JP2009248720A - Bearing apparatus for driving wheel and axle module - Google Patents

Bearing apparatus for driving wheel and axle module Download PDF

Info

Publication number
JP2009248720A
JP2009248720A JP2008098375A JP2008098375A JP2009248720A JP 2009248720 A JP2009248720 A JP 2009248720A JP 2008098375 A JP2008098375 A JP 2008098375A JP 2008098375 A JP2008098375 A JP 2008098375A JP 2009248720 A JP2009248720 A JP 2009248720A
Authority
JP
Japan
Prior art keywords
convex
concave
hub wheel
hole
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008098375A
Other languages
Japanese (ja)
Inventor
Kiyoshige Yamauchi
清茂 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008098375A priority Critical patent/JP2009248720A/en
Priority to CN200980116777.1A priority patent/CN102026824B/en
Priority to US12/922,746 priority patent/US8556737B2/en
Priority to CN201510111658.4A priority patent/CN104786734B/en
Priority to DE112009000812.7T priority patent/DE112009000812B4/en
Priority to PCT/JP2009/056789 priority patent/WO2009123254A1/en
Publication of JP2009248720A publication Critical patent/JP2009248720A/en
Priority to US14/014,753 priority patent/US9505266B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost wheel bearing apparatus for a driving wheel with which the number of man-hours and assembly steps can be reduced, and with which component replacement fees and repair costs can be reduced. <P>SOLUTION: This bearing apparatus for a driving wheel includes an external member 25 fitted with a vehicle knuckle hole by a predetermined joining, an internal member composed of a hub ring 1 having a flange 21 for fixing the wheel and an inner ring 24 fitted with the hub ring 1, double-row rolling elements 30 rollably interposed between the external member 25 and the internal members 1, 24, and an outside joint member 5 of a constant velocity universal joint integral with the hub ring 1 via a projection-recess fitting structure M formed by press-fitting. An annular groove is formed in both an outer peripheral surface 25a of the external member 25 and an inner peripheral surface of the knuckle hole, and a retaining ring 130 is engaged in both annular grooves. The external member 25 is prevented from coming off of the knuckle, and the external member 25 can be separated from the knuckle only as a result of deformation or breakage of the retaining ring 130. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は自動車等の車両の駆動車輪を車体に対して回転自在に支持するための駆動車輪用軸受装置およびアクスルモジュールに関する。   The present invention relates to a drive wheel bearing device and an axle module for rotatably supporting a drive wheel of a vehicle such as an automobile with respect to a vehicle body.

自動車の動力伝達装置は、エンジンから車輪へ動力を伝達するとともに、サスペンションの上下動や旋回時に生じる車輪の半径方向および軸方向の変位ならびにモーメント変位を許容する必要がある。このため、エンジンと駆動車輪との間に介在させるドライブシャフトのインボード側端部をしゅう動式等速自在継手を介してディファレンシャルに連結し、アウトボード側端部を固定式等速自在継手を介して駆動車輪に連結している。なお、以下ではドライブシャフトというときはシャフトとその両端の等速自在継手を含めた全体をドライブシャフトと呼ぶこととする。ここで、車両に組み付けた状態で車両の中央寄り側をインボード側と呼び、外側寄りとなる側をアウトボード側と呼ぶ。   A power transmission device for an automobile needs to transmit power from an engine to wheels, and to allow radial and axial displacements and moment displacements of the wheels during vertical movement and turning of the suspension. For this reason, the inboard side end of the drive shaft interposed between the engine and the drive wheel is connected to the differential through a sliding constant velocity universal joint, and the fixed end of the constant velocity universal joint is connected to the outboard side end. Via a drive wheel. In the following description, when the term “drive shaft” is used, the entire shaft including the constant velocity universal joints at both ends of the shaft is referred to as a drive shaft. Here, the side closer to the center of the vehicle in the state assembled to the vehicle is referred to as the inboard side, and the side closer to the outer side is referred to as the outboard side.

駆動車輪用軸受装置は、駆動車輪を取り付けるためのフランジをもったハブ輪と、ハブ輪とトルク伝達可能に結合したアウトボード側等速自在継手の外側継手部材と、これらを回転自在に支持する転がり軸受とをユニット化させたものである。そして、ドライブシャフトと駆動車輪用軸受装置の組み合わせをアクスルモジュールと呼ぶ。ドライブシャフトと駆動車輪用軸受装置とは、アウトボード側等速自在継手の外側継手部材を共通の構成要素としている。   The drive wheel bearing device includes a hub wheel having a flange for mounting the drive wheel, an outer joint member of an outboard side constant velocity universal joint coupled to the hub wheel so as to be able to transmit torque, and rotatably supports these members. A rolling bearing is unitized. The combination of the drive shaft and the drive wheel bearing device is called an axle module. The drive shaft and the drive wheel bearing device use the outer joint member of the outboard side constant velocity universal joint as a common component.

車輪用軸受装置には、第1世代と称される複列の転がり軸受を単独に使用する構造から、外方部材に車体取付けフランジを一体に有する第2世代に進化し、さらに、車輪取付けフランジを一体に有するハブ輪の外周に、複列の転がり軸受の一方の内側軌道(インナレース)を形成した第3世代、さらには、ハブ輪と等速自在継手とを一体化し、この等速自在継手を構成する外側継手部材の外周に、複列の転がり軸受の他方の内側軌道(インナレース)を形成した第4世代のものまで開発されている。   The wheel bearing device has evolved from a structure in which a double-row rolling bearing called a first generation is used alone to a second generation in which a vehicle body mounting flange is integrated with an outer member. 3rd generation, which forms one inner raceway (inner race) of a double row rolling bearing on the outer periphery of the hub wheel that has an integral, and the hub wheel and the constant velocity universal joint are integrated, this constant velocity free Up to the fourth generation, in which the other inner race (inner race) of the double row rolling bearing is formed on the outer periphery of the outer joint member constituting the joint, has been developed.

特許文献1には第3世代の車輪用軸受装置が記載されている。この車輪用軸受装置は、図16に示すように、外径方向に延びるフランジ151を有するハブ輪152と、ハブ輪152に外側継手部材153を固定した等速自在継手154と、ハブ輪152の外周側に配置した外方部材155とを備える。   Patent Document 1 describes a third-generation wheel bearing device. As shown in FIG. 16, the wheel bearing device includes a hub wheel 152 having a flange 151 extending in the outer diameter direction, a constant velocity universal joint 154 in which an outer joint member 153 is fixed to the hub wheel 152, and a hub wheel 152. And an outer member 155 disposed on the outer peripheral side.

等速自在継手154は、前記外側継手部材153と、外側継手部材153の椀形部157内に収納した内側継手部材158と、外側継手部材153と内側継手部材158との間に介在させたボール159と、ボール159を保持する保持器160とを備える。内側継手部材158の中心孔にスプライン(またはセレーション。以下同じ)161が形成してあり、図示省略のシャフトのスプライン軸とスプライン結合するようになっている。   The constant velocity universal joint 154 includes a ball interposed between the outer joint member 153, the inner joint member 158 housed in the bowl-shaped portion 157 of the outer joint member 153, and the outer joint member 153 and the inner joint member 158. 159 and a holder 160 for holding the ball 159. A spline (or serration; the same applies hereinafter) 161 is formed in the center hole of the inner joint member 158, and is splined with a spline shaft of a shaft (not shown).

ハブ輪152は前記フランジ151と筒部163とを有し、フランジ151の外端面(反継手側の端面)164には、図示省略のホイールおよびブレーキロータを装着するための短筒状のパイロット部165が形成してある。パイロット部165は、大径のブレーキパイロット165aと小径のホイールパイロット165bとからなり、ブレーキパイロット165aにブレーキロータを嵌合させ、ホイールパイロット165bにホイールを嵌合させる。   The hub wheel 152 includes the flange 151 and a cylindrical portion 163, and a short cylindrical pilot portion for mounting a wheel and a brake rotor (not shown) on the outer end surface (end surface on the opposite joint side) 164 of the flange 151. 165 is formed. The pilot unit 165 includes a large-diameter brake pilot 165a and a small-diameter wheel pilot 165b, and the brake pilot 165a is fitted with a brake rotor, and the wheel pilot 165b is fitted with a wheel.

筒部163の椀形部157側端部に小径部166が設けてあり、この小径部166に内
輪167が嵌合させてある。ハブ輪152の筒部163の外周面のフランジ近傍には第1内側軌道(インナレース)168が形成してあり、内輪167の外周面に第2内側軌道(インナレース)169が形成してある。ハブ輪152のフランジ151はボルト装着孔162を有し、このボルト装着孔162に植え込んだハブボルト(図示省略)によってホイールおよびブレーキロータをフランジ151に固定する。
A small-diameter portion 166 is provided at an end portion of the cylindrical portion 163 on the flange-shaped portion 157 side, and an inner ring 167 is fitted to the small-diameter portion 166. A first inner race (inner race) 168 is formed in the vicinity of the flange on the outer peripheral surface of the cylindrical portion 163 of the hub wheel 152, and a second inner race (inner race) 169 is formed on the outer peripheral surface of the inner ring 167. . The flange 151 of the hub wheel 152 has a bolt mounting hole 162, and the wheel and brake rotor are fixed to the flange 151 by a hub bolt (not shown) implanted in the bolt mounting hole 162.

外方部材155は、内周に2列の外側軌道(アウタレース)170、171が形成してあり、外周にフランジ(車体取付けフランジ)182が形成してある。ハブ輪152の第1内側軌道168と外方部材155の第1外側軌道170とが対向し、内輪167の第2内側軌道169と外方部材155の第2外側軌道171とが対向し、これらの間に2列の転動体172が介在させてある。   The outer member 155 has two rows of outer races (outer races) 170 and 171 formed on the inner periphery, and a flange (vehicle body mounting flange) 182 formed on the outer periphery. The first inner track 168 of the hub ring 152 and the first outer track 170 of the outer member 155 are opposed to each other, and the second inner track 169 of the inner ring 167 and the second outer track 171 of the outer member 155 are opposed to each other. Two rows of rolling elements 172 are interposed between the two.

ハブ輪152の筒部163の内周面にはスプライン部176が形成してある。また、軸部173は、先端にねじ部174が形成してあり、そのねじ部174と椀形部157との間にスプライン部175が形成してある。そして、外側継手部材153の軸部173をハブ輪152の筒部163に挿入し、軸部173のスプライン部175とハブ輪152のスプライン部176とをかみ合わせることで、ハブ輪152と外側継手部材153をトルク伝達可能に結合することができる。   A spline portion 176 is formed on the inner peripheral surface of the cylindrical portion 163 of the hub wheel 152. The shaft portion 173 has a threaded portion 174 formed at the tip, and a spline portion 175 is formed between the threaded portion 174 and the hook-shaped portion 157. Then, the shaft portion 173 of the outer joint member 153 is inserted into the tube portion 163 of the hub wheel 152, and the spline portion 175 of the shaft portion 173 and the spline portion 176 of the hub wheel 152 are engaged with each other, thereby The member 153 can be coupled to transmit torque.

筒部163から突出した軸部173のねじ部174にナット177を取り付けて締め付けると、ナット177の座面178と筒部163の外端面179とが密着し、椀形部157の軸部側の端面180と内輪167の外端面181とが密着する。すなわち、ナット177を締め付けることによって、ハブ輪152が内輪167を介してナット177と椀形部157とで挟持される。
特開2004−340311号公報
When the nut 177 is attached and tightened to the threaded portion 174 of the shaft portion 173 protruding from the cylindrical portion 163, the seat surface 178 of the nut 177 and the outer end surface 179 of the cylindrical portion 163 are brought into close contact with each other. The end surface 180 and the outer end surface 181 of the inner ring 167 are in close contact with each other. That is, by tightening the nut 177, the hub wheel 152 is sandwiched between the nut 177 and the hook-shaped part 157 via the inner ring 167.
JP 2004340403 A

従来は、上に述べたように、軸部173のスプライン部175とハブ輪152のスプライン部176とをかみ合わせてトルク伝達可能な結合構造を得ていた。このため、軸部173およびハブ輪152の双方にスプライン加工を施す必要があって、コスト高となるばかりでなく、圧入に際して軸部173のスプライン部175とハブ輪152のスプライン部176との凹凸を合わせる必要がある。さらに、歯面を合わせることによって、圧入すれば、凹凸歯が損傷する(むしれる)おそれがある。また、歯面を合わせることなく、凹凸歯の大径合わせにて圧入すれば、円周方向のガタが生じやすい。円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれもあった。このように、スプライン嵌合による場合、凹凸歯の損傷および円周方向のガタの両者を同時に除去することは困難であった。   Conventionally, as described above, the spline portion 175 of the shaft portion 173 and the spline portion 176 of the hub wheel 152 are engaged to obtain a coupling structure capable of transmitting torque. For this reason, both the shaft portion 173 and the hub wheel 152 need to be splined, which not only increases the cost, but also the unevenness between the spline portion 175 of the shaft portion 173 and the spline portion 176 of the hub wheel 152 during press-fitting. It is necessary to match. Furthermore, if the teeth are pressed together by matching the tooth surfaces, the uneven teeth may be damaged (peeled). Moreover, if it press-fits by matching the large diameter of an uneven | corrugated tooth | gear, without matching a tooth surface, the play of a circumferential direction will arise easily. If there is a backlash in the circumferential direction, the transmission performance of the rotational torque is inferior and abnormal noise may be generated. Thus, in the case of spline fitting, it has been difficult to remove both the damage to the uneven teeth and the play in the circumferential direction at the same time.

また、筒部163から突出した軸部173のねじ部174にナット177を取り付けて締め付ける構造であるため、外側継手部材153の軸部173の先端にねじを切る加工が必要であることに加えて、組立時にはナット177を取り付けて締め付けるという作業が不可欠である。したがって、作業性に劣るとともに、部品点数も多く、部品管理性も劣ることになっていた。   Further, since the nut 177 is attached to the threaded portion 174 of the shaft portion 173 protruding from the cylindrical portion 163 and tightened, it is necessary to cut the screw at the tip of the shaft portion 173 of the outer joint member 153. When assembling, the work of attaching and tightening the nut 177 is indispensable. Therefore, the workability is inferior, the number of parts is large, and the parts manageability is also inferior.

そこで、本出願人は先に、円周方向のガタを抑制でき、しかも、ハブ輪と等速自在継手の外側継手部材との分離・再組立が可能で、ハブ輪と等速自在継手の外側継手部材との組立作業が容易な車輪用軸受装置を提案した(特願2007−274065)。
しかしながら、軸受外輪に相当する外方部材を車両のナックルの孔に挿入して鋼製の止め輪で抜け止めをするという簡素化した構造であるため、次のような問題がある。すなわち
、補修等に際して、ナックルから外方部材を取り外すことが容易でなく、大きな引き抜き荷重を負荷して分解せざるをえない。その結果、ナックルの止め輪溝が破壊されてしまうので、ナックルをも交換する必要が生じ、補修コストが嵩む。
Therefore, the present applicant can first suppress the backlash in the circumferential direction, and can separate and reassemble the hub wheel and the outer joint member of the constant velocity universal joint. A wheel bearing device that can be easily assembled with a joint member has been proposed (Japanese Patent Application No. 2007-274065).
However, since the outer member corresponding to the bearing outer ring is inserted into the knuckle hole of the vehicle and the steel retaining ring is used to prevent the outer member from coming off, there is the following problem. That is, when repairing or the like, it is not easy to remove the outer member from the knuckle, and it must be disassembled by applying a large pulling load. As a result, the retaining ring groove of the knuckle is destroyed, so that it is necessary to replace the knuckle, and the repair cost increases.

この発明は、上記問題点を除去して、加工工数、組立工数を削減しつつ、補修時の部品交換費用も抑えた低コストの駆動車輪用軸受装置を提供することを目的とする。   An object of the present invention is to provide a low-cost bearing device for a drive wheel that eliminates the above-mentioned problems, reduces the number of processing steps and assembly steps, and suppresses the cost of parts replacement at the time of repair.

