JP2008002579A - Bearing unit for drive wheel - Google Patents

Bearing unit for drive wheel Download PDF

Info

Publication number
JP2008002579A
JP2008002579A JP2006173142A JP2006173142A JP2008002579A JP 2008002579 A JP2008002579 A JP 2008002579A JP 2006173142 A JP2006173142 A JP 2006173142A JP 2006173142 A JP2006173142 A JP 2006173142A JP 2008002579 A JP2008002579 A JP 2008002579A
Authority
JP
Japan
Prior art keywords
hub wheel
peripheral surface
knuckle
bearing unit
outboard side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006173142A
Other languages
Japanese (ja)
Inventor
Zenichi Fukumura
善一 福村
Masayuki Kuroda
正幸 黒田
Hisaaki Kura
久昭 藏
Makoto Tomoue
真 友上
Hiroshi Kawamura
浩志 河村
Shigeaki Fukushima
茂明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006173142A priority Critical patent/JP2008002579A/en
Publication of JP2008002579A publication Critical patent/JP2008002579A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the step of assembling a bearing unit for a drive wheel including a hub wheel, bearings, and constant velocity universal joints into a knuckle member. <P>SOLUTION: The hub wheel 10 is plastically joined to the outer joint member 31 of the outboard side constant velocity universal joint 30. The outer peripheral surface 26a of the external member 26 is press-fitted to the inner peripheral surface of the knuckle member. The maximum outer diameter dimension D1 of the outboard side constant velocity universal joint 30 is smaller than the minimum inner diameter dimension Dn of the knuckle member 6. A snap ring 53 is interposed between the external member 26 and the knuckle member 6. A snap ring groove 6c tapered on the outboard side is formed on the inner peripheral surface of the knuckle member 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の駆動車輪(FF車の前輪、FR車の後輪、4WD車の全輪)用の軸受ユニットに関する。   The present invention relates to a bearing unit for driving wheels (front wheels of FF vehicles, rear wheels of FR vehicles, all wheels of 4WD vehicles) of automobiles.

エンジンからの動力を駆動車輪に伝達するドライブシャフト1は、図20に示すように、アウトボード側(車幅方向の車体側部の側)の固定型等速自在継手J1と、インボード側(車幅方向の車体中心の側)の摺動型等速自在継手J2とを中間軸2で結合した構成を有する。アウトボード側の等速自在継手J1は、車輪軸受3で回転自在に支持されたハブ輪4に結合され、インボード側の等速自在継手J2は、ディファレンシャル5に結合される。   As shown in FIG. 20, the drive shaft 1 that transmits the power from the engine to the drive wheels includes a fixed type constant velocity universal joint J1 on the outboard side (the side of the vehicle body in the vehicle width direction) and the inboard side ( The intermediate shaft 2 is connected to a sliding type constant velocity universal joint J2 on the vehicle center side in the vehicle width direction. The constant velocity universal joint J1 on the outboard side is coupled to the hub wheel 4 rotatably supported by the wheel bearing 3, and the constant velocity universal joint J2 on the inboard side is coupled to the differential 5.

車輪軸受3は、ハブ輪4の外周に固定した軸受内輪3aと、車体側の懸架装置から延びるナックル部材6に固定した軸受外輪3bと、軸受内輪3aと軸受外輪3bの間に複列配置した転動体3cとを有する。通常、ハブ輪4の外周に軸受内輪3aを圧入することによって両者が固定される。軸受外輪3bとナックル部材6の固定は、軸受外輪3bのフランジ3b1をナックル部材6にボルト止めして行うのが通例である。   The wheel bearing 3 is arranged in double rows between a bearing inner ring 3a fixed to the outer periphery of the hub wheel 4, a bearing outer ring 3b fixed to a knuckle member 6 extending from a suspension on the vehicle body side, and a bearing inner ring 3a and a bearing outer ring 3b. And rolling elements 3c. Usually, both are fixed by press-fitting the bearing inner ring 3 a on the outer periphery of the hub ring 4. The bearing outer ring 3b and the knuckle member 6 are usually fixed by bolting the flange 3b1 of the bearing outer ring 3b to the knuckle member 6.

従来のドライブシャフト1の車両への組付けは、予めハブ輪4および車輪軸受3をナックル部材6に固定した状態で、ドライブシャフト1のアウトボード側の軸端(外側継手部材7のステム部7a)をハブ輪4の内周に挿入し、ハブ輪4から突出した軸端にナット8を螺合させることによって行われる(例えば、特許文献1参照)。ナット8の締め付けに伴い、ドライブシャフト1の全体がアウトボード側にスライドし、外側継手部材7の肩部7bが軸受内輪3aの端面に当接する。これにより、外側継手部材7とハブ輪4とが軸方向で位置決めされ、かつ車輪軸受3に所定の予圧が付与される。外側継手部材7のステム部7aの外周面とハブ輪4の内周面は、図示しないスプラインで結合され、外側継手部材7に伝達されたエンジンの駆動力は、当該スプライン、さらにはハブ輪4を介して車輪に伝達される。
特開2004−270855号公報
The conventional assembly of the drive shaft 1 to the vehicle is performed in a state where the hub wheel 4 and the wheel bearing 3 are fixed to the knuckle member 6 in advance, and the shaft end on the outboard side of the drive shaft 1 (the stem portion 7a of the outer joint member 7). ) Is inserted into the inner periphery of the hub wheel 4 and a nut 8 is screwed onto the shaft end protruding from the hub wheel 4 (see, for example, Patent Document 1). As the nut 8 is tightened, the entire drive shaft 1 slides toward the outboard side, and the shoulder 7b of the outer joint member 7 comes into contact with the end surface of the bearing inner ring 3a. As a result, the outer joint member 7 and the hub wheel 4 are positioned in the axial direction, and a predetermined preload is applied to the wheel bearing 3. The outer peripheral surface of the stem portion 7a of the outer joint member 7 and the inner peripheral surface of the hub wheel 4 are coupled by a spline (not shown), and the driving force of the engine transmitted to the outer joint member 7 is the spline and further the hub wheel 4 It is transmitted to the wheel via.
JP 2004-270855 A

しかしながら、上記従来工程では、車輪軸受3およびハブ輪4を組付けたナックル部材6を、予め中立位置からキングピンセンタを中心として旋回させた位置で待機させ、この状態でアウトボード側等速自在継手J1をハブ輪4に固定し、さらにナックル部材6を中立位置に戻してからインボード側等速自在継手J2をディファレンシャル5に固定するという煩雑な作業が必要となる。加えて、軸受外輪3bのナックル部材6へのボルト止めやナット8の締め込み等の多くの締結作業が必要となる。従って、ドライブシャフトの組付け工程が煩雑化しており、この点がコスト高の要因となっている。また、多くのナットやボルトを必要とし、部品点数が多くなることもコスト面で不利になっている。さらに、ナックル部材の旋回に伴ってドライブシャフトが旋回するので、広い作業スペースが必要となる点も問題となる。   However, in the above-described conventional process, the knuckle member 6 assembled with the wheel bearing 3 and the hub wheel 4 is made to wait in advance at a position rotated from the neutral position around the kingpin center, and in this state, the outboard side constant velocity universal joint The complicated work of fixing J1 to the hub wheel 4 and further fixing the inboard side constant velocity universal joint J2 to the differential 5 after returning the knuckle member 6 to the neutral position is required. In addition, many fastening operations such as bolting of the bearing outer ring 3b to the knuckle member 6 and tightening of the nut 8 are required. Therefore, the assembly process of the drive shaft is complicated, and this point is a factor of high cost. Moreover, many nuts and bolts are required, and the number of parts is also disadvantageous in terms of cost. Further, since the drive shaft turns with the turning of the knuckle member, a large work space is required.

ところで、ナットの締め付け作業は、アウトボード側等速自在継手J1の外側継手部材7とハブ輪4とを予め結合一体化しておくことで省略することができる。しかしながら、両者の結合部には、コーナリング中のモーメント荷重をはじめ、車両走行に伴って大荷重が作用するので、これに耐え得るような高強度を有しかつコスト的にも安価な結合構造が必要とされる。   By the way, the tightening operation of the nut can be omitted by previously connecting and integrating the outer joint member 7 of the outboard side constant velocity universal joint J1 and the hub wheel 4. However, since a large load acts on the joint between the two, including the moment load during cornering, as the vehicle travels, the joint structure has a high strength that can withstand this and is inexpensive. Needed.

そこで、本発明は、ハブ輪、軸受、および等速自在継手を含む駆動車輪用軸受ユニットのナックル部材への組付け工程を簡略化することができ、しかもナックル部材と外方部材の分離が可能となって、保守点検や修理に有利となる駆動車輪用軸受ユニットを提供する。   Therefore, the present invention can simplify the assembly process of the drive wheel bearing unit including the hub wheel, the bearing, and the constant velocity universal joint to the knuckle member, and can separate the knuckle member and the outer member. Thus, a bearing unit for a driving wheel that is advantageous for maintenance inspection and repair is provided.

