JP2010120406A - Bearing device for wheel and axle module - Google Patents

Bearing device for wheel and axle module Download PDF

Info

Publication number
JP2010120406A
JP2010120406A JP2008293414A JP2008293414A JP2010120406A JP 2010120406 A JP2010120406 A JP 2010120406A JP 2008293414 A JP2008293414 A JP 2008293414A JP 2008293414 A JP2008293414 A JP 2008293414A JP 2010120406 A JP2010120406 A JP 2010120406A
Authority
JP
Japan
Prior art keywords
wheel
hub wheel
convex
bearing device
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008293414A
Other languages
Japanese (ja)
Inventor
Kiyoshige Yamauchi
清茂 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008293414A priority Critical patent/JP2010120406A/en
Publication of JP2010120406A publication Critical patent/JP2010120406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/072Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving plastic deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device for a wheel and an axle module capable of reducing circumferential play, preventing entering of foreign matter (mud and salt water, etc.) to suppress generation of internal rust and stably transmitting torque over a long period, with excellent connecting workability between a hub ring and an outer joint member of a constant velocity universal joint. <P>SOLUTION: Axially extending ridges 35 are provided either on the outer diameter surface of a shaft part of the outer joint member or on the inner diameter surface 37 of a hole part 22 of the hub ring 1 and the ridges 35 are axially press fitted to the other. This forms, in the other, the grooves 36 to be fitted in close contact with the ridges 35 by the ridges 35, and thereby forming a ridge-groove fitting structure M in which the whole fitting and contacting area of the ridges 35 and the grooves 36 are in close contact with each other. A coating film is formed to close a gap between the inner diameter surface of the hub ring 1 and an outer diameter surface of an end part on an outboard side of the shaft part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車輪用軸受装置およびアクスルモジュールに関する。   The present invention relates to a wheel bearing device and an axle module.

本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置およびこのような車輪用軸受装置を用いたアクスルモジュールに関する。   The present invention relates to a wheel bearing device for rotatably supporting a wheel with respect to a vehicle body in a vehicle such as an automobile, and an axle module using such a wheel bearing device.

自動車等の車両のエンジン動力を車輪に伝達する動力伝達装置は、エンジンから車輪へ動力を伝達するとともに、悪路走行時における車両のバウンドや車両の旋回時に生じる車輪からの径方向や軸方向変位、およびモーメント変位を許容する必要がある。このため、アクスルモジュールを使用する。   A power transmission device that transmits engine power of a vehicle such as an automobile to a wheel transmits power from the engine to the wheel, and also causes radial or axial displacement from the wheel that occurs when the vehicle bounces or turns when traveling on rough roads. , And moment displacement must be allowed. For this reason, an axle module is used.

アクスルモジュールは、アウトボード側の等速自在継手(固定式等速自在継手)と、インボード側の等速自在継手(摺動式等速自在継手)と、これら等速自在継手に連結されるドライブシャフトとを備える。この場合、アウトボード側においては、ハブ輪と、転がり軸受と、等速自在継手とが一体化されて車輪用軸受装置が構成される。なお、車両に組み付けた状態で車両の外側寄りとなる側をアウトボード側と呼び、中央寄り側をインボード側と呼ぶ。   The axle module is connected to the constant velocity universal joint on the outboard side (fixed constant velocity universal joint), the constant velocity universal joint on the inboard side (sliding constant velocity universal joint), and these constant velocity universal joints. A drive shaft. In this case, on the outboard side, the wheel hub, the rolling bearing, and the constant velocity universal joint are integrated to form a wheel bearing device. Note that the side closer to the outer side of the vehicle when assembled to the vehicle is referred to as the outboard side, and the side closer to the center is referred to as the inboard side.

車輪用軸受装置には、第1世代と称される複列の転がり軸受を単独に使用する構造から、外方部材に車体取付フランジを一体に有する第2世代に進化し、さらに、車輪取付フランジを一体に有するハブ輪の外周に複列の転がり軸受の一方の内側軌道面が一体に形成された第3世代、さらには、ハブ輪に等速自在継手が一体化され、この等速自在継手を構成する外側継手部材の外周に複列の転がり軸受の他方の内側軌道面が一体に形成された第4世代のものまで開発されている。   The wheel bearing device has evolved from a structure in which a double row rolling bearing called a first generation is used alone to a second generation in which a vehicle body mounting flange is integrated with an outer member. The third generation in which one inner raceway surface of the double row rolling bearing is integrally formed on the outer periphery of the hub ring integrally having a ring, and further, the constant velocity universal joint is integrated with the hub ring. 4th generation has been developed in which the other inner raceway surface of the double-row rolling bearing is integrally formed on the outer periphery of the outer joint member that constitutes.

例えば、特許文献1には、第3世代と呼ばれるものが記載されている。第3世代と呼ばれる車輪用軸受装置は、図12に示すように、外径方向に延びるフランジ151を有するハブ輪152と、このハブ輪152に外側継手部材153が固定される等速自在継手154と、ハブ輪152の外周側に配設される外方部材155とを備える。外方部材155が転がり軸受の外輪を構成する。   For example, Patent Document 1 describes what is called a third generation. As shown in FIG. 12, a wheel bearing device called a third generation includes a hub wheel 152 having a flange 151 extending in the outer diameter direction, and a constant velocity universal joint 154 to which an outer joint member 153 is fixed. And an outer member 155 disposed on the outer peripheral side of the hub wheel 152. The outer member 155 forms an outer ring of the rolling bearing.

等速自在継手154は、前記外側継手部材153と、この外側継手部材153のマウス部157内に配設される内側継手部材158と、この内側継手部材158と外側継手部材153との間に配設されるボール159と、このボール159を保持する保持器160とを備える。また、内側継手部材158の中心孔の内周面にはスプライン部161が形成され、この中心孔に図示省略のシャフトの端部スプライン部が挿入されて、内側継手部材158側のスプライン部161とシャフト側のスプライン部とが係合される。   The constant velocity universal joint 154 is disposed between the outer joint member 153, the inner joint member 158 disposed in the mouth portion 157 of the outer joint member 153, and the inner joint member 158 and the outer joint member 153. A ball 159 to be provided and a holder 160 for holding the ball 159 are provided. Further, a spline portion 161 is formed on the inner peripheral surface of the center hole of the inner joint member 158, and an end spline portion of a shaft (not shown) is inserted into the center hole, and the spline portion 161 on the inner joint member 158 side The spline portion on the shaft side is engaged.

また、ハブ輪152は、筒部163と前記フランジ151とを有し、フランジ151の外端面164(アウトボード側の端面)には、図示省略のホイールおよびブレーキロータが装着される短筒状のパイロット部165が突設されている。なお、パイロット部165は、大径の第1部165aと小径の第2部165bとからなり、第1部165aにブレーキロータが外嵌され、第2部165bにホイールが外嵌される。   The hub wheel 152 has a cylindrical portion 163 and the flange 151, and a short cylindrical shape on which an unillustrated wheel and brake rotor are mounted on the outer end surface 164 (end surface on the outboard side) of the flange 151. A pilot part 165 is provided so as to protrude. The pilot portion 165 includes a large-diameter first portion 165a and a small-diameter second portion 165b. A brake rotor is externally fitted to the first portion 165a, and a wheel is externally fitted to the second portion 165b.

そして、筒部163のマウス部157側端部の外周面に切欠部166が設けられ、この切欠部166に内輪167が嵌合されている。ハブ輪152の筒部163の外周面のフランジ近傍には第1内側軌道面168が設けられ、内輪167の外周面に第2内側軌道面169が設けられている。また、ハブ輪152のフランジ151にはボルト装着孔162が設けられて、ホイールおよびブレーキロータをこのフランジ151に固定するためのハブボルトがこのボルト装着孔162に装着される。   A cutout portion 166 is provided on the outer peripheral surface of the end portion of the cylinder portion 163 on the mouth portion 157 side, and the inner ring 167 is fitted into the cutout portion 166. A first inner raceway surface 168 is provided in the vicinity of the flange on the outer peripheral surface of the cylindrical portion 163 of the hub ring 152, and a second inner raceway surface 169 is provided on the outer peripheral surface of the inner ring 167. A bolt mounting hole 162 is provided in the flange 151 of the hub wheel 152, and a hub bolt for fixing the wheel and the brake rotor to the flange 151 is mounted in the bolt mounting hole 162.

外方部材155は、その内周に2列の外側軌道面170、171が設けられると共に、その外周にフランジ(車体取付フランジ)182が設けられている。そして、外方部材155の第1外側軌道面170とハブ輪152の第1内側軌道面168とが対向し、外方部材155の第2外側軌道面171と、内輪167の軌道面169とが対向し、これらの間に転動体172が介装される。   The outer member 155 is provided with two rows of outer raceways 170 and 171 on its inner periphery, and a flange (vehicle body mounting flange) 182 on its outer periphery. Then, the first outer raceway surface 170 of the outer member 155 and the first inner raceway surface 168 of the hub ring 152 face each other, and the second outer raceway surface 171 of the outer member 155 and the raceway surface 169 of the inner ring 167 are opposed to each other. Opposed and a rolling element 172 is interposed between them.

ハブ輪152の筒部163に外側継手部材153の軸部173が挿入される。軸部173は、その反マウス部側の端部にねじ部174が形成され、このねじ部174とマウス部157との間にスプライン部175が形成されている。また、ハブ輪152の筒部163の内周面(内径面)にスプライン部176が形成され、この軸部173がハブ輪152の筒部163に挿入された際には、軸部173側のスプライン部175とハブ輪152側のスプライン部176とが係合する。   The shaft portion 173 of the outer joint member 153 is inserted into the tube portion 163 of the hub wheel 152. The shaft portion 173 has a screw portion 174 formed at the end on the side opposite to the mouse portion, and a spline portion 175 is formed between the screw portion 174 and the mouse portion 157. In addition, a spline portion 176 is formed on the inner peripheral surface (inner diameter surface) of the cylindrical portion 163 of the hub wheel 152, and when the shaft portion 173 is inserted into the cylindrical portion 163 of the hub wheel 152, The spline portion 175 engages with the spline portion 176 on the hub wheel 152 side.

そして、筒部163から突出した軸部173のねじ部174にナット部材177が螺着され、ハブ輪152と外側継手部材153とが連結される。この際、ナット部材177の内端面(裏面)178と筒部163の外端面179とが当接するとともに、マウス部157の軸部側の端面180と内輪167の外端面181とが当接する。すなわち、ナット部材177を締付けることによって、ハブ輪152が内輪167を介してナット部材177とマウス部157とで挟持される。
特開2004−340311号公報
Then, the nut member 177 is screwed to the screw portion 174 of the shaft portion 173 protruding from the tube portion 163, and the hub wheel 152 and the outer joint member 153 are connected. At this time, the inner end surface (back surface) 178 of the nut member 177 and the outer end surface 179 of the cylindrical portion 163 are in contact with each other, and the end surface 180 on the shaft portion side of the mouse portion 157 and the outer end surface 181 of the inner ring 167 are in contact with each other. That is, by tightening the nut member 177, the hub wheel 152 is sandwiched between the nut member 177 and the mouth portion 157 via the inner ring 167.
JP 2004340403 A

このように、車輪用軸受装置では、軸部173側のスプライン部175とハブ輪152側のスプライン部176とが係合するものである。このため、軸部173側及びハブ輪152側の両者にスプライン加工を施す必要があって、コスト高となるとともに、圧入時には、軸部173側のスプライン部175とハブ輪152側のスプライン部176との凹凸を合わせる必要があり、この際、歯面を合わせることによって、圧入すれば、この凹凸歯が損傷する(むしれる)おそれがある。また、歯面を合わせることなく、凹凸歯の大径合わせにて圧入すれば、円周方向のガタが生じやすい。このように、円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれもあった。このため、従来のように、スプライン嵌合による場合、凹凸歯の損傷及び円周方向のガタの両者を成立させることは困難であった。   Thus, in the wheel bearing device, the spline portion 175 on the shaft portion 173 side and the spline portion 176 on the hub wheel 152 side are engaged. For this reason, it is necessary to perform spline processing on both the shaft portion 173 side and the hub wheel 152 side, which increases the cost, and at the time of press-fitting, the spline portion 175 on the shaft portion 173 side and the spline portion 176 on the hub wheel 152 side. It is necessary to match the unevenness of the teeth. At this time, if the teeth are pressed by matching the tooth surfaces, the uneven teeth may be damaged (peeled). Moreover, if it press-fits by matching the large diameter of an uneven | corrugated tooth | gear, without matching a tooth surface, it will be easy to produce the play of the circumferential direction. As described above, when there is a backlash in the circumferential direction, the transmission performance of the rotational torque is inferior and abnormal noise may occur. For this reason, it has been difficult to establish both the damage to the concavo-convex teeth and the play in the circumferential direction in the case of spline fitting as in the prior art.

また、筒部163から突出した軸部173のねじ部174にナット部材177を螺着する必要がある。このため、組立時にはねじ締結作業を有し、作業性に劣るとともに、部品点数も多く、部品管理性も劣ることになっていた。   Further, it is necessary to screw the nut member 177 to the screw portion 174 of the shaft portion 173 protruding from the cylindrical portion 163. For this reason, it has a screw fastening operation at the time of assembly, which is inferior in workability, has a large number of parts, and inferior in part manageability.

ところで、スプライン嵌合部に雨水等が浸入した場合、このスプライン嵌合部において錆等が発生して傷めるおそれがあり、耐用性についても問題があった。   By the way, when rainwater or the like enters the spline fitting portion, rust or the like may be generated and damaged in the spline fitting portion, and there is a problem in durability.

本発明は、上記課題に鑑みて、円周方向のガタの抑制を図ることができ、しかも、ハブ輪と等速自在継手の外側継手部材との連結作業性に優れ、さらには異物(泥塩水等)の浸入を防止して、内部の錆びの発生を抑えることができ、長期にわたって安定したトルク伝達が可能な車輪用軸受装置及びアクスルモジュールを提供する。   In view of the above problems, the present invention can suppress circumferential backlash and is excellent in connection workability between the hub wheel and the outer joint member of the constant velocity universal joint. Etc.), a wheel bearing device and an axle module that can suppress the occurrence of internal rust and can stably transmit torque over a long period of time are provided.

本発明の車輪用軸受装置は、対向するアウタレースとインナレースとの間に配置された複数列の転動体を有する軸受と、車輪に取り付けられるハブ輪と、等速自在継手とを備え、ハブ輪の孔部に嵌挿される等速自在継手の外側継手部材の軸部が凹凸嵌合構造を介してハブ輪に一体化される車輪用軸受装置であって、外側継手部材の軸部とハブ輪の孔部のうち、どちらか一方に設けられた軸方向に延びる凸部を他方に圧入し、この他方に凸部に密着嵌合する凹部を凸部にて形成することで、前記凸部と前記凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成し、少なくとも、ハブ輪の内径面及び軸部のアウトボード側の端部外径面との隙間を閉塞する塗装皮膜を形成したものである。   A wheel bearing device of the present invention includes a bearing having a plurality of rows of rolling elements arranged between opposing outer races and inner races, a hub wheel attached to the wheel, and a constant velocity universal joint, A bearing device for a wheel in which a shaft portion of an outer joint member of a constant velocity universal joint that is inserted into a hole of the wheel is integrated with a hub wheel via a concave-convex fitting structure, and the shaft portion of the outer joint member and the hub wheel A convex portion extending in the axial direction provided in one of the hole portions is press-fitted into the other, and a concave portion that closely fits to the convex portion is formed on the other by the convex portion. Constructs a concave-convex fitting structure in which the entire fitting contact portion with the concave portion is in close contact, and forms a coating film that closes at least the gap between the inner diameter surface of the hub wheel and the outer diameter surface of the end portion on the outboard side of the shaft portion It is a thing.