この発明の駆動車輪用軸受装置は、内周に複列の外側軌道を形成した外方部材と、車輪を固定するためのフランジを有し外周に複列の内側軌道のうちの一方を形成したハブ輪と、前記ハブ輪と嵌合し外周に複列の内側軌道のもう一方を形成した内輪とからなる内方部材と、外方部材の外側軌道と内方部材の内側軌道との間に転動自在に介在させた複列の転動体と、前記ハブ輪と圧入により一体化させた等速自在継手の外側継手部材とを有する駆動車輪用軸受装置であって、前記ハブ輪と前記外側継手部材は凹凸嵌合構造を形成しており、前記凹凸嵌合構造は、前記外側継手部材の軸部の外径面と前記ハブ輪の孔部の内径面のどちらか一方に軸方向に延びる凸部を設けて、前記ハブ輪の孔部に前記外側継手部材の軸部を圧入させることにより、他方に前記凸部と密着嵌合する凹部を前記凸部によって形成させた、凸部と凹部との嵌合接触部位全域が密着した凹凸嵌合構造であり、前記外方部材を車両のナックルの孔と所定のはめあいで嵌合させるとともに、前記外方部材の外周面と前記ナックルの孔の内周面にそれぞれ環状溝を形成し、双方の環状溝に係合させた止め輪によって、前記ナックルから前記外方部材の抜け止めをするとともに、前記止め輪の変形はたは破断のみによって前記外方部材を前記ナックルから分離可能としたことを特徴とするものである。   The drive wheel bearing device of the present invention has an outer member having a double row outer track formed on the inner periphery and a flange for fixing the wheel, and one of the double row inner tracks formed on the outer periphery. An inner member comprising a hub ring and an inner ring that fits with the hub ring and forms the other of the double-row inner raceway on the outer periphery, and between the outer raceway of the outer member and the inner raceway of the inner member A bearing device for a drive wheel having a double row rolling element interposed so as to roll freely and an outer joint member of a constant velocity universal joint integrated with the hub ring by press-fitting, wherein the hub wheel and the outer side The joint member forms a concave-convex fitting structure, and the concave-convex fitting structure extends in the axial direction on either the outer diameter surface of the shaft portion of the outer joint member or the inner diameter surface of the hole portion of the hub wheel. By providing a convex part and press-fitting the shaft part of the outer joint member into the hole part of the hub wheel, A concave-convex fitting structure in which a concave portion that closely fits with the convex portion is formed by the convex portion, and the entire fitting contact portion between the convex portion and the concave portion is in close contact, and the outer member is attached to a vehicle knuckle. The knuckle is fitted into the hole with a predetermined fit, and an annular groove is formed in each of the outer peripheral surface of the outer member and the inner peripheral surface of the hole of the knuckle. The outer member is prevented from coming off, and the outer member can be separated from the knuckle only by deformation or breaking of the retaining ring.

ハブ輪の孔部の内周面と外側継手部材の軸部の外周面とのどちらか一方に設けた軸方向に延びる凸部を、軸方向に沿って他方に圧入し、他方に凸部にて凸部に密着嵌合する凹部を形成して、凸部と凹部との嵌合接触部位全域が密着した凹凸嵌合構造となすことができる。   A convex portion extending in the axial direction provided on one of the inner peripheral surface of the hole of the hub wheel and the outer peripheral surface of the shaft portion of the outer joint member is press-fitted into the other along the axial direction, and the convex portion is Thus, a concave / convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact with each other can be formed.

等速自在継手の外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くして、前記軸部をハブ輪の孔部に凸部の軸方向端部側から圧入することによって、この凸部にてハブ輪の孔部内径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成してもよい(請求項2)。この際、凸部が相手側の凹部形成面(ハブ輪の孔部内径面)に食い込んでいくことによって、孔部がわずかに拡径した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部が元の径に戻ろうとして縮径することになる。これによって、凸部の凹部嵌合部位の全体がその対応する凹部に対して密着する。 A convex portion of the concave-convex fitting structure is provided on the shaft portion of the outer joint member of the constant velocity universal joint, and at least the hardness of the axial end portion of the convex portion is higher than the inner diameter portion of the hole portion of the hub wheel, By pressing the shaft portion into the hole portion of the hub wheel from the axial end portion side of the convex portion, a concave portion that closely fits the convex portion is formed on the inner diameter surface of the hole portion of the hub wheel at the convex portion. An uneven fitting structure may be configured (claim 2). At this time, the convex part bites into the concave part forming surface on the other side (the inner diameter surface of the hole part of the hub wheel), so that the hole part is slightly expanded in diameter and the axial movement of the convex part is allowed. However, if the movement in the axial direction stops, the diameter of the hole portion is reduced to return to the original diameter. Thereby, the whole recessed part fitting part of a convex part closely_contact | adheres to the corresponding recessed part.

また、ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くして、前記ハブ輪側の凸部をその軸方向端部側から外側継手部材の軸部に圧入することによって、この凸部にて外側継手部材の軸部の外径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成してもよい(請求項3)。凸部が軸部の外径面に食い込んでいくことによって、孔部がわずかに拡径した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部が元の径に戻ろうとして縮径することになる。これによって、凸部とその凹部に嵌合する相手部材の凹部(シャフトの外径面)との嵌合接触部位全域が密着する。 Further, a convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and at least the hardness of the axial end portion of the convex portion is set to the outer diameter portion of the shaft portion of the outer joint member of the constant velocity universal joint. The convex portion on the hub wheel side is press-fitted into the shaft portion of the outer joint member from the axial end portion side, thereby projecting to the outer diameter surface of the shaft portion of the outer joint member. The concave-convex fitting structure may be formed by forming a concave portion that closely fits to the portion. If the convex portion bites into the outer diameter surface of the shaft portion, the hole portion is slightly expanded in diameter, allowing the convex portion to move in the axial direction and stopping the axial movement. The part is reduced in diameter to return to the original diameter. As a result, the entire fitting contact region between the convex portion and the concave portion (outer diameter surface of the shaft) of the mating member fitted into the concave portion is in close contact.

軸受の構成を例示するならば、軸受形式が複列アンギュラ玉軸受の場合、2列のアウタレースをもった外方部材と、2列のインナレースをもった内方部材と、アウタレースとイ
ンナレースとの間に介在させた転動体(この場合は玉)とで構成される。軸受内輪に相当する内方部材は、それぞれ1列のインナレースをもったハブ輪と内輪とを含み、ハブ輪に内輪を嵌合させてハブ輪の端部をかしめることによって固定することができる。種々のかしめ加工が知られているが、一例として揺動かしめを挙げることができる。ハブ輪の端部をかしめることによって、2列のインナレース間の間隔が狭まり、軸受予圧が付与される。軸受外輪に相当する外方部材はナックルの孔とはめあいの関係にある。
To illustrate the configuration of the bearing, when the bearing type is a double-row angular ball bearing, an outer member having two rows of outer races, an inner member having two rows of inner races, an outer race and an inner race, And rolling elements (in this case, balls) interposed between the two. The inner member corresponding to the bearing inner ring includes a hub ring and an inner ring each having a row of inner races, and can be fixed by fitting the inner ring to the hub ring and caulking the end of the hub ring. it can. Various types of caulking are known, and an example is swing caulking. By caulking the end of the hub wheel, the distance between the two rows of inner races is reduced and bearing preload is applied. The outer member corresponding to the bearing outer ring has a fitting relationship with the knuckle hole.

外側継手部材は、前記軸部と、内部に内側継手部材やトルク伝達要素を収容するマウス部とからなり、外側継手部材の開口端部にはブーツが装着してある。一般に、このブーツを外側から締め付けるブーツバンドの最大外径がドライブシャフトの最大外径となる。したがって、外方部材の外径を当該最大外径よりも大きく設定しておくことにより、ドライブシャフト全体をナックルの孔からアウトボード側に取り出すことができる。   The outer joint member includes the shaft portion and a mouth portion that accommodates the inner joint member and the torque transmission element therein, and a boot is attached to the open end portion of the outer joint member. Generally, the maximum outer diameter of the boot band that tightens the boot from the outside is the maximum outer diameter of the drive shaft. Therefore, by setting the outer diameter of the outer member to be larger than the maximum outer diameter, the entire drive shaft can be taken out from the knuckle hole to the outboard side.

ここで、ドライブシャフトは、アウトボード側等速自在継手と、シャフトと、インボード側等速自在継手とで構成され、エンジンからのトルクをホイールに伝達する働きをする。インボード側等速自在継手はトランスミッションの出力軸とトルク伝達可能に、かつ、スライドスプラインにより軸方向移動可能に結合している。アウトボード側等速自在継手はハブ輪を介してホイールにトルクを伝達する。   Here, the drive shaft includes an outboard side constant velocity universal joint, a shaft, and an inboard side constant velocity universal joint, and functions to transmit torque from the engine to the wheel. The inboard side constant velocity universal joint is coupled to the output shaft of the transmission so as to be able to transmit torque and to be movable in the axial direction by a slide spline. The outboard side constant velocity universal joint transmits torque to the wheel via the hub wheel.

外方部材はナックルに対して取り付け、取り外しが可能である。外方部材とナックルの孔とのはめあいを締まりばめ(タイトフィット)とすることにより、軸方向の抜け止めはある程度可能である。しかし、過大な締め代にはできないことから、確実な抜け止めをしてフェールセーフおよび想定外の高荷重が負荷されたときの対策を図るため、止め輪を併用する。外方部材の外周面とナックルの孔の内周面にそれぞれ止め輪溝を形成し、外方部材の外周面に止め輪を装着して弾性変形により縮径させた状態でナックルの孔に挿入し、軸方向に移動させると、止め輪がナックルの孔の止め輪溝の位置に到達し次第、弾性により拡径してナックルの孔内に拡がり、双方の止め輪溝に係合するに至る。図16に示した従来例のように外方部材のフランジをボルトでナックルに締結するのに比べて、取り付け、取り外しが容易である。   The outer member can be attached to and removed from the knuckle. By fitting the fit between the outer member and the hole of the knuckle into a tight fit, it is possible to prevent the shaft from coming off to some extent. However, since it is not possible to make an excessive tightening allowance, a retaining ring is also used in order to prevent failing reliably and to take measures against fail-safe and unexpectedly high loads. Retaining ring grooves are formed on the outer peripheral surface of the outer member and the inner peripheral surface of the knuckle hole, and the retaining ring is attached to the outer peripheral surface of the outer member and inserted into the knuckle hole in a state of being reduced in diameter by elastic deformation. When the retaining ring is moved in the axial direction, as soon as the retaining ring reaches the position of the retaining ring groove of the knuckle hole, the diameter of the retaining ring expands elastically and expands into the hole of the knuckle, and engages with both retaining ring grooves. . As compared with the case where the flange of the outer member is fastened to the knuckle with a bolt as in the conventional example shown in FIG. 16, attachment and removal are easier.

ナックルから外方部材を取り外すに当たっては、止め輪を積極的に変形させる。ここで、変形というときは破壊も含む。そして、ナックルおよび外方部材を破壊することがないように、ナックルおよび外方部材よりもせん断応力が小さい材料の止め輪を使用する(請求項4)。具体的には、止め輪のせん断応力は5〜150MPaの範囲とするのが好ましい(請求項5)。そのような止め輪の材料の一例として熱可塑性合成樹脂を挙げることができる(請求項6)。   In removing the outer member from the knuckle, the retaining ring is positively deformed. Here, deformation includes destruction. Then, a retaining ring made of a material having a shear stress smaller than that of the knuckle and the outer member is used so as not to break the knuckle and the outer member. Specifically, the shear stress of the retaining ring is preferably in the range of 5 to 150 MPa (Claim 5). An example of such a retaining ring material is a thermoplastic synthetic resin.

外方部材をナックルの孔に圧入する作業を容易にするため、止め輪の外径側稜線部を面取りしてもよい(請求項7)。これは止め輪の断面形状が矩形の場合であるが、断面形状が円形の止め輪を採用しても同様の効果がある(請求項8)。つまり、円形断面の線材を素材とした止め輪を採用することにより、ナックルの孔への圧入作業が容易となる。   In order to facilitate the work of press-fitting the outer member into the hole of the knuckle, the outer diameter side ridge line portion of the retaining ring may be chamfered (Claim 7). This is a case where the retaining ring has a rectangular cross-sectional shape, but the same effect can be obtained even if a retaining ring having a circular cross-sectional shape is employed. That is, by adopting a retaining ring made of a wire having a circular cross section, the press-fitting operation into the knuckle hole is facilitated.

ナックルの孔のアウトボード側の端縁を面取りしてもよい(請求項9)。ナックルの孔のアウトボード側は、車両に取り付けた状態で車両の外側になる側であって、外方部材を圧入する際の入口部となるため、開口端縁の面取りが止め輪を徐々に縮径させて外方部材の止め輪溝内に沈み込みやすくする役割を果たし、外方部材をナックルの孔にスムーズに挿入することができる。   The edge on the outboard side of the knuckle hole may be chamfered (claim 9). The outboard side of the knuckle hole is the outer side of the vehicle when it is attached to the vehicle, and serves as an inlet when the outer member is press-fitted. The outer member can be smoothly inserted into the knuckle hole by reducing the diameter and facilitating sinking into the retaining ring groove of the outer member.

この発明のアクスルモジュールは、請求項1から9のいずれか1項の駆動車輪用軸受装置と、前記外側継手部材を含むアウトボード側等速自在継手と、シャフトと、インボード側
等速自在継手とを有し、前記アウトボード側等速自在継手およびインボード側等速自在継手の最大外径が前記外方部材の外径よりも小さいことを特徴とするものである。
An axle module of the present invention includes a drive wheel bearing device according to any one of claims 1 to 9, an outboard side constant velocity universal joint including the outer joint member, a shaft, and an inboard side constant velocity universal joint. The maximum outer diameter of the outboard side constant velocity universal joint and the inboard side constant velocity universal joint is smaller than the outer diameter of the outer member.

この発明によれば、凹凸嵌合構造において、半径方向および円周方向におけるガタの原因となるすきまが形成されないので、嵌合部位のすべてがトルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生もない。さらには、すきまなく密着しているので、トルク伝達部位の強度が向上する。このため、車輪用軸受装置を軽量、コンパクトにすることができる。   According to the present invention, in the concave-convex fitting structure, no gap that causes play in the radial direction and the circumferential direction is formed, so that all of the fitting parts contribute to torque transmission and stable torque transmission is possible. In addition, no abnormal noise is generated. Furthermore, since the contact is made without any clearance, the strength of the torque transmitting portion is improved. For this reason, the wheel bearing device can be made lightweight and compact.

また、外側継手部材の軸部の外周面とハブ輪の孔部の内周面とのどちらか一方に設けた凸部を、軸方向に沿って他方に圧入することによって、この凸部に密着嵌合する凹部を形成することができる。このため、凹凸嵌合構造を確実に形成することができる。しかも、凹部が形成される側の部材にはスプライン等を形成しておく必要がなく(加工工数の削減)、かつ、組立に際してスプライン同士の位相合わせをする必要がなく(組立工数の削減)、しかも、圧入時の歯面の損傷を回避することができて、安定した嵌合状態を維持できる。   Further, the convex portion provided on either the outer peripheral surface of the shaft portion of the outer joint member or the inner peripheral surface of the hole portion of the hub wheel is pressed into the other along the axial direction so as to be in close contact with the convex portion. A recessed portion to be fitted can be formed. For this reason, an uneven | corrugated fitting structure can be formed reliably. Moreover, it is not necessary to form splines or the like on the member on the side where the concave portion is formed (reduction of processing man-hours), and it is not necessary to align the phases of the splines during assembly (reduction of assembly man-hours). In addition, damage to the tooth surface during press-fitting can be avoided, and a stable fitting state can be maintained.

さらに、ナックルや外方部材よりも止め輪のせん断応力が小さいため、補修等に際してナックルから外方部材を取り外すときナックルに損傷を与える心配がない。したがって、補修時等の部品交換も必要最小限に抑えられ、総じて低コストな駆動車輪用軸受装置を提供することができる。   Furthermore, since the shearing stress of the retaining ring is smaller than that of the knuckle or the outer member, there is no fear of damaging the knuckle when the outer member is removed from the knuckle during repair or the like. Therefore, parts replacement at the time of repair or the like can be suppressed to the minimum necessary, and a drive wheel bearing device that is low in cost can be provided as a whole.

