
複列の転がり軸受2は、外方部材7と内方部材8と複列の転動体9、9とからなる。外方部材7は外周に車体(図示せず)に取り付けるための車体取付フランジ7aを一体に有し、内周には複列の外側転走面7b、7bを形成している。一方、内方部材8は、ハブ輪1と後述する等速自在継手3の外側継手部材14を指し、外方部材7の外側転走面7b、7bに対向するアウトボード側の内側転走面1aをハブ輪1の外周に、またインボード側の内側転走面14aを外側継手部材14の外周にそれぞれ一体に形成している。複列の転動体9、9をこれら転走面7b、1aと7b、14a間にそれぞれ収容し、保持器10、10で転動自在に保持している。複列の転がり軸受2の端部にはシール11a、11bを装着し、軸受内部に封入した潤滑グリースの漏洩と、外部からの雨水やダスト等の侵入を防止している。ここで複列の転がり軸受2は転動体9、9をボールとした複列アンギュラ玉軸受を例示したが、これに限らず転動体に円すいころを使用した複列円すいころ軸受であっても良い。
【0025】
等速自在継手3は外側継手部材14と図示しない継手内輪、ケージ、およびトルク伝達ボールとを備えている。外側継手部材14はカップ状のマウス部15と、このマウス部15の底部をなす肩部16と、この肩部16から軸方向に延びるステム部17を有し、マウス部15の内周には軸方向に延びる曲線状のトラック溝15aを形成している。
【0026】
外側継手部材14を中空に形成し、この肩部16の外周には前記した内側転走面14aを形成している。また、外側継手部材14のステム部17に小径段部17aと嵌合部17bを形成している。ハブ輪1に形成したインロウ部1bをこの小径段部17aに圧入し、インロウ部1bの端面19を外側継手部材14の肩部16に突合せる。次にハブ輪1の内径に嵌合したステム部17の嵌合部17bにマンドレルを挿入・抜脱させる等、適宜な手段で嵌合部17bを拡径してハブ輪1の凹凸部5に食い込ませ、ハブ輪1と外側継手部材14とを一体に塑性結合させる。これにより、この塑性結合部はトルク伝達手段と、ハブ輪1と外側継手部材14の結合手段とを併せ持つため、従来のセレーション等のトルク伝達手段をハブ輪1や外側継手部材14に形成する必要はなく、また、締結ナット等の固定手段も不要となるため、装置の一層の軽量・コンパクト化を実現することができる。
【0027】
ここで、ハブ輪1の内径に形成した凹凸部5において、図3(a)は、前述した交叉溝6’のうち、旋削等で形成した複数の独立した環状溝12の断面形状を示す。この凸部12aの先端角度αを鋭角にすれば、拡径時の食い込み量が増し、ハブ輪1とステム部17の嵌合部17bの抜け耐力等、静的結合力は強固となる。しかし、一方、車両旋回時に過大な曲げモーメント荷重が生じた時、ハブ輪1と外側継手部材14との突き合せ部が節となって繰り返し曲げ荷重を受けることになる。こうした繰返し応力が作用した場合、せん断力を受ける凸部12aの断面積が減少するため、個々の凸部12aの疲労寿命は低下して好ましくない。逆に、凸部12aの先端角度を鈍角にすれば、拡径時の食い込む抵抗が増大して食い込み量が減り、静的結合力が低下して好ましくない。
【0028】
また、図3(b)は、交叉溝6’のうち、ブローチ加工等で形成した複数の軸方向溝13の断面形状を示す。凸部13aの先端角度βを鋭角にすれば、拡径時の食い込み量が増し、ステム部17からハブ輪1へのトルク伝達能力等、静的結合力が強固になる。しかし、一方、前述した環状溝12と同様、繰返し応力が作用した場合、せん断力を受ける凸部13aの断面積が減少するため、個々の凸部13aの疲労寿命は低下して好ましくない。逆に、凸部13aの先端角度βを鈍角にすれば、拡径時の食い込む抵抗が増大して食い込み量が減り、静的結合力が低下して好ましくない。
【0029】
本出願人は、環状溝12の凸部12aの先端角度αと、軸方向溝13の凸部13aの先端角度βをそれぞれ変更したサンプルを製作し、これらの組合せによる捩り強度(動的強度)と引抜き強度(静的強度)の試験を実施した。図4、図5にその試験結果を示す。
【0030】
これらの試験結果から、捩り強度に関しては、環状溝12の凸部12aの先端角度αは、鈍角(120°>90°>60°)に形成した方が増大し、軸方向溝13の凸部13aの先端角度βは、鋭角(60°>90°>120°)に形成した方が増大することが判った。一方、引抜き強度に関しては、凸部12aの先端角度αは、鋭角(60°>90°>120°)に形成した方が増大し、軸方向溝13の凸部13aの先端角度βは、鈍角(120°>90°>60°)に形成した方が増大することが判った。すなわち、これら環状溝12と軸方向溝13において、凸部12a、13aの先端角度α、βは、捩り強度、引抜き強度で逆の傾向を示し、捩り強度に強い先端角度の組合せにすると引抜き強度が弱くなったり、引き抜き強度に強い先端角度の組合せにすると今度は捩り強度が弱くなったりする。
【0031】
前述したように、駆動車輪用軸受装置において、このような塑性結合部には捩りと引抜き両方が作用するため、両者の強度バランスを考慮する必要がある。したがって、凸部12a、13aの先端角度α、βをそれぞれ略90°に設定することが最適である。しかし、車両によっては捩り強度を向上させた仕様、あるいは引抜き強度を向上させた仕様が要求される場合もあるため、適宜その角度を90°±30°の範囲で変更することが好ましい。
【0032】
外側継手部材14は、S53C等の炭素0.40〜0.60wt%を含む中炭素鋼、あるいは、SCR430等の肌焼き鋼で形成している。21は、中空状の外側継手部材14の内径に装着したエンドプレートで、マウス部15に封入された潤滑グリースの外部への漏洩と外部からのダスト侵入を防止している。ここで、シール11bが摺接するシールランド部から転走面14a、およびステム部17の小径段部17aに亙って表面に硬化層を形成している。硬化処理として高周波誘導加熱による焼入れが好適である。また、拡径する嵌合部17bは、鍛造後の素材表面硬さ24HRC以下の未焼入れ部とし、前記したハブ輪1の凹凸部5の表面硬さ54〜64HRCとの硬度差を30HRC以上に設定するのが好ましい。これにより、嵌合部17bが凹凸部5に容易に、かつ深く食い込み、凹凸部5の先端が潰れることなく強固に両者を塑性結合することができる。
【0033】
さらに回転曲げ外力が作用する条件下で、塑性結合部に充分強度がある場合、本出願人が実施した耐久試験等では、ステム部17に形成した小径段部17aと嵌合部17bの繋ぎ部が最弱部となり疲労破損することが検証されている。これは図6に示すように、交叉溝6’のうち、旋削等で形成した複数の独立した環状溝12の一列目の凸部12a−1を含め、二列目以降の凸部12a−2、3、…nと同一の形状、寸法に形成しているため、この一列目の凸部12a−1が拡径後のステム部17の最小径となる部位近傍に食込み、切欠き効果による応力集中が発生するためと考えられる。本実施形態では、図7に示すように、複数の独立した環状溝12の一列目の凸部12a−1を他の凸部12a−nより僅かに大径に、かつその先端部を軸方向フラットに形成している。こうした構成にすることにより、一列目の凸部12a−1はステム部17の嵌合部17bに面で接触し、切欠き効果による応力集中を緩和することができる。本出願人が実施した耐久試験では、環状溝12の一列目の凸部12a−1を、他の凸部12a−nより僅かに大径に、かつこの先端部をフラットに形成するだけで30%以上の寿命向上が認められた。
【0034】
なお、環状溝12の一列目の凸部12a−1は、嵌合部17bの拡径により食込む際の応力集中を緩和できる形状ならば、他の凸部12a−nより僅かに大径に、かつその先端部をフラットに形成するものに限らず、例えば、凸部12a−1の先端部に丸みを設けても良い。
【0035】
ハブ輪1の内径に形成した凹凸部5において、図2に示す交叉溝6’は、旋削等で形成した複数の独立した環状溝12と、ブローチ等で形成した軸方向溝13とからなっているが、この交叉溝6’は、両溝12、13の凸部12a、13aの内径が完全に一致し、図8に示すような四角錐となること、すなわち、周方向、軸方向の凸部の高さを一致させることが理想的である。しかし、実際には旋削とブローチ等の加工面が混在する構成であるため、内径寸法の管理は難しく、その製造交差の影響で完全な四角錐に形成することは難しい。
【0036】
この交叉溝6’のうち、最内径部がブローチ等で形成する軸方向溝13によって形成されるように数値設定すると、図9に示すように先端部は三角柱形状となる。ここで、図10に示すように、独立した環状溝12の軸方向の最内径をφd1、ブローチ等で形成する軸方向溝13の周方向の最内径をφd2とした場合、図9における三角柱の側面長さaは、1/2a=t×tanθ1で表すことができる(図11参照)。ただし、θ1は環状溝12の凸部12aの先端角度θの半角、t=1/2(d2−d1)である。今、凸部12aの先端角度θ=90°±30°とすると、以下の関係式が成立する。a=t=0、あるいは、1≦a/t≦√3、すなわち、aおよびtが共に0の場合は、図8に示した四角錐となり、それ以外はこの式に示された形状となる。
【0037】
このように、本実施形態では、凸部の最内径部を、常にブローチ等によって形成する軸方向溝13で設定するようにしたため、交叉溝6’からなる凹凸部5の寸法管理をBPD(ビトウィンピン直径:Between Pins Diameter)で行うことができる。
【0038】
図12は、本発明に係る駆動車輪用軸受装置の第2の実施形態を示す縦断面図である。なお、前述した第1の実施形態と異なるのは軸受部の構成のみで、その他同一部位、同一部品には同一符号を付け、その詳細な説明を省略する。この駆動車輪用軸受装置は、ハブ輪1’と複列の転がり軸受2’と等速自在継手3’とをユニット化した第3世代構造をなしている。
【0039】