本発明の車輪用軸受装置によれば、凹凸嵌合構造は、外側継手部材の軸部の外径面とハブ輪の孔部の内径面とのどちらか一方に設けられている凸部と、この凸部に嵌合する他方の凹部との嵌合接触部位全域が密着しているので、この嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されない。   According to the wheel bearing device of the present invention, the concave-convex fitting structure includes a convex portion provided on one of the outer diameter surface of the shaft portion of the outer joint member and the inner diameter surface of the hole portion of the hub wheel, Since the entire fitting contact portion with the other concave portion fitted to the convex portion is in close contact, a gap in which play occurs in the radial direction and the circumferential direction is not formed in this fitting structure.

外側継手部材の軸部の外径面とハブ輪の孔部の内径面とのどちらか一方に設けられて軸方向に延びる凸部を、軸方向に沿って他方に圧入し、この他方に凸部にて凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成する。すなわち、相手側の凹部形成面に凸部の形状の転写を行うことになる。   A convex portion extending in the axial direction provided on one of the outer diameter surface of the shaft portion of the outer joint member and the inner diameter surface of the hole portion of the hub wheel is press-fitted into the other along the axial direction, and is projected to the other. A concave portion that closely fits to the convex portion is formed at the portion to constitute the concave-convex fitting structure. In other words, the shape of the convex portion is transferred to the concave portion forming surface on the other side.

等速自在継手の外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くして、前記軸部をハブ輪の孔部に凸部の軸方向端部側から圧入することによって、この凸部にてハブ輪の孔部内径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成してもよい。この際、凸部が相手側の凹部形成面(ハブ輪の孔部内径面)に食い込んでいくことによって、孔部が僅かに拡径した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部が元の径に戻ろうとして縮径することになる。これによって、凸部の凹部嵌合部位の全体がその対応する凹部に対して密着する。   A convex portion of the concave-convex fitting structure is provided on the shaft portion of the outer joint member of the constant velocity universal joint, and at least the hardness of the axial end portion of the convex portion is higher than the inner diameter portion of the hole portion of the hub wheel, By pressing the shaft portion into the hole portion of the hub wheel from the axial end portion side of the convex portion, a concave portion that closely fits the convex portion is formed on the inner diameter surface of the hole portion of the hub wheel at the convex portion. You may comprise an uneven | corrugated fitting structure. At this time, the convex portion bites into the concave portion forming surface (the inner diameter surface of the hole portion of the hub wheel), so that the hole portion is slightly expanded in diameter, and the convex portion is allowed to move in the axial direction. However, if the movement in the axial direction stops, the diameter of the hole portion is reduced to return to the original diameter. Thereby, the whole recessed part fitting part of a convex part closely_contact | adheres to the corresponding recessed part.

また、ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くして、前記ハブ輪側の凸部をその軸方向端部側から外側継手部材の軸部に圧入することによって、この凸部にて外側継手部材の軸部の外径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成してもよい。凸部が軸部の外径面に食い込んでいくことによって、孔部が僅かに拡径した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部が元の径に戻ろうとして縮径することになる。これによって、凸部とその凸部に嵌合する相手部材の凹部(シャフトの外径面)との嵌合接触部位全域が密着する。   Further, a convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and at least the hardness of the axial end portion of the convex portion is set to the outer diameter portion of the shaft portion of the outer joint member of the constant velocity universal joint. The convex portion on the hub wheel side is press-fitted into the shaft portion of the outer joint member from the axial end portion side, thereby projecting to the outer diameter surface of the shaft portion of the outer joint member. The concave-convex fitting structure may be formed by forming a concave portion that closely fits to the portion. If the convex portion bites into the outer diameter surface of the shaft portion, the hole portion is slightly expanded in diameter, allowing the convex portion to move in the axial direction and stopping the axial movement. The part is reduced in diameter to return to the original diameter. As a result, the entire fitting contact region between the convex portion and the concave portion (outer diameter surface of the shaft) of the mating member fitted into the convex portion is brought into close contact.

ハブ輪の内径面及び軸部のアウトボード側の端部外径面との隙間を閉塞する塗装皮膜を形成しているので、ハブ輪のアウトボード側からの凹凸嵌合構造への雨水や異物の浸入を防止できるとともに、ハブ輪の内径面及び軸部の端部が腐食するのを防止できる。   Since a coating film is formed to close the gap between the inner diameter surface of the hub wheel and the outer diameter surface of the end of the shaft on the outboard side, rainwater and foreign matter from the hub wheel outboard side to the uneven fitting structure Can be prevented, and the inner surface of the hub wheel and the end of the shaft can be prevented from corroding.

外側継手部材の軸部の端部にハブ輪の内径面に係合する拡径加締部を形成し、前記塗装皮膜が、少なくとも、ハブ輪の内径面と外側継手部材の拡径加締部の外径面との間の隙間を閉塞するものであってもよい。   An end portion of the shaft portion of the outer joint member is formed with an enlarged caulking portion that engages with the inner diameter surface of the hub wheel, and the coating film is at least the inner diameter surface of the hub wheel and the outer diameter caulking portion of the outer joint member. The gap between the outer diameter surfaces of the two may be closed.

前記塗装皮膜が、外側継手部材の軸部の軸端面、及びこの軸端面よりもアウトボード側のハブ輪内径面全体に至る範囲に設けられてもよい。   The coating film may be provided in a range extending from the shaft end surface of the shaft portion of the outer joint member to the entire inner diameter surface of the hub wheel on the outboard side from the shaft end surface.

前記ハブ輪のアウトボード側に短円筒状のホイールパイロットを設け、前記塗装皮膜が、外側継手部材の軸部の軸端面、この軸端面よりもアウトボード側のハブ輪内径面全体、及びホイールパイロットの外径面に至る範囲に設けられてもよい。   A short cylindrical wheel pilot is provided on the outboard side of the hub wheel, and the coating film has a shaft end surface of the shaft portion of the outer joint member, the entire inner diameter surface of the hub wheel on the outboard side from the shaft end surface, and the wheel pilot. It may be provided in a range up to the outer diameter surface.

塗装皮膜を電着塗装法にて形成することができる。ここで、電着塗装とは、水溶性塗料を満たした塗料浴中に金属製の被塗物を浸し、これを陽極又は陰極として直流電圧をかけると、塗膜形成成分が負又は陽に荷電し、被塗物表面に電着する。こうして塗膜を形成する方法である。被塗物を陽極とする場合をアニオン電着、陰極とする場合をカチオン電着と呼ぶ。電着塗装は他の塗装法に比べ、複雑形状でも均一な膜厚が得られるので防食性が高い塗装が行え、膜厚の管理も用意である。また塗料ロスが極少なく、衛生的で公害対策面から利点が大きい。   The coating film can be formed by an electrodeposition coating method. Here, the electrodeposition coating means that the coating film forming component is negatively or positively charged when a metal object is immersed in a paint bath filled with a water-soluble paint and a direct current voltage is applied to the object as an anode or a cathode. And electrodeposited on the surface of the object to be coated. In this way, a coating film is formed. The case where the article is used as the anode is called anion electrodeposition, and the case where it is used as the cathode is called cation electrodeposition. Compared to other coating methods, electrodeposition coating can provide a uniform film thickness even with complex shapes, so it can be coated with high anticorrosion properties, and the film thickness can be managed. In addition, there is very little paint loss, and there are significant advantages in terms of hygiene and pollution control.

カチオン電着は被塗物を陰極とし、塗膜成分を正に荷電させて行うが、この場合塗料浴中へ金属イオンが溶け出さないため特に防食性に優れている。すなわち、塗装皮膜は、カチオン電着塗装によって防食性皮膜となる。このため、本発明における電着塗装には、カチオン電着塗装を用いるのが好ましいが、もちろんアニオン電着塗装であってもよい   Cationic electrodeposition is carried out with the object to be coated as the cathode and the coating film components charged positively. In this case, since metal ions do not dissolve into the paint bath, the corrosion resistance is particularly excellent. That is, the coating film becomes an anticorrosive film by cationic electrodeposition coating. For this reason, it is preferable to use cationic electrodeposition coating for electrodeposition coating in the present invention, but of course, anion electrodeposition coating may also be used.

塗装皮膜(防食性皮膜)の下地処理としてリン酸亜鉛皮膜が形成されていたり、亜鉛メッキ皮膜が形成されていたりするのが好ましい。また、塗装皮膜の膜厚が10〜50μmの範囲に設定されるのが好ましい。   It is preferable that a zinc phosphate film or a galvanized film is formed as a base treatment for the paint film (anticorrosive film). Moreover, it is preferable that the film thickness of a coating film is set to the range of 10-50 micrometers.

本発明のアクスルモジュールは、前記記載の車輪用軸受装置を備え、アウトボード側の等速自在継手に連結されたドライブシャフトと、このドライブシャフトの他方に連結されたインボード側の摺動型の等速自在継手とを備えたものである。   The axle module of the present invention includes the wheel bearing device described above, and includes a drive shaft connected to the constant velocity universal joint on the outboard side, and a sliding type on the inboard side connected to the other of the drive shafts. A constant velocity universal joint is provided.

本発明の車輪用軸受装置では、嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されないので、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生も生じさせない。さらには、隙間無く密着しているので、トルク伝達部位の強度が向上する。このため、駆動車輪用軸受ユニットを軽量、コンパクトにすることができる。   In the wheel bearing device of the present invention, in the fitting structure, there is no gap in which play occurs in the radial direction and the circumferential direction, so that all of the fitting parts contribute to rotational torque transmission and stable torque transmission is possible. In addition, no abnormal noise is generated. Furthermore, since the contact is made without a gap, the strength of the torque transmitting portion is improved. For this reason, the bearing unit for drive wheels can be made lightweight and compact.

外側継手部材の軸部の外径面とハブ輪の孔部の内径面とのどちらか一方に設けられた軸方向に延びる凸部を、軸方向に沿って他方に圧入することによって、この他方に凸部に密着嵌合する凹部を凸部にて形成することができる。このため、凹凸嵌合構造を確実に形成することができる。しかも、凹部が形成される部材には、スプライン部等を形成しておく必要がなく、生産性に優れ、かつスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができて、安定した嵌合状態を維持できる。   By pressing a convex portion extending in the axial direction provided on one of the outer diameter surface of the shaft portion of the outer joint member and the inner diameter surface of the hole portion of the hub wheel into the other along the axial direction, A concave portion closely fitting to the convex portion can be formed by the convex portion. For this reason, an uneven | corrugated fitting structure can be formed reliably. Moreover, it is not necessary to form a spline portion or the like on the member where the recess is formed, and it is excellent in productivity and does not require the phase alignment between the splines. Damage to the tooth surface can be avoided and a stable fitting state can be maintained.

また、等速自在継手の外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くして、前記軸部をハブ輪の孔部に凸部の軸方向端部側から圧入するものであれば、軸部側の硬度を高くでき、軸部の剛性を向上させることができる。また、ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くして、前記ハブ輪側の凸部をその軸方向端部側から外側継手部材の軸部に圧入するものでは、軸部側の硬度処理(熱処理)を行う必要がないので、等速自在継手の外側継手部材の生産性に優れる。   Moreover, while providing the convex part of the concave-convex fitting structure on the shaft part of the outer joint member of the constant velocity universal joint, the hardness of the axial end of the convex part is higher than the inner diameter part of the hole of the hub wheel, If the shaft portion is press-fitted into the hole of the hub wheel from the axial end portion side of the convex portion, the hardness on the shaft portion side can be increased and the rigidity of the shaft portion can be improved. In addition, a convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and the hardness of the axial end portion of the convex portion is determined from the outer diameter portion of the shaft portion of the outer joint member of the constant velocity universal joint. In the case where the convex portion on the hub wheel side is press-fitted into the shaft portion of the outer joint member from the end portion in the axial direction, there is no need to perform hardness treatment (heat treatment) on the shaft portion side, so that the constant velocity Excellent productivity of universal joint outer joint members.

塗装皮膜にて、ハブ輪のアウトボード側からの凹凸嵌合構造への雨水や異物の浸入を防止できる。これによって、凹凸嵌合構造の錆の発生を抑えることができ、長期にわたって安定したトルク伝達が可能となる。これに対して、塗装皮膜を設けなければ、凹凸嵌合構造に雨水や異物が浸入して、この凹凸嵌合構造の減肉や割れ、応力腐食割れ等に起因する軸部材のハブ輪からの抜けが発生することが懸念される。ここで、応力腐食割れとは、合金系金属が許容応力内の静的な引張応力を受けた状態で特定の腐食環境中にさらされるとき、腐食を伴って合金に割れを生ずる現象をいう。すなわち、応力によって加速される腐食を総称して応力腐食という。物体に加えられる力を応力(ストレス)といい、引っ張り・圧縮の応力、およびねじりの応力の3つに分類される。このうち応力腐食に影響するのは、引っ張り応力であって圧縮応力では腐食は加速されない。物体にかかる応力は内部応力と外部から加えられる外部応力とに区別される。このため、応力腐食割れとは「応力と腐食との共同作用によって起こる金属の脆性破壊」と定義される。脆性破壊とは外見上はほとんど変形したように見えないうちに、突然に起こる破壊のことである。延性破壊と区別されて使われる。   The paint film prevents rainwater and foreign matter from entering the concave-convex fitting structure from the outboard side of the hub wheel. Thereby, generation | occurrence | production of the rust of an uneven | corrugated fitting structure can be suppressed, and the stable torque transmission over a long term is attained. On the other hand, if a coating film is not provided, rainwater and foreign matter infiltrate into the concave / convex fitting structure, and the shaft member from the hub wheel is caused by thinning, cracking, stress corrosion cracking, etc. There is a concern that omissions may occur. Here, stress corrosion cracking refers to a phenomenon in which when an alloy metal is exposed to a specific corrosive environment under a static tensile stress within an allowable stress, the alloy is cracked with corrosion. That is, corrosion accelerated by stress is collectively referred to as stress corrosion. The force applied to an object is called stress (stress), and it is classified into three types: tensile / compressive stress and torsional stress. Of these, the stress corrosion affects the tensile stress, and the compression stress does not accelerate the corrosion. Stress applied to an object is classified into internal stress and external stress applied from the outside. For this reason, stress corrosion cracking is defined as “brittle fracture of metal caused by the joint action of stress and corrosion”. Brittle failure is a failure that occurs suddenly before it appears to be almost deformed. Used separately from ductile fracture.