以下、この発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1にアクスルモジュールの例を示す。このアクスルモジュールは、車輪用軸受装置部分と、ドライブシャフト部分に大別することができる。車輪用軸受装置は、アウトボード側等速自在継手T1の外側継手部材と、ハブ輪1と、転がり軸受2とをユニット化したものである。ドライブシャフトは、シャフト10と、その両端に取り付けたアウトボード側の等速自在継手T1とインボード側の等速自在継手T2とを含む。このように、車輪用軸受装置とドライブシャフトはアウトボード側等速自在継手T1(の外側継手部材)を共通の構成要素としている。   FIG. 1 shows an example of an axle module. This axle module can be roughly divided into a wheel bearing device portion and a drive shaft portion. The wheel bearing device is obtained by unitizing the outer joint member of the outboard side constant velocity universal joint T1, the hub wheel 1, and the rolling bearing 2. The drive shaft includes a shaft 10, an outboard-side constant velocity universal joint T1 attached to both ends thereof, and an inboard-side constant velocity universal joint T2. As described above, the wheel bearing device and the drive shaft have the outboard side constant velocity universal joint T1 (the outer joint member thereof) as a common component.

アウトボード側の等速自在継手T1は、ここではツェッパ型の例を示してあるが、ボール溝の溝底に直線部分を有するアンダーカットフリー型等、他の固定式等速自在継手を採用することもできる。等速自在継手T1は、外側継手部材としての継手外輪5と、内側継手部材としての継手内輪6と、トルク伝達要素としての複数のボール7と、ボール7を保持するケージ8とを主要な部材として含む。   Although the constant velocity universal joint T1 on the outboard side is shown as an example of a Rzeppa type here, other fixed type constant velocity universal joints such as an undercut free type having a linear portion at the bottom of the ball groove are adopted. You can also. The constant velocity universal joint T1 includes a joint outer ring 5 as an outer joint member, a joint inner ring 6 as an inner joint member, a plurality of balls 7 as torque transmitting elements, and a cage 8 that holds the balls 7. Include as.

継手外輪5はS53C等の炭素0.40〜0.80wt%を含む中炭素鋼でつくられ、マウス部11とステム部12とからなり、図5に示すように、両者の境界部分にバックフェイス11aが形成してある。マウス部11は一端にて開口した椀状で、その球面状の内周面(内球面)13に、軸方向に延びた複数のボール溝14が円周方向に等間隔に形成してある。継手外輪5の軸部12は、クロスハッチングで示すように、バックフェイス11aから軸部にかけて表面硬さ58〜64HRC(ロックウエル硬さCスケール)の範囲の所定の硬化層Hが形成してある。なお、軸部12の先端は表面硬化処理を施さず生のままとしてある。   The joint outer ring 5 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and is composed of a mouse part 11 and a stem part 12, and as shown in FIG. 11a is formed. The mouse portion 11 has a bowl shape opened at one end, and a plurality of ball grooves 14 extending in the axial direction are formed at equal intervals in the circumferential direction on the spherical inner peripheral surface (inner spherical surface) 13. As shown by cross hatching, the shaft portion 12 of the joint outer ring 5 is formed with a predetermined hardened layer H having a surface hardness of 58 to 64 HRC (Rockwell hardness C scale) from the back face 11a to the shaft portion. In addition, the front-end | tip of the axial part 12 is left raw without performing a surface hardening process.

継手内輪6はS53C等の炭素0.40〜0.80wt%を含む中炭素鋼でつくられ、
軸心部のスプライン孔6aにてシャフト10の端部のスプライン軸10aとスプライン嵌合させることにより、シャフト10とトルク伝達可能に結合してある。シャフト10の端部10aに装着した止め輪9によって継手内輪6からのシャフト10の抜け止めをしてある。継手内輪6は球面状の外周面(外球面)15を有し、軸方向に延びた複数のボール溝16が円周方向に等間隔に形成してある。
The joint inner ring 6 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C,
By connecting the spline shaft 10a at the end of the shaft 10 through the spline hole 6a in the shaft center portion, the shaft 10 is coupled to the shaft 10 so that torque can be transmitted. The shaft 10 is prevented from coming off from the joint inner ring 6 by a retaining ring 9 attached to the end 10 a of the shaft 10. The joint inner ring 6 has a spherical outer peripheral surface (outer spherical surface) 15, and a plurality of ball grooves 16 extending in the axial direction are formed at equal intervals in the circumferential direction.

継手外輪5のボール溝14と継手内輪6のボール溝16とは対をなし、各対のボール溝14,16で形成されるボールトラックに1個ずつ、ボール7が転動可能に組み込んである。ボール7は継手外輪5のボール溝14と継手内輪6のボール溝16との間に介在してトルクを伝達する。すべてのボール7はケージ8によって同一平面内に保持される。ケージ8は継手外輪5と継手内輪6との間に球面接触状態で介在し、球面状の外周面にて継手外輪5の内球面13と接し、球面状の内周面にて継手内輪6の外球面15と接する。   The ball groove 14 of the joint outer ring 5 and the ball groove 16 of the joint inner ring 6 form a pair, and one ball 7 is incorporated in a ball track formed by each pair of ball grooves 14 and 16 so as to roll. . The ball 7 is interposed between the ball groove 14 of the joint outer ring 5 and the ball groove 16 of the joint inner ring 6 to transmit torque. All balls 7 are held in the same plane by the cage 8. The cage 8 is interposed between the joint outer ring 5 and the joint inner ring 6 in a spherical contact state, is in contact with the inner spherical surface 13 of the joint outer ring 5 at the spherical outer peripheral surface, and is connected to the joint inner ring 6 at the spherical inner peripheral surface. It contacts the outer spherical surface 15.

内部に充填した潤滑剤の漏洩を防止するとともに、外部から異物が侵入するのを防止するため、マウス部11の開口部はブーツ60で塞いである。ブーツ60は、大径部60aと、小径部60bと、大径部60aと小径部60bとを連結する蛇腹部60cとからなる。大径部60aはマウス部11の開口部に取り付けてブーツバンド61で締め付けてある。小径部60bはシャフト10のブーツ装着部10bに取り付けてブーツバンド62で締め付けてある。   In order to prevent leakage of the lubricant filled in the inside and prevent foreign matter from entering from the outside, the opening of the mouse portion 11 is closed with a boot 60. The boot 60 includes a large-diameter portion 60a, a small-diameter portion 60b, and a bellows portion 60c that connects the large-diameter portion 60a and the small-diameter portion 60b. The large diameter part 60 a is attached to the opening of the mouse part 11 and fastened with a boot band 61. The small diameter portion 60 b is attached to the boot mounting portion 10 b of the shaft 10 and fastened with a boot band 62.

インボード側の等速自在継手T2は、ここではトリポード型の例を示してあるが、ダブルオフセット型等、他のしゅう動式等速自在継手を採用することもできる。等速自在継手T2は、外側継手部材としての継手外輪131と、内側継手部材としてのトリポード132と、トルク伝達要素としてのローラ133とを主要な構成要素としている。   Although the example of the tripod type is shown here as the constant velocity universal joint T2 on the inboard side, other sliding type constant velocity universal joints such as a double offset type can also be adopted. The constant velocity universal joint T2 includes a joint outer ring 131 as an outer joint member, a tripod 132 as an inner joint member, and a roller 133 as a torque transmission element as main components.

継手外輪131はS53C等の炭素0.40〜0.80wt%を含む中炭素鋼でつくられ、マウス部131aとステム部131bとからなり、ステム部131bにてデイファレンシャルの出力軸とトルク伝達可能に連結するようになっている。マウス部131aは一端にて開口したカップ状で、内周の円周方向三等分位置に軸方向に延びるトラック溝136が形成してある。このためマウス部131aの横断面形状は花冠状を呈する。トラック溝136とステム部131bの外周には高周波焼入れによって表面硬さ58〜64HRCの範囲の所定の硬化層が形成してある。   The joint outer ring 131 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and includes a mouse portion 131a and a stem portion 131b. The stem portion 131b and a differential output shaft and torque transmission. It is designed to be connected as possible. The mouse portion 131a has a cup shape opened at one end, and a track groove 136 extending in the axial direction is formed at a position of the inner circumference in the circumferential direction. For this reason, the cross-sectional shape of the mouse | mouth part 131a exhibits a corolla shape. A predetermined hardened layer having a surface hardness in the range of 58 to 64 HRC is formed on the outer periphery of the track groove 136 and the stem portion 131b by induction hardening.

トリポード132はボス138と脚軸139とからなり、ボス138のスプライン孔138aにてシャフト10の端部スプライン10cとトルク伝達可能に結合している。脚軸139はボス138の円周方向三等分位置から半径方向に突出している。各脚軸139にはローラ133を回転自在に支持させてある。   The tripod 132 includes a boss 138 and a leg shaft 139, and is coupled to an end spline 10c of the shaft 10 through a spline hole 138a of the boss 138 so that torque can be transmitted. The leg shaft 139 protrudes in the radial direction from the circumferentially divided position of the boss 138. A roller 133 is rotatably supported on each leg shaft 139.

ここでも、ブーツ140を取り付けて継手外輪131の開口部を塞いである。これにより、内部に充填した潤滑剤の漏洩を防止するとともに、外部から異物が侵入するのを防止する。ブーツ140は、大径部140aと、小径部140bと、大径部140aと小径部140bとの間の蛇腹部140cとからなり、大径部140aをマウス部131aの開口端部に取り付けてブーツバンド141で締め付け、小径部140bをシャフト10のブーツ装着部10dに取り付けてブーツバンド141で締め付けてある。   Again, the boot 140 is attached to close the opening of the joint outer ring 131. This prevents leakage of the lubricant filled in the interior and prevents foreign matter from entering from the outside. The boot 140 includes a large diameter portion 140a, a small diameter portion 140b, and a bellows portion 140c between the large diameter portion 140a and the small diameter portion 140b. The large diameter portion 140a is attached to the open end of the mouse portion 131a. The band 141 is tightened, and the small-diameter portion 140b is attached to the boot mounting portion 10d of the shaft 10 and is tightened with the boot band 141.

次に、ハブ輪1はS53C等の炭素0.40〜0.80wt%を含む中炭素鋼でつくられ、図2、図5から分かるように、筒部20と、筒部20の反継手側の端部に設けたフランジ21とを有する。ハブ輪1のフランジ21にはボルト装着孔32が設けてあり、このボルト装着孔32に植え込んだハブボルト33によってホイールおよびブレーキロータをこのフランジ21に固定する。筒部20の継手側の端部に小径部23を形成し、そこに内
輪24を嵌合させてある。そして、小径部23の端部を半径方向外側にかしめて、かしめ部31を内輪24の端面に当てることにより、内輪24をハブ輪1に固定すると同時に軸受に予圧を付与する。
Next, the hub wheel 1 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and as can be seen from FIGS. 2 and 5, the cylindrical portion 20 and the anti-joint side of the cylindrical portion 20 And a flange 21 provided at the end of each. A bolt mounting hole 32 is provided in the flange 21 of the hub wheel 1, and the wheel and brake rotor are fixed to the flange 21 by a hub bolt 33 planted in the bolt mounting hole 32. A small-diameter portion 23 is formed at the end of the tubular portion 20 on the joint side, and an inner ring 24 is fitted therein. Then, the end portion of the small diameter portion 23 is caulked outward in the radial direction, and the caulking portion 31 is applied to the end surface of the inner ring 24 to fix the inner ring 24 to the hub wheel 1 and simultaneously apply a preload to the bearing.

筒部20は軸心部を貫通した孔22(図5)を有する。孔22は、軸方向中間部の嵌合部22aを中心として、その反継手側に位置するテーパ部22bと、継手側の大径部22cとを含む。嵌合部22aにおいて、後述する凹凸嵌合構造Mを介して等速自在継手T1の継手外輪5の軸部12とハブ輪1とが結合される。また、嵌合部22aと大径部22cとはテーパ孔22dで接続してある。このテーパ孔22dは、ハブ輪1と継手外輪5の軸部12を結合する際の圧入方向に向かって縮径している。テーパ孔22dの角度θ1(図5)は、例えば15°〜75°とする。   The cylinder part 20 has a hole 22 (FIG. 5) penetrating the axial center part. The hole 22 includes a tapered portion 22b located on the opposite side of the fitting portion 22a at the axially intermediate portion and a large-diameter portion 22c on the joint side. In the fitting portion 22a, the shaft portion 12 of the joint outer ring 5 of the constant velocity universal joint T1 and the hub wheel 1 are coupled to each other through an uneven fitting structure M described later. Moreover, the fitting part 22a and the large diameter part 22c are connected by the taper hole 22d. The tapered hole 22d is reduced in diameter in the press-fitting direction when the hub wheel 1 and the shaft portion 12 of the joint outer ring 5 are coupled. The angle θ1 (FIG. 5) of the tapered hole 22d is, for example, 15 ° to 75 °.

ハブ輪1は、図5にクロスハッチングで示すように、内側軌道28をはじめ、アウトボード側のシールS1のシールリップが摺接するシールランド部から小径部23の一部にかけて高周波焼入れによって表面硬さ58〜64HRCの範囲の所定の硬化層H1を形成してある。これにより、シールランド部の耐摩耗性が向上するだけでなく、モーメント荷重等に対するハブ輪1自体の強度が増大して耐久性が向上する。また、塑性変形させてかしめ部31とすべき部分は、鍛造後の素材表面硬さの未焼入れ部とするのが好ましい。   As shown by cross hatching in FIG. 5, the hub wheel 1 has a surface hardness by induction hardening from the inner race 28 to the seal land portion where the seal lip of the seal S <b> 1 on the outboard side is in sliding contact with a part of the small diameter portion 23. A predetermined hardened layer H1 in the range of 58 to 64 HRC is formed. Thereby, not only the wear resistance of the seal land portion is improved, but also the strength of the hub wheel 1 itself against a moment load or the like is increased and the durability is improved. Moreover, it is preferable that the part which should be plastically deformed to be the caulking part 31 is an unquenched part of the material surface hardness after forging.

転がり軸受2は、軸受外輪に相当する外方部材25と、軸受内輪に相当する内方部材(1、24)と、転動体としての玉30を主要な構成要素としている。外方部材25はSUJ2等の高炭素クロム軸受鋼でつくられ、外周面が円筒形状で、内周に2列の外側軌道(アウタレース)26、27を有する。内方部材はここではハブ輪1と内輪24とで構成される。すなわち、ハブ輪1の筒部20のフランジ21寄りに第1内側軌道(インナレース)28が形成してあり、ハブ輪1の小径部23に嵌合させた内輪24の外周に第2内側軌道(インナレース)29が形成してある。軌道28には高周波焼入れによって表面硬さが58〜64HRCの範囲の硬化層が形成されている。内輪24はSUJ2等の高炭素クロム軸受鋼でつくられ、軌道29にはズブ焼入れによって表面硬さが58〜64HRCの範囲の硬化層が形成されている。そして、第1外側軌道26と第1内側軌道28とが対向し、第2外側軌道27と第2内側軌道29とが対向し、これらの間に玉30が介在させてある。各列の玉30は保持器で所定間隔に保持される。   The rolling bearing 2 includes, as main components, an outer member 25 corresponding to a bearing outer ring, inner members (1, 24) corresponding to a bearing inner ring, and balls 30 as rolling elements. The outer member 25 is made of a high carbon chrome bearing steel such as SUJ2, has an outer peripheral surface of a cylindrical shape, and has two rows of outer races (outer races) 26 and 27 on the inner periphery. Here, the inner member is constituted by the hub wheel 1 and the inner ring 24. That is, a first inner race (inner race) 28 is formed near the flange 21 of the cylindrical portion 20 of the hub wheel 1, and the second inner race is formed on the outer periphery of the inner ring 24 fitted to the small diameter portion 23 of the hub wheel 1. (Inner race) 29 is formed. A hardened layer having a surface hardness of 58 to 64 HRC is formed on the track 28 by induction hardening. The inner ring 24 is made of a high carbon chromium bearing steel such as SUJ2, and a hardened layer having a surface hardness in the range of 58 to 64 HRC is formed on the raceway 29 by quenching. The first outer track 26 and the first inner track 28 face each other, the second outer track 27 and the second inner track 29 face each other, and a ball 30 is interposed therebetween. The balls 30 in each row are held at a predetermined interval by a cage.

内部に充填した潤滑剤の漏洩を防止するとともに外部からの異物の侵入を防止するため、外方部材25の両端開口部にシール部材S1,S2が装着してある。なお、後述するように、外方部材25は車体の懸架装置から延びるナックル34(図9参照)の孔34aに嵌合させるようになっている。   Seal members S1 and S2 are attached to the opening portions at both ends of the outer member 25 in order to prevent leakage of the lubricant filled inside and to prevent foreign substances from entering from the outside. As will be described later, the outer member 25 is fitted in a hole 34a of a knuckle 34 (see FIG. 9) extending from the suspension device of the vehicle body.