ハブ輪1’は、車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、この車輪取付フランジ4の円周等配位置には車輪を固定するためのハブボルト(図示せず)を植設している。ハブ輪1’の外周にはアウトボード側の内側転走面1aとインロウ部22を形成している。このインロウ部22に別体の内輪23を圧入し、後述する外側継手部材14’の肩部16’と突合せ状態で組立てる。
【0040】
複列の転がり軸受2’は、外方部材7と内方部材8’と複列の転動体9、9を備えている。外方部材7は外周に車体(図示せず)に取り付けるための車体取付フランジ7aを一体に有し、内周には複列の外側転走面7b、7bを形成している。一方、内方部材8’は、ハブ輪1’と別体の内輪23を指し、これら外方部材7の外側転走面7b、7bに対向する複列の内側転走面1a、23aをハブ輪1と内輪23の外周にそれぞれ一体形成している。また、それぞれの転走面7b、1aと7b、23a間には、保持器10によって転動自在に保持した複列の転動体9、9を収容している。
【0041】
ハブ輪1’は、S53C等の炭素0.40〜0.60wt%を含む中炭素鋼で形成している。このハブ輪1’は、シール11aが摺接するシールランド部から内側転走面1aおよびインロウ部22に亙り、高周波焼入れによって表面を硬化処理している。一方、内輪23は、炭素0.95〜1.10wt%からなる高炭素クロム軸受鋼で形成し、芯部まで焼入れ硬化させている。
【0042】
等速自在継手3’の外側継手部材14’は、カップ状をなすマウス部15と、このマウス部15の底部になる肩部16’と、この肩部16’から軸方向に延びるステム部17’とからなっている。ステム部17’はハブ輪1のインロウ部22を圧入する小径段部17a’と嵌合部17b’からなり、この嵌合部17bはアウトボード側に開口した中空状に形成している。
【0043】
また、外側継手部材14’は、S53C等の炭素0.40〜0.60wt%を含む中炭素鋼からなる。また、前述した第1の実施形態と同様、マウス部15の内周に形成した軸方向曲線状に延びるトラック溝15aと、肩部16’からステム部17’の小径段部17a’、および小径段部17a’から嵌合部17b’への立上げ部20の表面に高周波焼入れによる硬化層を形成している。なお、嵌合部17b’は未焼入れで生のままとしている。
【0044】
ハブ輪1’のアウトボード側内径に硬化させた凹凸部5を形成し、ステム部17’の嵌合部17b’を拡径させて食い込ませ、ハブ輪1’と外側継手部材14’を一体に塑性結合している。なお、凹凸部5の交叉溝形状については、前述した第1の実施形態と同様のためその説明を省略する。
【0045】
なお、本実施形態では、第3、4世代構造を例示したが、これに限らず、装置のアウトボード側にハブ輪と外側継手部材の塑性結合部を有する構造であれば、従来の第1、2世代構造であっても良い。すなわち、それぞれの構造の特徴を損なうことなく、車両旋回時、装置に曲げモーメント荷重が負荷され、塑性結合部を含む外側継手部材のステム部が曲げられ、繰返し応力が発生しても、塑性結合部の静的、動的な強度アップを図ることができる。
【0046】
図13は、本発明に係る駆動車輪用軸受装置の第3の実施形態を示す縦断面図である。なお、前述した第2の実施形態と異なるのは塑性結合部の部位のみで、その他同一部位、同一部品には同一符号を付け、その詳細な説明を省略する。この駆動車輪用軸受装置は、ハブ輪24と複列の転がり軸受25と等速自在継手26とをユニット化した第3世代構造をなしている。
【0047】
ハブ輪24は、車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、この車輪取付フランジ4の円周等配位置には車輪を固定するためのハブボルト4aを植設している。ハブ輪24の外周にはアウトボード側の内側転走面1aとインロウ部27を、また、アウトボード側内周にはセレーション(またはスプライン)30を形成している。このインロウ部27に別体の内輪28を圧入し、後述する外側継手部材29の肩部16’と突合せ状態で組立てる。ハブ輪24のシールランド部から内側転走面1aに亙ってその表面に高周波焼入れによる硬化層を形成しているが、インロウ部27は未焼入れで生のままとしている。一方、内輪28は、炭素0.95〜1.10wt%からなる高炭素クロム軸受鋼で形成し、芯部まで焼入れ硬化させている。
【0048】
複列の転がり軸受25は、外方部材7と内方部材31と複列の転動体9、9を備えている。外方部材7は外周に車体(図示せず)に取り付けるための車体取付フランジ7aを一体に有し、内周には複列の外側転走面7b、7bを形成している。一方、内方部材31は、ハブ輪24と別体の内輪28を指し、これら外方部材7の外側転走面7b、7bに対向する複列の内側転走面1a、23aをハブ輪24と内輪28の外周にそれぞれ一体形成している。また、それぞれの転走面7b、1aと7b、23a間には、保持器10によって転動自在に保持した複列の転動体9、9を収容している。
【0049】
等速自在継手26の外側継手部材29は、カップ状をなすマウス部15と、このマウス部15の底部になる肩部16’と、この肩部16’から軸方向に延びるステム部32とからなっている。ステム部32はハブ輪24のインロウ部27を圧入する小径段部32aと結合部32bからなり、この結合部32bの外周面には、セレーション(またはスプライン)33を形成している。また、結合部32bの先端部には係止溝32cを形成し、クリップ34を装着している。
【0050】
ハブ輪24のセレーション30にステム部32のセレーション33を嵌合するとクリップ34が縮径し、そしてハブ輪24のセレーション30に形成した係止溝30aの位置にステム部32の係止溝32cが一致した時、このクリップ34が弾性復帰して両係止溝30a、32cに係合し、ハブ輪24と外側継手部材29を軸方向に結合する。クリップ34は断面が円形をなしているため、所定の軸方向荷重を負荷することにより、容易に縮径して係止溝32cに埋没し、ハブ輪24と外側継手部材29の結合を解除することができる。したがって、ハブ輪24と複列の転がり軸受25からなるサブユニットと等速自在継手26を、簡単な構成で着脱自在に軸方向に結合することができる。
【0051】
この実施形態では、図14に示すように内輪28の内径に硬化させた凹凸部35を形成し、ハブ輪24のインロウ部27を拡径させて食い込ませ、内輪28とハブ輪24を一体に塑性結合している。なお、この凹凸部35は前述した第1の実施形態と同様、旋削等で形成した複数の独立した環状溝とブローチ加工等で形成した複数の軸方向溝からなり、環状溝一列目の凸部は、インロウ部27の拡径により食込む際の応力集中を緩和できる形状に形成している。
【0052】
以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
【0053】
【発明の効果】
以上詳述したように、本発明に係る駆動車輪用軸受装置は、ハブ輪に等速自在継手の外側継手部材に形成したステム部を内嵌すると共に、ハブ輪の内径に硬化させた凹凸部を形成し、ステム部に形成した嵌合部を拡径させて凹凸部に食込ませることにより、ハブ輪と外側継手部材とを一体に塑性結合した第1〜4世代構造の駆動車輪用軸受装置において、凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成したので、車両旋回時、装置に曲げモーメント荷重が負荷され、塑性結合部を含む外側継手部材のステム部が曲げられ、繰返し応力が発生しても、凹凸部に嵌合部を充分食い込ませることでき、捩り強度と引抜き強度等の動的強度と静的強度を増大させることができると共に、一列目の凸部はステム部の嵌合部に面で接触し、塑性結合部の切欠き効果による応力集中を緩和させて装置の疲労寿命を向上させることができる。
【0054】
また、別体の内輪をハブ輪の円筒部に圧入し、この内輪の内径に硬化させた凹凸部を形成すると共に、この凹凸部にハブ輪の円筒部を拡径させて食込ませることにより、ハブ輪と内輪とを一体に塑性結合した駆動車輪用軸受装置において、凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成したので、軸受部の内部すきまを維持した状態でハブ輪とサブユニット化した、所謂セルフリテイン形式の第3世代構造の駆動車輪用軸受装置を提供することができる。また、等速自在継手と着脱が可能となり、かつ、大きなモーメント荷重が装置に作用しても塑性結合部が充分な強度を有し、耐久性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る駆動車輪用軸受装置の第1の実施形態を示す縦断面図である。
【図2】(a)は本発明に係るハブ輪の凹凸部を示す縦断面図で、互いに傾斜した螺旋溝で構成したアヤメローレット形状を示す。
(b)は同上、軸方向、および独立した環状溝で構成したアヤメローレット形状を示す。
【図3】(a)は、本発明に係るハブ輪の凹凸部を構成する環状溝を示す縦断面図である。
(b)は、同上ハブ輪の凹凸部を構成する軸方向溝を示す縦断面図である。
【図4】本発明に係るハブ輪の凹凸部を構成する環状溝と軸方向溝の凸部先端角度の違いによる捩り強度を示すグラフである。
【図5】同上、引抜き強度を示すグラフである。
【図6】従来の駆動車輪用軸受装置における塑性結合部の要部拡大断面図である。
【図7】本発明に係る駆動車輪用軸受装置における塑性結合部の要部拡大断面図である。
【図8】本発明に係る交叉溝の凸部先端部の形状を示す模式図である。
【図9】同上
【図10】(a)は、本発明に係るハブ輪の凹凸部を構成する環状溝を示す説明図である。
(b)は、同上ハブ輪の凹凸部を構成する軸方向溝を示す説明図である。
【図11】本発明に係るハブ輪の凹凸部を示す説明図である。