電着塗装にて塗装皮膜を形成すれば、「複雑形状でも均一な膜厚が得られるので防食性が高い塗装が行え、膜厚の管理も用意である。また塗料ロスが極少なく、衛生的で公害対策面から利点が大きい。」という電着塗装の特有の効果を得ることができる。しかも、シールプレート等の別部材を用いてシール構造を構成する必要がなくなって、部品点数の減少及び加工費等のコスト低減を図ることができる。特に、防食性に優れているカチオン電着塗装を用いるのが好ましい。   If a coating film is formed by electrodeposition coating, “even with complex shapes, a uniform film thickness can be obtained, so coating with high anti-corrosion properties can be performed, and film thickness management is also available. It has a great advantage in terms of pollution control. ” In addition, it is not necessary to form a seal structure using a separate member such as a seal plate, and it is possible to reduce the number of parts and cost such as processing costs. In particular, it is preferable to use a cationic electrodeposition coating having excellent anticorrosion properties.

塗装皮膜の下地処理として、リン酸亜鉛処理を行えば、このリン酸亜鉛処理により素材となる鋼材の表面が化学反応で粗面化されるため、塗料の食い付きが良くなって付着性が向上する。また、塗装皮膜の膜厚は、下地処理となるリン酸亜鉛の膜厚とカチオン電着塗装の膜厚が加算されたものとなる。この場合、塗装皮膜81の膜厚が10〜50μmの範囲に設定するのが好ましい。膜厚が10μm未満と薄くなると防食性皮膜層としての機能を充分発揮できない。また、カチオン電着塗装は、塗料が電着していくにつれて導電性がなくなり、一定以上の塗膜形成が行われなくなる性質がある。したがって、塗装膜厚には上限があり、50μmとしている。   If the zinc phosphate treatment is performed as the base treatment of the paint film, the surface of the steel material that becomes the material is roughened by a chemical reaction due to this zinc phosphate treatment, which improves the bite of the paint and improves the adhesion. To do. Moreover, the film thickness of the coating film is obtained by adding the film thickness of zinc phosphate as the base treatment and the film thickness of the cationic electrodeposition coating. In this case, it is preferable to set the thickness of the coating film 81 in the range of 10 to 50 μm. When the film thickness is as thin as less than 10 μm, the function as the anticorrosive film layer cannot be sufficiently exhibited. Cationic electrodeposition coating has the property that it loses its conductivity as the coating is electrodeposited, preventing the formation of a coating film exceeding a certain level. Therefore, there is an upper limit to the coating film thickness, which is 50 μm.

塗装皮膜の下地処理として、亜鉛メッキ処理を行えば、亜鉛メッキ処理は、自己犠牲作用により亜鉛が溶解して素材の腐食を抑制する効果がある。このため、リン酸亜鉛処理に比べ、耐食性、防錆性能に優れている。   If a galvanizing treatment is performed as a base treatment of the coating film, the galvanizing treatment has an effect of suppressing corrosion of the material by dissolving zinc by a self-sacrificing action. For this reason, compared with a zinc phosphate process, it is excellent in corrosion resistance and rust prevention performance.

本発明のアクスルモジュールは、前記記載の車輪用軸受装置を備えたものであり、長期にわたって安定した機能を発揮する製品となる。   The axle module of the present invention includes the wheel bearing device described above, and is a product that exhibits a stable function over a long period of time.

以下本発明の実施の形態を図1〜図11に基づいて説明する。図1に本発明に係るアクスルモジュールの第1実施形態を示している。アクスルモジュールは、アウトボード側の等速自在継手T1と、インボード側の等速自在継手T2と、これら等速自在継手T1、T2に連結されるドライブシャフト10とを備える。この場合、アウトボード側においては、ハブ輪1と、複列の転がり軸受(軸受構造部)2と、等速自在継手T1(3)とが一体化されて車輪用軸受装置が構成される。自動車等の車両に組付けた状態で車両の外側となる方をアウトボード側(図面左側)、自動車等の車両に組付けた状態で車両の内側となる方をインボード側(図面右側)という。この場合、ハブ輪1の孔部22に嵌挿される等速自在継手3の外側継手部材の軸部12とハブ輪1とが凹凸嵌合構造Mを介して結合されてなる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a first embodiment of an axle module according to the present invention. The axle module includes a constant velocity universal joint T1 on the outboard side, a constant velocity universal joint T2 on the inboard side, and a drive shaft 10 connected to the constant velocity universal joints T1 and T2. In this case, on the outboard side, the hub wheel 1, the double row rolling bearing (bearing structure portion) 2, and the constant velocity universal joint T1 (3) are integrated to constitute a wheel bearing device. The side that is outside the vehicle when assembled in a vehicle such as an automobile is the outboard side (left side of the drawing), and the side that is inside the vehicle when assembled in a vehicle such as an automobile is called the inboard side (right side of the drawing). . In this case, the shaft portion 12 of the outer joint member of the constant velocity universal joint 3 to be inserted into the hole portion 22 of the hub wheel 1 and the hub wheel 1 are coupled via the concave / convex fitting structure M.

等速自在継手T1は、図2に示すように、外側継手部材としての外輪5と、外輪5の内側に配された内側継手部材としての内輪6と、外輪5と内輪6との間に介在してトルクを伝達する複数のボール7と、外輪5と内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。内輪6はその孔部内径6aにドライブシャフト10の端部10aを圧入することによりスプライン嵌合してドライブシャフト10とトルク伝達可能に結合されている。なお、ドライブシャフト10の端部10aには、ドライブシャフト抜け止め用の止め輪9が嵌合されている。   As shown in FIG. 2, the constant velocity universal joint T <b> 1 is interposed between the outer ring 5 as an outer joint member, the inner ring 6 as an inner joint member disposed inside the outer ring 5, and the outer ring 5 and the inner ring 6. Thus, a plurality of balls 7 that transmit torque and a cage 8 that is interposed between the outer ring 5 and the inner ring 6 and holds the balls 7 are configured as main members. The inner ring 6 is spline-fitted by press-fitting the end 10a of the drive shaft 10 into the hole inner diameter 6a and is coupled to the drive shaft 10 so as to be able to transmit torque. A retaining ring 9 for retaining the drive shaft is fitted to the end 10a of the drive shaft 10.

外輪5はマウス部11とステム部(軸部)12とからなり、マウス部11は一端にて開口した椀状で、その内球面13に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。そのトラック溝14はマウス部11の開口端まで延びている。内輪6は、その外球面15に、軸方向に延びた複数のトラック溝16が円周方向等間隔に形成されている。   The outer ring 5 is composed of a mouse part 11 and a stem part (shaft part) 12. The mouse part 11 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction are circumferentially formed on the inner spherical surface 13 thereof. It is formed at equal intervals in the direction. The track groove 14 extends to the open end of the mouse portion 11. In the inner ring 6, a plurality of track grooves 16 extending in the axial direction are formed on the outer spherical surface 15 at equal intervals in the circumferential direction.

外輪5のトラック溝14と内輪6のトラック溝16とは対をなし、各対のトラック溝14,16で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール7が転動可能に組み込んである。ボール7は外輪5のトラック溝14と内輪6のトラック溝16との間に介在してトルクを伝達する。ケージ8は外輪5と内輪6との間に摺動可能に介在し、外球面にて外輪5の内球面13と接し、内球面にて内輪6の外球面15と接する。なお、この場合の等速自在継手は、ツェパー型を示しているが、トラック溝の溝底に直線状のストレート部を有するアンダーカットフリー型等の他の等速自在継手であってもよい。   The track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 make a pair, and one ball 7 as a torque transmitting element can roll on each ball track constituted by the pair of track grooves 14 and 16. It is incorporated. The ball 7 is interposed between the track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 to transmit torque. The cage 8 is slidably interposed between the outer ring 5 and the inner ring 6, contacts the inner spherical surface 13 of the outer ring 5 at the outer spherical surface, and contacts the outer spherical surface 15 of the inner ring 6 at the inner spherical surface. The constant velocity universal joint in this case is a Zepper type, but may be another constant velocity universal joint such as an undercut free type having a straight straight portion at the bottom of the track groove.

また、マウス部11の開口部はブーツ17にて塞がれている。ブーツ17は、大径部17aと、小径部17bと、大径部17aと小径部17bとを連結する蛇腹部17cとからなる。大径部17aがマウス部11の開口部に外嵌され、この状態でブーツバンド18aにて締結され、小径部17bがドライブシャフト10のブーツ装着部10bに外嵌され、この状態でブーツバンド18bにて締結されている。   Further, the opening of the mouse part 11 is closed by a boot 17. The boot 17 includes a large diameter portion 17a, a small diameter portion 17b, and a bellows portion 17c that connects the large diameter portion 17a and the small diameter portion 17b. The large-diameter portion 17a is externally fitted to the opening of the mouse portion 11, and is fastened by the boot band 18a in this state, and the small-diameter portion 17b is externally fitted to the boot mounting portion 10b of the drive shaft 10, and in this state, the boot band 18b It is concluded at.

図1に示すように、インボード側の等速自在継手T2は、外側継手部材131と、内側継手部材としてのトリポード部材132と、トルク伝達部材としてのローラ133を主要な構成要素としている。   As shown in FIG. 1, the constant velocity universal joint T2 on the inboard side includes an outer joint member 131, a tripod member 132 as an inner joint member, and a roller 133 as a torque transmission member as main components.

外側継手部材131は一体に形成されたマウス部131aとステム部131bとからなる。マウス部131aは、一端にて開口したカップ状で、内周の円周方向三等分位置に軸方向に延びるトラック溝136が形成してある。   The outer joint member 131 includes a mouth portion 131a and a stem portion 131b that are integrally formed. The mouse portion 131a has a cup shape opened at one end, and a track groove 136 extending in the axial direction is formed at a position of the inner circumference in the circumferential direction.

トリポード部材132はボス138と脚軸139とを備える。ボス138にはドライブシャフト10の端部スプライン10cとトルク伝達可能に結合するスプライン孔138aが形成してある。脚軸139はボス138の円周方向三等分位置から半径方向に突出している。トリポード部材132の各脚軸139はローラ133を担持している。   The tripod member 132 includes a boss 138 and a leg shaft 139. The boss 138 is formed with a spline hole 138a that is coupled to the end spline 10c of the drive shaft 10 so that torque can be transmitted. The leg shaft 139 protrudes in the radial direction from the circumferentially divided position of the boss 138. Each leg shaft 139 of the tripod member 132 carries a roller 133.

そして、外側継手部材131の開口部はブーツ140にて塞がれている。ブーツ140は、大径部140aと、小径部140bと、大径部140aと小径部140bとの間の蛇腹部140cとからなり、ブーツバンド141aを介してマウス部131aの開口側の外周面にブーツ140の大径部140aが固定され、ドライブシャフト10のブーツ装着部10dの外周面には、ブーツバンド141bを介してブーツ140の小径部140bが固定されている。   The opening of the outer joint member 131 is closed with a boot 140. The boot 140 includes a large-diameter portion 140a, a small-diameter portion 140b, and a bellows portion 140c between the large-diameter portion 140a and the small-diameter portion 140b, and is formed on the outer peripheral surface on the opening side of the mouse portion 131a via the boot band 141a. The large-diameter portion 140a of the boot 140 is fixed, and the small-diameter portion 140b of the boot 140 is fixed to the outer peripheral surface of the boot mounting portion 10d of the drive shaft 10 via a boot band 141b.

図2に示すように、ハブ輪1は、筒部20と、筒部20のアウトボード側の端部に設けられるフランジ21とを有する。筒部20の孔部22は、軸方向中間部の軸部嵌合孔22aと、アウトボード側のコーン状孔22bと、インボード側の大径孔22cとを備える。すなわち、軸部嵌合孔22aにおいて、後述する凹凸嵌合構造Mを介して等速自在継手T1の外輪5の軸部12とハブ輪1とが結合される。また、軸部嵌合孔22aと大径孔22cとの間には、テーパ部(テーパ孔)22dが設けられている。このテーパ部22dは、ハブ輪1と外輪5の軸部12を結合する際の圧入方向に沿って縮径している。テーパ部22dのテーパ角度θ1(図5参照)は、例えば15°〜75°とされる。   As shown in FIG. 2, the hub wheel 1 includes a cylindrical portion 20 and a flange 21 provided at an end portion of the cylindrical portion 20 on the outboard side. The hole portion 22 of the cylindrical portion 20 includes a shaft portion fitting hole 22a in the middle portion in the axial direction, a conical hole 22b on the outboard side, and a large diameter hole 22c on the inboard side. That is, the shaft portion 12 of the outer ring 5 of the constant velocity universal joint T1 and the hub wheel 1 are coupled to each other through the concave-convex fitting structure M described later in the shaft portion fitting hole 22a. A tapered portion (tapered hole) 22d is provided between the shaft portion fitting hole 22a and the large diameter hole 22c. The tapered portion 22d is reduced in diameter along the press-fitting direction when the hub wheel 1 and the shaft portion 12 of the outer ring 5 are coupled. The taper angle θ1 (see FIG. 5) of the taper portion 22d is, for example, 15 ° to 75 °.

ハブ輪1のアウトボード側の端面には、短円筒状のパイロット部90が設けられている。パイロット部90は、インボード側の短円筒状のブレーキパイロット91と、このブレーキパイロット91よりも小径のアウトボード側のホイールパイロット92とからなる。   A short cylindrical pilot portion 90 is provided on the end face of the hub wheel 1 on the outboard side. The pilot section 90 includes a short cylindrical brake pilot 91 on the inboard side and a wheel pilot 92 on the outboard side having a smaller diameter than the brake pilot 91.

転がり軸受2は、ハブ輪1の筒部20のインボード側に設けられた小径段部23に嵌合する内輪24を有する内方部材19と、ハブ輪1の筒部20乃至内輪24に跨って外嵌される外方部材25とを備える。外方部材25は、その内周に2列の外側軌道面(アウタレース)26、27が設けられ、第1外側軌道面26とハブ輪1の軸部外周に設けられる第1内側軌道面(インナレース)28とが対向し、第2外側軌道面27と、内輪24の外周面に設けられる第2内側軌道面(インナレース)29とが対向し、これらの間に転動体30としてのボールが介装される。すなわち、ハブ輪1の一部(筒部20の外径面)と、ハブ輪1のインボード側の端部の外周に圧入される内輪24とで、インナレース28,29を有する内方部材19を構成している。なお、外方部材25の両開口部にはシール部材S1、S2が装着されている。   The rolling bearing 2 straddles the inner member 19 having an inner ring 24 fitted to a small diameter step portion 23 provided on the inboard side of the cylindrical portion 20 of the hub wheel 1, and the cylindrical portion 20 to the inner ring 24 of the hub wheel 1. And an outer member 25 that is externally fitted. The outer member 25 is provided with two rows of outer raceways (outer races) 26 and 27 on its inner circumference, and a first inner raceway (inner race) provided on the outer circumference of the shaft portion of the first outer raceway 26 and the hub wheel 1. Race) 28 is opposed to the second outer raceway surface 27 and a second inner raceway surface (inner race) 29 provided on the outer peripheral surface of the inner ring 24, and a ball as the rolling element 30 is interposed therebetween. Intervened. That is, an inner member having inner races 28 and 29 with a part of the hub wheel 1 (outer diameter surface of the cylindrical portion 20) and the inner ring 24 press-fitted into the outer periphery of the end portion of the hub wheel 1 on the inboard side. 19 is constituted. Seal members S1 and S2 are attached to both openings of the outer member 25.