本発明は、上記目的を達成するために、内周に複数のアウタレースを有する外方部材と、前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された複数列の転動体と、車輪に取り付けられるハブ輪と、アウトボード側等速自在継手とを備える駆動車輪用軸受ユニットにおいて、外方部材の外周面を車体側のナックル部材の内周面に嵌合組込し、アウトボード側等速自在継手の最大外径寸法をナックル部材の最小内径寸法よりも小さくし、外方部材とナックル部材との間に止め輪を介在させ、ナックル部材の内周面に、アウトボード側をテーパ状にした止め輪溝を設けた。ここで、「等速自在継手」の用語は、ブーツ、ブーツバンド等の付属品も含むものとする(以下、同じ)。これら付属品も含めたアウトボード側等速自在継手の最大外径寸法がナックル部材の最小内径寸法よりも小さく設定される。   In order to achieve the above object, the present invention provides an outer member having a plurality of outer races on the inner periphery, an inner member having a plurality of inner races facing the outer races, and an outer member and an inner race facing each other. In a drive wheel bearing unit comprising a plurality of rows of rolling elements, a hub wheel attached to a wheel, and an outboard side constant velocity universal joint, the outer peripheral surface of the outer member is connected to the inner side of the knuckle member on the vehicle body side. Fit into the peripheral surface, make the maximum outer diameter of the constant velocity universal joint on the outboard side smaller than the minimum inner diameter of the knuckle member, interpose a retaining ring between the outer member and the knuckle member, and A retaining ring groove having a tapered outer board side is provided on the inner peripheral surface of the member. Here, the term “constant velocity universal joint” includes accessories such as boots and boot bands (hereinafter the same). The maximum outer diameter of the outboard constant velocity universal joint including these accessories is set smaller than the minimum inner diameter of the knuckle member.

かかる構成から、アウトボード側等速自在継手の外側継手部材とハブ輪とを結合した状態で、アウトボード側から外方部材をナックル部材に組込み嵌合することにより、軸受ユニットをナックル部材に固定することが可能となる。かかる作業は、軸受ユニットを車軸方向へ押し込むだけで行うことができ、しかも基本的に外方部材をナックル部材にボルト止めする必要もない。従って、軸受ユニットの車両への組付け作業を簡略化することができる。   With this configuration, the outer unit of the constant velocity universal joint on the outboard side and the hub wheel are coupled, and the outer member is assembled and fitted from the outboard side to the knuckle member, thereby fixing the bearing unit to the knuckle member. It becomes possible to do. Such an operation can be performed simply by pushing the bearing unit in the direction of the axle, and there is basically no need to bolt the outer member to the knuckle member. Therefore, the work of assembling the bearing unit to the vehicle can be simplified.

止め輪でナックル部材からの外方部材の抜け止めを行うことにより、外方部材とナックル部材の結合強度がさらに高まる。また、ナックル部材に設けた止め輪溝のアウトボード側をテーパ面に形成しているので、外方部材に所定の引き抜き力を付与することにより、止め輪がテーパ面で案内されて縮径する。このため、ナックル部材と外方部材とを分離することが可能となる。   By connecting the outer member from the knuckle member with the retaining ring, the coupling strength between the outer member and the knuckle member is further increased. Moreover, since the outboard side of the retaining ring groove provided in the knuckle member is formed on the tapered surface, the retaining ring is guided by the tapered surface and reduced in diameter by applying a predetermined pulling force to the outer member. . For this reason, it becomes possible to isolate | separate a knuckle member and an outward member.

本発明によれば、ハブ輪、軸受、およびアウトボード側等速自在継手を含む駆動車輪用軸受ユニットの車両への組付け工程を簡略化することができる。また、止め輪にて、外方部材とナックル部材の結合強度がさらに高まり、外方部材とナックル部材との安定した連結状態を維持することができる。また、止め輪溝にテーパ面が形成されていることによって、ナックル部材と外方部材の分離が可能となって、保守点検や修理に有利となる。   ADVANTAGE OF THE INVENTION According to this invention, the assembly | attachment process to the vehicle of the bearing unit for drive wheels containing a hub wheel, a bearing, and an outboard side constant velocity universal joint can be simplified. Further, the coupling strength between the outer member and the knuckle member is further increased by the retaining ring, and a stable connection state between the outer member and the knuckle member can be maintained. Further, since the tapered surface is formed in the retaining ring groove, the knuckle member and the outer member can be separated, which is advantageous for maintenance and inspection.

本発明に係る駆動車輪用軸受ユニットの実施形態を以下に詳述する。   Embodiments of a drive wheel bearing unit according to the present invention will be described in detail below.

図1に示す第1実施形態の駆動輪用軸受ユニットは、ハブ輪10、軸受部20、およびアウトボード側等速自在継手30で構成される。   The drive wheel bearing unit of the first embodiment shown in FIG. 1 includes a hub wheel 10, a bearing portion 20, and an outboard side constant velocity universal joint 30.

ハブ輪10は、その外周面に車輪(図示せず)を取り付けるための車輪取付フランジ11を備えている。この車輪取付フランジ11の円周方向に複数の雌ねじ12が形成され、この雌ねじ12にホイール、ディスクを固定するためのホイールボルト(図示省略)が螺合される。ハブ輪10の外周面に形成された小径段部13には、内輪28が適当な締め代をもって圧入されている。内輪28の内周面と小径段部13の外周面との間には、止め輪29が介装され、この止め輪29によって内輪28とハブ輪10の軸方向の位置決めがなされる。ハブ輪10は、旋削あるいは鍛造によって製作される。   The hub wheel 10 includes a wheel mounting flange 11 for mounting a wheel (not shown) on its outer peripheral surface. A plurality of female screws 12 are formed in the circumferential direction of the wheel mounting flange 11, and wheel bolts (not shown) for fixing a wheel and a disk are screwed onto the female screws 12. An inner ring 28 is press-fitted into the small-diameter step 13 formed on the outer peripheral surface of the hub ring 10 with an appropriate tightening allowance. A retaining ring 29 is interposed between the inner circumferential surface of the inner ring 28 and the outer circumferential surface of the small diameter step portion 13, and the positioning of the inner ring 28 and the hub wheel 10 in the axial direction is performed by the retaining ring 29. The hub wheel 10 is manufactured by turning or forging.

軸受部20は、背面配列した複列アンギュラ玉軸受構造で、複列のインナレース21およびアウタレース22と、対向するインナレース21とアウタレース22との間に配置した転動体23と、アウトボード側(図面左側)の転動体列およびインボード側(図面右側)の転動体列をそれぞれ円周方向等間隔に保持する保持器24とを有する。図示例では、アウトボード側のインナレース21がハブ輪10の外周面に、インボード側のインナレース21が内輪28の外周面に形成されている。この場合、ハブ輪10および内輪28が複列のインナレースを有する内方部材25を構成する。   The bearing portion 20 has a double-row angular ball bearing structure arranged on the back surface, a double-row inner race 21 and an outer race 22, a rolling element 23 disposed between the inner race 21 and the outer race 22 facing each other, and an outboard side ( The holder 24 holds the rolling element row on the left side of the drawing and the rolling element row on the inboard side (right side of the drawing) at equal intervals in the circumferential direction. In the illustrated example, the inner race 21 on the outboard side is formed on the outer peripheral surface of the hub wheel 10, and the inner race 21 on the inboard side is formed on the outer peripheral surface of the inner ring 28. In this case, the hub wheel 10 and the inner ring 28 constitute an inner member 25 having a double row inner race.

アウタレース22は、リング状一体の外方部材26の内周面に形成されている。外方部材26の外周面26aは、止め輪溝26bを除く全体が均一径の円筒面状である。従来の外方部材と異なり、ナックル部材6に取り付けるためのフランジは設けられていない。外方部材26の軸方向両端の内周面には、シール27a、27bが圧入固定されている。   The outer race 22 is formed on the inner peripheral surface of the ring-shaped integrated outer member 26. The outer peripheral surface 26a of the outer member 26 is a cylindrical surface having a uniform diameter as a whole except for the retaining ring groove 26b. Unlike the conventional outer member, the flange for attaching to the knuckle member 6 is not provided. Seals 27 a and 27 b are press-fitted and fixed to the inner peripheral surfaces of both ends in the axial direction of the outer member 26.