【図12】本発明に係る駆動車輪用軸受装置の第2の実施形態を示す縦断面図である。
【図13】本発明に係る駆動車輪用軸受装置の第3の実施形態を示す縦断面図である。
【図14】図13の要部拡大断面図である。
【図15】従来の駆動車輪用軸受装置を示す縦断面図である。
【図16】拡径方法を示す説明図である。
【符号の説明】
1、1’、24・・・・・・・・・ハブ輪
1a、14a、23a・・・・・・内側転走面
1b、22、27・・・・・・・・インロウ部
2、2’、25・・・・・・・・・複列の転がり軸受
3、3’、26・・・・・・・・・等速自在継手
4・・・・・・・・・・・・・・・車輪取付フランジ
4a・・・・・・・・・・・・・・ハブボルト
5、35・・・・・・・・・・・・凹凸部
6、6’・・・・・・・・・・・・交叉溝
7・・・・・・・・・・・・・・・外方部材
7a・・・・・・・・・・・・・・車体取付フランジ
7b・・・・・・・・・・・・・・外側転走面
8、8’、31・・・・・・・・・内方部材
9・・・・・・・・・・・・・・・転動体
10・・・・・・・・・・・・・・保持器
11a、11b・・・・・・・・・シール
12・・・・・・・・・・・・・・環状溝
12a、13a・・・・・・・・・凸部
12a−1・・・・・・・・・・・第一列目の凸部
12a−2、3、…n・・・・・・他の凸部
13・・・・・・・・・・・・・・軸方向溝
14、14’、29・・・・・・・外側継手部材
15・・・・・・・・・・・・・・マウス部
15a・・・・・・・・・・・・・トラック溝
16、16’・・・・・・・・・・肩部
17、17’、32・・・・・・・ステム部
17a、17a’、32a・・・・小径段部
17b、17b’・・・・・・・・嵌合部
19・・・・・・・・・・・・・・端面
20・・・・・・・・・・・・・・立上げ部
21・・・・・・・・・・・・・・エンドプレート
23、28・・・・・・・・・・・内輪
30、33・・・・・・・・・・・セレーション
30a、32c・・・・・・・・・係止溝
32b・・・・・・・・・・・・・結合部
34・・・・・・・・・・・・・・クリップ
50・・・・・・・・・・・・・・ハブ輪
51、72・・・・・・・・・・・内側転走面
52・・・・・・・・・・・・・・円筒部
53・・・・・・・・・・・・・・車輪取付フランジ
54・・・・・・・・・・・・・・ハブボルト
55・・・・・・・・・・・・・・凹凸部
60・・・・・・・・・・・・・・複列の転がり軸受
61・・・・・・・・・・・・・・外方部材
62・・・・・・・・・・・・・・転動体
63・・・・・・・・・・・・・・車体取付フランジ
64・・・・・・・・・・・・・・外側転走面
65・・・・・・・・・・・・・・保持器
66、67・・・・・・・・・・・シール
70・・・・・・・・・・・・・・等速自在継手
71・・・・・・・・・・・・・・外側継手部材
73・・・・・・・・・・・・・・マウス部
74・・・・・・・・・・・・・・肩部
75・・・・・・・・・・・・・・ステム部
75a・・・・・・・・・・・・・小径段部
75b・・・・・・・・・・・・・嵌合部
76・・・・・・・・・・・・・・トラック溝
77・・・・・・・・・・・・・・貫通孔
78・・・・・・・・・・・・・・エンドプレート
80・・・・・・・・・・・・・・受け部材
81・・・・・・・・・・・・・・加締治具
81a・・・・・・・・・・・・・大径部
A・・・・・・・・・・・・・・・繋ぎ部
a・・・・・・・・・・・・・・・三角柱の側面長さ
d1・・・・・・・・・・・・・・環状溝の内径
d2・・・・・・・・・・・・・・軸方向溝の内径
t・・・・・・・・・・・・・・・1/2(d1−d2)
α、β、θ・・・・・・・・・・・先端角度
θ1・・・・・・・・・・・・・・θの半角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive wheel bearing device for supporting a drive wheel of a vehicle such as an automobile.
[0002]
[Prior art]
In recent years, a wheel bearing device that rotatably supports a wheel with respect to a suspension device of an automobile has been reduced in weight for improving fuel efficiency. In particular, in drive wheel bearing devices for automobiles such as the rear wheels of FR vehicles, the front wheels of FF vehicles, or all wheels of 4WD vehicles, unitization for increasing rigidity is rapidly progressing for further steering stability.
[0003]
As shown in FIG. 15, the conventional bearing device for a drive wheel comprises a hub wheel 50, a double row rolling bearing 60, and a constant velocity universal joint 70 as a unit. Of the double-row inner rolling surfaces, one inner rolling surface 51 is formed on the outer periphery of the hub wheel 50, and the other inner rolling surface 72 is formed on the outer periphery of the outer joint member 71 of the constant velocity universal joint 70. is doing. The hub wheel 50 integrally has a wheel mounting flange 53 for mounting a wheel (not shown) at one end, and a hub bolt 54 for fixing the wheel is provided at a circumferentially equidistant position of the wheel mounting flange 53. Planted. The inner rolling surface 51 is formed on the outer periphery near the wheel mounting flange.
[0004]
The constant velocity universal joint 70 includes an outer joint member 71, a joint inner ring (not shown), a cage, and a torque transmission ball. The outer joint member 71 includes a cup-shaped mouth portion 73, a shoulder portion 74 that forms the bottom of the mouth portion 73, and a stem portion 75 that extends in the axial direction from the shoulder portion 74. A curved track groove 76 extending in the axial direction is formed, and the inner rolling surface 72 is formed on the outer periphery of the shoulder 74. The stem portion 75 is fitted into the cylindrical portion 52 of the hub wheel 50 in a state where the end surface of the cylindrical portion 52 of the hub wheel 50 is abutted against the shoulder portion 74. By positioning the hub wheel 50 and the outer joint member 71 in the axial direction in this manner, the groove pitch of the inner rolling surfaces 51 and 72 is defined, and the bearing internal clearance is set. The stem portion 75 is hollow by providing a through hole 77 communicating with the mouse portion 73. Therefore, in order to prevent leakage of the lubricating grease filled in the mouse part 73, an end plate 78 is attached to the end part of the through hole 77 on the mouse part 73 side.