この場合、ハブ輪1のインボード側の端部を加締めて、その加締部31にて内輪24を押圧することができ、この転がり軸受2に予圧を付与するものである。これによって、内輪24をハブ輪1に締結することができる。またハブ輪1のフランジ21にはボルト装着孔32が設けられて、ホイールおよびブレーキロータをこのフランジ21に固定するためのハブボルト33がこのボルト装着孔32に装着される。なお、前記加締部31は揺動加締めによって形成される。揺動加締めは、ポンチ(加締治具)の中心軸をハブ輪1の中心軸に対して振れ回せながら塑性変形させる方法である。   In this case, the end portion on the inboard side of the hub wheel 1 can be crimped and the inner ring 24 can be pressed by the crimping portion 31, and a preload is applied to the rolling bearing 2. As a result, the inner ring 24 can be fastened to the hub wheel 1. The flange 21 of the hub wheel 1 is provided with a bolt mounting hole 32, and a hub bolt 33 for fixing the wheel and the brake rotor to the flange 21 is mounted in the bolt mounting hole 32. The caulking portion 31 is formed by swing caulking. The swing caulking is a method in which the central axis of the punch (caulking jig) is plastically deformed while being swung around the central axis of the hub wheel 1.

凹凸嵌合構造Mは、図2と図3に示すように、例えば、軸部12に設けられて軸方向に延びる凸部35と、ハブ輪1の孔部22の内径面(この場合、軸部嵌合孔22aの内径面37)に形成される凹部36とからなり、凸部35とその凸部35に嵌合するハブ輪1の凹部36との嵌合接触部位38全域が密着している。すなわち、軸部12の反マウス部側の外周面に、複数の凸部35が周方向に沿って所定ピッチで配設され、ハブ輪1の孔部22の軸部嵌合孔22aの内径面37に凸部35が嵌合する複数の凹部36が周方向に沿って形成されている。つまり、周方向全周にわたって、凸部35とこれに嵌合する凹部36とがタイトフィットしている。   As shown in FIGS. 2 and 3, the concave-convex fitting structure M includes, for example, a convex portion 35 provided in the shaft portion 12 and extending in the axial direction, and an inner diameter surface of the hole portion 22 of the hub wheel 1 (in this case, the shaft The inner surface 37) of the part fitting hole 22a is formed with a concave part 36, and the entire fitting contact part 38 of the convex part 35 and the concave part 36 of the hub wheel 1 fitted to the convex part 35 is in close contact. Yes. That is, a plurality of convex portions 35 are arranged at a predetermined pitch along the circumferential direction on the outer peripheral surface of the shaft portion 12 on the side opposite to the mouse portion, and the inner diameter surface of the shaft portion fitting hole 22a of the hole portion 22 of the hub wheel 1 A plurality of concave portions 36 into which the convex portions 35 are fitted to 37 are formed along the circumferential direction. That is, the convex part 35 and the concave part 36 fitted to this are tight-fitted over the entire circumference in the circumferential direction.

この場合、各凸部35は、その断面が凸アール状の頂点を有する三角形状(山形状)であり、各凸部35の嵌合接触部位(凹部嵌合部位)38とは、図3(b)に示す範囲Aであり、断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、ハブ輪1の内径面37よりも内径側に隙間40が形成されている。   In this case, each convex portion 35 has a triangular shape (mountain shape) having a convex rounded apex in cross section, and the fitting contact portion (recessed fitting portion) 38 of each convex portion 35 is shown in FIG. It is the range A shown in b), which is the range from the mid-section of the mountain in the cross section to the summit. Further, a gap 40 is formed on the inner diameter side with respect to the inner diameter surface 37 of the hub wheel 1 between the adjacent convex portions 35 in the circumferential direction.

このように、ハブ輪1と等速自在継手3の外輪5の軸部12とを凹凸嵌合構造Mを介して連結できる。この際、前記したように、ハブ輪1のインボード側の端部を加締めて、その加締部31にて転がり軸受2に予圧を付与するものであるので、外輪5のマウス部11にて内輪24に予圧を付与する必要がない。この実施形態では、等速自在継手端面、つまりマウス部11のバック面11aと、ハブ輪1の加締部(揺動加締部)31が当接しているが、当接させることなく、マウス部11のバック面11aとハブ輪1の加締部(揺動加締部)31との間に隙間を設けてもよい。   In this way, the hub wheel 1 and the shaft portion 12 of the outer ring 5 of the constant velocity universal joint 3 can be connected via the concave-convex fitting structure M. At this time, as described above, the end portion on the inboard side of the hub wheel 1 is swaged and preload is applied to the rolling bearing 2 by the swaged portion 31, so that the mouth portion 11 of the outer ring 5 is applied to the mouth portion 11. Therefore, it is not necessary to apply a preload to the inner ring 24. In this embodiment, the end face of the constant velocity universal joint, that is, the back surface 11a of the mouse part 11 and the crimping part (swinging caulking part) 31 of the hub wheel 1 are in contact with each other. A gap may be provided between the back surface 11 a of the portion 11 and the caulking portion (swing caulking portion) 31 of the hub wheel 1.

ところで、この車輪用軸受装置を組立てる場合、後述するように、ハブ輪1に対して外輪5の軸部12を圧入することによって、凸部35によって凹部36を形成するようにしている。この際圧入していけば、凸部35にて形成される凹部36から材料がはみ出してはみ出し部45(図4参照)が形成される。はみ出し部45は、凸部35の凹部嵌合部位が嵌入(嵌合)する凹部36の容量の材料分であって、形成される凹部36から押し出されたもの、凹部36を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。このため、前記図1等に示す車輪用軸受装置では、はみ出し部45を収納するポケット部(収納部)50を軸部12に設けている。軸部12のスプライン41の軸端縁に周方向溝51を設けることによって、ポケット部(収納部)50を形成している。   By the way, when assembling this wheel bearing device, the concave portion 36 is formed by the convex portion 35 by press-fitting the shaft portion 12 of the outer ring 5 into the hub wheel 1 as will be described later. If press-fitting is performed at this time, the material protrudes from the concave portion 36 formed by the convex portion 35 to form a protruding portion 45 (see FIG. 4). The protruding portion 45 is the material of the capacity of the concave portion 36 into which the concave portion fitting portion of the convex portion 35 is inserted (fitted), and is extruded from the concave portion 36 to be formed, and is cut to form the concave portion 36. Or both extruded and cut. For this reason, in the wheel bearing device shown in FIG. 1 and the like, the shaft portion 12 is provided with a pocket portion (accommodating portion) 50 for accommodating the protruding portion 45. By providing a circumferential groove 51 at the shaft end edge of the spline 41 of the shaft portion 12, a pocket portion (storage portion) 50 is formed.

また、この車輪用軸受装置においては、図2に一点鎖線で示すように、ハブ輪1の内径面及び軸部12のアウトボード側の端部外径面との隙間を閉塞する塗装皮膜81を形成している。すなわち、軸部12の端面に凹窪部95を設け、これによって、軸部12の端部に円環状の鍔部96を形成している。そして、この鍔部96の端面96a、つまり軸部12の軸端面から、この端面96aより嵌合孔22aのアウトボード側内径面97(図4参照)に跨って塗装皮膜81が形成されている。   Further, in this wheel bearing device, as shown by a one-dot chain line in FIG. 2, a coating film 81 that closes a gap between the inner diameter surface of the hub wheel 1 and the outer diameter surface of the end portion on the outboard side of the shaft portion 12 is provided. Forming. That is, the recessed portion 95 is provided on the end surface of the shaft portion 12, thereby forming an annular flange 96 at the end portion of the shaft portion 12. A coating film 81 is formed from the end surface 96a of the flange portion 96, that is, from the shaft end surface of the shaft portion 12 to the endboard side inner diameter surface 97 (see FIG. 4) of the fitting hole 22a from the end surface 96a. .

塗装皮膜81は、例えば、電着塗装にて形成される。ここで、電着塗装とは、水溶性塗料を満たした塗料浴中に金属製の被塗物を浸し、これを陽極又は陰極として直流電圧をかけると、塗膜形成成分が負又は陽に荷電し、被塗物表面に電着する。こうして塗膜を形成する方法である。被塗物を陽極とする場合をアニオン電着、陰極とする場合をカチオン電着と呼ぶ。電着塗装は他の塗装法に比べ、複雑形状でも均一な膜厚が得られるので防食性が高い塗装が行え、膜厚の管理も用意である。また塗料ロスが極少なく、衛生的で公害対策面から利点が大きい。   The coating film 81 is formed by, for example, electrodeposition coating. Here, the electrodeposition coating means that the coating film forming component is negatively or positively charged when a metal object is immersed in a paint bath filled with a water-soluble paint and a direct current voltage is applied to the object as an anode or a cathode. And electrodeposited on the surface of the object to be coated. In this way, a coating film is formed. The case where the article is used as the anode is called anion electrodeposition, and the case where it is used as the cathode is called cation electrodeposition. Compared to other coating methods, electrodeposition coating can provide a uniform film thickness even with complex shapes, so it can be coated with high anticorrosion properties, and the film thickness can be managed. In addition, there is very little paint loss, and there are significant advantages in terms of hygiene and pollution control.

カチオン電着は被塗物を陰極とし、塗膜成分を正に荷電させて行うが、この場合塗料浴中へ金属イオンが溶け出さないため特に防食性に優れている。すなわち、塗装皮膜は、カチオン電着塗装によって防食性皮膜となる。このため、本発明における電着塗装には、カチオン電着塗装を用いるのが好ましいが、もちろんアニオン電着塗装であってもよい。   Cationic electrodeposition is carried out with the object to be coated as the cathode and the coating film components charged positively. In this case, since metal ions do not dissolve into the paint bath, the corrosion resistance is particularly excellent. That is, the coating film becomes an anticorrosive film by cationic electrodeposition coating. For this reason, it is preferable to use cationic electrodeposition coating for electrodeposition coating in the present invention, but of course, anion electrodeposition coating may also be used.

このように、カチオン電着塗装を行えば、塗装皮膜81が防食性皮膜となる。このため、防食性向上のためと、被塗物と塗料の付着性向上のために防食性皮膜の下地処理として亜鉛系被膜を形成しておく。 Thus, when cationic electrodeposition coating is performed, the coating film 81 becomes an anticorrosive film. For this reason, a zinc-based film is formed as a base treatment for the anticorrosive film in order to improve the anticorrosion and to improve the adhesion between the object to be coated and the paint.

亜鉛系被膜としてはリン酸亜鉛処理が施されている。このリン酸亜鉛処理により素材となる鋼材の表面が化学反応で粗面化されるため、塗料の食い付きが良くなって付着性が向上する。また、塗装皮膜81の膜厚は、下地処理となるリン酸亜鉛の膜厚とカチオン電着塗装の膜厚が加算されたものとなる。この場合、塗装皮膜81の膜厚が10〜50μmの範囲に設定するのが好ましい。膜厚が10μm未満と薄くなると防食性皮膜層としての機能を充分発揮できない。また、カチオン電着塗装は、塗料が電着していくにつれて導電性がなくなり、一定以上の塗膜形成が行われなくなる性質がある。したがって、塗装膜厚には上限があり、50μmとしている。   The zinc-based coating is subjected to zinc phosphate treatment. Since the surface of the steel material as a raw material is roughened by a chemical reaction by this zinc phosphate treatment, the bite of the paint is improved and the adhesion is improved. The film thickness of the coating film 81 is obtained by adding the film thickness of zinc phosphate as the base treatment and the film thickness of the cationic electrodeposition coating. In this case, it is preferable to set the thickness of the coating film 81 in the range of 10 to 50 μm. When the film thickness is as thin as less than 10 μm, the function as the anticorrosive film layer cannot be sufficiently exhibited. Cationic electrodeposition coating has the property that it loses its conductivity as the coating is electrodeposited, preventing the formation of a coating film exceeding a certain level. Therefore, there is an upper limit to the coating film thickness, which is 50 μm.

カチオン電着塗装は、塗料の電着後に焼付工程が必要になるが、この焼付条件としては、140〜160℃で約20分(物温保持条件)が好適である。   Cationic electrodeposition coating requires a baking step after electrodeposition of the paint, and the baking condition is preferably about 140 to 160 ° C. for about 20 minutes (material temperature holding condition).

カチオン電着塗装の下地処理として亜鉛メッキ処理を施すようにしてもよい。亜鉛メッキ処理は、自己犠牲作用により亜鉛が溶解して素材の腐食を抑制する効果があるため、リン酸亜鉛処理に比べ、耐食性、防錆性能に優れている。   A galvanizing treatment may be performed as a base treatment for the cationic electrodeposition coating. The galvanizing treatment has an effect of suppressing corrosion of the material by dissolving zinc by a self-sacrificing action, and therefore has excellent corrosion resistance and rust prevention performance compared to the zinc phosphate treatment.

次に、凹凸嵌合構造Mの嵌合方法を説明する。この場合、図5に示すように、軸部12の外径部には熱硬化処理を施し、この硬化層Hに軸方向に沿う凸部41aと凹部41bとからなるスプライン41を形成する。このため、スプライン41の凸部41aが硬化処理されて、この凸部41aが凹凸嵌合構造Mの凸部35となる。なお、この実施形態での硬化層Hの範囲は、クロスハッチング部で示すように、スプライン41の外端縁から外輪5のマウス部11の底壁の一部までである。この熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。また、ハブ輪1の外径側に高周波焼入れによる硬化層H1を形成するとともに、ハブ輪の内径側を未焼き状態としたものである。この実施形態での硬化層H1の範囲は、クロスハッチング部で示すように、フランジ21の付け根部から内輪24が嵌合する小径段差部23の加締部近傍までである。   Next, the fitting method of the uneven fitting structure M will be described. In this case, as shown in FIG. 5, the outer diameter portion of the shaft portion 12 is subjected to a thermosetting process, and a spline 41 including a convex portion 41 a and a concave portion 41 b along the axial direction is formed on the cured layer H. For this reason, the convex part 41a of the spline 41 is cured, and the convex part 41a becomes the convex part 35 of the concave-convex fitting structure M. The range of the hardened layer H in this embodiment is from the outer end edge of the spline 41 to a part of the bottom wall of the mouth portion 11 of the outer ring 5 as shown by the cross hatched portion. As this thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. In addition, carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched. Further, a hardened layer H1 is formed on the outer diameter side of the hub wheel 1 by induction hardening, and the inner diameter side of the hub wheel 1 is left unfired. The range of the hardened layer H1 in this embodiment is from the base portion of the flange 21 to the vicinity of the caulking portion of the small-diameter step portion 23 into which the inner ring 24 is fitted, as shown by the cross-hatched portion.

高周波焼入れを行えば、表面は硬く、内部は素材の硬さそのままとすることができ、このため、ハブ輪1の内径側を未焼き状態に維持できる。このため、ハブ輪1の孔部22の内径面37側においては熱硬化処理を行わない未硬化部(未焼き状態)とする。外輪5の軸部12の硬化層Hとハブ輪1の未硬化部との硬度差は、HRCで20ポイント以上とする。具体的には、硬化層Hの硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。   If induction hardening is performed, the surface is hard and the inside can be kept as it is, so that the inner diameter side of the hub wheel 1 can be kept unfired. For this reason, it is set as the non-hardened part (unbaked state) which does not perform a thermosetting process in the inner diameter surface 37 side of the hole 22 of the hub wheel 1. The hardness difference between the hardened layer H of the shaft portion 12 of the outer ring 5 and the uncured portion of the hub wheel 1 is 20 points or more in HRC. Specifically, the hardness of the hardened layer H is set to about 50 HRC to 65 HRC, and the hardness of the uncured portion is set to about 10 HRC to about 30 HRC.