アウトボード側のシール27aは、芯金をゴム等の弾性材料で被覆して内径側に複数(例えば3つ)のシールリップを形成した構成で、芯金を外方部材26の内周面に圧入することで外方部材26に固定される。シールリップは、ハブ輪10の外周面とフランジ部11のインボード側端面にそれぞれ接触している。   The outboard-side seal 27a has a configuration in which a core metal is covered with an elastic material such as rubber and a plurality of (for example, three) seal lips are formed on the inner diameter side, and the core metal is formed on the inner peripheral surface of the outer member 26. The outer member 26 is fixed by press-fitting. The seal lip is in contact with the outer peripheral surface of the hub wheel 10 and the inboard side end surface of the flange portion 11.

インボード側のシール27bは、カセットシールと呼ばれるもので、芯金の内径側に形成した複数(例えば3つ)のシールリップを断面逆L字型のスリンガに接触させた構成を有する。芯金を外方部材26の内周面に圧入し、スリンガを内輪28の外周面に圧入することで、シール27bが開口部に固定される。このシール27a、27bによって軸受部20の両端開口部が密封され、内部に充填されたグリースの漏洩ならびに外部からの水や異物の侵入を防止するようになっている。   The inboard-side seal 27b is called a cassette seal, and has a configuration in which a plurality of (for example, three) seal lips formed on the inner diameter side of the core metal are brought into contact with a slinger having an inverted L-shaped cross section. The seal 27b is fixed to the opening by pressing the cored bar into the inner peripheral surface of the outer member 26 and pressing the slinger into the outer peripheral surface of the inner ring 28. Both ends of the bearing portion 20 are sealed by the seals 27a and 27b to prevent leakage of grease filled in the inside and intrusion of water and foreign matters from the outside.

なお、図示例の軸受部20では、転動体23としてボールを例示しているが、車重が嵩む場合等には、円錐ころを転動体23として使用することもできる。   In the illustrated bearing portion 20, a ball is illustrated as the rolling element 23, but a tapered roller can be used as the rolling element 23 when the vehicle weight increases.

アウトボード側等速自在継手30は、中間軸2のアウトボード側の一端に設けられ、内周面にトラック溝が形成された外側継手部材31と、外側継手部材31のトラック溝と対向するトラック溝が外周面に形成された内側継手部材32と、外側継手部材31のトラック溝と内側継手部材32のトラック溝との間に組み込まれたトルク伝達ボール33と、外側継手部材31と内側継手部材32との間に介在してトルク伝達ボール33を円周方向等間隔に保持するケージ34とで構成される。内側継手部材32は、その内周に挿入した中間軸2のアウトボード側の軸端とセレーション35を介して結合されている。   The outboard-side constant velocity universal joint 30 is provided at one end of the intermediate shaft 2 on the outboard side, and has an outer joint member 31 having a track groove formed on the inner peripheral surface, and a track facing the track groove of the outer joint member 31. An inner joint member 32 having a groove formed on the outer peripheral surface, a torque transmission ball 33 incorporated between a track groove of the outer joint member 31 and a track groove of the inner joint member 32, and the outer joint member 31 and the inner joint member. And a cage 34 that is interposed between them and holds the torque transmission balls 33 at equal intervals in the circumferential direction. The inner joint member 32 is coupled to the shaft end on the outboard side of the intermediate shaft 2 inserted in the inner periphery thereof via a serration 35.

外側継手部材31は、例えば鍛造によって製作され、内側継手部材32、ケージ34およびトルク伝達ボール33を収容したマウス部31aと、マウス部31aから軸方向に一体的に延びる中実のステム部31bとを有する。マウス部31aの開口側の外周面と中間軸2の外周面には、それぞれブーツバンド36を介して蛇腹状ブーツ37の大径開口端および小径開口端が固定されている。このように外側継手部材31と中間軸2の間の空間をブーツ37で被覆することにより、グリースが外部へ漏洩したり、あるいは継手内部へ水やダスト等の異物が侵入したりする事態を防止している。   The outer joint member 31 is manufactured by forging, for example, and includes a mouth portion 31a that houses the inner joint member 32, the cage 34, and the torque transmission ball 33, and a solid stem portion 31b that extends integrally from the mouth portion 31a in the axial direction. Have A large-diameter open end and a small-diameter open end of a bellows-shaped boot 37 are fixed to the outer peripheral surface of the mouth portion 31a and the outer peripheral surface of the intermediate shaft 2 via a boot band 36, respectively. Thus, by covering the space between the outer joint member 31 and the intermediate shaft 2 with the boot 37, it is possible to prevent a situation where grease leaks to the outside or foreign matters such as water and dust enter the joint. is doing.

外側継手部材31のステム部31bは、後述の各種結合構造によりハブ輪10と結合される。結合方法としては、ナットを用いるような可逆的な結合方法も採用することもできるが、好ましくは、ハブ輪10と外側継手部材31の可逆的な分離・結合が許容されていない非分離の結合構造を採用するのが望ましい。   The stem portion 31b of the outer joint member 31 is coupled to the hub wheel 10 by various coupling structures described later. As the coupling method, a reversible coupling method using a nut may be employed, but preferably, the hub wheel 10 and the outer joint member 31 are not allowed to be reversibly separated and coupled. It is desirable to adopt a structure.

ハブ輪10と外側継手部材31とを非分離に結合する際、外側継手部材31の肩面38を内輪28のインボード側の端面と当接させ、さらに内輪28のアウトボード側の端面もハブ輪10と軸方向で当接させることで、複列のインナレース21の間隔が規定寸法に保持され、予圧(予備予圧)が付与される。   When the hub wheel 10 and the outer joint member 31 are non-separably coupled, the shoulder surface 38 of the outer joint member 31 is brought into contact with the end surface on the inboard side of the inner ring 28, and the end surface on the outboard side of the inner ring 28 is also a hub. By abutting with the wheel 10 in the axial direction, the interval between the double-row inner races 21 is maintained at a specified dimension, and a preload (preliminary preload) is applied.

本発明では、外方部材26の外周面が車体側のナックル部材6の内周面6aに嵌合組込みされる。   In the present invention, the outer peripheral surface of the outer member 26 is fitted and incorporated into the inner peripheral surface 6a of the knuckle member 6 on the vehicle body side.

ここでいう嵌合組込みは、外方部材26をナックル部材6に嵌合することにより両者の組込みが完了することを意味する。この組込みは、例えば外方部材26の円筒面状の外周面26aをナックル部材6の円筒状内周面6aにアウトボード側から圧入することにより行うことができる。   As used herein, fitting and fitting means that the fitting of the outer member 26 and the knuckle member 6 completes the fitting of both. This incorporation can be performed, for example, by press-fitting the cylindrical outer peripheral surface 26a of the outer member 26 into the cylindrical inner peripheral surface 6a of the knuckle member 6 from the outboard side.

また、外方部材26の外周面とナックル部材6の内周面6aとの間に止め輪53を介在させている。すなわち、図5に示すように、ナックル部材6の内周面6aに形成した止め輪溝6cと外方部材26の外周面26aに形成した止め輪溝26bとが対向し、外方部材26の止め輪溝26bに収容した止め輪53が弾性的に拡径してナックル部材6および外方部材26の双方で係合する。   A retaining ring 53 is interposed between the outer peripheral surface of the outer member 26 and the inner peripheral surface 6 a of the knuckle member 6. That is, as shown in FIG. 5, the retaining ring groove 6 c formed on the inner circumferential surface 6 a of the knuckle member 6 and the retaining ring groove 26 b formed on the outer circumferential surface 26 a of the outer member 26 face each other. The retaining ring 53 accommodated in the retaining ring groove 26 b is elastically expanded in diameter and is engaged by both the knuckle member 6 and the outer member 26.

この場合、ナックル部材6の内周面6aのインボード側端部には、外方部材26の端面と軸方向で係合する凸部6bが設けられる。このため、外方部材26をナックル部材6にアウトボード側から圧入させた場合、外方部材26のインボード側端面が凸部6bに当接し、この状態で、止め輪53が両止め輪溝6c、26bに係合する。これによって、高い軸方向の抜け止め効果を得ることができる。なお、止め輪53にて抜け止め効果が十分高められるので、図18に示すように、凸部6bを省略することも可能である。   In this case, an inboard side end portion of the inner peripheral surface 6 a of the knuckle member 6 is provided with a convex portion 6 b that engages with the end surface of the outer member 26 in the axial direction. Therefore, when the outer member 26 is press-fitted into the knuckle member 6 from the outboard side, the end surface on the inboard side of the outer member 26 abuts on the convex portion 6b, and in this state, the retaining ring 53 has both retaining ring grooves. Engages 6c and 26b. As a result, a high axial retaining effect can be obtained. In addition, since the retaining effect is sufficiently enhanced by the retaining ring 53, it is possible to omit the convex portion 6b as shown in FIG.