[0005]
The double row rolling bearing 60 includes an outer member 61 and a double row rolling element 62. The outer member 61 integrally has a vehicle body attachment flange 63 for attachment to a vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 64 and 64 are formed on the inner periphery. Between these outer rolling surfaces 64, 64, the inner rolling surface 51 of the hub wheel 50 facing the outer rolling surfaces 64, and the inner rolling surface 72 of the outer joint member 71, double row rolling elements 62 are formed by cages 65, 65. , 62 are movably held. Further, seals 66 and 67 are attached to the end portion of the outer member 61 to prevent leakage of the lubricating grease sealed inside the bearing and intrusion of rainwater and dust from the outside.
[0006]
By forming a hardened concave and convex portion 55 on the inner diameter of the hub wheel 50 and expanding the fitting portion 75b of the stem portion 75, the fitting portion 75b is bitten into the concave and convex portion 55, and the outer joint member 71 and The hub wheel 50 is integrally plastically coupled. When such diameter expansion is performed by press working, as shown in FIG. 16, the stem portion 75 is fitted into the cylindrical portion 52 of the hub wheel 50, and then the side surface of the wheel mounting flange 53 of the hub wheel 50 is received by the receiving member 80. In the state where the outer diameter portion of the hub wheel 50 is constrained, the caulking jig (punch) 81 is pushed into the through hole 77 to expand the diameter. The caulking jig 81 has a large-diameter portion 81a formed slightly larger than the inner diameter of the through-hole 77 of the stem portion 75 (see Japanese Patent Application No. 2001-50846).
[0007]
[Problems to be solved by the invention]
In the drive wheel bearing device, when a bending moment load is applied to the device during turning of the vehicle, the load on the wheel mounting flange 53 side (outboard side) is received by the plastic coupling portion. The stem portion 75 of the outer joint member 71 including the plastic coupling portion is bent, and repeated stress is generated. It is necessary to ensure a sufficient strength in the plastic joint portion under the condition where such a rotational bending external force acts. On the other hand, if the plastic joint has sufficient strength, the connecting portion A between the small diameter step 75a and the fitting portion 75b formed in the stem portion 75 may become the weakest portion and may be fatigued. This is because stress concentration occurs due to the notch effect, and it is necessary to increase the strength of the joint A.
[0008]
Here, if the strength is increased by increasing the thickness of the stem portion 75 without changing the size of the device, the diameter of the through-hole 77 is reduced, which not only hinders the press working, but also the device. There is a limit to the increase in strength. Further, increasing the outer diameter of the stem portion 75 to increase the strength is often difficult due to layout restrictions such as insufficient load capacity of the rolling bearing.
[0009]
The present invention has been made in view of such circumstances, and achieves light weight and compactness, and the plastic coupling portion has sufficient strength even when a large moment load acts on the apparatus, and the stem portion An object of the present invention is to provide a bearing device for a drive wheel that can increase strength and is durable.
[0010]
[Means for Solving the Problems]
In order to achieve such an object, the invention according to claim 1 of the present invention is a bearing for a drive wheel in which a hub wheel, a constant velocity universal joint, and a double row rolling bearing which have a wheel mounting flange integrally formed at one end are unitized. A separate inner ring is press-fitted into the cylindrical portion of the hub ring, and a stem portion formed on the outer joint member of the constant velocity universal joint is fitted into the hub ring, and the inner diameter of the hub ring is set. For a drive wheel in which the hub wheel and the outer joint member are integrally plastically bonded by forming a hardened concave and convex portion, enlarging the fitting portion formed in the stem portion and biting into the concave and convex portion In the bearing device, the concavo-convex portion is formed by a cross groove in which a circumferential groove and an axial groove are substantially orthogonal to each other, and the tip angle of the convex portion of the cross groove is formed to be approximately 90 degrees . Make the first row of protrusions slightly lower than the protrusions of the other circumferential grooves. While formed, to form a surface with a flat surface or rounded in the axial direction of the tip.
[0011]
Thus, in the first to third generation drive wheel bearing devices, when the vehicle turns, a bending moment load is applied to the device, the stem portion of the outer joint member including the plastic coupling portion is bent, and repeated stress is generated. In addition, the fitting part can sufficiently penetrate into the uneven part, and dynamic strength and static strength such as torsional strength and pull-out strength can be increased, and the convex part in the first row is the fitting part of the stem part. in contact with the surface, thereby relaxing the stress concentration due to the notch effect of the plastic coupling portion can be improved fatigue life of the device.
[0012]
The invention according to claim 2 is a drive wheel bearing device in which a hub wheel integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized. One inner rolling surface of the rolling bearing is formed on the outer periphery of the hub wheel, and the other inner rolling surface is formed on the outer periphery of the outer joint member of the constant velocity universal joint, and the hub wheel is formed on the outer joint member. The hub is formed by internally fitting the formed stem portion, forming a hardened concave and convex portion on the inner diameter of the hub wheel, and enlarging the fitting portion formed on the stem portion to bite into the concave and convex portion. In a bearing device for a drive wheel in which a wheel and an outer joint member are integrally plastically coupled, the uneven portion is formed by a cross groove in which a circumferential groove and an axial groove are substantially orthogonal to each other, and a tip angle of a convex portion of the cross groove the thereby formed substantially 90 degrees, the circumferential groove The protrusions of the first row, thereby forming slightly lower than the convex portion of the other of the circumferential groove, to form a surface with a flat surface or rounded in the axial direction of the tip.
[0013]
In such a 4th generation drive wheel bearing device, it is possible to achieve further weight reduction and compactness, and the plastic joint has sufficient strength even when a large moment load is applied to the device, and the strength of the stem is increased. Therefore, a durable drive wheel bearing device can be provided.
[0014]
The invention according to claim 3 is a drive wheel bearing device in which a hub wheel integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized. The inner ring is press-fitted into the cylindrical portion of the hub ring, and a concave / convex portion hardened on the inner diameter of the inner ring is formed, and the cylindrical portion of the hub ring is expanded into the concave / convex portion so that the hub is encroached. In a bearing device for a drive wheel in which a ring and an inner ring are integrally plastically connected, the uneven portion is formed by a cross groove in which a circumferential groove and an axial groove are substantially orthogonal to each other, and the tip angle of the convex portion of the cross groove is approximately In addition to forming at 90 degrees, the convex portion of the first row of the circumferential grooves is formed slightly lower than the convex portions of the other circumferential grooves, and a flat surface or rounded surface in the axial direction of the tip portion thereof. A surface was formed.
[0015]
In this way, a so-called self-retained third generation structure drive wheel bearing device can be provided which is formed as a subunit with the hub wheel while maintaining the internal clearance of the bearing portion. In addition, it can be attached to and detached from the constant velocity universal joint, and even if a large moment load acts on the apparatus, the plastic coupling portion has sufficient strength, and durability can be improved.
[0016]
Further, as in the invention described in claim 4, the stem portion of the outer joint member is fitted into the hub wheel via a serration, and a locking groove is formed on the outboard side of the serration. The hub ring and the outer joint member are detachably coupled in the axial direction by engaging a clip with an end in the locking groove, so that the hub ring and the constant velocity universal joint can be attached and detached with one touch. Workability at the time can be improved, and the device can be reduced in weight and size.
[0018]
Preferably, as in the invention described in claim 5 , the concavo-convex portion is constituted by a cross groove in which a plurality of independent annular grooves formed by turning and a plurality of axial grooves formed by broaching are substantially orthogonal to each other. In addition, if the inner diameter of the convex portion of the cross groove is set by the axial groove, the groove diameter can be accurately controlled by BPD (Between Pins Diameter) measurement, and the desired convex tip shape Can be secured.
[0019]
More preferably, as in the invention described in claim 6 , if the tip of the convex part of the crossing groove is formed in a substantially quadrangular pyramid, it has sufficient strength against torsion and pull-out load, and is excessive when the vehicle turns. Even if a bending moment load is generated, a plastic joint having sufficient durability can be obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a first embodiment of a drive wheel bearing device according to the present invention.
[0021]
This drive wheel bearing device comprises a hub wheel 1, a double row rolling bearing 2 and a constant velocity universal joint 3 as a unit. In the following description, the side closer to the outside of the vehicle in the state assembled to the vehicle is referred to as the outboard side (left side in the drawing), and the side closer to the center is referred to as the inboard side (right side in the drawing).
[0022]
The hub wheel 1 is integrally provided with a wheel mounting flange 4 for mounting a wheel (not shown) at an end portion on the outboard side, and hub bolts 4a for fixing the wheel are planted on the circumference of the circumference. Concave and convex portions 5 are formed on the inner peripheral surface of the hub wheel 1, and a hardened layer in the range of 54 to 64 HRC is formed on the surface by heat treatment. As the heat treatment, local heating is preferable, and quenching by high-frequency induction heating that can set the hardened layer depth relatively easily is preferable.