この際、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(この場合、ハブ輪1の孔部22の内径面37)の位置に対応する。すなわち、図5に示すように、孔部22の内径面37の内径寸法Dを、凸部35の最大外径、つまりスプライン41の凸部41aである前記凸部35の頂点を結ぶ円の直径寸法(外接円直径)D1よりも小さく、凸部間の軸部外径面の外径寸法、つまりスプライン41の凹部41bの底を結ぶ円の径寸法D2よりも大きく設定される。すなわち、D2<D<D1とされる。   At this time, the intermediate portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (in this case, the inner diameter surface 37 of the hole portion 22 of the hub wheel 1) before the concave portion is formed. That is, as shown in FIG. 5, the inner diameter dimension D of the inner diameter surface 37 of the hole portion 22 is the maximum outer diameter of the convex portion 35, that is, the diameter of a circle connecting the vertices of the convex portion 35 that is the convex portion 41 a of the spline 41. It is smaller than the dimension (circumscribed circle diameter) D1 and is set larger than the outer diameter dimension of the shaft outer diameter surface between the convex parts, that is, the diameter dimension D2 of the circle connecting the bottoms of the concave parts 41b of the spline 41. That is, D2 <D <D1.

スプライン41は、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   The spline 41 can be formed by various processing methods such as rolling processing, cutting processing, press processing, and drawing processing, which are known publicly known means. Moreover, various heat processing, such as induction hardening and carburizing hardening, can be employ | adopted as a thermosetting process.

鍔部96の外径D4は孔部22の嵌合孔22aの内径寸法Dよりも僅かに小さく設定している。すなわち、この鍔部96が後述するように、軸部12のハブ輪1の僅かに孔部22への圧入時の調芯部材となる。   The outer diameter D4 of the flange portion 96 is set to be slightly smaller than the inner diameter dimension D of the fitting hole 22a of the hole portion 22. That is, as will be described later, the flange portion 96 serves as an alignment member when the hub wheel 1 of the shaft portion 12 is slightly press-fitted into the hole portion 22.

そして、図5に示すように、ハブ輪1の軸心と等速自在継手T1の外輪5の軸心とを合わせた状態で、ハブ輪1に対して、外輪5の軸部12を挿入(圧入)していく。この際、ハブ輪1の孔部22に圧入方向に沿って縮径するテーパ部22dを形成しているので、このテーパ部22dが圧入開始時のガイドを構成することができる。また、孔部22の内径面37の径寸法Dと、凸部35の最大外径寸法D1と、スプライン41の凹部41bの底の径寸法D2とが前記のような関係であり、しかも、凸部35の硬度が孔部22の内径面37の硬度よりも20ポイント以上大きいので、軸部12をハブ輪1の孔部22に圧入していけば、この凸部35が内径面37に食い込んでいき、凸部35が、この凸部35が嵌合する凹部36を軸方向に沿って形成していくことになる。   Then, as shown in FIG. 5, the shaft portion 12 of the outer ring 5 is inserted into the hub wheel 1 with the shaft center of the hub wheel 1 aligned with the shaft center of the outer ring 5 of the constant velocity universal joint T1 ( Press fit). At this time, since the tapered portion 22d having a reduced diameter along the press-fitting direction is formed in the hole portion 22 of the hub wheel 1, the tapered portion 22d can constitute a guide at the start of press-fitting. Further, the diameter D of the inner diameter surface 37 of the hole 22, the maximum outer diameter D1 of the convex portion 35, and the diameter D2 of the bottom of the concave portion 41b of the spline 41 are as described above. Since the hardness of the portion 35 is 20 points or more larger than the hardness of the inner diameter surface 37 of the hole portion 22, if the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the convex portion 35 bites into the inner diameter surface 37. Thus, the convex portion 35 forms the concave portion 36 into which the convex portion 35 is fitted along the axial direction.

このように圧入されることによって、図4に示すように、形成されるはみ出し部45は、カールしつつポケット部50内に収納されて行く。すなわち、孔部22の内径面から削り取られたり、押し出されたりした材料の一部がポケット部50内に入り込んでいく。   By being press-fitted in this manner, as shown in FIG. 4, the formed protruding portion 45 is housed in the pocket portion 50 while curling. That is, a part of the material scraped off or pushed out from the inner diameter surface of the hole portion 22 enters the pocket portion 50.

また、圧入によって、図3に示すように、軸部12の端部の凸部35と、これに嵌合する凹部36との嵌合接触部位38の全体が密着している。すなわち、相手側の凹部形成面(この場合、孔部22の内径面37)に凸部35の形状の転写を行うことになる。この際、凸部35が孔部22の内径面37に食い込んでいくことによって、孔部22が僅かに拡径した状態となって、凸部35の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部22が元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時にハブ輪1が径方向に弾性変形し、この弾性変形分の予圧が凸部35の歯面(凹部嵌合部位の表面)に付与される。このため、凸部35の凹部嵌合部位の全体がその対応する凹部36に対して密着する凹凸嵌合構造Mを確実に形成することができる。   Further, as shown in FIG. 3, the entire fitting contact portion 38 between the convex portion 35 at the end of the shaft portion 12 and the concave portion 36 fitted therein is brought into close contact with the press fitting. That is, the shape of the convex portion 35 is transferred to the concave portion forming surface on the other side (in this case, the inner diameter surface 37 of the hole portion 22). At this time, the convex portion 35 bites into the inner diameter surface 37 of the hole portion 22, so that the hole portion 22 is slightly expanded in diameter, and the convex portion 35 is allowed to move in the axial direction. When the movement stops, the hole 22 is reduced in diameter to return to the original diameter. In other words, the hub wheel 1 is elastically deformed in the radial direction when the convex portion 35 is press-fitted, and a preload corresponding to this elastic deformation is applied to the tooth surface of the convex portion 35 (surface of the concave portion fitting portion). For this reason, the concave / convex fitting structure M in which the entire concave portion fitting portion of the convex portion 35 is in close contact with the corresponding concave portion 36 can be reliably formed.

ところで、外輪5の軸部12をハブ輪1の孔部22に圧入する際には、外輪5のマウス部11の外径面に、図2等に示すように段差面Gを設け、圧入用治具Kをこの段差面Gに係合させて、この圧入用治具Kから段差面Gに圧入荷重(軸方向荷重)を付与すればよい。なお、段差面Gとしては周方向全周に設けても、周方向に沿って所定ピッチで設けてもよい。このため、使用する圧入用治具Kとしても、これらの段差面Gに対応して軸方向荷重を付与できればよい。   By the way, when the shaft portion 12 of the outer ring 5 is press-fitted into the hole portion 22 of the hub wheel 1, a step surface G is provided on the outer diameter surface of the mouth portion 11 of the outer ring 5 as shown in FIG. The jig K may be engaged with the step surface G, and a press-fitting load (axial load) may be applied from the press-fitting jig K to the step surface G. The stepped surface G may be provided on the entire circumference in the circumferential direction or at a predetermined pitch along the circumferential direction. For this reason, the press-fitting jig K to be used only needs to be able to apply an axial load corresponding to these stepped surfaces G.

圧入後は、ハブ輪1の嵌合孔22aのアウトボード側の内径面97及び軸部12の端面に塗装皮膜81を形成することになる。この塗装皮膜81は前記したように電着塗装にて形成することができる。   After the press-fitting, the coating film 81 is formed on the inner surface 97 on the outboard side of the fitting hole 22 a of the hub wheel 1 and the end surface of the shaft portion 12. The coating film 81 can be formed by electrodeposition coating as described above.

ところで、図1に組立てられた本発明のアクスルモジュールにおいては、転がり軸受2の外方部材25が車体側のナックル34(図10参照)に組込まれる。すなわち、外方部材25の外径面に、車体取付フランジ25aが設けられ、この車体取付フランジ25aよりもインボード側がナックル34に装着される嵌合部25bとされる。   By the way, in the axle module of the present invention assembled in FIG. 1, the outer member 25 of the rolling bearing 2 is assembled in the knuckle 34 (see FIG. 10) on the vehicle body side. That is, the vehicle body mounting flange 25a is provided on the outer diameter surface of the outer member 25, and the inboard side of the vehicle body mounting flange 25a is a fitting portion 25b that is attached to the knuckle 34.

この場合、外方部材25の嵌合部25bの外径寸法D11を等速自在継手T1の最大外径寸法D12よりも大径とする。ここで、等速自在継手T1の最大外径寸法D12は、ブーツ17およびブーツバンド18a、18b等の付属品も含めた状態でのこの等速自在継手T1の最大外径寸法を意味する。   In this case, the outer diameter dimension D11 of the fitting portion 25b of the outer member 25 is larger than the maximum outer diameter dimension D12 of the constant velocity universal joint T1. Here, the maximum outer diameter dimension D12 of the constant velocity universal joint T1 means the maximum outer diameter dimension of the constant velocity universal joint T1 in a state including accessories such as the boot 17 and the boot bands 18a and 18b.

また、図1に示すように、インボード側等速自在継手T2の最大外径寸法D13を外方部材25の嵌合部25bの外径寸法D11よりも小径に設定する。インボード側等速自在継手T2の最大外径寸法D13は、アウトボード側等速自在継手T1の場合と同様に、ブーツ140およびブーツバンド141等の付属品も含めた状態でのインボード側等速自在継手T2の最大外径寸法を意味する。   Further, as shown in FIG. 1, the maximum outer diameter D13 of the inboard side constant velocity universal joint T2 is set to be smaller than the outer diameter D11 of the fitting portion 25b of the outer member 25. The maximum outer diameter D13 of the inboard side constant velocity universal joint T2 is the same as that of the outboard side constant velocity universal joint T1, and the inboard side in a state including accessories such as the boot 140 and the boot band 141. It means the maximum outer diameter dimension of the quick universal joint T2.

このように組み付けられたアクスルモジュールの車両への組み付けは、ナックル34にこのアクスルモジュールをインボード側の摺動式等速自在継手T2側から挿通し、アウトボード側の車輪用軸受装置の外方部材25をナックル34の内径面に装着する。そして、外方部材25のフランジ25aに設けられたねじ孔にボルト部材が螺合され、これによって、ナックル34と外方部材25とが一体化される。すなわち、本発明のアクスルモジュールでは、組立てられた状態での車両への組み付けが可能となる。   The axle module assembled in this way is assembled to the vehicle by inserting the axle module into the knuckle 34 from the sliding constant velocity universal joint T2 side on the inboard side, and the outside of the wheel bearing device on the outboard side. The member 25 is attached to the inner diameter surface of the knuckle 34. Then, the bolt member is screwed into the screw hole provided in the flange 25a of the outer member 25, whereby the knuckle 34 and the outer member 25 are integrated. That is, the axle module of the present invention can be assembled to the vehicle in an assembled state.

本発明のアクスルモジュールでは、組立てられた状態での車両への組み付けが可能となる。これにより、組付け作業現場での作業工数を減じることができ、作業性が高まる。この場合、従来工程のようにナックル34を旋回させる必要もないので、作業スペースも最小限で足りる。しかも、分解・組立等における部品の損傷を防止して品質を安定させることができる。   The axle module according to the present invention can be assembled to a vehicle in an assembled state. Thereby, the work man-hour at the assembly work site can be reduced, and workability is enhanced. In this case, it is not necessary to turn the knuckle 34 as in the conventional process, so that the work space is minimized. Moreover, it is possible to stabilize the quality by preventing damage to parts during disassembly / assembly.

また、車輪用軸受装置側においては、凹凸嵌合構造Mは、凸部35と凹部36との嵌合接触部位38の全体が密着しているので、この凹凸嵌合構造Mにおいて、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生も生じさせない。   Further, on the wheel bearing device side, the concave / convex fitting structure M is in close contact with the entire fitting contact portion 38 between the convex portion 35 and the concave portion 36. There is no gap formed in the circumferential direction. For this reason, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.

凹部36が形成される部材(この場合、ハブ輪1)には、スプライン部等を形成してお
く必要がなく、生産性に優れ、かつスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。なお、凸部35を、この種のドライブシャフトに通常形成されるスプラインをもって構成することができるので、低コストにて簡単にこの凸部35を形成することができる。
The member (in this case, the hub wheel 1) in which the concave portion 36 is formed does not need to have a spline portion or the like formed therein, is excellent in productivity, and does not require phase alignment between the splines, thereby improving assemblability. In addition, it is possible to avoid damage to the tooth surface during press-fitting and maintain a stable fitting state. In addition, since the convex part 35 can be comprised with the spline normally formed in this kind of drive shaft, this convex part 35 can be easily formed at low cost.

テーパ部22dが圧入開始時のガイドを構成することができるので、ハブ輪1の孔部22に対して外輪5の軸部12を、ズレを生じさせることなく圧入させることができ、安定したトルク伝達が可能となる。さらに、鍔部96の外径D4は孔部22の嵌合孔22aの内径寸法Dよりも僅かに小さく設定しているので、調芯部材となり、芯ずれを防止しつつ軸部をハブ輪に圧入することができ、より安定した圧入が可能となる。   Since the tapered portion 22d can form a guide at the start of press-fitting, the shaft portion 12 of the outer ring 5 can be pressed into the hole portion 22 of the hub wheel 1 without causing a deviation, and a stable torque can be obtained. Communication is possible. Further, since the outer diameter D4 of the flange portion 96 is set slightly smaller than the inner diameter dimension D of the fitting hole 22a of the hole portion 22, it becomes an alignment member, and the shaft portion is used as a hub wheel while preventing misalignment. It is possible to press-fit, and more stable press-fitting is possible.

特に、本発明では、塗装皮膜81にて、ハブ輪1のアウトボード側の開口部を閉塞することができ、ハブ輪1のアウトボード側からの凹凸嵌合構造Mへの雨水や異物の浸入を防止できる。これによって、凹凸嵌合構造Mの錆の発生を抑えることができ、長期にわたって安定したトルク伝達が可能となる。しかも、この実施形態のように、塗装皮膜81がカチオン電着塗装で形成されていれば、耐食性と防錆性能に優れた腐食防止皮膜となる。また、カチオン電着塗装の下地処理としてリン酸亜鉛処理が施されるものでは、塗料の付着性が向上し、塗装皮膜81の剥がれを有効に防止できる。   In particular, in the present invention, the coating film 81 can block the opening on the outboard side of the hub wheel 1, so that rainwater and foreign matter enter the concave-convex fitting structure M from the outboard side of the hub wheel 1. Can be prevented. Thereby, generation | occurrence | production of the rust of the uneven | corrugated fitting structure M can be suppressed, and stable torque transmission is attained over a long period of time. In addition, as in this embodiment, if the coating film 81 is formed by cationic electrodeposition coating, a corrosion-preventing film having excellent corrosion resistance and rust prevention performance is obtained. In addition, in the case where the zinc phosphate treatment is performed as the ground treatment for the cationic electrodeposition coating, the adhesion of the paint is improved and the peeling of the coating film 81 can be effectively prevented.