ハブ輪1と等速自在継手T1の継手外輪5の軸部12とは、凹凸嵌合構造Mを介して結合させる。凹凸嵌合構造Mは、図3に示すように、例えば、軸部12の端部に設けた軸方向に延びる凸部35と、ハブ輪1の孔22の内径面(この場合、軸部嵌合部22aの内径面37)に形成される凹部36とからなり、凸部35とその凸部35に嵌合する凹部36との嵌合接触部位38全域が密着している。すなわち、軸部12の反マウス部側の外周面に、複数の凸部35が円周方向に所定ピッチで配設され、ハブ輪1の孔22の嵌合部22aの内径面37に凸部35が嵌合する複数の凹部36が円周方向に沿って形成されている。つまり、円周方向全周にわたって、凸部35とこれに嵌合する凹部36とがタイトフィットしている。   The hub wheel 1 and the shaft portion 12 of the joint outer ring 5 of the constant velocity universal joint T <b> 1 are coupled via the concave / convex fitting structure M. As shown in FIG. 3, the concave-convex fitting structure M includes, for example, a convex portion 35 provided at the end of the shaft portion 12 and an inner diameter surface of the hole 22 of the hub wheel 1 (in this case, the shaft portion fitting). It consists of a recess 36 formed in the inner diameter surface 37) of the joint portion 22a, and the entire fitting contact portion 38 between the projection 35 and the recess 36 fitted into the projection 35 is in close contact. That is, a plurality of convex portions 35 are arranged at a predetermined pitch in the circumferential direction on the outer peripheral surface of the shaft portion 12 on the side opposite to the mouse portion, and convex portions on the inner diameter surface 37 of the fitting portion 22a of the hole 22 of the hub wheel 1 A plurality of recesses 36 into which 35 is fitted are formed along the circumferential direction. That is, the convex part 35 and the concave part 36 fitted to this are tight-fitted over the entire circumference in the circumferential direction.

この場合、各凸部35は、その断面が凸円弧状の頂点を有する三角形状(山形状)であり、各凸部35の凹部嵌合部位とは、図3(b)に示す範囲Aであり、断面における山形の中腹部から山頂にいたる範囲である。また、円周方向の隣り合う凸部35間において、
ハブ輪1の内径面37よりも内径側にすきま40が形成されている。
In this case, each convex portion 35 has a triangular shape (mountain shape) having a convex arcuate cross section, and the concave portion fitting portion of each convex portion 35 is within a range A shown in FIG. Yes, it is the range from the middle of the mountain in the cross section to the summit. Further, between the adjacent convex portions 35 in the circumferential direction,
A clearance 40 is formed on the inner diameter side of the inner diameter surface 37 of the hub wheel 1.

前述のとおりハブ輪1の継手側の端部をかしめてかしめ部31を内輪24の端面に当てることで軸受予圧を付与するものであることから、継手外輪5のマウス部11のバックフェイス11aを内輪24に当てる必要がなく、ハブ輪1の端部(この場合、かしめ部31)に対してマウス部11を接触させない非接触構造とすることができる。このため、図2に示すように、ハブ輪1のかしめ部31とマウス部11のバックフェイス11aとの間にすきま98が存在している。なお、異音の問題がないならば、マウス部11とかしめ部31を接触させた構造とすることも可能である。   As described above, since the bearing preload is applied by caulking the end portion of the hub wheel 1 on the joint side and applying the caulking portion 31 to the end surface of the inner ring 24, the back face 11a of the mouth portion 11 of the joint outer ring 5 is provided. There is no need to contact the inner ring 24, and a non-contact structure in which the mouse part 11 is not brought into contact with the end part of the hub wheel 1 (in this case, the caulking part 31) can be achieved. For this reason, as shown in FIG. 2, a clearance 98 exists between the caulking portion 31 of the hub wheel 1 and the back face 11 a of the mouse portion 11. If there is no problem of abnormal noise, a structure in which the mouse part 11 and the caulking part 31 are in contact with each other can be used.

凹凸嵌合構造Mよりも継手側(インボード側、つまり車両に取り付けた状態で車両の内側となる方)および凹凸嵌合構造Mよりも反継手側(アウトボード側、つまり車両に取り付けた状態で車両の外側となる方)にそれぞれ、凹凸嵌合構造Mへの異物侵入防止手段Wが設けてある。すなわち、図6に拡大して示すように、ハブ輪1のかしめ部31とマウス部11のバックフェイス11aとの間のすきま98に配置したシール部材99によってインボード側の異物侵入防止手段W1(図2)を形成させる。この場合、すきま98は、ハブ輪1のかしめ部31とマウス部11のバックフェイス11aとの間の半径方向部分と、大径部22cと軸部12との間の軸方向部分とを含む。そして、シール部材99は、すきま98の半径方向部分と軸方向部分とが会合するコーナ付近に配置してある。なお、シール部材99としては、図6(a)に示すようなOリング等のようなものであっても、図6(b)に示すようなガスケット等のようなものであってもよい。   The joint side (inboard side, that is, the inner side of the vehicle when attached to the vehicle) than the concave-convex fitting structure M and the anti-joint side (outboard side, that is, the state attached to the vehicle) The foreign matter intrusion prevention means W to the concave-convex fitting structure M is provided on the outer side of the vehicle). That is, as shown in an enlarged view in FIG. 6, the inboard-side foreign matter intrusion preventing means W1 (the inboard side foreign matter intrusion preventing means W1 (by the seal member 99 disposed in the gap 98 between the caulking portion 31 of the hub wheel 1 and the back face 11a of the mouth portion 11) FIG. 2) is formed. In this case, the clearance 98 includes a radial portion between the caulking portion 31 of the hub wheel 1 and the back face 11 a of the mouth portion 11, and an axial portion between the large diameter portion 22 c and the shaft portion 12. The seal member 99 is disposed in the vicinity of the corner where the radial portion and the axial portion of the clearance 98 meet. The sealing member 99 may be an O-ring or the like as shown in FIG. 6A, or a gasket or the like as shown in FIG. 6B.

アウトボード側の異物侵入防止手段W2は、図2および図4に示すように、係合部であるテーパ状係止片65と、テーパ部22bの内径面との間に介在させたシール材(図示省略)の形態をとることができる。この場合、テーパ状係止片65にシール材が塗布されることになる。すなわち、塗布後に硬化してテーパ状係止片65とテーパ部22bの内径面との間において密封性を発揮できる種々の樹脂からなるシール材(シール剤)を塗布すればよい。なお、このシール材としては、この車輪用軸受装置が使用される雰囲気において劣化しないものが選択される。   As shown in FIGS. 2 and 4, the outboard-side foreign matter intrusion prevention means W2 includes a sealing material (not shown) interposed between the tapered locking piece 65 as an engaging portion and the inner diameter surface of the tapered portion 22b. (Not shown). In this case, the sealing material is applied to the tapered locking piece 65. That is, it is only necessary to apply sealing materials (sealing agents) made of various resins that are cured after application and can exhibit sealing performance between the tapered locking piece 65 and the inner diameter surface of the tapered portion 22b. In addition, as this sealing material, the thing which does not deteriorate in the atmosphere where this wheel bearing apparatus is used is selected.

継手外輪5の軸部12の端部とハブ輪1の内径面37との間に軸部抜け止め構造M1が設けてある。この軸部抜け止め構造M1は、継手外輪5の軸部12の端部から反継手側に延びてテーパ部22bに係止する前記テーパ状係止片65からなる。すなわち、テーパ状係止片65は、継手側から反継手側に向かって拡径するリング状体からなり、その外周面65aの少なくとも一部がテーパ部22bに圧接乃至接触している。   A shaft portion retaining structure M <b> 1 is provided between the end portion of the shaft portion 12 of the joint outer ring 5 and the inner diameter surface 37 of the hub wheel 1. The shaft portion retaining structure M1 includes the tapered locking piece 65 that extends from the end of the shaft portion 12 of the joint outer ring 5 to the anti-joint side and locks to the taper portion 22b. That is, the tapered locking piece 65 is formed of a ring-shaped body whose diameter increases from the joint side toward the anti-joint side, and at least a part of the outer peripheral surface 65a is in pressure contact with or in contact with the tapered portion 22b.

車輪用軸受装置を組み立てる場合、後述するように、ハブ輪1に対して継手外輪5の軸部12を圧入し、凸部35によって凹部36を形成させるようにしている。このとき、圧入の進行に伴い、凸部35によって形成される凹部36から材料がはみ出してはみ出し部45(図4参照)が形成される。はみ出し部45は、凸部35の凹部嵌合部位が嵌入(嵌合)する凹部36の容量の材料分であって、形成される凹部36から押し出されたもの、もしくは、凹部36を形成するために切削されたもの、または、押し出されたものと切削されたものの両者等から構成される。このため、はみ出し部45を収納するポケット部(収納部)50を軸部12に設けてある。   When assembling the wheel bearing device, as will be described later, the shaft portion 12 of the joint outer ring 5 is press-fitted into the hub wheel 1, and the concave portion 36 is formed by the convex portion 35. At this time, as the press-fitting progresses, the material protrudes from the concave portion 36 formed by the convex portion 35 to form the protruding portion 45 (see FIG. 4). The protruding portion 45 is the material of the capacity of the concave portion 36 into which the concave portion fitting portion of the convex portion 35 is fitted (fitted), and is pushed out from the formed concave portion 36 or to form the concave portion 36. It is comprised from what was cut | disconnected by this, or what was extruded and what was cut. For this reason, a pocket portion (storage portion) 50 for storing the protruding portion 45 is provided in the shaft portion 12.

ここでは軸部12のスプライン41の軸端縁に円周方向溝51を設けることによって、ポケット部(収納部)50を形成させてある。円周方向溝51よりも反スプライン側には、上述の軸部抜け止め構造M1を構成するテーパ状係止片65が位置している。   Here, a pocket portion (housing portion) 50 is formed by providing a circumferential groove 51 at the shaft end edge of the spline 41 of the shaft portion 12. A tapered locking piece 65 that constitutes the above-described shaft portion retaining structure M1 is located on the side opposite to the spline from the circumferential groove 51.

次に、凹凸嵌合構造Mのつくり方を説明する。この場合、図5に示すように、軸部12
の外径部には表面硬化処理を施し、この硬化層Hに軸方向に延びた凸部41aと凹部41bとからなるスプライン41を形成する。このため、スプライン41の凸部41aが硬化処理されて、この凸部41aが凹凸嵌合構造Mの凸部35となる。なお、ここでの硬化層Hの範囲は、クロスハッチングで示すように、スプライン41の外端縁から継手外輪5のバックフェイス11aの一部までである。表面硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用によりジュール熱を発生させて伝導性物体を加熱する原理を応用した焼入れ方法である。浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。
Next, how to make the uneven fitting structure M will be described. In this case, as shown in FIG.
A surface hardening process is performed on the outer diameter portion of the, and a spline 41 including a convex portion 41a and a concave portion 41b extending in the axial direction is formed in the hardened layer H. For this reason, the convex part 41a of the spline 41 is hardened, and the convex part 41a becomes the convex part 35 of the concave-convex fitting structure M. In addition, the range of the hardened layer H here is from the outer end edge of the spline 41 to a part of the back face 11a of the joint outer ring 5 as shown by cross hatching. As the surface hardening treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Induction hardening is a hardening method that applies the principle of heating a conductive object by placing a portion necessary for hardening in a coil through which high-frequency current flows and generating Joule heat by electromagnetic induction. Carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched.

また、ハブ輪1の外径側に高周波焼入れによる硬化層H1を形成するとともに、ハブ輪の内径側を未焼き状態としたものである。ここでの硬化層H1の範囲は、クロスハッチングで示すように、フランジ21の付け根部から内輪24が嵌合する小径部23のかしめ部近傍までである。高周波焼入れを行えば、表面は硬く、内部は素材の硬さそのままとすることができ、このため、ハブ輪1の内径側を未焼き状態に維持できる。継手外輪5の軸部12の硬化層Hとハブ輪1の未硬化部との硬度差は、HRCで20ポイント以上とする。具体例を挙げるならば、硬化層Hの硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。   Further, a hardened layer H1 is formed on the outer diameter side of the hub wheel 1 by induction hardening, and the inner diameter side of the hub wheel 1 is left unfired. The range of the hardened layer H1 here is from the root portion of the flange 21 to the vicinity of the caulking portion of the small diameter portion 23 to which the inner ring 24 is fitted, as shown by cross hatching. If induction hardening is performed, the surface is hard and the inside can be kept as it is, so that the inner diameter side of the hub wheel 1 can be kept unfired. The hardness difference between the hardened layer H of the shaft portion 12 of the joint outer ring 5 and the uncured portion of the hub wheel 1 is 20 points or more in HRC. If a specific example is given, the hardness of the hardened layer H shall be about 50 HRC to 65 HRC, and the hardness of an unhardened part shall be about 10 HRC to about 30 HRC.

この際、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(この場合、ハブ輪1の孔22の内径面37)の位置に対応する。すなわち、図5に示すように、孔22の内径面37の内径寸法Dを、凸部35の最大外径、つまりスプライン41の凸部41aである凸部35の頂点を結ぶ円の最大直径寸法(外接円直径)D1よりも小さく、凸部間の軸部外径面の外径寸法、つまりスプライン41の凹部41bの底を結ぶ円の最大直径寸法D2よりも大きく設定する。すなわち、D2<D<D1で表わされる寸法関係とする。   At this time, the intermediate portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (in this case, the inner diameter surface 37 of the hole 22 of the hub wheel 1) before the concave portion is formed. That is, as shown in FIG. 5, the inner diameter dimension D of the inner diameter surface 37 of the hole 22 is set to the maximum outer diameter of the protrusion 35, that is, the maximum diameter dimension of a circle connecting the vertices of the protrusion 35 that is the protrusion 41 a of the spline 41. It is set smaller than (circumferential circle diameter) D1 and larger than the outer diameter size of the shaft outer diameter surface between the convex portions, that is, the maximum diameter size D2 of the circle connecting the bottoms of the concave portions 41b of the spline 41. That is, a dimensional relationship represented by D2 <D <D1.

スプラインは、その構成も加工方法も周知である(JIS B 0006:1993参照)。すなわち、転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、表面硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   The configuration and processing method of splines are well known (see JIS B 0006: 1993). That is, it can be formed by various processing methods such as rolling, cutting, pressing, and drawing. As the surface hardening treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed.

軸部12の端面の外周縁部からテーパ状係止片65(図2、図4)を形成させるための短円筒部66を軸方向に突出させてある。短円筒部66の外径D4は孔22の嵌合部22aの内径寸法Dよりも小さく設定してある。これにより、この短円筒部66は、後述するように軸部12をハブ輪1の孔22に圧入するとき調心作用をする。   A short cylindrical portion 66 for forming a tapered locking piece 65 (FIGS. 2 and 4) is protruded in the axial direction from the outer peripheral edge portion of the end surface of the shaft portion 12. The outer diameter D4 of the short cylindrical portion 66 is set smaller than the inner diameter D of the fitting portion 22a of the hole 22. Thus, the short cylindrical portion 66 performs a centering action when the shaft portion 12 is press-fitted into the hole 22 of the hub wheel 1 as will be described later.