[0023]
In addition, the uneven | corrugated | grooved part 5 can illustrate the shape which made the groove | channel of several rows substantially orthogonal as shown in FIG. (A) is a spiral groove 6 inclined with respect to each other, and (b) is an intersecting groove 6 ′ of an annular groove independent of an axial groove and can form an iris knurl. Moreover, the convex part of the uneven part 5 is formed in a spire shape such as a triangular shape in order to ensure good bite.
[0024]
The double row rolling bearing 2 includes an outer member 7, an inner member 8, and double row rolling elements 9 and 9. The outer member 7 integrally has a vehicle body mounting flange 7a for mounting to the vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 7b and 7b are formed on the inner periphery. On the other hand, the inner member 8 refers to the hub wheel 1 and the outer joint member 14 of the constant velocity universal joint 3 described later, and the inner rolling surface on the outboard side facing the outer rolling surfaces 7b, 7b of the outer member 7. 1 a is integrally formed on the outer periphery of the hub wheel 1, and the inner rolling surface 14 a on the inboard side is integrally formed on the outer periphery of the outer joint member 14. Double row rolling elements 9, 9 are accommodated between the rolling surfaces 7b, 1a and 7b, 14a, respectively, and held by the cages 10, 10 so as to be freely rollable. Seals 11a and 11b are attached to the ends of the double-row rolling bearing 2 to prevent leakage of lubricating grease sealed inside the bearing and intrusion of rainwater or dust from the outside. Here, the double-row rolling bearing 2 is exemplified as a double-row angular ball bearing in which the rolling elements 9 and 9 are balls. However, the double-row rolling bearing 2 is not limited to this and may be a double-row tapered roller bearing using a tapered roller as the rolling element. .
[0025]
The constant velocity universal joint 3 includes an outer joint member 14, a joint inner ring, a cage, and a torque transmission ball (not shown). The outer joint member 14 has a cup-shaped mouth portion 15, a shoulder portion 16 that forms the bottom portion of the mouth portion 15, and a stem portion 17 that extends in the axial direction from the shoulder portion 16. A curved track groove 15a extending in the axial direction is formed.
[0026]
The outer joint member 14 is formed in a hollow shape, and the inner rolling surface 14 a described above is formed on the outer periphery of the shoulder portion 16. Further, a small diameter step portion 17 a and a fitting portion 17 b are formed in the stem portion 17 of the outer joint member 14. The inrow portion 1b formed on the hub wheel 1 is press-fitted into the small-diameter step portion 17a, and the end surface 19 of the inrow portion 1b is abutted against the shoulder portion 16 of the outer joint member 14. Next, the fitting portion 17b is expanded in diameter by an appropriate means such as inserting / removing the mandrel into / from the fitting portion 17b of the stem portion 17 fitted to the inner diameter of the hub wheel 1 to form the uneven portion 5 of the hub wheel 1. The hub wheel 1 and the outer joint member 14 are integrally plastically joined. Thereby, since this plastic coupling part has both the torque transmission means and the coupling means for the hub wheel 1 and the outer joint member 14, it is necessary to form torque transmission means such as conventional serrations in the hub wheel 1 and the outer joint member 14. In addition, since fixing means such as a fastening nut is not required, the apparatus can be further reduced in weight and size.
[0027]
Here, in the concavo-convex portion 5 formed on the inner diameter of the hub wheel 1, FIG. 3A shows a cross-sectional shape of a plurality of independent annular grooves 12 formed by turning or the like among the cross grooves 6 ′ described above. When the tip angle α of the convex portion 12a is made acute, the amount of biting when the diameter is expanded is increased, and the static coupling force such as the pull-out resistance of the fitting portion 17b of the hub wheel 1 and the stem portion 17 becomes strong. However, on the other hand, when an excessive bending moment load is generated during turning of the vehicle, the butted portion between the hub wheel 1 and the outer joint member 14 becomes a node and repeatedly receives the bending load. When such a repeated stress is applied, the cross-sectional area of the convex portion 12a that receives a shearing force is reduced, so that the fatigue life of each convex portion 12a is not preferable. On the other hand, if the tip angle of the convex portion 12a is made obtuse, the resistance to bite at the time of diameter expansion is increased, the amount of bite is reduced, and the static coupling force is lowered, which is not preferable.
[0028]
FIG. 3B shows a cross-sectional shape of a plurality of axial grooves 13 formed by broaching or the like in the cross groove 6 ′. If the tip angle β of the convex portion 13a is set to an acute angle, the amount of biting at the time of diameter expansion increases, and the static coupling force such as the torque transmission capability from the stem portion 17 to the hub wheel 1 becomes strong. However, similarly to the above-described annular groove 12, when a repeated stress is applied, the cross-sectional area of the convex portion 13 a that receives a shearing force is decreased, so that the fatigue life of each convex portion 13 a is not preferable. On the other hand, if the tip angle β of the convex portion 13a is made obtuse, the resistance to bite at the time of diameter expansion increases, the amount of bite decreases, and the static coupling force decreases, which is not preferable.
[0029]
The applicant manufactured samples in which the tip angle α of the convex portion 12a of the annular groove 12 and the tip angle β of the convex portion 13a of the axial groove 13 were changed, and the torsional strength (dynamic strength) obtained by combining these samples. And pull-out strength (static strength) test. The test results are shown in FIGS.
[0030]
From these test results, with respect to torsional strength, the tip angle α of the convex portion 12a of the annular groove 12 increases when it is formed at an obtuse angle (120 °> 90 °> 60 °), and the convex portion of the axial groove 13 It has been found that the tip angle β of 13a increases when it is formed at an acute angle (60 °> 90 °> 120 °). On the other hand, with respect to the pulling strength, the tip angle α of the convex portion 12a is increased when formed at an acute angle (60 °> 90 °> 120 °), and the tip angle β of the convex portion 13a of the axial groove 13 is an obtuse angle. It was found that the film formed at (120 °> 90 °> 60 °) increased. That is, in the annular groove 12 and the axial groove 13, the tip angles α and β of the convex portions 12 a and 13 a show opposite tendencies in torsional strength and pullout strength. If the combination of the tip angle is strong or the tip angle is strong, the torsional strength will be weakened.
[0031]
As described above, in the drive wheel bearing device, both twisting and pulling out act on such a plastic coupling portion, and it is necessary to consider the strength balance between them. Therefore, it is optimal to set the tip angles α and β of the convex portions 12a and 13a to approximately 90 °, respectively. However, depending on the vehicle, there are cases where specifications with improved torsional strength or specifications with improved pullout strength are required, so it is preferable to change the angle within a range of 90 ° ± 30 ° as appropriate.
[0032]
The outer joint member 14 is made of medium carbon steel containing 0.40 to 0.60 wt% of carbon such as S53C, or case-hardened steel such as SCR430. Reference numeral 21 denotes an end plate attached to the inner diameter of the hollow outer joint member 14 to prevent leakage of the lubricating grease sealed in the mouth portion 15 to the outside and intrusion of dust from the outside. Here, a hardened layer is formed on the surface from the seal land portion in sliding contact with the seal 11 b to the rolling surface 14 a and the small diameter step portion 17 a of the stem portion 17. Quenching by high frequency induction heating is suitable as the curing treatment. Moreover, the fitting part 17b whose diameter is expanded is an unquenched part with a material surface hardness of 24 HRC or less after forging, and the hardness difference between the surface hardness 54 to 64 HRC of the uneven part 5 of the hub wheel 1 is 30 HRC or more. It is preferable to set. Thereby, the fitting part 17b can bite into the uneven | corrugated | grooved part 5 easily and deeply, and both can be firmly plastic-bonded without the front-end | tip of the uneven | corrugated | grooved part 5 being crushed.
[0033]
Further, when the plastic joint portion has sufficient strength under the condition that the rotational bending external force acts, in the durability test conducted by the present applicant, the joint portion between the small diameter step portion 17a formed on the stem portion 17 and the fitting portion 17b. Has been verified to become the weakest part and fatigue failure. As shown in FIG. 6, this includes the convex portion 12a-2 in the second and subsequent rows, including the convex portion 12a-1 in the first row of the plurality of independent annular grooves 12 formed by turning or the like in the cross groove 6 '. 3,... N are formed in the same shape and dimensions, so that the convex portion 12a-1 in the first row bites into the vicinity of the minimum diameter of the stem portion 17 after the diameter expansion, and stress due to the notch effect This is thought to be due to concentration. In the present embodiment, as shown in FIG. 7, the convex portions 12a-1 in the first row of the plurality of independent annular grooves 12 have a slightly larger diameter than the other convex portions 12a-n, and the tip portions thereof are axially arranged. It is flat. By adopting such a configuration, the convex portion 12a-1 in the first row contacts the fitting portion 17b of the stem portion 17 on the surface, and stress concentration due to the notch effect can be reduced. In the durability test conducted by the present applicant, the convex portion 12a-1 in the first row of the annular groove 12 is slightly larger in diameter than the other convex portions 12a-n, and this tip portion is formed flat. % Life improvement was recognized.