止め輪53を使用する際、極力アウトボード側に止め輪53を配置するのが望ましい。具体的には、図1に示すように、インボード側の転動体23とアウトボード側の転動体23との間の軸方向中心線Oよりもアウトボード側に止め輪53を配設するのが望ましい。これにより、外方部材26を圧入する際、止め輪53のナックル部材内周面6aに対する摺動距離を短縮できるので、止め輪53の引きずりによるナックル部材内周面6aの損傷回避を図ることができる。   When the retaining ring 53 is used, it is desirable to dispose the retaining ring 53 on the outboard side as much as possible. Specifically, as shown in FIG. 1, a retaining ring 53 is disposed on the outboard side with respect to the axial center line O between the inboard side rolling element 23 and the outboard side rolling element 23. Is desirable. Thus, when the outer member 26 is press-fitted, the sliding distance of the retaining ring 53 relative to the knuckle member inner circumferential surface 6 a can be shortened, so that the knuckle member inner circumferential surface 6 a can be prevented from being damaged by dragging the retaining ring 53. it can.

図5に示すように、ナックル部材6の内周面6aに形成した止め輪溝6cのアウトボード壁面6c1をテーパ面状に形成している。すなわち、アウトボード壁面6c1は溝底端側から内径側に向かってアウトボード側に傾斜している。このため、外方部材26を矢印で示すようにアウトボード側に所定の力で引き抜けば、テーパ面(アウトボード壁面)6c1に沿って止め輪53が縮径するように摺動する。これによって、止め輪53の止め輪溝6cの係合が解除され、ドライブシャフトアセンブリをナックル部材6から分離することが可能となって、当該アセンブリの保守点検作業や交換作業の作業性を高めることができる。なお、嵌合組込み時の抜け止め効果と交換時の作業性の両立から、テーパ面6c1の角度θは15°〜30°の範囲に設定するのが望ましい。すなわち、テーパ面6c1の角度θが15°未満では、止め輪53のアウトボード壁面6c1の案内による縮径が困難であり、また、テーパ面6c1の角度θが30°を越えると、逆に抜け易くなって、外方部材26とナックル部材6との連結状態が安定しない。   As shown in FIG. 5, the outboard wall surface 6c1 of the retaining ring groove 6c formed in the inner peripheral surface 6a of the knuckle member 6 is formed in a tapered surface shape. That is, the outboard wall surface 6c1 is inclined toward the outboard side from the groove bottom end side toward the inner diameter side. For this reason, if the outer member 26 is pulled out to the outboard side with a predetermined force as shown by an arrow, the retaining ring 53 slides along the tapered surface (outboard wall surface) 6c1 so as to reduce the diameter. As a result, the engagement of the retaining ring groove 6c of the retaining ring 53 is released, and the drive shaft assembly can be separated from the knuckle member 6, thereby improving the workability of maintenance inspection and replacement work of the assembly. Can do. In addition, it is desirable to set the angle θ of the tapered surface 6c1 in a range of 15 ° to 30 ° in order to achieve both the retaining effect when fitting and mounting and the workability during replacement. That is, if the angle θ of the tapered surface 6c1 is less than 15 °, it is difficult to reduce the diameter by the guide of the outboard wall surface 6c1 of the retaining ring 53. It becomes easy and the connection state of the outer member 26 and the knuckle member 6 is not stabilized.

このように本発明では、外方部材26の外周面26aに圧入面を設け、この外方部材26をナックル部材6の内周に圧入固定することにより、従来のように、フランジ付き外方部材をナックル部材の複数箇所にボルト止めする場合に比べ、ボルトの締結作業を省略でき、その分だけ部品点数や作業工数を減じて低コスト化を図ることができる。   As described above, in the present invention, the outer member 26 is provided with a press-fitting surface on the outer peripheral surface 26a of the outer member 26, and the outer member 26 is press-fitted and fixed to the inner periphery of the knuckle member 6. As compared with the case where the bolts are bolted to a plurality of locations on the knuckle member, the bolt fastening operation can be omitted, and the number of parts and the number of work steps can be reduced accordingly, thereby reducing the cost.

また、外方部材26をナックル部材6に圧入することで、圧入後の外方部材26には、ラジアル方向の縮径力が作用し、この縮径力によって軸受隙間が縮小する。従って、上記予備予圧量を加味して圧入代を適切に設定すれば、圧入後に適正量の負隙間(例えば0〜100μm、好ましくは0〜30μm)を得ることが可能となる。この場合、ナットの締め込みによる予圧付与作業が不要となるので、軸受ユニットの組付け作業性を更に向上させることができる。なお、0よりも大きい正隙間であると、軸受剛性が不充分となって耐久性が低下し、負隙間量が100μmを上回ると、逆に予圧が過大となって異常発熱の原因となる点が問題となる。   In addition, by pressing the outer member 26 into the knuckle member 6, radial contraction force acts on the outer member 26 after press-fitting, and the bearing gap is reduced by the contraction force. Accordingly, if the press-fitting allowance is appropriately set in consideration of the preliminary preload amount, an appropriate amount of negative gap (for example, 0 to 100 μm, preferably 0 to 30 μm) can be obtained after press-fitting. In this case, since the preload application work by tightening the nut is not necessary, the assembly workability of the bearing unit can be further improved. If the positive clearance is larger than 0, the bearing rigidity is insufficient and the durability is lowered, and if the negative clearance exceeds 100 μm, the preload is excessively increased, causing abnormal heat generation. Is a problem.

かかる嵌合組込みにおいては、アウトボード側等速自在継手30の最大外径寸法D1をナックル部材6の最小内径寸法Dnよりも小さくする(D1<Dn)。これにより、まずアウトボード側等速自在継手30をナックル部材6の内周に挿入し、引き続いて軸受部20の外方部材26をナックル部材6の内周に圧入することにより、ハブ輪10、軸受部20およびアウトボード側等速自在継手30を予めアセンブリにした状態で車両に組付けることが可能となる。この組み付け時には、アセンブリの押し込み方向が一定となるので、組み付け時の作業性も良好となる。   In such fitting and incorporation, the maximum outer diameter D1 of the outboard side constant velocity universal joint 30 is made smaller than the minimum inner diameter Dn of the knuckle member 6 (D1 <Dn). As a result, first, the outboard side constant velocity universal joint 30 is inserted into the inner periphery of the knuckle member 6, and then the outer member 26 of the bearing portion 20 is press-fitted into the inner periphery of the knuckle member 6. The bearing portion 20 and the outboard side constant velocity universal joint 30 can be assembled to the vehicle in a state of being assembled in advance. At the time of this assembly, the pushing direction of the assembly is constant, so that the workability at the time of assembly is also good.

ここで、ナックル部材6の「最小内径寸法Dn」は、ナックル部材6のうちで最も内径側に存在する部分の内径寸法を意味する。図1に示す第1実施形態、図2に示す第2実施形態、及び図3に示す第3実施形態のように、ナックル部材6の内周面に凸部6bを設けた場合、凸部6bの内径寸法が「最小内径寸法」となる。図18に示すように凸部6bを省略した場合、ナックル部材6の内周面6aが「最小内径寸法」となる。   Here, the “minimum inner diameter dimension Dn” of the knuckle member 6 means the inner diameter dimension of the portion of the knuckle member 6 that is present on the innermost diameter side. When the convex portion 6b is provided on the inner peripheral surface of the knuckle member 6 as in the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the third embodiment shown in FIG. Is the “minimum inner diameter dimension”. When the convex portion 6b is omitted as shown in FIG. 18, the inner peripheral surface 6a of the knuckle member 6 has a “minimum inner diameter dimension”.

また、アウトボード側等速自在継手の「最大外径寸法D1」は、ブーツ37およびブーツバンド36等の付属品も含めた状態で、最も外径側に存在する部分の外径寸法をいう。例えば図1に示すアウトボード側等速自在継手30では、ブーツ最大径部37aの外径寸法がアウトボード側等速自在継手30の最大外径寸法D1となる。   Further, the “maximum outer diameter dimension D1” of the outboard side constant velocity universal joint refers to the outer diameter dimension of the portion existing on the outermost diameter side in a state including accessories such as the boot 37 and the boot band 36. For example, in the outboard-side constant velocity universal joint 30 shown in FIG. 1, the outer diameter of the boot maximum diameter portion 37 a is the maximum outer diameter D1 of the outboard-side constant velocity universal joint 30.