これに対して、塗装皮膜81を設けなければ、凹凸嵌合構造Mに雨水や異物が浸入して、この凹凸嵌合構造Mの減肉や割れ、応力腐食割れ等に起因する軸部12のハブ輪1からの抜けが発生することが懸念される。ここで、応力腐食割れとは、合金系金属が許容応力内の静的な引張応力を受けた状態で特定の腐食環境中にさらされるとき、腐食を伴って合金に割れを生ずる現象をいう。   On the other hand, if the coating film 81 is not provided, rainwater and foreign matter enter the uneven fitting structure M, and the shaft portion 12 is caused by thinning, cracking, stress corrosion cracking, etc. of the uneven fitting structure M. There is a concern that the hub wheel 1 may come off. Here, stress corrosion cracking refers to a phenomenon in which when an alloy metal is exposed to a specific corrosive environment under a static tensile stress within an allowable stress, the alloy is cracked with corrosion.

等速自在継手T1の外輪5の軸部12の凸部の軸方向端部の硬度をハブ輪1の孔部内径部よりも高くして、軸部12をハブ輪1の孔部22に凸部35の軸方向端部側から圧入するので、ハブ輪1の孔部内径面への凹部形成が容易となる。また、軸部側の硬度を高くでき、軸部12の捩り強度を向上させることができる。   The hardness of the axial end of the convex portion of the shaft portion 12 of the outer ring 5 of the constant velocity universal joint T1 is made higher than the inner diameter portion of the hole portion of the hub wheel 1 so that the shaft portion 12 protrudes into the hole portion 22 of the hub wheel 1. Since it press-fits from the axial direction edge part side of the part 35, the recessed part formation to the hole inner diameter surface of the hub ring 1 becomes easy. Further, the hardness on the shaft portion side can be increased, and the torsional strength of the shaft portion 12 can be improved.

また、ハブ輪1の端部が加締られて転がり軸受2に対して予圧が付与されるので、外輪5のマウス部11によって予圧を付与する必要がなくなる。このため、転がり軸受2の予圧を考慮することなく、外輪5の軸部12を圧入することができ、ハブ輪1と外輪5との連結性(組み付け性)の向上を図ることができる。   Further, since the end portion of the hub wheel 1 is crimped and preload is applied to the rolling bearing 2, it is not necessary to apply preload by the mouth portion 11 of the outer ring 5. For this reason, it is possible to press-fit the shaft portion 12 of the outer ring 5 without considering the preload of the rolling bearing 2 and to improve the connectivity (assembly property) between the hub wheel 1 and the outer ring 5.

なお、マウス部11のバック面11aとハブ輪1の加締部(揺動加締部)31との間に隙間を設けることによって、マウス部11がハブ輪1と非接触状とすれば、マウス部11とハブ輪1との接触による異音の発生を防止できる。   In addition, by providing a gap between the back surface 11a of the mouse part 11 and the caulking part (swinging caulking part) 31 of the hub wheel 1, if the mouse part 11 is not in contact with the hub wheel 1, Generation of abnormal noise due to contact between the mouse portion 11 and the hub wheel 1 can be prevented.

これに対して、前記実施形態では、マウス部11とハブ輪1の加締部31とが接触するものである。このようにハブ輪1の加締部31とマウス部11のバック面11aとを当接させる場合、両者の接触面圧は100MPa以下とするのが望ましい。接触面圧が100MPaを超えると、大トルク負荷時に継手外輪5とハブ輪1との捩れ量に差が生じ、この差によって接触部に急激なスリップが生じて異音を発生するおそれがあるからである。従って、接触面圧を100MPa以下とすることで、異音の発生を防止して静粛な車輪用軸受装置を提供することができる。   On the other hand, in the said embodiment, the mouse | mouth part 11 and the crimping part 31 of the hub wheel 1 contact. Thus, when the caulking part 31 of the hub wheel 1 and the back surface 11a of the mouse part 11 are brought into contact with each other, it is desirable that the contact surface pressure between them is 100 MPa or less. If the contact surface pressure exceeds 100 MPa, there will be a difference in the torsional amount between the joint outer ring 5 and the hub wheel 1 when a large torque is applied, and this difference may cause a sudden slip at the contact portion and generate noise. It is. Therefore, by setting the contact surface pressure to 100 MPa or less, it is possible to provide a quiet wheel bearing device that prevents the generation of abnormal noise.

また、軸部12をハブ輪1に圧入していくことによって、凹部36を形成していくと、この凹部36側に加工硬化が生じる。ここで、加工硬化とは、物体に塑性変形(塑性加工)を与えると,変形の度合が増すにつれて変形に対する抵抗が増大し,変形を受けていない材料よりも硬くなることをいう。このため、圧入時に塑性変形することによって、凹部36側のハブ輪1の内径面37が硬化して、回転トルク伝達性の向上を図ることができる。   Further, when the concave portion 36 is formed by press-fitting the shaft portion 12 into the hub wheel 1, work hardening occurs on the concave portion 36 side. Here, work hardening means that when plastic deformation (plastic processing) is applied to an object, the resistance to deformation increases as the degree of deformation increases, and it becomes harder than a material that has not undergone deformation. For this reason, by plastically deforming at the time of press-fitting, the inner diameter surface 37 of the hub wheel 1 on the concave portion 36 side is hardened, and the rotational torque transmission performance can be improved.

ハブ輪1の内径側は比較的軟らかい。このため、外輪5の軸部12の外径面の凸部35をハブ輪1の孔部内径面の凹部36に嵌合させる際の嵌合性(密着性)の向上を図ることができ、径方向及び円周方向においてガタが生じるのを精度良く抑えることができる。   The inner diameter side of the hub wheel 1 is relatively soft. For this reason, it is possible to improve the fitting property (adhesion) when the convex portion 35 on the outer diameter surface of the shaft portion 12 of the outer ring 5 is fitted into the concave portion 36 on the inner diameter surface of the hole portion of the hub wheel 1. It is possible to accurately suppress the occurrence of play in the radial direction and the circumferential direction.

圧入による凹部形成によって生じるはみ出し部45を収納するポケット部50を設けることによって、はみ出し部45をこのポケット部50内に保持(維持)することができ、はみ出し部45が装置外の車両内等へ入り込んだりすることがない。すなわち、はみ出し部45をポケット部50に収納したままにしておくことができ、はみ出し部45の除去処理を行う必要がなく、組立作業工数の減少を図ることができて、組立作業性の向上及びコスト低減を図ることができる。   By providing the pocket portion 50 for accommodating the protruding portion 45 generated by forming the concave portion by press-fitting, the protruding portion 45 can be held (maintained) in the pocket portion 50, and the protruding portion 45 can be placed inside the vehicle outside the apparatus. There is no intrusion. That is, the protruding portion 45 can be kept stored in the pocket portion 50, and it is not necessary to perform the removal process of the protruding portion 45, the number of assembling operations can be reduced, and the assembling workability can be improved. Cost reduction can be achieved.

前記図3に示すスプライン41では、凸部41aのピッチと凹部41bのピッチとが同一設定される。このため、前記実施形態では、図3(b)に示すように、凸部35の突出方向中間部位の周方向厚さLと、周方向に隣り合う凸部35間における前記中間部位に対応する位置での周方向寸法L0とがほぼ同一となっている。   In the spline 41 shown in FIG. 3, the pitch of the convex portions 41a and the pitch of the concave portions 41b are set to be the same. For this reason, in the said embodiment, as shown in FIG.3 (b), it corresponds to the circumferential direction thickness L of the protrusion direction intermediate part of the convex part 35, and the said intermediate part between the convex parts 35 adjacent to the circumferential direction. The circumferential dimension L0 at the position is substantially the same.

これに対して、図6(a)に示すように、凸部35の突出方向中間部位の周方向厚さL2を、周方向に隣り合う凸部43間における前記中間部位に対応する位置での周方向寸法L1よりも小さいものであってもよい。すなわち、軸部12に形成されるスプライン41において、凸部35の突出方向中間部位の周方向厚さ(歯厚)L2を、凸部35間に嵌合するハブ輪1側の凸部43の突出方向中間部位の周方向厚さ(歯厚)L1よりも小さくしている。   On the other hand, as shown in FIG. 6A, the circumferential thickness L2 of the projecting direction intermediate portion of the convex portion 35 is set at a position corresponding to the intermediate portion between the convex portions 43 adjacent in the circumferential direction. It may be smaller than the circumferential dimension L1. That is, in the spline 41 formed on the shaft portion 12, the circumferential thickness (tooth thickness) L <b> 2 of the intermediate portion in the projecting direction of the convex portion 35 is set to the height of the convex portion 43 on the hub wheel 1 side fitted between the convex portions 35. It is made smaller than the circumferential thickness (tooth thickness) L1 of the intermediate portion in the protruding direction.

このため、軸部12側の全周における凸部35の歯厚の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の凸部43(凸歯)の歯厚の総和Σ(A1+A2+A3+・・・)よりも小さく設定している。これによって、ハブ輪1側の凸部43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部35の周方向厚さの総和を、相手側の凸部43における周方向厚さの総和よりも小さくする場合、全凸部35の周方向厚さL2を、周方向に隣り合う凸部35間における周方向の寸法L1よりも小さくする必要がない。すなわち、複数の凸部35のうち、任意の凸部35の周方向厚さが周方向に隣り合う凸部間における周方向の寸法と同一であっても、この周方向の寸法よりも大きくても、総和で小さければよい。   Therefore, the total tooth thickness Σ (B1 + B2 + B3 +...) Of the convex portion 35 on the entire circumference on the shaft 12 side is replaced by the total tooth thickness Σ (A1 + A2 + A3 +) of the convex portion 43 (convex tooth) on the hub wheel 1 side.・ It is set smaller than. As a result, the shear area of the convex portion 43 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at. When making the sum total of the circumferential thickness of the convex part 35 smaller than the sum total of the circumferential direction thickness in the other convex part 43, the circumferential direction thickness L2 of all the convex parts 35 is the convex part adjacent to the circumferential direction. It is not necessary to make it smaller than the circumferential dimension L1 between 35. That is, among the plurality of convex portions 35, even if the circumferential thickness of the arbitrary convex portion 35 is the same as the circumferential dimension between the convex portions adjacent in the circumferential direction, it is larger than the circumferential dimension. However, it is sufficient if the sum is small.

図6(a)における凸部35は、断面台形(富士山形状)としているが、図6(b)に示すように、インボリュート歯形状であってもよい。   6A has a trapezoidal cross section (Mt. Fuji shape), but may have an involute tooth shape as shown in FIG. 6B.

次に図7は車輪用軸受装置の第2実施形態を示し、この場合、外輪5の軸部12の端部とハブ輪1の内径面との間に前記軸部抜け止め構造M1が設けられている。この軸部抜け止め構造M1は、外輪5の軸部12の端部からアウトボード側に延びてコーン状孔22bに係止する拡径加締部(テーパ状係止片)65からなる。すなわち、拡径加締部65は、インボード側からアウトボード側に向かって拡径するリング状体からなり、その外周面65aの少なくとも一部がコーン状孔22bに圧接乃至接触している。   Next, FIG. 7 shows a second embodiment of the wheel bearing device. In this case, the shaft portion retaining structure M1 is provided between the end portion of the shaft portion 12 of the outer ring 5 and the inner diameter surface of the hub wheel 1. ing. The shaft portion retaining structure M1 includes a diameter-enlarged caulking portion (tapered locking piece) 65 that extends from the end portion of the shaft portion 12 of the outer ring 5 to the outboard side and engages with the cone-shaped hole 22b. That is, the diameter-enlarged caulking portion 65 is formed of a ring-shaped body that increases in diameter from the inboard side toward the outboard side, and at least a part of the outer peripheral surface 65a is in pressure contact with or in contact with the cone-shaped hole 22b.

この場合、外輪5の軸部12の端部に短円筒部66を設け、軸部12をハブ輪1に圧入した後、この短円筒部66の先端部を拡開させることによって、図7に示すようなテーパ状係止片65を形成することができる。   In this case, a short cylindrical portion 66 is provided at the end of the shaft portion 12 of the outer ring 5, and after the shaft portion 12 is press-fitted into the hub wheel 1, the tip end portion of the short cylindrical portion 66 is expanded, thereby FIG. A tapered locking piece 65 as shown can be formed.

仮想線で示すような治具67を使用してこの短円筒部66を拡径することになる。治具67は、円柱状の本体部68と、この本体部68の先端部に連設される円錐台部69とを備える。治具67の円錐台部69は、その傾斜面69aの傾斜角度がコーン状孔22bの傾斜角度と略同一とされ、かつ、その先端の外径が短円筒部の内径と同一乃至僅かに短円筒部の内径よりも小さい寸法に設定されている。そして、治具67の円錐台部69をコーン状孔22bを介して嵌入することによって矢印α方向の荷重を付加し、これによって、短円筒部66の内径側にこの短円筒部66が拡径する矢印β方向の拡径力を付与する。この際、治具67の円錐台部69によって、短円筒部66の少なくとも一部はコーン状孔22bの内径面側に押圧され、コーン状孔22bの内径面に圧接乃至接触した状態となり、前記軸部抜け止め構造M1を構成することができる。なお、治具67の矢印α方向の荷重を付加する際には、この車輪用軸受装置が矢印α方向へ移動しないように、固定する必要があるが、ハブ輪1や等速自在継手T1等の一部を固定部材にて受ければよい。ところで、短円筒部66の内径面66aは軸端側に拡径するテーパ形状でも良い。このような形状にしておけば、鍛造で内径面を成形することも可能であり、コスト低減に繋がる。   The short cylindrical portion 66 is expanded in diameter using a jig 67 as indicated by a virtual line. The jig 67 includes a columnar main body 68 and a truncated cone 69 connected to the tip of the main body 68. The frustoconical portion 69 of the jig 67 has an inclined surface 69a whose inclination angle is substantially the same as that of the cone-shaped hole 22b, and whose outer diameter at the tip is the same as or slightly shorter than the inner diameter of the short cylindrical portion. The dimension is set smaller than the inner diameter of the cylindrical portion. Then, a load in the direction of the arrow α is applied by fitting the truncated cone part 69 of the jig 67 through the cone-shaped hole 22b, whereby the short cylindrical part 66 is expanded on the inner diameter side of the short cylindrical part 66. The diameter expansion force in the arrow β direction is applied. At this time, at least a part of the short cylindrical portion 66 is pressed to the inner surface of the cone-shaped hole 22b by the truncated cone portion 69 of the jig 67, and is brought into pressure contact or contact with the inner surface of the cone-shaped hole 22b. The shaft portion retaining structure M1 can be configured. In addition, when applying the load in the arrow α direction of the jig 67, it is necessary to fix the wheel bearing device so that it does not move in the arrow α direction. It is sufficient to receive a part of this by a fixing member. By the way, the inner diameter surface 66a of the short cylindrical portion 66 may have a tapered shape that expands toward the shaft end side. If it is set as such a shape, it is also possible to shape | mold an internal diameter surface by forging, and it leads to a cost reduction.