[0034]
In addition, if the convex part 12a-1 of the 1st line of the annular groove 12 is a shape which can ease the stress concentration at the time of biting in by the diameter expansion of the fitting part 17b, it will be slightly larger diameter than the other convex part 12a-n. And it is not restricted to what forms the front-end | tip part flat, For example, you may provide roundness in the front-end | tip part of convex part 12a-1.
[0035]
In the concavo-convex portion 5 formed on the inner diameter of the hub wheel 1, the cross groove 6 ′ shown in FIG. 2 includes a plurality of independent annular grooves 12 formed by turning or the like, and an axial groove 13 formed by a broach or the like. However, the intersecting groove 6 ′ has the same inner diameter of the convex portions 12 a and 13 a of both the grooves 12 and 13 and forms a quadrangular pyramid as shown in FIG. 8, that is, convex in the circumferential direction and the axial direction. Ideally, the heights of the parts should match. However, since it is a configuration in which machining surfaces such as turning and broach are mixed, it is difficult to manage the inner diameter, and it is difficult to form a complete quadrangular pyramid due to the influence of the manufacturing intersection.
[0036]
When a numerical value is set so that the innermost diameter portion of the cross groove 6 ′ is formed by the axial groove 13 formed by a broach or the like, the tip portion has a triangular prism shape as shown in FIG. Here, as shown in FIG. 10, when the axial innermost diameter of the independent annular groove 12 is φd1, and the circumferential innermost diameter of the axial groove 13 formed by a broach or the like is φd2, the triangular prism in FIG. The side length a can be represented by 1 / 2a = t × tan θ1 (see FIG. 11). However, (theta) 1 is a half angle of the front-end | tip angle (theta) of the convex part 12a of the annular groove 12, and is t = 1/2 (d2-d1). Assuming that the tip angle θ of the convex portion 12a is 90 ° ± 30 °, the following relational expression is established. When a = t = 0 or 1 ≦ a / t ≦ √3, that is, when both a and t are 0, the quadrangular pyramid shown in FIG. 8 is obtained, and otherwise, the shape shown in this equation is obtained. .
[0037]
Thus, in this embodiment, since the innermost diameter portion of the convex portion is always set by the axial groove 13 formed by a broach or the like, the dimension management of the concave and convex portion 5 formed by the cross groove 6 ′ is controlled by BPD (Bitwin pin). Diameter: Between Pins Diameter).
[0038]
FIG. 12 is a longitudinal sectional view showing a second embodiment of the drive wheel bearing device according to the present invention. Note that only the configuration of the bearing portion is different from the first embodiment described above, and the same parts and the same parts are denoted by the same reference numerals, and detailed description thereof is omitted. This drive wheel bearing device has a third generation structure in which a hub wheel 1 ', a double row rolling bearing 2' and a constant velocity universal joint 3 'are unitized.
[0039]
The hub wheel 1 ′ has a wheel mounting flange 4 for mounting a wheel (not shown) integrally, and a hub bolt (not shown) for fixing the wheel at a circumferentially equidistant position of the wheel mounting flange 4. ). On the outer periphery of the hub wheel 1 ′, an inner rolling surface 1 a on the outboard side and an in-row portion 22 are formed. A separate inner ring 23 is press-fitted into the in-row part 22 and assembled in a butted state with a shoulder part 16 'of an outer joint member 14' to be described later.
[0040]
The double row rolling bearing 2 ′ includes an outer member 7, an inner member 8 ′, and double row rolling elements 9 and 9. The outer member 7 integrally has a vehicle body mounting flange 7a for mounting to the vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 7b and 7b are formed on the inner periphery. On the other hand, the inner member 8 ′ indicates the inner ring 23 that is separate from the hub wheel 1 ′, and the double-row inner rolling surfaces 1a, 23a facing the outer rolling surfaces 7b, 7b of the outer member 7 are hubs. The ring 1 and the inner ring 23 are integrally formed on the outer periphery. In addition, between the respective rolling surfaces 7b, 1a and 7b, 23a, double row rolling elements 9, 9 which are movably held by the cage 10 are accommodated.
[0041]
The hub wheel 1 ′ is made of medium carbon steel containing 0.40 to 0.60 wt% of carbon such as S53C. The hub wheel 1 ′ is hardened by induction hardening from the seal land portion where the seal 11 a is in sliding contact to the inner rolling surface 1 a and the in-row portion 22. On the other hand, the inner ring 23 is made of high carbon chromium bearing steel made of carbon 0.95 to 1.10 wt%, and is hardened and hardened to the core.
[0042]
The outer joint member 14 ′ of the constant velocity universal joint 3 ′ includes a cup-shaped mouth portion 15, a shoulder portion 16 ′ serving as a bottom portion of the mouth portion 15, and a stem portion 17 extending from the shoulder portion 16 ′ in the axial direction. It's made up of. The stem portion 17 'includes a small-diameter step portion 17a' for press-fitting the in-row portion 22 of the hub wheel 1 and a fitting portion 17b '. The fitting portion 17b is formed in a hollow shape opened to the outboard side.
[0043]
The outer joint member 14 'is made of medium carbon steel containing 0.40 to 0.60 wt% of carbon such as S53C. Similarly to the first embodiment described above, the track groove 15a formed on the inner periphery of the mouse portion 15 and extending in the shape of an axial curve, the small diameter step portion 17a ′ of the stem portion 17 ′ from the shoulder portion 16 ′, and the small diameter A hardened layer is formed by induction hardening on the surface of the rising portion 20 from the stepped portion 17a ′ to the fitting portion 17b ′. In addition, fitting part 17b 'is unhardened and is left raw.
[0044]
The hardened uneven portion 5 is formed on the inner diameter on the outboard side of the hub wheel 1 ′, and the fitting portion 17 b ′ of the stem portion 17 ′ is expanded to bite in, so that the hub wheel 1 ′ and the outer joint member 14 ′ are integrated. Is plastically bonded. The cross groove shape of the concavo-convex portion 5 is the same as in the first embodiment described above, and a description thereof is omitted.
[0045]
In the present embodiment, the third and fourth generation structures have been exemplified. However, the present invention is not limited to this, and any conventional first structure can be used as long as the structure has the hub wheel and the plastic coupling portion of the outer joint member on the outboard side of the apparatus. A two-generation structure may be used. In other words, without damaging the characteristics of each structure, even when the vehicle is turning, bending moment load is applied to the device, the stem part of the outer joint member including the plastic coupling part is bent, and even if repeated stress occurs, the plastic coupling The static and dynamic strength of the part can be increased.
[0046]
FIG. 13: is a longitudinal cross-sectional view which shows 3rd Embodiment of the bearing apparatus for drive wheels which concerns on this invention. Note that the second embodiment is different from the second embodiment only in the portion of the plastic coupling portion, and the same reference numerals are given to the other same portions and the same parts, and detailed description thereof is omitted. This drive wheel bearing device has a third generation structure in which a hub wheel 24, a double row rolling bearing 25, and a constant velocity universal joint 26 are unitized.
[0047]
The hub wheel 24 integrally has a wheel mounting flange 4 for mounting a wheel (not shown), and a hub bolt 4a for fixing the wheel is implanted in a circumferentially equidistant position of the wheel mounting flange 4. ing. On the outer periphery of the hub wheel 24, an inner rolling surface 1a and an inrow portion 27 on the outboard side are formed, and a serration (or spline) 30 is formed on the inner periphery of the outboard side. A separate inner ring 28 is press-fitted into the in-row portion 27 and assembled in a butted state with a shoulder portion 16 ′ of an outer joint member 29 described later. A hardened layer is formed on the surface from the seal land portion of the hub wheel 24 to the inner rolling surface 1a by induction hardening, but the in-row portion 27 is left uncured and raw. On the other hand, the inner ring 28 is formed of a high carbon chromium bearing steel made of carbon 0.95 to 1.10 wt%, and is hardened and hardened to the core.
[0048]
The double-row rolling bearing 25 includes an outer member 7, an inner member 31, and double-row rolling elements 9 and 9. The outer member 7 integrally has a vehicle body mounting flange 7a for mounting to the vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 7b and 7b are formed on the inner periphery. On the other hand, the inner member 31 refers to the inner ring 28 that is separate from the hub wheel 24, and the double-row inner rolling surfaces 1 a and 23 a facing the outer rolling surfaces 7 b and 7 b of the outer member 7 are connected to the hub wheel 24. And the inner ring 28 are integrally formed on the outer periphery. In addition, between the respective rolling surfaces 7b, 1a and 7b, 23a, double row rolling elements 9, 9 which are movably held by the cage 10 are accommodated.