そして、図5に示すように、ハブ輪1の軸心と継手外輪5の軸心とを合わせた状態で、ハブ輪1に対して継手外輪5の軸部12を挿入(圧入)していく。なお、継手外輪5の軸部12の付け根部(マウス部側)にあらかじめシール部材99(図2参照)をはめておく。このとき、ハブ輪1の孔22に圧入方向に向かって縮径するテーパ部22dが形成してあるので、このテーパ部22dが圧入開始時のガイド作用を発揮する。また、孔22の内径面37の径寸法Dと、凸部35の最大外径寸法D1と、スプライン41の凹部の最大外径寸法D2とが前記のような関係であり、しかも、凸部35の硬度が孔22の内径面37の硬度よりも20ポイント以上大きいので、軸部12をハブ輪1の孔22に圧入していけば、この凸部35が嵌合部22aの内径面37に食い込んでいき、凸部35が、この凸部35と嵌合する凹部36を軸方向に沿って形成していくことになる。   Then, as shown in FIG. 5, the shaft portion 12 of the joint outer ring 5 is inserted (press-fitted) into the hub wheel 1 in a state where the shaft center of the hub wheel 1 and the shaft center of the joint outer ring 5 are aligned. . A seal member 99 (see FIG. 2) is fitted in advance to the base portion (mouse portion side) of the shaft portion 12 of the joint outer ring 5. At this time, since the tapered portion 22d whose diameter is reduced in the press-fitting direction is formed in the hole 22 of the hub wheel 1, the tapered portion 22d exhibits a guide action at the start of press-fitting. Further, the diameter D of the inner diameter surface 37 of the hole 22, the maximum outer diameter D1 of the convex portion 35, and the maximum outer diameter D2 of the concave portion of the spline 41 are as described above, and the convex portion 35 Is 20 points or more larger than the hardness of the inner diameter surface 37 of the hole 22, so that if the shaft portion 12 is press-fitted into the hole 22 of the hub wheel 1, the convex portion 35 is brought into the inner diameter surface 37 of the fitting portion 22 a. As a result, the convex portion 35 forms a concave portion 36 that fits into the convex portion 35 along the axial direction.

図4に示すように、圧入の進行に伴って形成されるはみ出し部45はカールしつつポケット部50内に収納されていく。すなわち、嵌合部22aの内径面から削り取られたり、押し出されたりした材料の一部がポケット部50内に入り込んでいく。   As shown in FIG. 4, the protruding portion 45 formed with the progress of press-fitting is housed in the pocket portion 50 while curling. That is, a part of the material scraped off or pushed out from the inner diameter surface of the fitting portion 22 a enters the pocket portion 50.

圧入によって、図3に示すように、軸部12の端部の凸部35と、これと嵌合する凹部36との嵌合接触部位38の全体が密着している。すなわち、相手側の凹部形成面(この場合、嵌合部22aの内径面37)に凸部35の形状が転写される。凸部35が嵌合部22aの内径面37に食い込んでいくことによって、嵌合部22aがわずかに拡径した状態となって凸部35の軸方向の移動を許容し、軸方向の移動が停止すれば、嵌合部22aが元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時にハブ輪1が半径方向に弾性変形し、この弾性変形分の予圧が凸部35の歯面(凹部嵌合部位の表面)に付与される。このため、凸部35の凹部嵌合部位の全体がその対応する凹部36に対して密着する凹凸嵌合構造Mを確実に形成することができる。   By press-fitting, as shown in FIG. 3, the entire fitting contact portion 38 between the convex portion 35 at the end of the shaft portion 12 and the concave portion 36 fitted therein is in close contact. That is, the shape of the convex portion 35 is transferred to the concave portion forming surface (in this case, the inner diameter surface 37 of the fitting portion 22a). When the convex portion 35 bites into the inner diameter surface 37 of the fitting portion 22a, the fitting portion 22a is slightly expanded in diameter, allowing the convex portion 35 to move in the axial direction, and moving in the axial direction. If stopped, the fitting portion 22a is reduced in diameter to return to the original diameter. In other words, when the convex portion 35 is press-fitted, the hub wheel 1 is elastically deformed in the radial direction, and a preload corresponding to the elastic deformation is applied to the tooth surface of the convex portion 35 (surface of the concave portion fitting portion). For this reason, the concave / convex fitting structure M in which the entire concave portion fitting portion of the convex portion 35 is in close contact with the corresponding concave portion 36 can be reliably formed.

また、継手外輪5の軸部12の付け根部(マウス部側)にシール部材99が装着してあるので、圧入完了状態で、ハブ輪1のかしめ部31とマウス部11のバックフェイス11aとの間のすきま98がこのシール部材99によって塞がれて密閉されることになる。   Further, since the seal member 99 is attached to the base part (mouse part side) of the shaft part 12 of the joint outer ring 5, in the press-fitting completion state, the caulking part 31 of the hub wheel 1 and the back face 11a of the mouse part 11 are connected. The gap 98 is closed and sealed by the seal member 99.

継手外輪5の軸部12をハブ輪1の孔22に圧入する際には、継手外輪5のマウス部11の外径面に、図2等に示すように段差面Gを設け、この段差面Gに圧入用治具Kを係合させ、この圧入用治具Kから段差面Gに圧入荷重(軸方向荷重)を負荷すればよい。なお、段差面Gは円周方向に全周にわたって設けても、円周方向に所定ピッチで設けてもよい。このため、使用する圧入用治具Kとしても、これらの段差面Gに対応して軸方向荷重を負荷できればよい。   When the shaft portion 12 of the joint outer ring 5 is press-fitted into the hole 22 of the hub wheel 1, a step surface G is provided on the outer diameter surface of the mouth portion 11 of the joint outer ring 5 as shown in FIG. The press-fitting jig K may be engaged with G, and a press-fitting load (axial load) may be applied from the press-fitting jig K to the step surface G. The step surfaces G may be provided over the entire circumference in the circumferential direction or may be provided at a predetermined pitch in the circumferential direction. For this reason, the press-fitting jig K to be used only needs to be able to apply an axial load corresponding to these stepped surfaces G.

このようにして凹凸嵌合構造Mが形成されるが、この凹凸嵌合構造Mの軸方向位置は、転がり軸受2の軌道26、27、28、29の直下位置を避けた位置とするのが望ましい。   In this way, the concave / convex fitting structure M is formed, and the axial position of the concave / convex fitting structure M is a position that avoids the positions directly below the raceways 26, 27, 28, and 29 of the rolling bearing 2. desirable.

凹凸嵌合構造Mを介して継手外輪5の軸部12とハブ輪1とが一体化された状態では、図5から了解されるように、短円筒部66が嵌合部22aからテーパ部22b側に突出している。そこで、図2に想像線で示すように、治具67を使用してこの短円筒部66を拡径すなわち半径方向外側に塑性変形させる。治具67は、円柱状の本体部68と、本体部68の先端に連設される円錐台部69とを備える。円錐台部69は、その傾斜面69aの傾斜角度がテーパ部22bの傾斜角度と略同一で、かつ、その先端の外径が短円筒部66の内径と同一か、それよりもわずかに小さい寸法に設定してある。   In a state where the shaft portion 12 of the joint outer ring 5 and the hub wheel 1 are integrated through the concave-convex fitting structure M, the short cylindrical portion 66 is changed from the fitting portion 22a to the tapered portion 22b as understood from FIG. Protrudes to the side. Therefore, as shown by an imaginary line in FIG. 2, a jig 67 is used to plastically deform the short cylindrical portion 66 to expand its diameter, that is, radially outward. The jig 67 includes a columnar main body portion 68 and a truncated cone portion 69 that is connected to the tip of the main body portion 68. The truncated cone portion 69 has an inclined surface 69a whose inclination angle is substantially the same as that of the tapered portion 22b, and whose outer diameter at the tip is the same as or slightly smaller than the inner diameter of the short cylindrical portion 66. It is set to.

そして、治具67に矢印α方向の荷重を負荷して治具67の円錐台部69を短円筒部66に嵌入させることにより、この短円筒部66を拡径させようとする矢印β方向の力を付与する。その結果、治具67の円錐台部69によって、短円筒部66の少なくとも一部はテーパ部22bの内径面側に押圧され、テーパ部22bの内径面に、異物侵入防止手段W2を構成するシール材を介して圧接ないし接触した状態となり、軸部抜け止め構造M1を構成することができる。なお、治具67に矢印α方向の荷重を負荷する際には、この車輪用軸受装置が矢印α方向へ移動しないように固定する必要があるが、ハブ輪1や等速自在継手T1等の一部を固定部材で受ければよい。短円筒部66は、内径面を軸端側に拡径するテーパ形状にしておけば鍛造で内径面を成形することも可能であり、コスト低減に繋がる。   Then, by applying a load in the direction of arrow α to the jig 67 and fitting the truncated cone portion 69 of the jig 67 into the short cylindrical portion 66, the short cylindrical portion 66 is expanded in the direction of arrow β. Giving power. As a result, at least a part of the short cylindrical portion 66 is pressed to the inner diameter side of the tapered portion 22b by the truncated cone portion 69 of the jig 67, and the seal constituting the foreign matter intrusion prevention means W2 is formed on the inner diameter surface of the tapered portion 22b. It will be in the state of pressure contact or contact through the material, and the shaft portion retaining structure M1 can be configured. When the load in the arrow α direction is applied to the jig 67, it is necessary to fix the wheel bearing device so that it does not move in the arrow α direction. However, the hub wheel 1, the constant velocity universal joint T1, etc. What is necessary is just to receive a part with a fixing member. If the short cylindrical portion 66 has a tapered shape in which the inner diameter surface is expanded toward the shaft end side, the inner diameter surface can be formed by forging, which leads to cost reduction.

治具67の矢印α方向の荷重を低減させるため、円筒部66に切り欠きを入れてもよく、また、治具67の円錐台69の円錐面を円周方向の全体ではなく部分的に配置してもよい。円筒部66に切り欠きを入れた場合、円筒部66を拡径させやすくなる。また、治具67の円錐台69の円錐面を円周方向に部分的に配置した場合、円筒部66を拡径させる部位が円周上の一部になるため、治具67の押し込み荷重を低減させることができる。   In order to reduce the load of the jig 67 in the direction of the arrow α, the cylindrical portion 66 may be notched, and the conical surface of the truncated cone 69 of the jig 67 is partially arranged instead of the entire circumference. May be. When a notch is made in the cylindrical portion 66, the cylindrical portion 66 can be easily expanded in diameter. In addition, when the conical surface of the truncated cone 69 of the jig 67 is partially arranged in the circumferential direction, the portion where the cylindrical portion 66 is enlarged becomes a part of the circumference, so the pushing load of the jig 67 is reduced. Can be reduced.

図1に示すように組み立てられたアクスルモジュールは、図9に示すように、転がり軸受2の外方部材25をナックル34の孔に嵌合させることによって車両への組付けが完了する。このために、外方部材25の円筒形の外周面25aとナックル34の孔の円筒形の内周面34aを所定のはめあいに設定してある。そして、外方部材25の外周面25aとナックル34の孔の内周面34aとの間に止め輪130を介在させる。止め輪130を使用することにより、ナックル34に対する外方部材25の抜け止め効果が高まる。すなわち、外方部材25の外周面25aに環状溝129(図2)を形成するとともに、ナックル34の孔の内周面34aにも環状溝(図示省略)を形成する。そして、止め輪130を外方部材25の環状溝129とナックル34の環状溝の双方に係合させる。つまり、止め輪130の内径側は外方部材25の環状溝129と係合させ、止め輪130の外径側はナックル34の環状溝と係合させる。   As shown in FIG. 9, the axle module assembled as shown in FIG. 1 is assembled to the vehicle by fitting the outer member 25 of the rolling bearing 2 into the hole of the knuckle 34. For this purpose, the cylindrical outer peripheral surface 25a of the outer member 25 and the cylindrical inner peripheral surface 34a of the hole of the knuckle 34 are set to a predetermined fit. A retaining ring 130 is interposed between the outer peripheral surface 25 a of the outer member 25 and the inner peripheral surface 34 a of the hole of the knuckle 34. By using the retaining ring 130, the effect of preventing the outer member 25 from coming off from the knuckle 34 is enhanced. That is, an annular groove 129 (FIG. 2) is formed on the outer peripheral surface 25 a of the outer member 25, and an annular groove (not shown) is also formed on the inner peripheral surface 34 a of the hole of the knuckle 34. Then, the retaining ring 130 is engaged with both the annular groove 129 of the outer member 25 and the annular groove of the knuckle 34. That is, the inner diameter side of the retaining ring 130 is engaged with the annular groove 129 of the outer member 25, and the outer diameter side of the retaining ring 130 is engaged with the annular groove of the knuckle 34.

図1に示すように、外方部材25の外径D11を等速自在継手T1の最大外径寸法D12よりも大径とする。ここで、等速自在継手T1の最大外径寸法D12は、ブーツ60およびブーツバンド61等の付属品も含めた状態でのこの等速自在継手T1の最大外径寸法を意味する。また、インボード側等速自在継手T2の最大外径寸法D13を外方部材25の外径D11よりも小径に設定する。インボード側等速自在継手T2の最大外径寸法D13は、アウトボード側等速自在継手T1の場合と同様に、ブーツ140およびブーツバンド141等の付属品も含めた状態でのインボード側等速自在継手T2の最大外径寸法を意味する。   As shown in FIG. 1, the outer diameter D11 of the outer member 25 is made larger than the maximum outer diameter dimension D12 of the constant velocity universal joint T1. Here, the maximum outer diameter dimension D12 of the constant velocity universal joint T1 means the maximum outer diameter dimension of the constant velocity universal joint T1 in a state including accessories such as the boot 60 and the boot band 61. The maximum outer diameter dimension D13 of the inboard side constant velocity universal joint T2 is set to be smaller than the outer diameter D11 of the outer member 25. The maximum outer diameter D13 of the inboard side constant velocity universal joint T2 is the same as that of the outboard side constant velocity universal joint T1, and the inboard side in a state including accessories such as the boot 140 and the boot band 141. It means the maximum outer diameter dimension of the quick universal joint T2.

アクスルモジュールの車両への組み付けは、図7と図8に示すように、ナックル34にこのアクスルモジュールをインボード側の等速自在継手T2側から通し、続いてアウトボード側の等速自在継手T1を通過させ、最後に、駆動車輪用軸受装置の外方部材25をナックル34の孔の内周面34aに圧入することになる。これによって、図9に示すように、外方部材25がナックル34に圧入された状態で、止め輪130が外方部材25の外周面25aの環状溝129とナックル34の内周面34aの環状溝とに係合する。   As shown in FIGS. 7 and 8, the axle module is assembled to the vehicle through the knuckle 34 from the constant velocity universal joint T2 on the inboard side, and then the constant velocity universal joint T1 on the outboard side. Finally, the outer member 25 of the drive wheel bearing device is press-fitted into the inner peripheral surface 34 a of the hole of the knuckle 34. As a result, as shown in FIG. 9, in the state in which the outer member 25 is press-fitted into the knuckle 34, the retaining ring 130 has an annular groove 129 on the outer peripheral surface 25 a of the outer member 25 and an annular shape of the inner peripheral surface 34 a of the knuckle 34. Engage with the groove.

このように、アクスルモジュールは、図1に示すように組み立てた状態で車両への組み付けが可能である。これにより、組付け作業現場での作業工数を減じることができ、作業性が高まる。しかも、分解・組立等における部品の損傷を防止して品質を安定させることができる。   Thus, the axle module can be assembled to the vehicle in the assembled state as shown in FIG. Thereby, the work man-hour at the assembly work site can be reduced, and workability is enhanced. Moreover, it is possible to stabilize the quality by preventing damage to parts during disassembly / assembly.

図10および図11に止め輪130を示す。図10は矩形断面の止め輪の例、図11は円形断面の止め輪の例である。矩形断面の止め輪130の場合、図10(b)に示すように、外径側稜線部を面取りしてある。このように、外径側稜線部を面取りした矩形断面の止め輪、あるいは、円形断面の止め輪を採用することにより、ナックル34の孔に外方部材25を圧入するとき、止め輪130をスムーズに縮径させて外方部材25の環状溝129内に沈み込みやすくすることができる。同様の目的で、ナックル34の孔のアウトボード側端部も面取りするのが好ましい。ナックル34の孔のアウトボード側端部は、外方部材25を圧入するときの入口部となることから、圧入をスムーズに開始するためである。   A retaining ring 130 is shown in FIGS. FIG. 10 shows an example of a retaining ring having a rectangular cross section, and FIG. 11 shows an example of a retaining ring having a circular cross section. In the case of the retaining ring 130 having a rectangular cross section, the outer diameter side ridge line portion is chamfered as shown in FIG. In this way, by adopting a retaining ring with a rectangular cross section chamfered on the outer diameter side ridge line part or a retaining ring with a circular cross section, when the outer member 25 is press-fitted into the hole of the knuckle 34, the retaining ring 130 is smooth. It is possible to make it easy to sink into the annular groove 129 of the outer member 25. For the same purpose, it is also preferable to chamfer the end of the knuckle 34 on the outboard side. This is because the outboard side end of the hole of the knuckle 34 serves as an inlet when the outer member 25 is press-fitted, so that the press-fitting is started smoothly.