併せて図4に示すように、ドライブシャフト1のインボード側等速自在継手40の最大外径寸法D2をナックル部材6の最小内径寸法Dnよりも小さくすれば(D2<Dn)、ドライブシャフト1とハブ輪10と軸受部20とを予めアセンブリにした状態(以下、ドライブシャフトアセンブリと呼ぶ)でも車両への組み付けが可能となる。すなわち、ドライブシャフトアセンブリを、インボード側等速自在継手40、中間軸2、アウトボード側等速自在継手30の順に順次ナックル部材6の内周に挿入し、次いで外方部材26の外周面26aをナックル部材6の内周面に圧入することにより、車両への組み付けが完了する。これにより、組付け作業現場での作業工数を減じることができ、作業性が高まる。この場合、従来工程のようにナックル部材6を旋回させる必要もないので、作業スペースも最小限で足りる。インボード側等速自在継手40の最大外径寸法D2は、アウトボード側等速自在継手30の場合と同様に、ブーツ37およびブーツバンド36等の付属品も含めた状態でのインボード側等速自在継手40の最大外径寸法を意味する。   In addition, as shown in FIG. 4, if the maximum outer diameter D2 of the inboard constant velocity universal joint 40 of the drive shaft 1 is made smaller than the minimum inner diameter Dn of the knuckle member 6 (D2 <Dn), the drive shaft 1 Even in a state in which the hub wheel 10 and the bearing portion 20 are assembled in advance (hereinafter referred to as a drive shaft assembly), it can be assembled to the vehicle. That is, the drive shaft assembly is sequentially inserted into the inner periphery of the knuckle member 6 in the order of the inboard side constant velocity universal joint 40, the intermediate shaft 2, and the outboard side constant velocity universal joint 30, and then the outer peripheral surface 26a of the outer member 26. Is pressed into the inner peripheral surface of the knuckle member 6 to complete the assembly to the vehicle. Thereby, the work man-hour at the assembly work site can be reduced, and workability is enhanced. In this case, it is not necessary to turn the knuckle member 6 as in the conventional process, so that the work space is minimized. The maximum outer diameter D2 of the inboard side constant velocity universal joint 40 is the same as that of the outboard side constant velocity universal joint 30, and the inboard side in a state including accessories such as the boot 37 and the boot band 36. This means the maximum outer diameter of the quick universal joint 40.

ハブ輪10と外側継手部材31とは塑性結合される。この塑性結合は、塑性結合は、ハブ輪10と外側継手部材31のうち、何れか一方の部材に雄部51を形成すると共に、他方の部材に雄部51と異形の雌部52を形成し、雄部51と雌部52を相互に圧入することによって行われる。図1では、雄部51を外側継手部材31のステム部31bに形成すると共に、雌部52を同じくハブ輪10のインボード側端部に形成した場合を例示している。雄部51および雌部52のうち、何れか一方は断面真円形状に形成され、他方は断面非真円形状に形成される。図6(a)は、その一例として、雄部51をセレーションのような歯形面に形成すると共に、雌部51を円筒面状に形成した場合を例示している。断面非真円状の雄部51は鍛造や転造で効率的にかつ精度良く形成することができる。   The hub wheel 10 and the outer joint member 31 are plastically coupled. In this plastic coupling, the male part 51 is formed on one of the hub wheel 10 and the outer joint member 31, and the male part 51 and the deformed female part 52 are formed on the other member. The male part 51 and the female part 52 are pressed into each other. FIG. 1 illustrates a case where the male part 51 is formed on the stem part 31 b of the outer joint member 31 and the female part 52 is also formed on the inboard side end part of the hub wheel 10. One of the male part 51 and the female part 52 is formed in a perfect circle shape in cross section, and the other is formed in a non-circular shape in cross section. FIG. 6A illustrates, as an example, a case where the male part 51 is formed on a tooth-shaped surface such as a serration and the female part 51 is formed in a cylindrical surface shape. The male part 51 having a non-circular cross section can be formed efficiently and accurately by forging or rolling.

この他、雄部51の形状としては、図7に示すように角筒面を採用することもできる。何れの形状であっても、断面真円状の雌部52の内径寸法Dfは、雄部51の断面輪郭線に内接する円Aの直径よりも大きく、外接する円Bの直径よりも小さい。   In addition, as the shape of the male part 51, a rectangular tube surface can be adopted as shown in FIG. Regardless of the shape, the inner diameter dimension Df of the female part 52 having a perfectly circular cross section is larger than the diameter of the circle A inscribed in the cross-sectional outline of the male part 51 and smaller than the diameter of the circumscribed circle B.

以上の形状を有する雄部51を雌部52の内周に圧入することで、接合部分に塑性流動が生じて両者間の隙間の全部または一部が充足される。これにより、ハブ輪10と外側継手部材31が塑性結合され、一体化される。   By press-fitting the male part 51 having the above shape into the inner periphery of the female part 52, plastic flow is generated in the joint part, and all or part of the gap between the two parts is satisfied. Thereby, the hub wheel 10 and the outer joint member 31 are plastically coupled and integrated.

図8に示すように、圧入後、さらにステム部31bの中実軸端の外周部(破線で示す)を加締め具59で加締めてフランジ部58を形成すれば、ハブ輪10の抜け止め効果が更に高まる。圧入のみで十分な結合強度が得られるのであれば、この加締め工程を省略することもできる。   As shown in FIG. 8, the hub wheel 10 can be prevented from coming off if the flange portion 58 is formed by crimping the outer peripheral portion (shown by a broken line) of the solid shaft end of the stem portion 31 b with a crimping tool 59 after press-fitting. The effect is further increased. If sufficient bonding strength can be obtained only by press-fitting, this caulking step can be omitted.

この結合構造においては、予め断面非真円状の雄部51に熱処理を施して、図8に示すようにその表層Hを雌部52よりも高硬度にしておくのが望ましい。これにより、圧入に伴う雄部51の変形が抑えられ、雄部51が雌部52に食い込み易くなるので、結合強度をより一層高めることができる。図8に示す加締め加工を行う場合、加締めにより塑性変形させるステム部31bの軸端部分は未焼入れとし、フランジ部58の形成を容易なものとする。雄部51の熱処理方法としては、焼入れ範囲および焼入れ深さのコントロールが容易な高周波焼入れが望ましい。雌部52は基本的に熱処理を加えない生材とするが、雄部51の表面硬度を越えなければ熱処理を施しても構わない。   In this bonded structure, it is desirable to heat-treat the male part 51 having a non-circular cross section in advance so that the surface layer H is harder than the female part 52 as shown in FIG. Thereby, the deformation of the male part 51 due to the press-fitting is suppressed, and the male part 51 easily bites into the female part 52, so that the coupling strength can be further increased. When the caulking process shown in FIG. 8 is performed, the shaft end portion of the stem portion 31b to be plastically deformed by caulking is not quenched, and the flange portion 58 can be easily formed. As a heat treatment method for the male part 51, induction hardening in which the quenching range and the quenching depth are easily controlled is desirable. The female part 52 is basically a raw material not subjected to heat treatment, but may be subjected to heat treatment as long as the surface hardness of the male part 51 is not exceeded.

以上の説明では、雄部51を断面非真円状に形成し、雌部52を断面真円状に形成する場合を例示したが、コスト面等で特に問題がなければ、これとは逆に雄部51を断面真円状に形成し、雌部52を断面非真円状に形成しても構わない。断面非真円状の雌部52は例えばブローチ加工で形成することができる。この場合、断面非真円状の雌部52を断面真円状の雄部51よりも高硬度に形成する。   In the above description, the case where the male part 51 is formed in a non-circular shape in cross section and the female part 52 is formed in a circular shape in cross section has been exemplified. The male part 51 may be formed in a perfect circle shape in cross section, and the female part 52 may be formed in a non-circular shape in cross section. The female part 52 having a non-circular cross section can be formed by broaching, for example. In this case, the female part 52 having a non-circular cross section is formed with a higher hardness than the male part 51 having a circular cross section.

ところで、雄部51を雌部52に圧入すると、ハブ輪10が僅かに拡径方向に変形し、その影響がインナレース21におよぶ可能性がある。かかる事態を極力回避するため、両者の圧入部分は、図1に示すように、インボード側およびアウトボード側の転動体23の軸方向中心線O上に配置するのが好ましい。   By the way, when the male part 51 is press-fitted into the female part 52, the hub wheel 10 is slightly deformed in the diameter increasing direction, and the influence may be exerted on the inner race 21. In order to avoid such a situation as much as possible, it is preferable to arrange the press-fitting portions of both on the axial center line O of the rolling elements 23 on the inboard side and the outboard side as shown in FIG.

駆動車輪用軸受ユニットとしては、図10〜図16に示すように、アウトボード側のインナレース21をハブ輪10の外周面に形成し、インボード側のインナレース21を外側継手部材31の外周面に形成したタイプも使用することができる。図10〜図16の軸受ユニットは、ハブ輪10と外側継手部材31とが非分離に結合され、外側継手部材31の肩面38や端面がハブ輪10と軸方向に当接することで、複列のインナレース21間の寸法が規定され、かつ軸受部20に予備予圧が付与されている。この場合、ハブ輪10と外側継手部材31が複列のインナレース21を有する内方部材25を構成する。   As shown in FIGS. 10 to 16, the drive wheel bearing unit is formed with an inner race 21 on the outboard side on the outer peripheral surface of the hub wheel 10, and the inner race 21 on the inboard side is formed on the outer periphery of the outer joint member 31. A type formed on the surface can also be used. 10 to 16, the hub wheel 10 and the outer joint member 31 are coupled in a non-separable manner, and the shoulder surface 38 and the end surface of the outer joint member 31 are in contact with the hub wheel 10 in the axial direction. The dimension between the inner races 21 in the row is defined, and a preliminary preload is applied to the bearing portion 20. In this case, the hub wheel 10 and the outer joint member 31 constitute the inner member 25 having the double-row inner race 21.