また、治具67の矢印α方向の荷重を低減させるため、短円筒部66に切り欠きを入れても良いし、治具67の円錐台部69の円錐面を周方向で部分的に配置するものでも良い。短円筒部66に切り欠きを入れた場合、短円筒部66を拡径し易くなる。また、治具67の円錐台部69の円錐面を周方向で部分的に配置するものである場合、短円筒部66を拡径させる部位が円周上の一部になるため、治具67の押し込み荷重を低減させることができる。   Further, in order to reduce the load of the jig 67 in the direction of the arrow α, the short cylindrical portion 66 may be notched, and the conical surface of the truncated cone portion 69 of the jig 67 is partially arranged in the circumferential direction. Things can be used. When the short cylindrical portion 66 is notched, the short cylindrical portion 66 can be easily expanded in diameter. Further, in the case where the conical surface of the truncated cone part 69 of the jig 67 is partially arranged in the circumferential direction, a part where the diameter of the short cylindrical part 66 is enlarged becomes a part on the circumference. The indentation load can be reduced.

凹凸嵌合構造M及び軸部抜け止め構造M1を構成した後は、テーパ状係止片65のアウトボード側の端面乃至短円筒部66の内径面66aに沿って塗装皮膜81を形成することになる。この塗装皮膜81は前記したように電着塗装にて形成することができ、亜鉛系被膜の下地処理の上にカチオン電着塗装をすることで、防食性の高い塗装皮膜を形成することができる。   After forming the concave-convex fitting structure M and the shaft portion retaining structure M1, the coating film 81 is formed along the end surface on the outboard side of the tapered locking piece 65 or the inner diameter surface 66a of the short cylindrical portion 66. Become. This coating film 81 can be formed by electrodeposition coating as described above, and a coating film having high anticorrosion properties can be formed by applying cationic electrodeposition coating on the base treatment of the zinc-based film. .

また、図8は車輪用軸受装置の第3実施形態として、短円筒部66の底面66b、短円筒部66の内径面66a、コーン状孔22b、パイロット部90の内径面90aに跨って塗装皮膜81を形成している。さらに、図9は車輪用軸受装置の第4実施形態として、塗装皮膜81の形成範囲が、ホイールパイロット92の外端面92b及び外径面92aにも跨っている。   FIG. 8 shows a third embodiment of the wheel bearing device as a coating film straddling the bottom surface 66b of the short cylindrical portion 66, the inner diameter surface 66a of the short cylindrical portion 66, the cone-shaped hole 22b, and the inner diameter surface 90a of the pilot portion 90. 81 is formed. Further, FIG. 9 shows a fourth embodiment of the wheel bearing device in which the coating film 81 is formed over the outer end surface 92b and the outer diameter surface 92a of the wheel pilot 92.

図8及び図9に示す車輪用軸受装置の他の構成は、前記図2に示す車輪用軸受装置と同様であるので、同一構造のものは、図2に示す符号と同一の符号を附してそれらの説明を省略する。   The other structure of the wheel bearing device shown in FIGS. 8 and 9 is the same as that of the wheel bearing device shown in FIG. 2, and therefore the same structure is given the same reference numeral as that shown in FIG. The description thereof will be omitted.

このため、図8及び図9に示す車輪用軸受装置であっても、図2に示す車輪用軸受装置と同様の作用効果を奏する。また、軸部抜け止め構造M1を備えているので、外輪5の軸部12のハブ輪1の孔部22からの抜け(特にシャフト側への軸方向の抜け)を有効に防止できる。これによって、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。また、軸部抜け止め構造M1が拡径加締部65であるので、従来のようなねじ締結を省略できる。このため、軸部12にハブ輪1の孔部22から突出するねじ部を形成する必要がなくなって、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組立作業性の向上を図ることができる。しかも、拡径加締部65では、外輪5の軸部12の一部を拡径させればよく、軸部抜け止め構造M1の形成を容易に行うことができる。   For this reason, even if it is a wheel bearing apparatus shown in FIG.8 and FIG.9, there exists an effect similar to the wheel bearing apparatus shown in FIG. Further, since the shaft portion retaining structure M1 is provided, it is possible to effectively prevent the shaft portion 12 of the outer ring 5 from coming off from the hole portion 22 of the hub wheel 1 (particularly, the shaft portion on the shaft side). As a result, a stable connected state can be maintained, and the quality of the wheel bearing device can be improved. Further, since the shaft portion retaining structure M1 is the enlarged diameter crimping portion 65, conventional screw fastening can be omitted. For this reason, it is not necessary to form the screw part which protrudes from the hole part 22 of the hub wheel 1 in the axial part 12, and while achieving weight reduction, a screw fastening operation | work can be abbreviate | omitted and aiming at the improvement of assembly workability | operativity. be able to. Moreover, in the diameter-enlarged caulking portion 65, a part of the shaft portion 12 of the outer ring 5 may be enlarged in diameter, and the shaft-portion retaining structure M1 can be easily formed.

このように、拡径加締部65からなる軸部抜け止め構造M1を設ければ、等速自在継手T1の外輪5のハブ輪1からの抜けが防止されるが、塗装皮膜81を設けなければ、長期にわたって使用されれば、この拡径加締部65の腐食が発生するおそれがある。しかしながら、本発明では、塗装皮膜81を形成することよって、この軸部抜け止め構造M1の腐食を防止できる。なお、塗装皮膜81に代えた、別部材からなるシールプレート等のシール材を用いて異物浸入から防護することが可能であるが、このような場合、部品費、加工費等のコストアップにつながる。   As described above, if the shaft portion retaining structure M1 including the enlarged diameter crimping portion 65 is provided, the constant velocity universal joint T1 can be prevented from coming off from the hub wheel 1, but the coating film 81 must be provided. For example, if it is used over a long period of time, there is a possibility that corrosion of the enlarged diameter caulking portion 65 may occur. However, in the present invention, by forming the coating film 81, corrosion of the shaft portion retaining structure M1 can be prevented. Although it is possible to protect against foreign material intrusion by using a sealing material such as a sealing plate made of another member instead of the coating film 81, in such a case, it leads to an increase in costs such as parts cost and processing cost. .

ところで、前記各実施形態では、転がり軸受2の外方部材25としてフランジ25aを有するものであったが、図10に示すように、フランジ25aを有さないものであってもよい。この場合、外方部材25の外周面が圧入面101となり、この外方部材25をナックル34の内径面34aに圧入することになる。外方部材25の圧入面101の外径寸法D15を等速自在継手T1の最大外径寸法D12よりも大径とする。   By the way, in each said embodiment, although it has the flange 25a as the outer member 25 of the rolling bearing 2, as shown in FIG. 10, you may not have the flange 25a. In this case, the outer peripheral surface of the outer member 25 becomes the press-fitting surface 101, and the outer member 25 is press-fitted into the inner diameter surface 34 a of the knuckle 34. The outer diameter dimension D15 of the press-fitting surface 101 of the outer member 25 is made larger than the maximum outer diameter dimension D12 of the constant velocity universal joint T1.

また、外方部材25の圧入面101の外径寸法D15を、ナックル34の内径面34aの内径寸法D16よりも僅かに大きく設定する。すなわち、外方部材25の外周面とナックル内径面34aとの締代によって、ナックル34と外方部材25との相対的な軸方向及び周方向のずれを規制するように設定する。   Further, the outer diameter D15 of the press-fitting surface 101 of the outer member 25 is set to be slightly larger than the inner diameter D16 of the inner diameter surface 34a of the knuckle 34. In other words, the relative axial and circumferential shift between the knuckle 34 and the outer member 25 is regulated by the tightening allowance between the outer circumferential surface of the outer member 25 and the knuckle inner diameter surface 34a.

この場合、外方部材25の圧入面(外周面)101とナックル34の内径面34aとの間に止め輪85を介在させてもよい。止め輪85を使用することにより、外方部材25とナックル34の抜け止め効果が高まる。すなわち、外方部材25の外周面に係合溝(図示省略)を形成するとともに、ナックル34の内径面34aに係合溝(図示省略)を形成する。このため、止め輪85が外方部材25の外周面の係合溝とナックル34の内径面34aの係合溝とに係合することになる。   In this case, a retaining ring 85 may be interposed between the press-fitting surface (outer peripheral surface) 101 of the outer member 25 and the inner diameter surface 34 a of the knuckle 34. By using the retaining ring 85, the effect of preventing the outer member 25 and the knuckle 34 from coming off is enhanced. That is, an engagement groove (not shown) is formed on the outer peripheral surface of the outer member 25, and an engagement groove (not shown) is formed on the inner diameter surface 34 a of the knuckle 34. For this reason, the retaining ring 85 is engaged with the engagement groove on the outer peripheral surface of the outer member 25 and the engagement groove on the inner diameter surface 34 a of the knuckle 34.

この場合も、外方部材25の圧入面101の外径D15が、等速自在継手T1、T2の最大外径寸法D12,D13よりも大径とする。なお、このようにフランジ25aを有するものでは、前記したフランジを有さないものに比べて、圧入面101の外径D15とナックル34の内径面34aの内径との関係を、精度よく設定する必要がなく、生産性に優れる。   Also in this case, the outer diameter D15 of the press-fit surface 101 of the outer member 25 is larger than the maximum outer diameter dimensions D12, D13 of the constant velocity universal joints T1, T2. In the case of having the flange 25a in this way, it is necessary to set the relationship between the outer diameter D15 of the press-fitting surface 101 and the inner diameter of the inner diameter surface 34a of the knuckle 34 with higher accuracy than in the case of having no flange. There is no, and it is excellent in productivity.

ところで、前記各実施形態では、軸部12側に凸部35を構成するスプライン41を形成するとともに、この軸部12のスプライン41に対して硬化処理を施し、ハブ輪1の内径面を未硬化(生材)としている。これに対して、図11(a)(b)に示すように、ハブ輪1の孔部22の内径面に硬化処理を施されたスプライン61(凸条61a及び凹条61bとからなる)を形成するとともに、軸部12には硬化処理を施さないものであってもよい。なお、このスプライン61も公知公用の手段であるブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   By the way, in each said embodiment, while forming the spline 41 which comprises the convex part 35 in the axial part 12 side, the hardening process is performed with respect to the spline 41 of this axial part 12, and the internal diameter surface of the hub ring 1 is unhardened. (Raw material). On the other hand, as shown in FIGS. 11 (a) and 11 (b), a spline 61 (consisting of ridges 61a and ridges 61b) in which the inner diameter surface of the hole portion 22 of the hub wheel 1 is subjected to hardening treatment is provided. While being formed, the shaft portion 12 may not be subjected to a curing process. The spline 61 can also be formed by various processing methods such as broaching, cutting, pressing, and drawing, which are publicly known means. Further, various heat treatments such as induction hardening and carburizing and quenching can be employed as the thermosetting treatment.

この場合、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(軸部12の外径面)の位置に対応する。すなわち、スプライン61の凸部61aである凸部35の頂点を結ぶ円の径寸法(凸部35の最小径寸法)D8を、軸部12の外径寸法D10よりも小さく、スプライン61の凹部61bの底を結ぶ円の径寸法D9を軸部12の外径寸法D10よりも大きく設定する。すなわち、D8<D10<D9とされる。この場合、凹部61bの底を結ぶ円で構成される内径面が、ハブ輪1の軸部嵌合孔22aの内径面となり、凸部35が底からの突出部である。   In this case, the intermediate portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (the outer diameter surface of the shaft portion 12) before the concave portion is formed. That is, the diameter dimension (minimum diameter dimension of the convex portion 35) D8 connecting the vertices of the convex portion 35 which is the convex portion 61a of the spline 61 is smaller than the outer diameter size D10 of the shaft portion 12, and the concave portion 61b of the spline 61 is formed. The diameter D9 of the circle connecting the bottoms of the shafts 12 is set larger than the outer diameter D10 of the shaft portion 12. That is, D8 <D10 <D9. In this case, the inner diameter surface formed by a circle connecting the bottom of the recess 61b becomes the inner diameter surface of the shaft portion fitting hole 22a of the hub wheel 1, and the convex portion 35 is a protruding portion from the bottom.

軸部12をハブ輪1の孔部22に圧入すれば、ハブ輪1側の凸部35によって、軸部12の外周面にこの凸部35が嵌合する凹部36を形成することができる。これによって、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着している。   If the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the concave portion 36 into which the convex portion 35 is fitted can be formed on the outer peripheral surface of the shaft portion 12 by the convex portion 35 on the hub wheel 1 side. Thereby, the whole fitting contact part 38 of the convex part 35 and the recessed part fitted to this is closely_contact | adhered.

ここで、嵌合接触部位38とは、図11(b)に示す範囲Bであり、凸部35の断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、軸部12の外周面よりも外径側に隙間62が形成される。   Here, the fitting contact portion 38 is a range B shown in FIG. 11B, and is a range from the middle of the mountain shape to the top of the mountain in the cross section of the convex portion 35. Further, a gap 62 is formed on the outer diameter side of the outer peripheral surface of the shaft portion 12 between the adjacent convex portions 35 in the circumferential direction.

この場合であっても、圧入によってはみ出し部45が形成されるので、このはみ出し部45を収納する収納部を設けるのが好ましい。はみ出し部45は軸部12のマウス側に形成されることになるので、収納部をハブ輪1側に設けることになる。   Even in this case, since the protruding portion 45 is formed by press-fitting, it is preferable to provide a storage portion for storing the protruding portion 45. Since the protruding portion 45 is formed on the mouse side of the shaft portion 12, the storage portion is provided on the hub wheel 1 side.

このように、ハブ輪1の孔部22の内径面に凹凸嵌合構造Mの凸部35を設けて圧入するものでは、軸部側の硬化処理(熱処理)を行う必要がないので、等速自在継手T1の外輪5の生産性に優れる利点がある。   In this way, in the case where the convex portion 35 of the concave-convex fitting structure M is provided on the inner diameter surface of the hole portion 22 of the hub wheel 1 and press-fitted, it is not necessary to perform the hardening treatment (heat treatment) on the shaft portion side, so that the constant velocity is achieved. There is an advantage that the productivity of the outer ring 5 of the universal joint T1 is excellent.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部35の形状として、前記図3に示す実施形態では断面三角形状であり、図6(a)に示す実施形態では断面台形(富士山形状)であるが、これら以外の半円形状、半楕円形状、矩形形状等の種々の形状の
ものを採用でき、凸部35の面積、数、周方向配設ピッチ等も任意に変更できる。すなわち、スプライン41、61を形成し、このスプライン41、61の凸部(凸歯)41a、61aをもって凹凸嵌合構造Mの凸部35とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部35を相手側に圧入し、この凸部35にて凸部35に密着嵌合する凹部36を相手側に形成することができて、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着し、しかも、ハブ輪1と等速自在継手T1との間で回転トルクの伝達ができればよい。
As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, as the shape of the convex portion 35 of the concave-convex fitting structure M, FIG. In the embodiment shown in Fig. 3, the cross section is triangular, and in the embodiment shown in Fig. 6 (a), the cross section is trapezoidal (mountain shape), but other shapes such as semicircular, semielliptical, rectangular, etc. The area of the convex part 35, the number, the circumferential arrangement pitch, and the like can be arbitrarily changed. That is, the splines 41 and 61 are formed, and the convex portions (convex teeth) 41a and 61a of the splines 41 and 61 do not need to be the convex portions 35 of the concave-convex fitting structure M. Alternatively, a curved corrugated mating surface may be formed. In short, the convex portion 35 disposed along the axial direction can be press-fitted into the mating side, and the concave portion 36 can be formed on the mating side with the convex portion 35 so as to closely fit the convex portion 35. It suffices that the entire fitting contact portion 38 between the portion 35 and the concave portion fitted thereto is in close contact, and that the rotational torque can be transmitted between the hub wheel 1 and the constant velocity universal joint T1.