止め輪130の材料は、外方部材25、ナックル34の材料よりもせん断応力が小さいものを採用する。ナックル34の材料には種々のものがあるが、一般に、鋳鉄、アルミニウム合金ダイカスト、アルミニウム合金鋳物等である。また、許容せん断応力は、材料、形状、肉厚等々によっても異なるが、一応の目安として例示するならば、アルミニウム合金ダイカストの場合200MPa以下である。   As the material of the retaining ring 130, a material having a shear stress smaller than that of the outer member 25 and the knuckle 34 is adopted. There are various types of materials for the knuckle 34, and in general, cast iron, aluminum alloy die casting, aluminum alloy casting, and the like are used. Further, the allowable shear stress varies depending on the material, shape, thickness, etc., but if exemplified as a temporary guide, it is 200 MPa or less in the case of aluminum alloy die casting.

一方、1500ccクラスの車両の場合、5.7kN(580kgf)程度の耐力が必
要である。耐力5.7kNとは、スラスト荷重として5.7kNが止め輪に負荷されても止め輪が変形または破損しないことを意味する。この場合のせん断応力は、止め輪130の寸法にもよるが、10MPa程度(5〜15MPa)になる。したがって、止め輪130の材料が備えるべきせん断応力としては、5MPa以上150MPa以下の範囲が好ましい。
On the other hand, in the case of a 1500 cc class vehicle, a proof stress of about 5.7 kN (580 kgf) is required. The yield strength of 5.7 kN means that the retaining ring is not deformed or damaged even when 5.7 kN is applied to the retaining ring as a thrust load. The shear stress in this case is about 10 MPa (5 to 15 MPa) although it depends on the dimensions of the retaining ring 130. Accordingly, the shear stress that the material of the retaining ring 130 should have is preferably in the range of 5 MPa to 150 MPa.

そのような材料の一例としては熱可塑性合成樹脂も挙げられる。具体例を挙げるならば、ポリプロピレン、アクリル樹脂、ABS樹脂(アクリルニトリルブタジェンスチレン樹脂)等である。樹脂製の止め輪は射出成型により比較的安価に量産することができる。したがって、分解時には止め輪130のせん断応力を越える引き抜き力を付与してナックル34から外方部材25を引き抜くことができる。このとき、止め輪130が変形または破損して分解を許容するので、外方部材25やナックル34の破損が防止される。再組付けに当たっては、変形または破損した止め輪は新品と交換する。   An example of such a material is a thermoplastic synthetic resin. Specific examples include polypropylene, acrylic resin, ABS resin (acrylonitrile butadiene styrene resin) and the like. Resin retaining rings can be mass-produced at a relatively low cost by injection molding. Therefore, the outer member 25 can be pulled out from the knuckle 34 by applying a pulling force exceeding the shear stress of the retaining ring 130 at the time of disassembly. At this time, since the retaining ring 130 is deformed or broken to allow disassembly, the outer member 25 and the knuckle 34 are prevented from being damaged. When reassembling, replace the deformed or damaged retaining ring with a new one.

ハブ輪1はパイロット部を設けてないため、冷間鍛造が容易な形状であり、したがって生産性の向上に寄与する。この場合、ハブ輪1とは別体の、パイロット部をもった部材をハブ輪1に取り付けるようにしてもよい。図12は、そのような部材がブレーキロータ142である場合の例である。すなわち、ブレーキロータ142にパイロット部144を設けるとともに、ハブ輪1のフランジ21の外周面21aをブレーキパイロットとしてある。この場合、ホイールパイロット部を設けないことでハブ輪1が簡略形状となり、鍛造が容易となる。したがって、ハブ輪1を冷間鍛造により低コストで製造することができる。   Since the hub wheel 1 is not provided with a pilot portion, the hub wheel 1 has a shape that can be easily cold forged, and thus contributes to an improvement in productivity. In this case, a member having a pilot portion that is separate from the hub wheel 1 may be attached to the hub wheel 1. FIG. 12 shows an example where such a member is the brake rotor 142. That is, the pilot portion 144 is provided in the brake rotor 142, and the outer peripheral surface 21a of the flange 21 of the hub wheel 1 is used as a brake pilot. In this case, by not providing the wheel pilot portion, the hub wheel 1 has a simple shape, and forging becomes easy. Therefore, the hub wheel 1 can be manufactured at low cost by cold forging.

もちろん、図16に関連して既に述べた従来例のようにハブ輪にパイロット部を設けることも可能である。たとえば図13に示すように、ハブ輪1のフランジ21の反継手側の端面にブレーキパイロット148aとホイールパイロット148bからなるパイロット部146を設ける。   Of course, it is also possible to provide a pilot portion on the hub wheel as in the conventional example already described with reference to FIG. For example, as shown in FIG. 13, a pilot portion 146 including a brake pilot 148 a and a wheel pilot 148 b is provided on the end face on the opposite side of the flange 21 of the hub wheel 1.

ここに述べ、かつ、図示した実施例の効果について述べる。
車輪用軸受装置において、凹凸嵌合構造Mは、凸部35と凹部36との嵌合接触部位38の全体が密着しているので、この嵌合構造Mにおいて、半径方向および円周方向においてガタが生じるすきまが形成されない。このため、嵌合部位のすべてが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生も生じさせない。
The effect of the embodiment described here and illustrated will be described.
In the wheel bearing device, the concave / convex fitting structure M has the entire fitting contact portion 38 between the convex portion 35 and the concave portion 36 in close contact with each other. No gap is formed. For this reason, all of the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.

凹部36が形成される部材(この場合、ハブ輪1)には、スプライン部等を形成しておく必要がないため生産性に優れ、かつ、スプライン同士の位相合わせを必要としないため組立性が向上するばかりでなく圧入時の歯面の損傷も回避することができ、安定した嵌合状態を維持できる。   The member in which the recess 36 is formed (in this case, the hub wheel 1) is excellent in productivity because it is not necessary to form a spline portion or the like, and is easy to assemble because it does not require phase alignment between the splines. In addition to improvement, damage to the tooth surface during press-fitting can be avoided, and a stable fitting state can be maintained.

テーパ部22dが圧入開始時のガイドを構成することができるので、ハブ輪1の孔22に対して継手外輪5の軸部12を、ズレを生じさせることなく圧入させることができ、安定したトルク伝達が可能となる。さらに、短円筒部66は、円筒部66の外径D4は孔22の嵌合孔22aの内径寸法Dよりも小さく設定しているので、調心作用を発揮し、芯ずれを防止しつつ軸部をハブ輪に圧入することができ、より安定した圧入が可能となる。   Since the tapered portion 22d can constitute a guide at the start of press-fitting, the shaft portion 12 of the joint outer ring 5 can be press-fitted into the hole 22 of the hub wheel 1 without causing a deviation, and a stable torque can be obtained. Communication is possible. Furthermore, since the outer diameter D4 of the cylindrical portion 66 is set to be smaller than the inner diameter D of the fitting hole 22a of the hole 22, the short cylindrical portion 66 exhibits a centering effect and prevents misalignment. The portion can be press-fitted into the hub wheel, and more stable press-fitting is possible.

凹凸嵌合構造Mを転がり軸受2の軌道面の直下を避けて配置することによって、軸受軌道面におけるフープ応力の発生を抑える。これにより、転がり疲労寿命の低下、クラック発生、および応力腐食割れ等の軸受の不具合発生を防止することができ、高品質な軸受を提供することができる。   By arranging the concave-convex fitting structure M so as not to be directly under the raceway surface of the rolling bearing 2, generation of hoop stress on the bearing raceway surface is suppressed. As a result, it is possible to prevent a bearing failure such as a decrease in rolling fatigue life, occurrence of cracks, and stress corrosion cracking, and a high-quality bearing can be provided.

軸部抜け止め構造M1によって、継手外輪5の軸部12がハブ輪1の孔22からの抜け
(特にシャフト側への軸方向の抜け)を有効に防止できる。これによって、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。また、軸部抜け止め構造M1がテーパ状係止片65であるので、従来のようなねじ締結を省略できる。このため、軸部12にハブ輪1の孔22から突出するねじ部を形成する必要がなくなって、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組立作業性の向上を図ることができる。しかも、テーパ状係止片65では、継手外輪5の軸部12の一部を拡径させればよく、軸部抜け止め構造M1の形成を容易に行うことができる。なお、継手外輪5の軸部12の反継手方向への移動は、軸部12をさらに圧入する方向への押圧力が必要であり、継手外輪5の軸部12の反継手方向への位置ズレは極めて生じにくく、かつ、たとえこの方向に位置ズレしたとしても、継手外輪5のマウス部11の底部がハブ輪1のかしめ部31に当接して、ハブ輪1から外輪5の軸部12が抜けることがない。
With the shaft part retaining structure M1, the shaft part 12 of the joint outer ring 5 can be effectively prevented from coming out from the hole 22 of the hub wheel 1 (particularly, the axial part to the shaft side). As a result, a stable connected state can be maintained, and the quality of the wheel bearing device can be improved. Moreover, since the shaft portion retaining structure M1 is the tapered locking piece 65, conventional screw fastening can be omitted. For this reason, it is not necessary to form the screw part which protrudes from the hole 22 of the hub wheel 1 in the shaft part 12, and while being able to achieve weight reduction, a screw fastening operation | work can be abbreviate | omitted and aiming at the improvement of assembly workability | operativity. Can do. In addition, in the tapered locking piece 65, it is only necessary to increase the diameter of a part of the shaft portion 12 of the joint outer ring 5, and the shaft portion retaining structure M1 can be easily formed. In addition, the movement of the shaft portion 12 of the joint outer ring 5 in the anti-joint direction requires a pressing force in a direction in which the shaft portion 12 is further press-fitted, and the displacement of the shaft portion 12 of the joint outer ring 5 in the anti-joint direction is necessary. Even if it is misaligned in this direction, the bottom of the mouth portion 11 of the joint outer ring 5 comes into contact with the caulking portion 31 of the hub wheel 1 so that the shaft portion 12 of the outer ring 5 extends from the hub wheel 1. There is no escape.

等速自在継手T1の継手外輪5の軸部12の凸部の軸方向端部の硬度をハブ輪1の孔部内径面よりも高くして、軸部12をハブ輪1の孔22に凸部35の軸方向端部側から圧入するので、ハブ輪1の孔部内径面への凹部形成が容易となる。また、軸部側の硬度を高くでき、軸部12の捩り強度を向上させることができる。   The hardness of the axial end of the convex portion of the shaft portion 12 of the joint outer ring 5 of the constant velocity universal joint T1 is made higher than the inner diameter surface of the hole portion of the hub wheel 1 so that the shaft portion 12 protrudes into the hole 22 of the hub wheel 1. Since it press-fits from the axial direction edge part side of the part 35, the recessed part formation to the hole inner diameter surface of the hub ring 1 becomes easy. Further, the hardness on the shaft portion side can be increased, and the torsional strength of the shaft portion 12 can be improved.

また、ハブ輪1の端部をかしめて転がり軸受2の内輪24に当てることで軸受予圧が付与されるので、継手外輪5のマウス部11を内輪24に当てることで軸受予圧を付与する必要がなくなる。このため、内輪24との接触を考慮することなく、継手外輪5の軸部12を圧入することができ、ハブ輪1と継手外輪5との連結性(組み付け性)の向上を図ることができる。マウス部11がハブ輪1と非接触状であるので、マウス部11とハブ輪1との接触による異音の発生を防止できる。   Further, since the bearing preload is applied by crimping the end portion of the hub wheel 1 to the inner ring 24 of the rolling bearing 2, it is necessary to apply the bearing preload by applying the mouth portion 11 of the joint outer ring 5 to the inner ring 24. Disappear. For this reason, it is possible to press-fit the shaft portion 12 of the joint outer ring 5 without considering the contact with the inner ring 24, and to improve the connectivity (assembly property) between the hub wheel 1 and the joint outer ring 5. . Since the mouse part 11 is not in contact with the hub wheel 1, it is possible to prevent the generation of noise due to the contact between the mouse part 11 and the hub wheel 1.

なお、凸部35をこの種のシャフトに通常形成されるスプラインをもって構成することもでき、その場合、低コストにて簡単にこの凸部35を形成することができる。   In addition, the convex part 35 can also be comprised with the spline normally formed in this kind of shaft, In this case, this convex part 35 can be easily formed at low cost.

また、軸部12をハブ輪1に圧入していくことによって、凹部36を形成していくと、この凹部36側に加工硬化が生じる。ここで、加工硬化とは、物体に塑性変形(塑性加工)を与えると,変形の度合が増すにつれて変形に対する抵抗が増大し,変形を受けていない材料よりも硬くなることをいう。このため、圧入時に塑性変形することによって、凹部36側のハブ輪1の内径面37が硬化して、回転トルク伝達性の向上を図ることができる。   Further, when the concave portion 36 is formed by press-fitting the shaft portion 12 into the hub wheel 1, work hardening occurs on the concave portion 36 side. Here, work hardening means that when plastic deformation (plastic processing) is applied to an object, the resistance to deformation increases as the degree of deformation increases, and it becomes harder than a material that has not undergone deformation. For this reason, by plastically deforming at the time of press-fitting, the inner diameter surface 37 of the hub wheel 1 on the concave portion 36 side is hardened, and the rotational torque transmission performance can be improved.

ハブ輪1の内径側は比較的軟らかい。このため、継手外輪5の軸部12の外径面の凸部35をハブ輪1の孔部内径面の凹部36に嵌合させる際の嵌合性(密着性)の向上を図ることができ、半径方向および円周方向においてガタが生じるのを精度よく抑えることができる。   The inner diameter side of the hub wheel 1 is relatively soft. For this reason, the fitting property (adhesiveness) at the time of fitting the convex part 35 of the outer diameter surface of the shaft part 12 of the joint outer ring 5 to the concave part 36 of the hole inner diameter surface of the hub wheel 1 can be improved. Further, it is possible to accurately suppress the occurrence of play in the radial direction and the circumferential direction.

異物侵入防止手段Wを設けることにより凹凸嵌合構造Mへの異物の侵入を防止できる。すなわち、異物侵入防止手段Wによって雨水や異物の侵入が防止され、凹凸嵌合構造Mへの雨水や異物等の侵入による密着性の劣化を回避することができる。   By providing the foreign matter intrusion prevention means W, foreign matter can be prevented from entering the concave-convex fitting structure M. That is, the intrusion of rainwater and foreign matter is prevented by the foreign matter intrusion prevention means W, and deterioration of adhesion due to the intrusion of rainwater, foreign matter and the like into the concave-convex fitting structure M can be avoided.

ハブ輪1の端部とマウス部11の底部との間にシール部材99を配置したものでは、シール部材99によりハブ輪1の端部とマウス部11の底部との間のすきま98を塞ぐことで、このすきま98からの凹凸嵌合構造Mへの雨水や異物の侵入が防止される。シール部材99としては、ハブ輪1の端部とマウス部11の底部との間に介在できるものであればよいので、例えば、既存(市販)のOリング等を使用することができ、低コストの異物侵入防止手段を構成でき、しかも、市販のOリング等は、種々の材料、種々の大きさのものがあり、別途特別なものを製造することなく、確実にシール機能を発揮する異物侵入防止
手段を構成することができる。
In the case where the seal member 99 is disposed between the end portion of the hub wheel 1 and the bottom portion of the mouth portion 11, the gap 98 between the end portion of the hub wheel 1 and the bottom portion of the mouth portion 11 is closed by the seal member 99. Thus, intrusion of rainwater and foreign matter from the gap 98 to the concave-convex fitting structure M is prevented. As the seal member 99, any member that can be interposed between the end of the hub wheel 1 and the bottom of the mouth portion 11 may be used. For example, an existing (commercially available) O-ring can be used, and the cost is low. Foreign material intrusion prevention means can be configured, and commercially available O-rings come in a variety of materials and sizes, and foreign material intrusions that reliably perform a sealing function without the need to manufacture special ones. Prevention means can be configured.

凹凸嵌合構造Mよりも反継手側において、ハブ輪1の内径面(この場合、テーパ孔22bの内径面)にシール材(異物侵入防止手段W2を構成するシール部材)を介して係合する係合部(テーパ状係止片65)を設けることにより、凹凸嵌合構造Mよりも反継手側からの異物の侵入を防止することができる。すなわち、アウトボード側からの異物侵入を回避することができる。   Engage with the inner diameter surface of the hub wheel 1 (in this case, the inner diameter surface of the tapered hole 22b) via a sealing material (seal member constituting the foreign matter intrusion prevention means W2) on the anti-joint side with respect to the concave-convex fitting structure M. By providing the engaging portion (tapered locking piece 65), it is possible to prevent foreign matter from entering from the side opposite the joint than the concave-convex fitting structure M. That is, foreign matter intrusion from the outboard side can be avoided.