図10〜図16のうち、第4実施形態を示す図10は、ハブ輪10と外側継手部材31とを拡径加締めで塑性結合したものである。拡径加締めでは、外側継手部材31のステム部31bが中空に形成され、そのアウトボード側の端部に他所より内径寸法を小さくした小径部31b1が形成される。ハブ輪10の内周にステム部31bを挿入した後、ステム部31bの内周に小径部31b1の内径寸法よりも大径のマンドレルを押し込んで小径部31b1を拡径させ、ハブ輪10の内周面に圧接させることにより、ハブ輪10と外側継手部材31とが塑性結合される。予めハブ輪10の内周面にローレット加工等で凹凸部15を形成し、この凹凸部15を熱処理により硬化させておけば、小径部31b1の拡径により凹凸部15をステム部31bの外周面に確実に食い込ませることができ、ハブ輪10と外側継手部材31とを強固に塑性結合することが可能となる。   10 to 16 showing the fourth embodiment among FIGS. 10 to 16, the hub wheel 10 and the outer joint member 31 are plastically coupled by expansion caulking. In the diameter expansion caulking, the stem portion 31b of the outer joint member 31 is formed hollow, and a small-diameter portion 31b1 having an inner diameter smaller than that of the other portion is formed at the end portion on the outboard side. After the stem portion 31b is inserted into the inner periphery of the hub wheel 10, a mandrel having a diameter larger than the inner diameter of the small diameter portion 31b1 is pushed into the inner periphery of the stem portion 31b to increase the diameter of the small diameter portion 31b1, and the inner diameter of the hub wheel 10 is increased. The hub wheel 10 and the outer joint member 31 are plastically coupled by being brought into pressure contact with the peripheral surface. If the concavo-convex portion 15 is formed in advance on the inner peripheral surface of the hub wheel 10 by knurling or the like and the concavo-convex portion 15 is hardened by heat treatment, the concavo-convex portion 15 is formed on the outer peripheral surface of the stem portion 31b by expanding the small diameter portion 31b1. Thus, the hub wheel 10 and the outer joint member 31 can be firmly plastically coupled.

なお、拡径加締めのように、外側継手部材31のステム部31bを中空に形成する場合、マウス部31a内部への異物の侵入およびグリースの流出等の事態を避けるため、ステム部31bの内周面にキャップ39を装着するのが望ましい。   In addition, when the stem portion 31b of the outer joint member 31 is formed to be hollow as in diameter expansion caulking, the inside of the stem portion 31b is avoided in order to avoid a situation such as entry of foreign matter into the mouth portion 31a and outflow of grease. It is desirable to attach a cap 39 to the peripheral surface.

第5実施形態を示す図11は、ハブ輪10と外側継手部材31とを揺動加締めと呼ばれる方法で非分離に結合したものである。揺動加締めでは、ステム部31bのアウトボード側の軸端を円筒状に形成し、加締め具の揺動により円筒部を外径側に塑性変形させてフランジ31b2が形成される。フランジ31b2をハブ輪10の端面に当接させることにより、ハブ輪10の抜け止めが行なわれ、かつハブ輪10の内周面とステム部31bの外周面との間にスプライン60を形成することで、ハブ輪10と外側継手部材31の回り止めがなされる。   FIG. 11 showing the fifth embodiment is one in which the hub wheel 10 and the outer joint member 31 are non-separated by a method called swing caulking. In the swing caulking, the shaft end on the outboard side of the stem portion 31b is formed in a cylindrical shape, and the flange 31b2 is formed by plastically deforming the cylindrical portion to the outer diameter side by swinging the caulking tool. The flange 31b2 is brought into contact with the end surface of the hub wheel 10 to prevent the hub wheel 10 from coming off, and the spline 60 is formed between the inner peripheral surface of the hub wheel 10 and the outer peripheral surface of the stem portion 31b. Thus, the hub wheel 10 and the outer joint member 31 are prevented from rotating.

第6実施形態を示す図12は、ハブ輪10と外側継手部材31とを溶接により非分離に結合したものである(溶接部分を符号61で示す)。溶接法としては、レーザビーム溶接、プラズマ溶接、電子ビーム溶接、高速パルス方式によるプロジェクション溶接等を例示することができる。ステム部31bはハブ輪10の内周に圧入されており、この圧入嵌合面を介してトルクを伝達することができるため、溶接部61にかかる負荷は小さく、従って、上記のように熱影響の少ない溶接法を採用することができる。   FIG. 12 showing the sixth embodiment is one in which the hub wheel 10 and the outer joint member 31 are joined in a non-separable manner by welding (the welded portion is indicated by reference numeral 61). Examples of the welding method include laser beam welding, plasma welding, electron beam welding, and high-speed pulse projection welding. Since the stem portion 31b is press-fitted into the inner periphery of the hub wheel 10 and torque can be transmitted through the press-fitting fitting surface, the load applied to the welded portion 61 is small. Less welding method can be adopted.

図10〜図12では、ハブ輪10の内周にステム部31bを嵌合する場合を例示したが、これとは逆に、中空状のステム部31bの内周にハブ輪10を嵌合して両者を非分離に結合することもできる(図13〜図16参照)。   10 to 12 exemplify the case where the stem portion 31b is fitted to the inner periphery of the hub wheel 10, conversely, the hub wheel 10 is fitted to the inner periphery of the hollow stem portion 31b. Thus, they can be non-separated (see FIGS. 13 to 16).

このうち、第7実施形態を示す図13は、図1に示す実施形態と同様に、雄部51と雌部52を互いに異形に形成し、雄部51を雌部52に圧入することにより、ハブ輪10と外側継手部材31とを塑性結合したものである。この場合、ハブ輪10のうち、インボード側の中実端部16の外周面に雄部51が形成され、これに対向するステム部31bの内周面に雌部52が形成される。図1に示す実施形態と同様に、雄部52の圧入後、図8に示す方法で、ハブ輪10の中実軸端16の外周部を加締めてフランジ部58を形成することにより、さらに結合強度を高めることができる。   Among these, FIG. 13 which shows 7th Embodiment forms the male part 51 and the female part 52 in a different shape mutually like the embodiment shown in FIG. 1, and press-fits the male part 51 in the female part 52, The hub wheel 10 and the outer joint member 31 are plastically coupled. In this case, a male part 51 is formed on the outer peripheral surface of the solid end part 16 on the inboard side of the hub wheel 10, and a female part 52 is formed on the inner peripheral surface of the stem part 31 b facing this. Similarly to the embodiment shown in FIG. 1, after the male portion 52 is press-fitted, the outer peripheral portion of the solid shaft end 16 of the hub wheel 10 is swaged to form the flange portion 58 by the method shown in FIG. Bond strength can be increased.

第8実施形態を示す図14はハブ輪10と外側継手部材31とを上記拡径加締めにより塑性結合したものである。すなわち中空ハブ輪10の小径部31b1をマンドレルで拡径変形させ、ステム部31bの内周面に形成した凹凸部15を食い込まれることによりハブ輪10と外側継手部材31とが塑性結合されている。第9実施形態を示す図15は、ハブ輪10と外側継手部材31とを上記揺動加締めで塑性結合したものである。ハブ輪10のインボード側の中実軸端16に形成した円筒部を揺動加締めにより塑性変形させてフランジ17を形成し、このフランジ17をマウス部31aに密着させている。第10実施形態を示す図16は両部材を上記の溶接法により非分離に結合したものである(溶接部分を符号61で示す)。   FIG. 14 showing the eighth embodiment is one in which the hub wheel 10 and the outer joint member 31 are plastically coupled by the above-described diameter expansion caulking. That is, the small diameter portion 31b1 of the hollow hub wheel 10 is expanded and deformed by a mandrel, and the concave and convex portion 15 formed on the inner peripheral surface of the stem portion 31b is bitten so that the hub wheel 10 and the outer joint member 31 are plastically coupled. . FIG. 15 showing the ninth embodiment is one in which the hub wheel 10 and the outer joint member 31 are plastically coupled by the above-described swing caulking. A cylindrical portion formed at the solid shaft end 16 on the inboard side of the hub wheel 10 is plastically deformed by swinging and caulking to form a flange 17, which is in close contact with the mouth portion 31a. FIG. 16 showing the tenth embodiment is obtained by joining both members in a non-separated manner by the above-described welding method (the welded portion is indicated by reference numeral 61).