また、ハブ輪1の孔部22としては円孔以外の多角形孔等の異形孔であってよく、この孔部22に嵌挿する軸部12の端部の断面形状も円形断面以外の多角形等の異形断面であってもよい。さらに、ハブ輪1に軸部12を圧入する際に凸部35の圧入始端部のみが、凹部36が形成される部位より硬度が高ければよいので、凸部35の全体の硬度を高くする必要がない。図3等では隙間40が形成されるが、凸部35間の凹部まで、ハブ輪1の内径面37に食い込むようなものであってもよい。なお、凸部35側と、凸部35にて形成される凹部形成面側との硬度差としては、前記したようにHRCで20ポイント以上とするのが好ましいが、凸部35が圧入可能であれば20ポイント未満であってもよい。   Further, the hole portion 22 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion of the shaft portion 12 to be inserted into the hole portion 22 may be other than a circular cross section. An irregular cross section such as a square may be used. Furthermore, since only the press-fitting start end portion of the convex portion 35 needs to be harder than the portion where the concave portion 36 is formed when the shaft portion 12 is press-fitted into the hub wheel 1, it is necessary to increase the overall hardness of the convex portion 35. There is no. Although the gap 40 is formed in FIG. 3 and the like, the gap 40 between the convex portions 35 may bite into the inner diameter surface 37 of the hub wheel 1. The hardness difference between the convex portion 35 side and the concave portion forming surface formed by the convex portion 35 is preferably 20 points or more in HRC as described above, but the convex portion 35 can be press-fitted. If there is, it may be less than 20 points.

凸部35の端面(圧入始端)は前記実施形態では軸方向に対して直交する面であったが、軸方向に対して、所定角度で傾斜するものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。   Although the end surface (press-fit start end) of the convex portion 35 is a surface orthogonal to the axial direction in the embodiment, it may be inclined at a predetermined angle with respect to the axial direction. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side.

また、ハブ輪1の孔部22の内径面37に、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部36の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部35の圧入性の向上を図ることができる。すなわち、小凹部を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができて、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、ポケット部50の容積を小さくでき、ポケット部50の加工性及び軸部12の強度の向上を図ることができる。なお、小凹部の形状は、三角形状、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。   Moreover, you may provide the small recessed part arrange | positioned by the predetermined pitch along the circumferential direction in the internal diameter surface 37 of the hole 22 of the hub wheel 1. FIG. The small recess needs to be smaller than the volume of the recess 36. By providing such a small recess, the press-fit property of the protrusion 35 can be improved. That is, by providing the small concave portion, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, and the press-fit resistance can be reduced. Moreover, since the protrusion part 45 can be decreased, the volume of the pocket part 50 can be made small and the workability of the pocket part 50 and the improvement of the intensity | strength of the axial part 12 can be aimed at. In addition, the shape of a small recessed part can employ | adopt various things, such as a triangle shape, a semi-ellipse shape, and a rectangle, and can also set the number arbitrarily.

転がり軸受2の転動体30として、ローラを使用したものであってもよい。なお、圧入する場合、ハブ輪1側を固定して、軸部12側を移動させても、逆に、軸部12を固定して、ハブ輪1側を移動させても、両者を移動させてもよい。等速自在継手3において、内輪6とドライブシャフト10とを前記各実施形態に記載した凹凸嵌合構造Mを介して一体化してもよい。   A roller may be used as the rolling element 30 of the rolling bearing 2. When press-fitting, even if the hub wheel 1 side is fixed and the shaft portion 12 side is moved, conversely, the shaft portion 12 is fixed and the hub wheel 1 side is moved, either of which is moved. May be. In the constant velocity universal joint 3, the inner ring 6 and the drive shaft 10 may be integrated via the concave-convex fitting structure M described in each of the above embodiments.

図2、図7、図8に示す車輪軸受装置においては、外方部材25にフランジ25aを設けたタイプであったが、図10に示すように、フランジ25aを有さず、ナックル34に外方部材25の外径面が圧入されるタイプとしてもよい。   In the wheel bearing device shown in FIGS. 2, 7, and 8, the outer member 25 is of a type provided with a flange 25a. However, as shown in FIG. It is good also as a type in which the outer-diameter surface of the direction member 25 is press-fit.

インボード側の摺動式の等速自在継手としては、トリポード式に限ることなく、他の摺動式等速自在継手を使用することができる。   The sliding type constant velocity universal joint on the inboard side is not limited to the tripod type, and other sliding type constant velocity universal joints can be used.

本発明の第1実施形態を示すアクスルモジュールの縦断面図である。It is a longitudinal cross-sectional view of the axle module which shows 1st Embodiment of this invention. 前記アクスルモジュールの車輪用軸受装置の拡大断面図である。It is an expanded sectional view of the wheel bearing device of the axle module. 前記車輪用軸受装置の凹凸嵌合構造を示し、(a)は拡大断面図であり、(b)は(a)のX部拡大図である。The uneven | corrugated fitting structure of the said wheel bearing apparatus is shown, (a) is an expanded sectional view, (b) is the X section enlarged view of (a). 車輪用軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the wheel bearing apparatus. 前記車輪用軸受装置の組立前を示す断面図である。It is sectional drawing which shows before the assembly of the said bearing apparatus for wheels. 凹凸嵌合構造の変形例を示し、(a)は第1変形例の断面図であり、(b)は第2変形例の断面図である。The modification of an uneven | corrugated fitting structure is shown, (a) is sectional drawing of a 1st modification, (b) is sectional drawing of a 2nd modification. 本発明の第2実施形態を示すアクスルモジュールの車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus of the axle module which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示すアクスルモジュールの車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus of the axle module which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示すアクスルモジュールの車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus of the axle module which shows 4th Embodiment of this invention. 本発明の第5実施形態を示すアクスルモジュールの縦断面図である。It is a longitudinal cross-sectional view of the axle module which shows 5th Embodiment of this invention. 凹凸嵌合構造の第3変形例を示し、(a)は拡大断面図であり、(b)は(a)のY部拡大図である。The 3rd modification of an uneven | corrugated fitting structure is shown, (a) is an expanded sectional view, (b) is the Y section enlarged view of (a). 従来の車輪用軸受装置の断面図である。It is sectional drawing of the conventional wheel bearing apparatus.

符号の説明Explanation of symbols

1 ハブ輪
2 転がり軸受
3 等速自在継手
10 ドライブシャフト
26 外側軌道面
27 外側軌道面
28,29 インナレース
30 転動体
35 凸部
36 凹部
65 拡径加締部(テーパ状係止片)
92 ホイールパイロット
M 凹凸嵌合構造
T1 アウトボード側等速自在継手
T2 インボード側等速自在継手
DESCRIPTION OF SYMBOLS 1 Hub wheel 2 Rolling bearing 3 Constant velocity universal joint 10 Drive shaft 26 Outer raceway surface 27 Outer raceway surface 28, 29 Inner race 30 Rolling element 35 Convex part 36 Concave part 65 Expanded diameter caulking part (tapered locking piece)
92 Wheel Pilot M Concavity and convexity fitting structure T1 Outboard side constant velocity universal joint T2 Inboard side constant velocity universal joint

Claims (10)

対向するアウタレースとインナレースとの間に配置された複数列の転動体を有する軸受と、車輪に取り付けられるハブ輪と、等速自在継手とを備え、ハブ輪の孔部に嵌挿される等速自在継手の外側継手部材の軸部が凹凸嵌合構造を介してハブ輪に一体化される車輪用軸受装置であって、
外側継手部材の軸部とハブ輪の孔部のうち、どちらか一方に設けられた軸方向に延びる凸部を他方に圧入し、この他方に凸部に密着嵌合する凹部を凸部にて形成することで、前記凸部と前記凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成し、少なくとも、ハブ輪の内径面及び軸部のアウトボード側の端部外径面との隙間を閉塞する塗装皮膜を形成したことを特徴とする車輪用軸受装置。
A constant velocity that includes a bearing having a plurality of rows of rolling elements arranged between the outer race and the inner race facing each other, a hub wheel attached to the wheel, and a constant velocity universal joint, and is fitted into a hole of the hub wheel. A bearing device for a wheel in which a shaft portion of an outer joint member of a universal joint is integrated with a hub wheel via an uneven fitting structure,
Of the shaft portion of the outer joint member and the hole portion of the hub wheel, the convex portion extending in the axial direction provided in one of the two is press-fitted into the other, and the concave portion that closely fits the convex portion on the other is formed by the convex portion. By forming, a concave-convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact with each other, and at least the inner diameter surface of the hub wheel and the outer diameter surface of the end portion on the outboard side of the shaft portion, A wheel bearing device, characterized in that a coating film is formed to close the gaps of the wheel.
外側継手部材の軸部の端部にハブ輪の内径面に係合する拡径加締部を形成し、前記塗装皮膜が、少なくとも、ハブ輪の内径面と外側継手部材の拡径加締部の外径面との間の隙間を閉塞することを特徴とする請求項1に記載の車輪用軸受装置。   An end portion of the shaft portion of the outer joint member is formed with an enlarged caulking portion that engages with the inner diameter surface of the hub wheel, and the coating film is at least the inner diameter surface of the hub wheel and the outer diameter caulking portion of the outer joint member. The wheel bearing device according to claim 1, wherein a gap between the outer diameter surfaces of the wheels is closed. 前記塗装皮膜が、外側継手部材の軸部の軸端面、及びこの軸端面よりもアウトボード側のハブ輪内径面全体に至る範囲に設けられていることを特徴とする請求項1又は請求項2に記載の車輪用軸受装置。   The said coating film is provided in the range which reaches the shaft end surface of the axial part of an outer joint member, and the hub ring inner-diameter surface of an outboard side rather than this shaft end surface. The wheel bearing apparatus described in 1. 前記ハブ輪のアウトボード側に短円筒状のホイールパイロットを設け、前記塗装皮膜が、外側継手部材の軸部の軸端面、この軸端面よりもアウトボード側のハブ輪内径面全体、及びホイールパイロットの外径面に至る範囲に設けられていることを特徴とする請求項1又は請求項2に記載の車輪用軸受装置。   A short cylindrical wheel pilot is provided on the outboard side of the hub wheel, and the coating film has a shaft end surface of the shaft portion of the outer joint member, the entire inner diameter surface of the hub wheel on the outboard side from the shaft end surface, and the wheel pilot. 3. The wheel bearing device according to claim 1, wherein the wheel bearing device is provided in a range extending to an outer diameter surface of the wheel. 前記塗装皮膜を電着塗装法にて形成したことを特徴とする請求項1〜請求項4のいずれか1項に記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 4, wherein the coating film is formed by an electrodeposition coating method. 前記電着塗装法がカチオン電着塗装法であることを特徴とする請求項5に記載の車輪用軸受装置。   The wheel bearing device according to claim 5, wherein the electrodeposition coating method is a cationic electrodeposition coating method. 塗装皮膜の下地処理としてリン酸亜鉛皮膜が形成されていることを特徴とする請求項6に記載の車輪用軸受装置。   The wheel bearing device according to claim 6, wherein a zinc phosphate coating is formed as a base treatment of the coating coating. 塗装皮膜の下地処理として亜鉛メッキ皮膜が形成されていることを特徴とする請求項6に記載の車輪用軸受装置。   The wheel bearing device according to claim 6, wherein a galvanized film is formed as a base treatment of the paint film. 塗装皮膜の膜厚が10〜50μmの範囲に設定されることを特徴とする請求項5〜請求項8のいずれか1項に記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 5 to 8, wherein the coating film thickness is set in a range of 10 to 50 µm. 前記請求項1〜請求項9のいずれか1項に記載の車輪用軸受装置を備え、アウトボード側の等速自在継手に連結されたドライブシャフトと、このドライブシャフトの他方に連結されたインボード側の摺動型の等速自在継手とを備えたことを特徴とするアクスルモジュール。   A drive shaft comprising the wheel bearing device according to any one of claims 1 to 9, connected to a constant velocity universal joint on an outboard side, and an inboard connected to the other of the drive shafts Axle module comprising a side sliding type constant velocity universal joint.
JP2008293414A 2008-11-17 2008-11-17 Bearing device for wheel and axle module Pending JP2010120406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293414A JP2010120406A (en) 2008-11-17 2008-11-17 Bearing device for wheel and axle module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293414A JP2010120406A (en) 2008-11-17 2008-11-17 Bearing device for wheel and axle module

Publications (1)

Publication Number Publication Date
JP2010120406A true JP2010120406A (en) 2010-06-03

Family

ID=42322138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293414A Pending JP2010120406A (en) 2008-11-17 2008-11-17 Bearing device for wheel and axle module

Country Status (1)

Country Link
JP (1) JP2010120406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840744A (en) * 2019-04-19 2021-12-24 Vdl维维乐有限公司 Providing interlocking recesses in a tubular shaft body of an axle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186149A (en) * 2006-01-16 2007-07-26 Ntn Corp Bearing device for wheel
JP2007191036A (en) * 2006-01-19 2007-08-02 Ntn Corp Wheel bearing device
JP2008002579A (en) * 2006-06-22 2008-01-10 Ntn Corp Bearing unit for drive wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186149A (en) * 2006-01-16 2007-07-26 Ntn Corp Bearing device for wheel
JP2007191036A (en) * 2006-01-19 2007-08-02 Ntn Corp Wheel bearing device
JP2008002579A (en) * 2006-06-22 2008-01-10 Ntn Corp Bearing unit for drive wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840744A (en) * 2019-04-19 2021-12-24 Vdl维维乐有限公司 Providing interlocking recesses in a tubular shaft body of an axle

Similar Documents

Publication Publication Date Title
US8360655B2 (en) Bearing device for wheel
JP4302758B2 (en) Wheel bearing device
WO2009123254A1 (en) Wheel bearing apparatus and axle module
JP5323337B2 (en) Wheel bearing device
JP5143455B2 (en) Drive wheel bearing device
JP2010047058A (en) Wheel bearing device and axle module
JP3902415B2 (en) Drive wheel bearing device
JP2010047059A (en) Wheel bearing device and axle module
JP5683774B2 (en) Wheel bearing device
JP4959514B2 (en) Wheel bearing device
JP2009255729A (en) Bearing device for wheel
JP2009255725A (en) Bearing device for wheel
JP2010042785A (en) Bearing device for wheel
JP2010047057A (en) Wheel bearing device and axle module
WO2009122855A1 (en) Bearing device for wheel, and axle module
JP5349912B2 (en) Wheel bearing device and separation method thereof
JP5301129B2 (en) Wheel bearing device
JP2010120406A (en) Bearing device for wheel and axle module
JP5826781B2 (en) Manufacturing method of wheel bearing device
JP5301128B2 (en) Wheel bearing device
JP2009248720A (en) Bearing apparatus for driving wheel and axle module
JP2010116144A (en) Wheel bearing device
JP2009248898A (en) Bearing device for wheel
JP5301175B2 (en) Drive wheel bearing device
JP2010023800A (en) Bearing device for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130711