このように、凹凸嵌合構造Mよりも継手側および凹凸嵌合構造Mよりも反継手側に異物侵入防止手段W1、W2を設けた場合、凹凸嵌合構造Mの軸方向両端側からの異物の侵入が防止される。このため、密着性の劣化をより安定して長期にわたって回避することができる。   Thus, when the foreign matter intrusion prevention means W1 and W2 are provided on the joint side with respect to the concave-convex fitting structure M and the anti-joint side with respect to the concave-convex fitting structure M, foreign matters from both axial ends of the concave-convex fitting structure M are provided. Intrusion is prevented. For this reason, deterioration of adhesion can be avoided more stably over a long period of time.

圧入による凹部形成によって生じるはみ出し部45を収納するポケット部50を設けることによって、はみ出し部45をこのポケット部50内に保持(維持)することができ、はみ出し部45が装置外の車両内等へ入り込んだりすることがない。すなわち、はみ出し部45をポケット部50に収納したままにしておくことができ、はみ出し部45の除去処理を行う必要がなく、組み立て作業工数の減少を図ることができて、組み立て作業性の向上およびコスト低減を図ることができる。   By providing the pocket portion 50 for accommodating the protruding portion 45 generated by forming the concave portion by press-fitting, the protruding portion 45 can be held (maintained) in the pocket portion 50, and the protruding portion 45 can be placed inside the vehicle outside the apparatus. There is no intrusion. That is, the protruding portion 45 can be kept stored in the pocket portion 50, and it is not necessary to perform the removal process of the protruding portion 45, the number of assembling operations can be reduced, and the assembling workability can be improved. Cost reduction can be achieved.

図3に示すスプライン41では、凸部41aのピッチと凹部41bのピッチとを同一に設定してある。このため、図3(b)に示すように、凸部35の突出方向中間部位の円周方向厚さLと、円周方向に隣り合う凸部35間における中間部位に対応する位置での円周方向寸法L0とがほぼ同一となっている。   In the spline 41 shown in FIG. 3, the pitch of the convex portions 41a and the pitch of the concave portions 41b are set to be the same. Therefore, as shown in FIG. 3B, the circumferential thickness L of the projecting direction intermediate portion of the convex portion 35 and the circle at a position corresponding to the intermediate portion between the convex portions 35 adjacent in the circumferential direction. The circumferential dimension L0 is substantially the same.

これに対して、図14(a)に示すように、凸部35の突出方向中間部位の円周方向厚さL2を、円周方向に隣り合う凸部43間における中間部位に対応する位置での円周方向寸法L1よりも小さいものであってもよい。すなわち、軸部12に形成されるスプライン41において、凸部35の突出方向中間部位の円周方向厚さ(歯厚)L2を、凸部35間に嵌合するハブ輪1側の凸部35の突出方向中間部位の円周方向厚さ(歯厚)L1よりも小さくしてもよい。   On the other hand, as shown in FIG. 14A, the circumferential thickness L2 of the projecting direction intermediate portion of the convex portion 35 is a position corresponding to the intermediate portion between the convex portions 43 adjacent in the circumferential direction. It may be smaller than the circumferential dimension L1. That is, in the spline 41 formed in the shaft portion 12, the circumferential thickness (tooth thickness) L <b> 2 of the protruding portion intermediate portion of the convex portion 35 is set between the convex portions 35 on the hub wheel 1 side. It may be smaller than the circumferential thickness (tooth thickness) L1 of the intermediate portion in the protruding direction.

たとえば、軸部12側の全周における凸部35の歯厚の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の凸部43(凸歯)の歯厚の総和Σ(A1+A2+A3+・・・)よりも小さく設定する。これによって、ハブ輪1側の凸部43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部35の円周方向厚さの総和を、相手側の凸部43における円周方向厚さの総和よりも小さくする場合、全凸部35の円周方向厚さL2を、円周方向に隣り合う凸部35間における円周方向の寸法L1よりも小さくする必要がない。すなわち、複数の凸部35のうち、任意の凸部35の円周方向厚さが円周方向に隣り合う凸部間における円周方向の寸法と同一であっても、この円周方向の寸法よりも大きくても、総和で小さければよい。   For example, the total tooth thickness Σ (B1 + B2 + B3 +...) Of the convex portion 35 on the entire circumference on the shaft 12 side is replaced with the total tooth thickness Σ (A1 + A2 + A3 +...) Of the convex portion 43 (convex tooth) on the hub wheel 1 side. ) Is set smaller. As a result, the shear area of the convex portion 43 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at. When the sum of the circumferential thicknesses of the convex portions 35 is made smaller than the sum of the circumferential thicknesses of the convex portions 43 on the other side, the circumferential thickness L2 of all the convex portions 35 is set in the circumferential direction. It is not necessary to make it smaller than the circumferential dimension L1 between the adjacent convex portions 35. That is, even if the circumferential thickness of any projection 35 among the plurality of projections 35 is the same as the dimension in the circumferential direction between the projections adjacent in the circumferential direction, this circumferential dimension It is sufficient that the sum is smaller than the sum.

図14(a)における凸部35は断面台形(富士山形状)の例であるが、図14(b)に示すようにインボリュート歯形状であってもよい。   14A is an example of a trapezoidal cross section (Mt. Fuji shape), but may have an involute tooth shape as shown in FIG. 14B.

ところで、軸部12側に凸部35を構成するスプライン41を形成するとともに、この軸部12のスプライン41に対して硬化処理を施し、ハブ輪1の内径面を未硬化(生材)とするのに対して、図15に示すように、ハブ輪1の孔22の内径面に硬化処理を施されたスプライン61(凸条61aおよび凹条61bとからなる)を形成するとともに、軸部
12には硬化処理を施さないものであってもよい。なお、このスプライン61も周知のようにブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって形成することがきる。また、熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。
By the way, while forming the spline 41 which comprises the convex part 35 in the axial part 12 side, it hardens | cures with respect to the spline 41 of this axial part 12, and makes the internal diameter surface of the hub wheel 1 uncured (raw material). On the other hand, as shown in FIG. 15, a spline 61 (consisting of a convex strip 61 a and a concave strip 61 b) is formed on the inner diameter surface of the hole 22 of the hub wheel 1 and the shaft portion 12. May not be subjected to a curing treatment. As is well known, the spline 61 can also be formed by various processing methods such as broaching, cutting, pressing, and drawing. Further, various heat treatments such as induction hardening and carburizing and quenching can be employed as the thermosetting treatment.

この場合、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(軸部12の外径面)の位置に対応する。すなわち、スプライン61の凸部61aである凸部35の頂点を結ぶ円の径寸法(凸部35の最小径寸法)D8を、軸部12の外径寸法D10よりも小さく、スプライン61の凹部61bの底を結ぶ円の径寸法(凸部間の嵌合用孔内径面の内径寸法)D9を軸部12の外径寸法D10よりも大きく設定する。すなわち、D8<D10<D9とされる。   In this case, the intermediate portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (the outer diameter surface of the shaft portion 12) before the concave portion is formed. That is, the diameter dimension (minimum diameter dimension of the convex portion 35) D8 connecting the vertices of the convex portion 35 which is the convex portion 61a of the spline 61 is smaller than the outer diameter size D10 of the shaft portion 12, and the concave portion 61b of the spline 61 is formed. The diameter dimension (inner diameter dimension of the inner diameter surface of the fitting hole between the convex portions) D9 is set larger than the outer diameter dimension D10 of the shaft portion 12. That is, D8 <D10 <D9.

軸部12をハブ輪1の孔22に圧入すれば、ハブ輪1側の凸部35によって、軸部12の外周面にこの凸部35が嵌合する凹部36を形成することができる。これによって、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着している。   When the shaft portion 12 is press-fitted into the hole 22 of the hub wheel 1, the concave portion 36 into which the convex portion 35 is fitted can be formed on the outer peripheral surface of the shaft portion 12 by the convex portion 35 on the hub wheel 1 side. Thereby, the whole fitting contact part 38 of the convex part 35 and the recessed part fitted to this is closely_contact | adhered.

ここで、嵌合接触部位38とは、図15(b)に示す範囲Bであり、凸部35の断面における山形の中腹部から山頂にいたる範囲である。また、円周方向の隣合う凸部35間において、軸部12の外周面よりも外径側にすきま62が形成される。   Here, the fitting contact portion 38 is a range B shown in FIG. 15B, and is a range from the middle of the mountain shape to the top of the mountain in the cross section of the convex portion 35. Further, a gap 62 is formed on the outer diameter side of the outer peripheral surface of the shaft portion 12 between the adjacent convex portions 35 in the circumferential direction.

この場合も、圧入によってはみ出し部45が形成されるので、このはみ出し部45を収納する収納部を設けるのが好ましい。はみ出し部45は軸部12のマウス側に形成されることになるので、収納部をハブ輪1側に設けることになる。   Also in this case, since the protruding portion 45 is formed by press-fitting, it is preferable to provide a storage portion for storing the protruding portion 45. Since the protruding portion 45 is formed on the mouse side of the shaft portion 12, the storage portion is provided on the hub wheel 1 side.

このように、ハブ輪1の孔22の内径面に凹凸嵌合構造Mの凸部35を設けて圧入するものでは、軸部側の硬化処理(熱処理)を行う必要がないので、継手外輪5の生産性に優れる利点がある。   In this way, in the case where the convex portion 35 of the concave-convex fitting structure M is provided on the inner diameter surface of the hole 22 of the hub wheel 1 and press-fitted, it is not necessary to perform the hardening treatment (heat treatment) on the shaft portion side, so the joint outer ring 5 There is an advantage of excellent productivity.

ここでも、アウトボード側の車輪用軸受装置の軸受2の外方部材25の外径D11を等速自在継手T1の最大外径寸法D12およびインボード側等速自在継手T2の最大外径寸法D13よりも大径とすることによって、車両へのこのアクスルモジュールの組み付けの作業性が向上する。しかも、分解・組立等における部品の損傷を防止して品質を安定させることができる。   Also here, the outer diameter D11 of the outer member 25 of the bearing 2 of the wheel bearing device on the outboard side is set to the maximum outer diameter dimension D12 of the constant velocity universal joint T1 and the maximum outer diameter dimension D13 of the inboard side constant velocity universal joint T2. By making the diameter larger than this, the workability of assembling the axle module to the vehicle is improved. Moreover, it is possible to stabilize the quality by preventing damage to parts during disassembly / assembly.

以上、この発明の実施の形態につき説明したが、この発明は上に述べた実施の形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部35の形状として、図3に示した例では断面三角形状であり、図14(a)に示した例では断面台形(富士山形状)であるが、これら以外の半円形、半楕円形、矩形等々を採用してもよく、凸部35の面積、数、円周方向ピッチ等も任意に変更できる。すなわち、スプライン41、61を形成し、このスプライン41、61の凸部(凸歯)41a、61aをもって凹凸嵌合構造Mの凸部35とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部35を相手側に圧入し、この凸部35にて凸部35に密着嵌合する凹部36を相手側に形成することができて、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着し、しかも、ハブ輪1と等速自在継手T1との間でトルクの伝達ができればよい。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications can be made. As the shape, the example shown in FIG. 3 has a triangular cross section, and in the example shown in FIG. 14A, it has a trapezoidal cross section (Mt. Fuji shape), but other shapes such as semicircular, semielliptical, rectangular, etc. are adopted. Alternatively, the area, number, circumferential pitch, and the like of the convex portions 35 can be arbitrarily changed. That is, the splines 41 and 61 are formed, and the convex portions (convex teeth) 41a and 61a of the splines 41 and 61 do not need to be the convex portions 35 of the concave-convex fitting structure M. Alternatively, a curved corrugated mating surface may be formed. In short, the convex portion 35 disposed along the axial direction can be press-fitted into the mating side, and the concave portion 36 can be formed on the mating side with the convex portion 35 so as to closely fit the convex portion 35. It suffices that the entire fitting contact portion 38 between the portion 35 and the concave portion fitted thereto is in close contact, and torque can be transmitted between the hub wheel 1 and the constant velocity universal joint T1.

また、ハブ輪1の孔22としては円孔以外の多角形孔等の異形孔であってよく、この孔22に挿入する軸部12の端部の断面形状も円形以外の多角形その他の異形であってもよい。さらに、ハブ輪1に軸部12を圧入する際に凸部35の圧入始端部のみが、凹部36が形成される部位より硬度が高ければよいので、凸部35の全体の硬度を高くする必要が
ない。図3等ではすきま40が形成されるが、凸部35間の凹部まで、ハブ輪1の内径面37に食い込むようなものであってもよい。なお、凸部35側と、凸部35にて形成される凹部形成面側との硬度差としては、前述のようにHRCで20ポイント以上とするのが好ましいが、凸部35が圧入可能であれば20ポイント未満であってもよい。
Further, the hole 22 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion of the shaft portion 12 inserted into the hole 22 is also a polygon other than a circle or other irregular shapes. It may be. Furthermore, since only the press-fitting start end portion of the convex portion 35 needs to be harder than the portion where the concave portion 36 is formed when the shaft portion 12 is press-fitted into the hub wheel 1, it is necessary to increase the overall hardness of the convex portion 35. There is no. In FIG. 3 and the like, the clearance 40 is formed, but the gap between the convex portions 35 may be cut into the inner diameter surface 37 of the hub wheel 1. As described above, the hardness difference between the convex portion 35 side and the concave portion forming surface formed by the convex portion 35 is preferably 20 points or more by HRC, but the convex portion 35 can be press-fitted. If there is, it may be less than 20 points.

凸部35の端面(圧入始端)は軸線に対して直交する面のほか、軸線に対して所定角度で傾斜したものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。   The end surface (press-fit start end) of the convex portion 35 may be inclined at a predetermined angle with respect to the axis, in addition to a surface orthogonal to the axis. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side.

また、ポケット部50の形状としては、生じるはみ出し部45を収納(収容)できるものであればよく、そのため、ポケット部50の容量として、生じるはみ出し部45に対応できるものであればよい。   Further, the shape of the pocket portion 50 may be any shape that can accommodate (accommodate) the protruding portion 45 that is generated, and therefore, the capacity of the pocket portion 50 only needs to be compatible with the protruding portion 45 that is generated.

また、ハブ輪1の孔22の内径面37に、円周方向に所定ピッチで小凹部を設けてもよい。小凹部としては、凹部36の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部35の圧入性の向上を図ることができる。すなわち、小凹部を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができ、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、ポケット部50の容積を小さくでき、ポケット部50の加工性および軸部12の強度の向上を図ることができる。なお、小凹部の形状は、三角形、半楕円形、矩形等々の種々のものを採用でき、数も任意に設定できる。   Moreover, you may provide the small recessed part in the internal diameter surface 37 of the hole 22 of the hub ring 1 with a predetermined pitch in the circumferential direction. The small recess needs to be smaller than the volume of the recess 36. Thus, by providing a small recessed part, the press-fit property of the convex part 35 can be aimed at. That is, by providing the small concave portion, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, and the press-fit resistance can be reduced. Moreover, since the protrusion part 45 can be decreased, the volume of the pocket part 50 can be made small and the workability of the pocket part 50 and the improvement of the intensity | strength of the axial part 12 can be aimed at. In addition, the shape of a small recessed part can employ | adopt various things, such as a triangle, a semi-ellipse, a rectangle, and the number can also be set arbitrarily.

また、軸受2の転動体30として玉(ボール)の場合を例示したが、ころ(ローラ)を使用したものであってもよい。さらに、以上の説明は第3世代の車輪用軸受装置の場合を例にとったが、第1世代や第2世代さらには第4世代であってもよい。
なお、凸部35を圧入する場合、凹部36が形成される側を固定して、凸部35を形成している側を移動させても、逆に、凸部35を形成している側を固定して、凹部36が形成される側を移動させても、両者を移動させてもよい。
なお、等速自在継手T1において、継手内輪6とシャフト10とを前記凹凸嵌合構造Mを介して一体化してもよい。
Moreover, although the case of the ball | bowl (ball) was illustrated as the rolling element 30 of the bearing 2, what uses a roller (roller) may be used. Furthermore, although the above description has been given by taking the case of the third generation wheel bearing device as an example, the first generation, the second generation, or the fourth generation may be used.
In addition, when press-fitting the convex portion 35, even if the side where the concave portion 36 is formed is fixed and the side where the convex portion 35 is formed is moved, the side where the convex portion 35 is formed is reversed. It may be fixed and the side where the recess 36 is formed may be moved or both may be moved.
In the constant velocity universal joint T1, the joint inner ring 6 and the shaft 10 may be integrated via the concave / convex fitting structure M.