図2、図3は、駆動車輪用軸受ユニットの他の構成を示すものである。このうち、図2に示す軸受ユニットでは、軸受部20の複列のインナレース21が何れもハブ輪10の外周に圧入した一体構造の内輪28外周面に形成されている。この場合、内輪28が複列のインナレース21を有する内方部材25を構成する。図3は、図2に示す一体構造の内輪28を軸方向で二分割してそれぞれハブ輪10の外周面に圧入し、二つの内輪28a、28bの各外周面にインナレース21を形成した例である。この構成では、二つの内輪28a、28bが複列のインナレース21を有する内方部材25を構成する。図2および図3に示す何れの軸受ユニットでも、軸受部20の両端開口部はカセットシール27a、27bで密封されている。   2 and 3 show other configurations of the drive wheel bearing unit. Among these, in the bearing unit shown in FIG. 2, the double row inner races 21 of the bearing portion 20 are all formed on the outer peripheral surface of the integral inner ring 28 press-fitted into the outer periphery of the hub wheel 10. In this case, the inner ring 28 constitutes the inner member 25 having the double-row inner race 21. FIG. 3 shows an example in which the integral inner ring 28 shown in FIG. 2 is divided into two in the axial direction and press-fitted into the outer peripheral surface of the hub wheel 10 to form inner races 21 on the outer peripheral surfaces of the two inner rings 28a and 28b. It is. In this configuration, the two inner rings 28 a and 28 b constitute the inner member 25 having the double-row inner race 21. In any of the bearing units shown in FIGS. 2 and 3, both end openings of the bearing portion 20 are sealed with cassette seals 27a and 27b.

以上に説明した点を除き、図2および図3に示す軸受ユニットの構成は、図1に示す軸受ユニットの構成と共通するので、共通する部材・要素には共通の参照番号を付して、重複部分の説明を省略する。   Except for the points described above, the configuration of the bearing unit shown in FIG. 2 and FIG. 3 is the same as the configuration of the bearing unit shown in FIG. The description of the overlapping part is omitted.

図17は、図1〜図3に示す軸受ユニットにおいて、上記の各種結合構造でハブ輪10と外側継手部材31とをアウトボード側端部で結合した例を示すものである。図17中の縦列左欄(符号1、4、7)は図1に示す軸受ユニット相当品を表し、縦列中欄(符号2、5、8)は図2に示す軸受ユニット相当品を表し、縦列右欄(符号3、6、9)は図3に示す軸受ユニット相当品をそれぞれ表す。また、横列上段(符号1〜3)は拡径加締めを適用したものを表し、横列中段(符号4〜6)は揺動加締めを適用したものを表し、横列下段(符号7〜9)は溶接を適用したものをそれぞれ表す。   FIG. 17 illustrates an example in which the hub wheel 10 and the outer joint member 31 are coupled to each other at the end portion on the outboard side in the bearing units illustrated in FIGS. The column left column (reference numerals 1, 4, 7) in FIG. 17 represents the bearing unit equivalent product shown in FIG. 1, and the column middle column (reference symbols 2, 5, 8) represents the bearing unit equivalent product shown in FIG. The right column (reference numerals 3, 6 and 9) in the column represents the bearing unit equivalent product shown in FIG. Further, the upper row (reference numerals 1 to 3) represents the one to which the diameter expansion caulking is applied, the middle row (reference numerals 4 to 6) represents the one to which the swing caulking is applied, and the lower row (reference numerals 7 to 9). Represents the one to which welding is applied.

図1〜図3では、ハブ輪10と内輪28、28a、28bの位置決めを止め輪29で行っているが、これに代えて揺動加締めで両者の位置決めを行うこともできる。図9はその一例で、ハブ輪10の小径段部13の円筒状の軸端を内輪28のインボード側端面を超えるまで延ばし、その突出部分の内径側で加締め具を揺動させることにより、突出部分を外径側に塑性変形させてフランジ17を形成したものである。フランジ17は内輪28のインボード側端面と密着している。図2および図3に示す軸受ユニットでも、同様に揺動加締めを施してフランジ17を形成することにより、ハブ輪10と内輪28、28a、28bの軸方向の位置決めを行うことができる。   In FIGS. 1 to 3, the hub wheel 10 and the inner rings 28, 28 a, 28 b are positioned by the retaining ring 29, but they can also be positioned by swing caulking instead. FIG. 9 shows an example of this, by extending the cylindrical shaft end of the small-diameter step 13 of the hub wheel 10 over the inboard side end surface of the inner ring 28 and swinging the crimping tool on the inner diameter side of the protruding portion. The flange 17 is formed by plastically deforming the protruding portion toward the outer diameter side. The flange 17 is in close contact with the end face on the inboard side of the inner ring 28. In the bearing unit shown in FIGS. 2 and 3 as well, the hub ring 10 and the inner rings 28, 28 a, 28 b can be positioned in the axial direction by similarly performing rocking caulking to form the flange 17.

図19に第11実施形態を示す。この駆動車輪用軸受ユニットは、ホイール80の内周に嵌合する円筒状のパイロット部72をハブ輪10と別部材、例えばブレーキロータ70に設けた例である。ブレーキロータ70は、ハブ輪10のフランジ11のアウトボード側端面とホイール80の間に配置され、その円周方向複数箇所にはホイールボルトを挿通するための孔71が形成されている。   FIG. 19 shows an eleventh embodiment. This bearing unit for a drive wheel is an example in which a cylindrical pilot portion 72 fitted to the inner periphery of the wheel 80 is provided on a member different from the hub wheel 10, for example, the brake rotor 70. The brake rotor 70 is disposed between the end surface on the outboard side of the flange 11 of the hub wheel 10 and the wheel 80, and holes 71 for inserting wheel bolts are formed at a plurality of locations in the circumferential direction.

図1に示すように、通常、パイロット部72はハブ輪10のアウトボード側の端部に一体形成されており、それ故にハブ輪10の形状が複雑化している。そのため、実際にはハブ輪10を鍛造のみで成形することは難しく、旋削加工を加える場合が多い。また、パイロット部72には、部分的に防錆塗装を施す必要がある。以上から、ハブ輪10の製作コストは高騰する傾向にある。   As shown in FIG. 1, the pilot portion 72 is usually formed integrally with the end portion on the outboard side of the hub wheel 10, and therefore the shape of the hub wheel 10 is complicated. Therefore, in practice, it is difficult to form the hub wheel 10 only by forging, and turning is often performed. Further, the pilot portion 72 needs to be partially rust-proofed. From the above, the manufacturing cost of the hub wheel 10 tends to increase.

これに対し、ハブ輪10のパイロット部72を廃し、これを図19に示すように、ブレーキロータ70の例えば内径端部に設ければ、ハブ輪10のアウトボード側の形状が簡略化されるため、これを鍛造成形することが可能となり、かつハブ輪10への防錆塗装処理も不要となる。従って、ハブ輪10の低コスト化を図ることができ、かつ軽量化設計も可能となる。通常、ブレーキロータ70は鋳造で成形されるので、パイロット部72を有するブレーキロータ70は低コストに製作可能である。なお、図19において、止め輪53が軸受部20の軸方向中央部に設けられているが、もちろんアウトボード側に設けてもよい。また、ナックル部材6の止め輪溝6cのアウトボード壁面6c1をテーパ面状に形成することになる。   On the other hand, if the pilot portion 72 of the hub wheel 10 is eliminated and is provided at, for example, the inner diameter end portion of the brake rotor 70 as shown in FIG. 19, the shape of the hub wheel 10 on the outboard side is simplified. Therefore, it becomes possible to forge-mold this, and the antirust coating process to the hub wheel 10 is also unnecessary. Therefore, the cost of the hub wheel 10 can be reduced, and a light weight design can be achieved. Since the brake rotor 70 is usually formed by casting, the brake rotor 70 having the pilot portion 72 can be manufactured at low cost. In FIG. 19, the retaining ring 53 is provided at the axially central portion of the bearing portion 20, but may of course be provided on the outboard side. Further, the outboard wall surface 6c1 of the retaining ring groove 6c of the knuckle member 6 is formed in a tapered surface shape.

図19は、中空ハブ輪10と内輪28とで内方部材25を形成した図1相当の軸受ユニットを表しているが、同様の構成は、一体内輪28で内方部材25を形成した図2相当の軸受ユニット、および分割内輪28a、28bで内方部材25を形成した図3相当の軸受ユニットでも採用することができる。   FIG. 19 shows a bearing unit equivalent to FIG. 1 in which the inner member 25 is formed by the hollow hub wheel 10 and the inner ring 28, but a similar configuration is shown in FIG. 2 in which the inner member 25 is formed by the integrated inner ring 28. A corresponding bearing unit and a bearing unit corresponding to FIG. 3 in which the inner member 25 is formed by the divided inner rings 28a and 28b can also be employed.