[0049]
The outer joint member 29 of the constant velocity universal joint 26 includes a cup-shaped mouth portion 15, a shoulder portion 16 ′ serving as a bottom portion of the mouth portion 15, and a stem portion 32 extending in the axial direction from the shoulder portion 16 ′. It has become. The stem portion 32 includes a small-diameter step portion 32a for press-fitting the in-row portion 27 of the hub wheel 24 and a coupling portion 32b. A serration (or spline) 33 is formed on the outer peripheral surface of the coupling portion 32b. Further, a locking groove 32c is formed at the tip of the coupling portion 32b, and a clip 34 is attached.
[0050]
When the serration 33 of the stem portion 32 is fitted to the serration 30 of the hub wheel 24, the clip 34 is reduced in diameter, and the locking groove 32 c of the stem portion 32 is formed at the position of the locking groove 30 a formed in the serration 30 of the hub wheel 24. When they match, the clip 34 is elastically restored and engages both the locking grooves 30a and 32c, thereby connecting the hub wheel 24 and the outer joint member 29 in the axial direction. Since the cross section of the clip 34 is circular, when the predetermined axial load is applied, the clip 34 is easily reduced in diameter and buried in the locking groove 32c, and the coupling between the hub wheel 24 and the outer joint member 29 is released. be able to. Therefore, the subunit formed of the hub wheel 24 and the double row rolling bearing 25 and the constant velocity universal joint 26 can be detachably coupled in the axial direction with a simple configuration.
[0051]
In this embodiment, as shown in FIG. 14, the hardened concave / convex portion 35 is formed on the inner diameter of the inner ring 28, the inrow portion 27 of the hub ring 24 is expanded and bitten, and the inner ring 28 and the hub ring 24 are integrated. It is plastically connected. In addition, this uneven | corrugated | grooved part 35 consists of several independent annular grooves formed by turning etc. and several axial grooves formed by broaching etc. similarly to 1st Embodiment mentioned above, and the convex part of the annular groove 1st row | line | column Is formed in a shape that can relieve stress concentration when encroaching by expanding the diameter of the in-row portion 27.
[0052]
The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.
[0053]
【The invention's effect】
As described above in detail, the bearing device for a drive wheel according to the present invention has a stem portion formed on an outer joint member of a constant velocity universal joint in a hub wheel and an uneven portion hardened to the inner diameter of the hub wheel. And a hub for a drive wheel having a first to fourth generation structure in which the hub wheel and the outer joint member are integrally plastically joined by expanding the diameter of the fitting portion formed in the stem portion and causing the fitting portion to dig into the uneven portion. In the apparatus, the concavo-convex portion is constituted by a cross groove in which the circumferential groove and the axial groove are substantially orthogonal to each other, the tip angle of the convex portion of the cross groove is formed at about 90 degrees, and the first row of the circumferential grooves Is formed slightly lower than that of other circumferential grooves, and a flat or rounded surface is formed in the axial direction of the tip , so that the bending moment load is applied to the device when the vehicle turns. And the stem portion of the outer joint member including the plastic joint is bent. Be repeated stress is generated, be sufficiently bite to be a fitting portion to the concave-convex portion, it is possible to increase the dynamic strength and static strength such as torsional strength and pull-out strength, the convex portion of the first row is the stem parts in contact with the surface in the fitting portion of, by stress concentration due to the notch effect of the plastic coupling portion can be improved fatigue life of the device.
[0054]
In addition, by press-fitting a separate inner ring into the cylindrical part of the hub ring and forming a concave / convex part cured on the inner diameter of the inner ring, the cylindrical part of the hub ring is expanded into the concave / convex part and bitten. In the drive wheel bearing device in which the hub wheel and the inner ring are integrally plastically coupled, the uneven portion is formed by a cross groove in which the circumferential groove and the axial groove are substantially orthogonal to each other, and the tip angle of the convex portion of the cross groove is determined. The convex portion of the first row of the circumferential grooves is formed slightly lower than the convex portions of the other circumferential grooves, and is flat or round in the axial direction of the tip portion. Since a certain surface is formed, it is possible to provide a so-called self-retained third-generation structure drive wheel bearing device that is formed as a subunit with the hub wheel while maintaining the internal clearance of the bearing portion. In addition, it can be attached to and detached from the constant velocity universal joint, and even if a large moment load acts on the apparatus, the plastic coupling portion has sufficient strength, and durability can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a bearing device for a drive wheel according to the present invention.
FIG. 2 (a) is a longitudinal sectional view showing an uneven portion of a hub wheel according to the present invention, and shows an iris knurl shape formed by spiral grooves inclined with respect to each other.
(B) shows the same shape as above, the axial direction, and the iris knurl shape formed by independent annular grooves.
FIG. 3 (a) is a longitudinal sectional view showing an annular groove constituting the uneven portion of the hub wheel according to the present invention.
(B) is a longitudinal cross-sectional view which shows the axial direction groove | channel which comprises the uneven | corrugated | grooved part of a hub ring same as the above.
FIG. 4 is a graph showing the torsional strength due to the difference in the tip angle of the convex part of the annular groove and the axial groove constituting the uneven part of the hub wheel according to the present invention.
FIG. 5 is a graph showing the pulling strength.
FIG. 6 is an enlarged cross-sectional view of a main part of a plastic coupling portion in a conventional drive wheel bearing device.
FIG. 7 is an enlarged cross-sectional view of a main part of a plastic coupling portion in the drive wheel bearing device according to the present invention.
FIG. 8 is a schematic diagram showing the shape of the tip of the convex portion of the cross groove according to the present invention.
[Fig. 9] Fig. 10 (a) is an explanatory view showing an annular groove constituting the uneven portion of the hub wheel according to the present invention.
(B) is explanatory drawing which shows the axial direction groove | channel which comprises the uneven | corrugated | grooved part of a hub ring same as the above.
FIG. 11 is an explanatory view showing an uneven portion of the hub wheel according to the present invention.
FIG. 12 is a longitudinal sectional view showing a second embodiment of the drive wheel bearing device according to the present invention.
FIG. 13 is a longitudinal sectional view showing a third embodiment of the drive wheel bearing device according to the present invention.
14 is an enlarged cross-sectional view of a main part of FIG.
FIG. 15 is a longitudinal sectional view showing a conventional drive wheel bearing device.
FIG. 16 is an explanatory diagram showing a diameter expansion method.