アクスルモジュールの縦断面図である。It is a longitudinal cross-sectional view of an axle module. 図1のアクスルモジュールにおける車輪用軸受装置の拡大断面図である。It is an expanded sectional view of the wheel bearing apparatus in the axle module of FIG. 図2の車輪用軸受装置の凹凸嵌合構造を示し、(a)は拡大断面図であり、(b)は(a)のX部拡大図である。The uneven | corrugated fitting structure of the wheel bearing apparatus of FIG. 2 is shown, (a) is an expanded sectional view, (b) is the X section enlarged view of (a). 図2の車輪用軸受装置の部分拡大図である。It is the elements on larger scale of the wheel bearing apparatus of FIG. 図2の車輪用軸受装置の圧入前の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state before press-fitting of the wheel bearing apparatus of FIG. 図2の車輪用軸受装置のシール材部分の拡大図であって、(a)はOリングの例、(b)はガスケットの例を示す。It is an enlarged view of the sealing material part of the wheel bearing apparatus of FIG. 2, (a) shows the example of an O-ring, (b) shows the example of a gasket. 図1のアクスルモジュールの車両への組み付け過程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the assembly | attachment process to the vehicle of the axle module of FIG. 図1のアクスルモジュールの車両への組み付け過程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the assembly | attachment process to the vehicle of the axle module of FIG. 図1のアクスルモジュールを車両に組み付けた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which assembled | attached the axle module of FIG. 1 to the vehicle. 矩形断面の止め輪を示し、(a)は正面図、(b)は断面図である。The retaining ring of a rectangular cross section is shown, (a) is a front view and (b) is a cross-sectional view. 円形断面の止め輪を示し、(a)は正面図、(b)は断面図である。A retaining ring with a circular cross section is shown, (a) is a front view, and (b) is a cross sectional view. パイロット部を有するブレーキロータをハブ輪に取り付けた例を示す車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus which shows the example which attached the brake rotor which has a pilot part to the hub wheel. ハブ輪にパイロット部を設けた例を示す車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus which shows the example which provided the pilot part in the hub ring. (a)(b)は図3(b)と類似の断面図である。(A) (b) is sectional drawing similar to FIG.3 (b). (a)は図3(a)と類似の断面図、(b)は図3(b)と類似の断面図である。(A) is sectional drawing similar to Fig.3 (a), (b) is sectional drawing similar to FIG.3 (b). 従来の車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the conventional wheel bearing apparatus.

符号の説明Explanation of symbols

1 ハブ輪(内方部材)
2 転がり軸受
5 継手外輪(外側継手部材)
10 シャフト
11 マウス部(椀形部)
12 ステム部(軸部)
22 孔
24 内輪(内方部材)
25 外方部材
31 かしめ部
35 凸部
36 凹部
98 すきま
99 シール部材
129 環状溝
130 止め輪
142 ブレーキロータ
144 ホイールパイロット
146 パイロット部
148a ブレーキパイロット
148b ホイールパイロット
M 凹凸嵌合構造
T1 アウトボード側等速自在継手
T2 インボード側等速自在継手
1 Hub wheel (inward member)
2 Rolling bearings 5 Joint outer ring (outer joint member)
10 Shaft 11 Mouse (Shape-shaped part)
12 Stem (shaft)
22 hole 24 inner ring (inner member)
25 Outer member 31 Caulking part 35 Protruding part 36 Concave part 98 Clearance 99 Seal member 129 Annular groove 130 Retaining ring 142 Brake rotor 144 Wheel pilot 146 Pilot part 148a Brake pilot 148b Wheel pilot M Concavity and convexity T1 Outboard side constant velocity freely Joint T2 Inboard side constant velocity universal joint

Claims (10)

内周に複列の外側軌道を形成した外方部材と、
車輪を固定するためのフランジを有し外周に複列の内側軌道のうちの一方を形成したハブ輪と、前記ハブ輪と嵌合し外周に複列の内側軌道のもう一方を形成した内輪とからなる内方部材と、
外方部材の外側軌道と内方部材の内側軌道との間に転動自在に介在させた複列の転動体と、
前記ハブ輪と圧入により一体化させた等速自在継手の外側継手部材と
を有する駆動車輪用軸受装置であって、
前記ハブ輪と前記外側継手部材は凹凸嵌合構造を形成しており、前記凹凸嵌合構造は、前記外側継手部材の軸部の外径面と前記ハブ輪の孔部の内径面のどちらか一方に軸方向に延びる凸部を設けて、前記ハブ輪の孔部に前記外側継手部材の軸部を圧入させることにより、他方に前記凸部と密着嵌合する凹部を前記凸部によって形成させた、凸部と凹部との嵌合接触部位全域が密着した凹凸嵌合構造であり、
前記外方部材を車両のナックルの孔と所定のはめあいで嵌合させるとともに、前記外方部材の外周面と前記ナックルの孔の内周面にそれぞれ環状溝を形成し、双方の環状溝に係合させた止め輪によって、前記ナックルから前記外方部材の抜け止めをするとともに、前記止め輪の変形または破断のみによって前記外方部材を前記ナックルから分離可能とした駆動車輪用軸受装置。
An outer member having a double-row outer track formed on the inner circumference;
A hub wheel having a flange for fixing the wheel and forming one of the double-row inner tracks on the outer periphery; and an inner ring fitted with the hub wheel and forming the other of the double-row inner tracks on the outer periphery; An inner member comprising:
A double row rolling element interposed between the outer raceway of the outer member and the inner raceway of the inner member so as to roll freely;
A drive wheel bearing device having an outer joint member of a constant velocity universal joint integrated with the hub wheel by press-fitting,
The hub wheel and the outer joint member form a concave-convex fitting structure, and the concave-convex fitting structure is either an outer diameter surface of the shaft portion of the outer joint member or an inner diameter surface of the hole portion of the hub ring. A convex portion extending in the axial direction is provided on one side, and the shaft portion of the outer joint member is press-fitted into the hole of the hub wheel, so that a concave portion that closely fits the convex portion is formed on the other side by the convex portion. In addition, it is a concave-convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact,
The outer member is fitted to a knuckle hole of the vehicle with a predetermined fit, and an annular groove is formed on each of the outer circumferential surface of the outer member and the inner circumferential surface of the knuckle hole, and both the annular grooves are engaged with each other. A drive wheel bearing device in which the outer member is prevented from coming off from the knuckle by a combined retaining ring, and the outer member can be separated from the knuckle only by deformation or breakage of the retaining ring.
前記外側継手部材の軸部の外径面に前記凹凸嵌合構造の凸部を設け、前記軸部を前記ハブ輪の孔部に圧入することにより、前記凸部によって当該凸部と密着嵌合する凹部を前記ハブ輪の孔部内径面に形成して、前記凹凸嵌合構造を形成した請求項1の駆動車輪用軸受装置。   By providing a convex portion of the concave-convex fitting structure on the outer diameter surface of the shaft portion of the outer joint member, and press-fitting the shaft portion into the hole portion of the hub wheel, the convex portion is closely fitted to the convex portion. The drive wheel bearing device according to claim 1, wherein a concave portion to be formed is formed on an inner diameter surface of the hole portion of the hub wheel to form the concave-convex fitting structure. 前記ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設け、前記軸部を前記ハブ輪の孔部に圧入することにより、前記凸部によって当該凸部と密着嵌合する凹部を前記軸部外径面に形成して、前記凹凸嵌合構造を形成した請求項1の駆動車輪用軸受装置。   A concave portion that is closely fitted to the convex portion by the convex portion by providing a convex portion of the concave-convex fitting structure on the inner diameter surface of the hole portion of the hub wheel and press-fitting the shaft portion into the hole portion of the hub wheel. The bearing device for a drive wheel according to claim 1, wherein the concave-convex fitting structure is formed by forming the outer peripheral surface of the shaft portion. 前記止め輪の材料のせん断応力が前記ナックルの材料のせん断応力よりも小さい請求項1、2または3の駆動車輪用軸受装置。   The bearing device for a drive wheel according to claim 1, 2 or 3, wherein a shear stress of the material of the retaining ring is smaller than a shear stress of the material of the knuckle. 前記止め輪のせん断応力が5〜150MPaの範囲内である請求項4の駆動車輪用軸受装置。   The drive wheel bearing device according to claim 4, wherein the retaining ring has a shear stress in the range of 5 to 150 MPa. 前記止め輪の材料が熱可塑性合成樹脂である請求項1から5のいずれか1項の駆動車輪用軸受装置。   The bearing device for a driving wheel according to any one of claims 1 to 5, wherein the material of the retaining ring is a thermoplastic synthetic resin. 前記止め輪の外径側稜線部を面取りした請求項1から6のいずれか1項の駆動車輪用軸受装置。   The bearing device for a drive wheel according to any one of claims 1 to 6, wherein an outer diameter side ridge line portion of the retaining ring is chamfered. 前記止め輪の断面形状が円形である請求項1から6のいずれか1項の駆動車輪用軸受装置。   The drive wheel bearing device according to any one of claims 1 to 6, wherein the retaining ring has a circular cross-sectional shape. 前記ナックルの孔のアウトボード側端縁を面取りした請求項1から8のいずれか1項の駆動車輪用軸受装置。   The drive wheel bearing device according to any one of claims 1 to 8, wherein an outboard side edge of the knuckle hole is chamfered. 請求項1から9のいずれか1項の駆動車輪用軸受装置と、前記外側継手部材を含むアウトボード側等速自在継手と、中間軸と、インボード側等速自在継手とを有し、前記アウトボ
ード側等速自在継手およびインボード側等速自在継手の最大外径が前記外方部材の外径よりも小さい、アクスルモジュール。
The drive wheel bearing device according to any one of claims 1 to 9, an outboard side constant velocity universal joint including the outer joint member, an intermediate shaft, and an inboard side constant velocity universal joint, An axle module in which the maximum outer diameter of the outboard side constant velocity universal joint and the inboard side constant velocity universal joint is smaller than the outer diameter of the outer member.
JP2008098375A 2008-04-04 2008-04-04 Bearing apparatus for driving wheel and axle module Pending JP2009248720A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008098375A JP2009248720A (en) 2008-04-04 2008-04-04 Bearing apparatus for driving wheel and axle module
CN200980116777.1A CN102026824B (en) 2008-04-04 2009-04-01 Wheel bearing apparatus and axle module
US12/922,746 US8556737B2 (en) 2008-04-04 2009-04-01 Wheel bearing apparatus and axle module
CN201510111658.4A CN104786734B (en) 2008-04-04 2009-04-01 Bearing apparatus for wheel and its manufacture method
DE112009000812.7T DE112009000812B4 (en) 2008-04-04 2009-04-01 Wheel bearing device and axle module
PCT/JP2009/056789 WO2009123254A1 (en) 2008-04-04 2009-04-01 Wheel bearing apparatus and axle module
US14/014,753 US9505266B2 (en) 2008-04-04 2013-08-30 Wheel bearing apparatus and axle module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098375A JP2009248720A (en) 2008-04-04 2008-04-04 Bearing apparatus for driving wheel and axle module

Publications (1)

Publication Number Publication Date
JP2009248720A true JP2009248720A (en) 2009-10-29

Family

ID=41309823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098375A Pending JP2009248720A (en) 2008-04-04 2008-04-04 Bearing apparatus for driving wheel and axle module

Country Status (1)

Country Link
JP (1) JP2009248720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148089A (en) * 2009-10-30 2011-08-04 Miki Pulley Co Ltd Guide roller
WO2012108507A1 (en) * 2011-02-09 2012-08-16 株式会社ジェイテクト Bearing device for hub shaft for wheel
FR3071888A1 (en) * 2017-10-02 2019-04-05 Renault S.A.S. MOTOR VEHICLE POWERTRAIN ASSEMBLY COMPRISING A TRANSMISSION SHAFT AND AN ANNULAR PART ATTACHED TO THE TRANSMISSION SHAFT

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140911A (en) * 1983-01-31 1984-08-13 東京部品工業株式会社 Method of connecting revolution body and shaft
JPH07259392A (en) * 1994-03-25 1995-10-09 Toyota Motor Corp Mounting structure for outside handle for vehicle door
JP2003004060A (en) * 2001-06-21 2003-01-08 Toyota Industries Corp Coupling and power transmission shaft and method of manufacturing coupling
JP2004052787A (en) * 2002-07-16 2004-02-19 Koyo Seiko Co Ltd Rolling bearing device
JP2006342945A (en) * 2005-06-10 2006-12-21 Ntn Corp Wheel bearing device
JP2007055322A (en) * 2005-08-22 2007-03-08 Ntn Corp Bearing device for vehicle wheel
JP2008002578A (en) * 2006-06-22 2008-01-10 Ntn Corp Bearing unit for drive wheel
JP2008018821A (en) * 2006-07-12 2008-01-31 Nsk Ltd Hub unit bearing for driving wheel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140911A (en) * 1983-01-31 1984-08-13 東京部品工業株式会社 Method of connecting revolution body and shaft
JPH07259392A (en) * 1994-03-25 1995-10-09 Toyota Motor Corp Mounting structure for outside handle for vehicle door
JP2003004060A (en) * 2001-06-21 2003-01-08 Toyota Industries Corp Coupling and power transmission shaft and method of manufacturing coupling
JP2004052787A (en) * 2002-07-16 2004-02-19 Koyo Seiko Co Ltd Rolling bearing device
JP2006342945A (en) * 2005-06-10 2006-12-21 Ntn Corp Wheel bearing device
JP2007055322A (en) * 2005-08-22 2007-03-08 Ntn Corp Bearing device for vehicle wheel
JP2008002578A (en) * 2006-06-22 2008-01-10 Ntn Corp Bearing unit for drive wheel
JP2008018821A (en) * 2006-07-12 2008-01-31 Nsk Ltd Hub unit bearing for driving wheel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148089A (en) * 2009-10-30 2011-08-04 Miki Pulley Co Ltd Guide roller
JP4767366B2 (en) * 2009-10-30 2011-09-07 三木プーリ株式会社 Guide roller
WO2012108507A1 (en) * 2011-02-09 2012-08-16 株式会社ジェイテクト Bearing device for hub shaft for wheel
FR3071888A1 (en) * 2017-10-02 2019-04-05 Renault S.A.S. MOTOR VEHICLE POWERTRAIN ASSEMBLY COMPRISING A TRANSMISSION SHAFT AND AN ANNULAR PART ATTACHED TO THE TRANSMISSION SHAFT

Similar Documents

Publication Publication Date Title
WO2009123254A1 (en) Wheel bearing apparatus and axle module
JP4315819B2 (en) Drive wheel bearing device
US10086648B2 (en) Bearing device for a wheel
JP4302758B2 (en) Wheel bearing device
EP2517897A1 (en) Wheel bearing device
JP2007062647A (en) Bearing device for driving wheel
JP2010047058A (en) Wheel bearing device and axle module
JP5683774B2 (en) Wheel bearing device
JP2010047059A (en) Wheel bearing device and axle module
JP2009120186A (en) Bearing device for wheel
JP2009255729A (en) Bearing device for wheel
JP5160358B2 (en) Wheel bearing device
JP2009270627A (en) Wheel bearing device
JP2008230487A (en) Bearing device for driving wheel
JP2009270629A (en) Wheel bearing apparatus and axle module
JP2009248720A (en) Bearing apparatus for driving wheel and axle module
JP5683772B2 (en) Wheel bearing device
JP2010042785A (en) Bearing device for wheel
JP5301129B2 (en) Wheel bearing device
JP5826781B2 (en) Manufacturing method of wheel bearing device
JP5301128B2 (en) Wheel bearing device
JP5642343B2 (en) Wheel bearing device
JP5823437B2 (en) Manufacturing method of wheel bearing device
JP5295644B2 (en) Wheel bearing device and axle module
JP5301136B2 (en) Axle module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130522