本発明の第1実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 1st Embodiment of this invention. 本発明の第2実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 3rd Embodiment of this invention. ドライブシャフトの断面図である。It is sectional drawing of a drive shaft. 外方部材とナックル部材の圧入部を拡大して示す断面図である。It is sectional drawing which expands and shows the press fit part of an outward member and a knuckle member. (a)図はハブ輪と外側継手部材の結合部分における雄部の断面図、(b)図は同じく雌部の断面図である。(A) The figure is sectional drawing of the male part in the coupling | bond part of a hub ring and an outer joint member, (b) Figure is sectional drawing of a female part similarly. 雄部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a male part. ハブ輪と外側継手部材の塑性結合工程を示す断面図である。It is sectional drawing which shows the plastic coupling process of a hub ring and an outer joint member. 図1の駆動車輪用軸受ユニットの変形を示す要部断面図である。It is principal part sectional drawing which shows a deformation | transformation of the bearing unit for drive wheels of FIG. 本発明の第4実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 4th Embodiment of this invention. 本発明の第5実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 5th Embodiment of this invention. 本発明の第6実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 6th Embodiment of this invention. 本発明の第7実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 7th Embodiment of this invention. 本発明の第8実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 8th Embodiment of this invention. 本発明の第9実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 9th Embodiment of this invention. 本発明の第10実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 10th Embodiment of this invention. 図1〜図3に示す軸受ユニットにおいて拡径加締め、揺動加締め、および溶接を適用した場合の構成を示す図である。It is a figure which shows the structure at the time of applying diameter expansion caulking, rocking caulking, and welding in the bearing unit shown in FIGS. 図1に示す駆動車輪用軸受ユニットの他の変形例を示す要部断面図である。It is principal part sectional drawing which shows the other modification of the bearing unit for drive wheels shown in FIG. 本発明の第11実施形態を示す駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels which shows 11th Embodiment of this invention. 車両の懸架装置周りの概略構造を示す断面図である。It is sectional drawing which shows schematic structure around the suspension apparatus of a vehicle.

符号の説明Explanation of symbols

6 ナックル部材
6a 内周面
6c 止め輪溝
6c1 アウトボード壁面(テーパ面)
10 ハブ輪
21 インナレース
22 アウタレース
23 転動体
24 保持器
25 内方部材
26 外方部材
30 アウトボード側等速自在継手
53 止め輪
Dn ナックル部材の最小内径寸法
D1 アウトボード側等速自在継手の最大外径寸法
6 Knuckle member 6a Inner peripheral surface 6c Retaining ring groove 6c1 Outboard wall surface (tapered surface)
DESCRIPTION OF SYMBOLS 10 Hub wheel 21 Inner race 22 Outer race 23 Rolling body 24 Cage 25 Inner member 26 Outer member 30 Outboard side constant velocity universal joint 53 Retaining ring Dn Minimum inner diameter dimension of knuckle member D1 Maximum of the outboard side constant velocity universal joint Outside diameter

Claims (1)

内周に複数のアウタレースを有する外方部材と、前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された複数列の転動体と、車輪に取り付けられるハブ輪と、アウトボード側等速自在継手とを備える駆動車輪用軸受ユニットにおいて、
外方部材の外周面が車体側のナックル部材の内周面に嵌合組込みされ、アウトボード側等速自在継手の最大外径寸法をナックル部材の最小内径寸法よりも小さくし、外方部材とナックル部材との間に止め輪を介在させ、ナックル部材の内周面に、アウトボード側をテーパ状にした止め輪溝を設けたことを特徴とする駆動車輪用軸受ユニット。
An outer member having a plurality of outer races on the inner periphery, an inner member having a plurality of inner races facing the outer races, a plurality of rows of rolling elements disposed between the outer races and the inner races facing each other, and wheels In a drive wheel bearing unit comprising a hub wheel attached to an outboard and a constant velocity universal joint on the outboard side,
The outer peripheral surface of the outer member is fitted and incorporated into the inner peripheral surface of the knuckle member on the vehicle body side, and the maximum outer diameter of the constant velocity universal joint on the outboard side is made smaller than the minimum inner diameter of the knuckle member. A bearing unit for a drive wheel, wherein a retaining ring is interposed between the knuckle member and a retaining ring groove having a tapered outboard side is provided on an inner peripheral surface of the knuckle member.
JP2006173142A 2006-06-22 2006-06-22 Bearing unit for drive wheel Withdrawn JP2008002579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173142A JP2008002579A (en) 2006-06-22 2006-06-22 Bearing unit for drive wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173142A JP2008002579A (en) 2006-06-22 2006-06-22 Bearing unit for drive wheel

Publications (1)

Publication Number Publication Date
JP2008002579A true JP2008002579A (en) 2008-01-10

Family

ID=39007128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173142A Withdrawn JP2008002579A (en) 2006-06-22 2006-06-22 Bearing unit for drive wheel

Country Status (1)

Country Link
JP (1) JP2008002579A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122855A1 (en) * 2008-04-01 2009-10-08 Ntn株式会社 Bearing device for wheel, and axle module
JP2009248596A (en) * 2008-04-01 2009-10-29 Ntn Corp Bearing device for wheel and axle module
JP2010047060A (en) * 2008-08-19 2010-03-04 Ntn Corp Wheel bearing device and axle module
JP2010047043A (en) * 2008-08-19 2010-03-04 Ntn Corp Bearing device for driving wheel, and axle unit equipped with the bearing device
JP2010047042A (en) * 2008-08-19 2010-03-04 Ntn Corp Bearing device for driving wheel
WO2010044344A1 (en) * 2008-10-14 2010-04-22 Ntn株式会社 Wheel bearing apparatus
JP2010112441A (en) * 2008-11-05 2010-05-20 Ntn Corp Wheel bearing device
WO2010058719A1 (en) * 2008-11-18 2010-05-27 Ntn株式会社 Bearing device for wheel
JP2010120406A (en) * 2008-11-17 2010-06-03 Ntn Corp Bearing device for wheel and axle module
JP2010120461A (en) * 2008-11-18 2010-06-03 Ntn Corp Bearing device for wheel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122855A1 (en) * 2008-04-01 2009-10-08 Ntn株式会社 Bearing device for wheel, and axle module
JP2009248596A (en) * 2008-04-01 2009-10-29 Ntn Corp Bearing device for wheel and axle module
JP2010047060A (en) * 2008-08-19 2010-03-04 Ntn Corp Wheel bearing device and axle module
JP2010047043A (en) * 2008-08-19 2010-03-04 Ntn Corp Bearing device for driving wheel, and axle unit equipped with the bearing device
JP2010047042A (en) * 2008-08-19 2010-03-04 Ntn Corp Bearing device for driving wheel
WO2010044344A1 (en) * 2008-10-14 2010-04-22 Ntn株式会社 Wheel bearing apparatus
JP2010112441A (en) * 2008-11-05 2010-05-20 Ntn Corp Wheel bearing device
JP2010120406A (en) * 2008-11-17 2010-06-03 Ntn Corp Bearing device for wheel and axle module
WO2010058719A1 (en) * 2008-11-18 2010-05-27 Ntn株式会社 Bearing device for wheel
JP2010120461A (en) * 2008-11-18 2010-06-03 Ntn Corp Bearing device for wheel

Similar Documents

Publication Publication Date Title
JP5079270B2 (en) Wheel bearing unit
JP2008002579A (en) Bearing unit for drive wheel
JP4315819B2 (en) Drive wheel bearing device
US8480306B2 (en) Bearing unit for driving wheels
US8944694B2 (en) Bearing device for driving wheel, and its assembling method
JP2008002578A (en) Bearing unit for drive wheel
JP2008001243A (en) Bearing unit for driving wheel
JP4338095B2 (en) Drive wheel bearing unit
WO2015008569A1 (en) Bearing device for wheels
WO2014069137A1 (en) Bearing for wheel, and bearing device for wheel
JP5153128B2 (en) Fitting assembly
JP6042142B2 (en) WHEEL BEARING, WHEEL BEARING DEVICE, AND METHOD FOR MANUFACTURING WHEEL BEARING DEVICE
JP2005297944A (en) Bearing device for wheel
JP2008002582A (en) Bearing unit for drive wheel
JP2008018765A (en) Bearing unit for drive wheel
JP2008018767A (en) Drive shaft assembly
JP2008001237A (en) Bearing unit for driving wheel
JP2008002581A (en) Bearing unit for drive wheel
JP2008001239A (en) Bearing unit for driving wheel
JP2007333117A (en) Bearing unit for driving wheel
JP5101051B2 (en) Drive wheel bearing unit
JP2007162828A (en) Wheel bearing device and axle module equipped therewith
JP2007331555A (en) Driving wheel bearing unit
JP2006052753A (en) Bearing device for wheel
JP2008001240A (en) Bearing unit for driving wheel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901