[Explanation of symbols]
1, 1 ′, 24... Hub wheels 1 a, 14 a, 23 a... Inner rolling surfaces 1 b, 22, 27. ', 25 ··········· Double row rolling bearings 3, 3', 26 ······································································・ ・ Wheel mounting flange 4a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Hub bolts 5, 35 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Uneven portions 6, 6 '・ ・ ・ ・ ・ ・ ・ ・·············································· Outer member 7a ... outside rolling surface 8, 8 ', 31 ... inner member 9 ... rolling element 10・ ・ ・ ・ ・ ・ ・ ・ Retainer 11a, 11b ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Seal 12 ・ ・··········· annular grooves 12a, 13a ·································································· 2, 3, ... n ··· Other convex portion 13 ········································ Axial grooves 14, 14 ', 29 15 ............ Mouse part 15a ............ Track groove 16, 16 '............ Shoulder part 17 , 17 ′, 32... Stem portions 17a, 17a ′, 32a... Small diameter step portions 17b, 17b ′. ······· End face 20 ···································································· End plates 23, 28 .... Inner ring 30, 33 ... Serration 0a, 32c ············· Locking groove 32b ···························································・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Hub wheels 51, 72 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inner rolling surface 52 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Cylinder part 53・ ・ ・ ・ ・ ・ ・ ・ ・ Wheel mounting flange 54 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Hub bolt 55 ・ ・ ・ ・ ・ ・ ・ ・ ・ Uneven portion 60 ... Double row rolling bearing 61 ... Outer member 62 ... ... Rolling body 63 ......... Car body mounting flange 64 ......... Outer rolling surface 65 ...・ ・ ・ ・ ・ ・ ・ Retainer 66, 67 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Seal 70 ··········· Constant velocity universal joint 71 ···················································· ... shoulder part 75 ... stem part 75a ... small diameter step part 75b ·········································································· through hole 78 ... End plate 80 ... Receiving member 81 ... Fastening jig 81a ... Large diameter part A ... ··· Triangular prism side length d1 ··········· Inner diameter d2 of annular groove・ ・ ・ ・ Inner diameter t of axial groove ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 1/2 (d1-d2)
α, β, θ ······· Tip angle θ1 ··········· Half angle of θ

Claims (6)

一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、別体の内輪を前記ハブ輪の円筒部に圧入し、このハブ輪に前記等速自在継手の外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、前記周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成したことを特徴とする駆動車輪用軸受装置。A bearing device for a drive wheel in which a hub ring integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized, and a separate inner ring is press-fitted into the cylindrical portion of the hub ring. The stem portion formed on the outer joint member of the constant velocity universal joint is internally fitted to the hub ring, and the concave and convex portions hardened to the inner diameter of the hub wheel are formed, and the fitting portion formed on the stem portion is formed. In the drive wheel bearing device in which the hub wheel and the outer joint member are integrally plastically bonded by enlarging the diameter and biting into the concave and convex portions, the concave and convex portions are made substantially perpendicular to the circumferential grooves and the axial grooves. The tip angle of the convex portion of the cross groove is approximately 90 degrees, and the convex portion of the first row of the circumferential grooves is slightly smaller than the convex portions of the other circumferential grooves. With a flat surface or roundness in the axial direction of its tip Driving wheel bearing apparatus characterized by forming a certain plane. 一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、前記複列の転がり軸受の一方の内側転走面を前記ハブ輪の外周に、他方の内側転走面を前記等速自在継手の外側継手部材の外周にそれぞれ形成し、前記ハブ輪に前記外側継手部材に形成したステム部を内嵌すると共に、前記ハブ輪の内径に硬化させた凹凸部を形成し、前記ステム部に形成した嵌合部を拡径させて前記凹凸部に食い込ませることにより、前記ハブ輪と外側継手部材とを一体に塑性結合した駆動車輪用軸受装置において、
前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、前記周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成したことを特徴とする駆動車輪用軸受装置。
A bearing device for a driving wheel in which a hub wheel integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized, and one inner rolling surface of the double row rolling bearing is provided. On the outer periphery of the hub wheel, the other inner rolling surface is formed on the outer periphery of the outer joint member of the constant velocity universal joint, and the stem portion formed on the outer joint member is fitted in the hub wheel, The hub ring and the outer joint member are integrally plastically bonded by forming a hardened concave / convex portion on the inner diameter of the hub wheel and expanding the fitting portion formed on the stem portion to bite into the concave / convex portion. In the drive wheel bearing device,
The concavo-convex portion is formed by a cross groove in which a circumferential groove and an axial groove are substantially orthogonal to each other, the tip angle of the convex portion of the cross groove is formed at about 90 degrees, and the first row of the circumferential groove A bearing device for a drive wheel, wherein the convex portion is formed slightly lower than the convex portion of the other circumferential groove, and a flat surface or a rounded surface is formed in the axial direction of the tip portion .
一端に車輪取付フランジを一体に有するハブ輪と等速自在継手と複列の転がり軸受とをユニット化した駆動車輪用軸受装置であって、別体の内輪を前記ハブ輪の円筒部に圧入し、この内輪の内径に硬化させた凹凸部を形成すると共に、この凹凸部に前記ハブ輪の円筒部を拡径させて食込ませることにより、前記ハブ輪と内輪とを一体に塑性結合した駆動車輪用軸受装置において、前記凹凸部を周方向溝と軸方向溝を略直交させた交叉溝で構成し、この交叉溝の凸部の先端角度を略90度に形成すると共に、前記周方向溝の第一列目の凸部を、他の周方向溝の凸部よりも僅かに低く形成すると共に、その先端部の軸方向にフラット面または丸みのある面を形成したことを特徴とする駆動車輪用軸受装置。A bearing device for a drive wheel in which a hub ring integrally having a wheel mounting flange at one end, a constant velocity universal joint, and a double row rolling bearing are unitized, and a separate inner ring is press-fitted into the cylindrical portion of the hub ring. A drive in which the hub ring and the inner ring are integrally plastically bonded by forming a hardened concave and convex portion on the inner diameter of the inner ring and enlarging the cylindrical portion of the hub ring into the concave and convex portion. in the wheel support bearing assembly, together with the uneven portion constitutes a circumferential groove and the axial groove in cross grooves is substantially perpendicular to form a tip angle of the convex portion of the cross grooves substantially 90 degrees, the circumferential groove The first row of convex portions are formed slightly lower than the convex portions of the other circumferential grooves, and a flat surface or a rounded surface is formed in the axial direction of the tip portion. Wheel bearing device. 前記ハブ輪に前記外側継手部材のステム部をセレーションを介して内嵌すると共に、これらセレーションのアウトボード側に係止溝をそれぞれ形成し、これら係止溝に有端のクリップを係合させて前記ハブ輪と外側継手部材を着脱自在に軸方向に結合した請求項3に記載の駆動車輪用軸受装置。  The stem portion of the outer joint member is fitted into the hub wheel via serrations, and locking grooves are formed on the outboard side of the serrations, and end clips are engaged with the locking grooves. The drive wheel bearing device according to claim 3, wherein the hub wheel and the outer joint member are detachably coupled in the axial direction. 前記凹凸部を、旋削により形成した独立した複数の環状溝とブローチ加工により形成した複数の軸方向溝とを略直交させた交叉溝で構成すると共に、この交叉溝の凸部最内径を、前記軸方向溝によって設定した請求項1乃至いずれかに記載の駆動車輪用軸受装置。The concavo-convex portion is constituted by a cross groove in which a plurality of independent annular grooves formed by turning and a plurality of axial grooves formed by broaching are substantially orthogonal to each other. drive wheel bearing device according to any one of claims 1 to 4 set by axial grooves. 前記交叉溝の凸部先端形状を略四角錐に形成した請求項に記載の駆動車輪用軸受装置。The bearing device for a drive wheel according to claim 5 , wherein the shape of the tip of the convex portion of the cross groove is a substantially quadrangular pyramid.
JP2002239375A 2002-04-11 2002-08-20 Drive wheel bearing device Expired - Fee Related JP4170046B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002239375A JP4170046B2 (en) 2002-08-20 2002-08-20 Drive wheel bearing device
DE10314626A DE10314626A1 (en) 2002-04-11 2003-04-01 Bearing device for a drive wheel of a vehicle
US10/411,428 US6955475B2 (en) 2002-04-11 2003-04-10 Bearing apparatus for a driving wheel of vehicle
CNB031307957A CN100506575C (en) 2002-04-11 2003-04-11 Bearing apparatus for vehicle driving wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239375A JP4170046B2 (en) 2002-08-20 2002-08-20 Drive wheel bearing device

Publications (2)

Publication Number Publication Date
JP2004076872A JP2004076872A (en) 2004-03-11
JP4170046B2 true JP4170046B2 (en) 2008-10-22

Family

ID=32022501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239375A Expired - Fee Related JP4170046B2 (en) 2002-04-11 2002-08-20 Drive wheel bearing device

Country Status (1)

Country Link
JP (1) JP4170046B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002524A (en) * 2006-06-21 2008-01-10 Ntn Corp Bearing device for wheel
JP5236201B2 (en) * 2007-04-12 2013-07-17 Ntn株式会社 Rear wheel axle module
JP5117128B2 (en) * 2007-07-02 2013-01-09 Ntn株式会社 Wheel bearing device
JP5641706B2 (en) * 2009-04-02 2014-12-17 Ntn株式会社 Wheel bearing device

Also Published As

Publication number Publication date
JP2004076872A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4315819B2 (en) Drive wheel bearing device
JP4146308B2 (en) Wheel bearing device
JP2002200902A (en) Unit for driving wheel and manufacturing method therefor
WO2002102608A1 (en) Bearing device for drive wheel and method of manufacturing the bearing device
KR20100018511A (en) Bearing device for wheel
JP3905398B2 (en) Drive wheel bearing device
JP4157323B2 (en) Drive wheel bearing device
JP4170046B2 (en) Drive wheel bearing device
JP2006009895A (en) Bearing device for wheel
JP2006036020A (en) Bearing device for drive wheel
JP2013141861A (en) Bearing device for wheel
JP2007069704A (en) Bearing device for driving wheel
JP5252834B2 (en) Manufacturing method of wheel bearing device
JP4307852B2 (en) Drive wheel bearing device
JP2004256039A (en) Bearing device for driving wheel
JP4094468B2 (en) Drive wheel bearing device and manufacturing method thereof
JP3964721B2 (en) Drive wheel bearing device
JP2004090732A (en) Bearing device of driving wheel
JP2007162826A (en) Wheel bearing device and axle module equipped therewith
JP4438516B2 (en) Axle module
JP4071965B2 (en) Drive wheel bearing device
JP2004306692A (en) Driving wheel bearing device
JP4587205B2 (en) Axle module
JP2006112516A (en) Bearing device for vehicle
JP2007153247A (en) Wheel bearing system and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees