JP2008001243A - Bearing unit for driving wheel - Google Patents

Bearing unit for driving wheel Download PDF

Info

Publication number
JP2008001243A
JP2008001243A JP2006173168A JP2006173168A JP2008001243A JP 2008001243 A JP2008001243 A JP 2008001243A JP 2006173168 A JP2006173168 A JP 2006173168A JP 2006173168 A JP2006173168 A JP 2006173168A JP 2008001243 A JP2008001243 A JP 2008001243A
Authority
JP
Japan
Prior art keywords
peripheral surface
bearing unit
constant velocity
velocity universal
hub wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006173168A
Other languages
Japanese (ja)
Inventor
Zenichi Fukumura
善一 福村
Masayuki Kuroda
正幸 黒田
Hisaaki Kura
久昭 藏
Makoto Tomoue
真 友上
Hiroshi Kawamura
浩志 河村
Shigeaki Fukushima
茂明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006173168A priority Critical patent/JP2008001243A/en
Publication of JP2008001243A publication Critical patent/JP2008001243A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a fitting step to a knuckle member of a bearing unit for a driving wheel including a hub ring, a bearing, and a constant velocity universal joint, to improve the stiffness of the bearing unit, and to extend the life of the bearing unit. <P>SOLUTION: The hub wheel 10 and an outside joint member 31 of an out-board side constant velocity universal joint 31 are plastically united. An outer peripheral surface 26a of an external member 26 is pressed in an inner peripheral surface of a knuckle member, and the maximum outer diameter dimension D1 of the out-board side constant velocity universal joint 30 is made to be smaller than the minimum inner diameter dimension Dn of the knuckle member 6. In the same way, a PDC (P1) of a rolling element 23 on the out-board side is made to be larger than a PCD (P2) of a rolling element 23 on an in-board side. Diameter dimensions of the rolling elements 23 of both rows are same. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の駆動車輪(FF車の前輪、FR車の後輪、4WD車の全輪)用の軸受ユニットに関する。   The present invention relates to a bearing unit for driving wheels (front wheels of FF vehicles, rear wheels of FR vehicles, all wheels of 4WD vehicles) of automobiles.

エンジンからの動力を駆動車輪に伝達するドライブシャフト1は、図35に示すように、アウトボード側(車幅方向の車体側部の側)の固定型等速自在継手J1と、インボード側(車幅方向の車体中心の側)の摺動型等速自在継手J2とを中間軸2で結合した構成を有する。アウトボード側の等速自在継手J1は、車輪軸受3で回転自在に支持されたハブ輪4に結合され、インボード側の等速自在継手J2は、ディファレンシャル5に結合される。   As shown in FIG. 35, the drive shaft 1 for transmitting the power from the engine to the drive wheels is composed of a fixed type constant velocity universal joint J1 on the outboard side (the side of the vehicle body side in the vehicle width direction) and the inboard side ( The intermediate shaft 2 is connected to a sliding type constant velocity universal joint J2 on the vehicle center side in the vehicle width direction. The constant velocity universal joint J1 on the outboard side is coupled to the hub wheel 4 rotatably supported by the wheel bearing 3, and the constant velocity universal joint J2 on the inboard side is coupled to the differential 5.

車輪軸受3は、ハブ輪4の外周に固定した軸受内輪3aと、車体側の懸架装置から延びるナックル部材6に固定した軸受外輪3bと、軸受内輪3aと軸受外輪3bの間に複列配置した転動体3cとを有する。通常、ハブ輪4の外周に軸受内輪3aを圧入することによって両者が固定される。軸受外輪3bとナックル部材6の固定は、軸受外輪3bのフランジ3b1をナックル部材6にボルト止めして行うのが通例である。   The wheel bearing 3 is arranged in double rows between a bearing inner ring 3a fixed to the outer periphery of the hub wheel 4, a bearing outer ring 3b fixed to a knuckle member 6 extending from a suspension on the vehicle body side, and a bearing inner ring 3a and a bearing outer ring 3b. And rolling elements 3c. Usually, both are fixed by press-fitting the bearing inner ring 3 a on the outer periphery of the hub ring 4. The bearing outer ring 3b and the knuckle member 6 are usually fixed by bolting the flange 3b1 of the bearing outer ring 3b to the knuckle member 6.

従来のドライブシャフト1の車両への組付けは、予めハブ輪4および車輪軸受3をナックル部材6に固定した状態で、ドライブシャフト1のアウトボード側の軸端(外側継手部材7のステム部7a)をハブ輪4の内周に挿入し、ハブ輪4から突出した軸端にナット8を螺合させることによって行われる(例えば、特許文献1参照)。ナット8の締め付けに伴い、ドライブシャフト1の全体がアウトボード側にスライドし、外側継手部材7の肩部7bが軸受内輪3aの端面に当接する。これにより、外側継手部材7とハブ輪4とが軸方向で位置決めされ、かつ車輪軸受3に所定の予圧が付与される。外側継手部材7のステム部7aの外周面とハブ輪4の内周面は、図示しないスプラインで結合され、外側継手部材7に伝達されたエンジンの駆動力は、当該スプライン、さらにはハブ輪4を介して車輪に伝達される。
特開2004−270855号公報
The conventional assembly of the drive shaft 1 to the vehicle is performed in a state where the hub wheel 4 and the wheel bearing 3 are fixed to the knuckle member 6 in advance, and the shaft end on the outboard side of the drive shaft 1 (the stem portion 7a of the outer joint member 7). ) Is inserted into the inner periphery of the hub wheel 4 and a nut 8 is screwed onto the shaft end protruding from the hub wheel 4 (see, for example, Patent Document 1). As the nut 8 is tightened, the entire drive shaft 1 slides toward the outboard side, and the shoulder 7b of the outer joint member 7 comes into contact with the end surface of the bearing inner ring 3a. As a result, the outer joint member 7 and the hub wheel 4 are positioned in the axial direction, and a predetermined preload is applied to the wheel bearing 3. The outer peripheral surface of the stem portion 7a of the outer joint member 7 and the inner peripheral surface of the hub wheel 4 are coupled by a spline (not shown), and the driving force of the engine transmitted to the outer joint member 7 is the spline and further the hub wheel 4 It is transmitted to the wheel via.
JP 2004-270855 A

しかしながら、上記従来工程では、車輪軸受3およびハブ輪4を組付けたナックル部材6を、予め中立位置からキングピンセンタを中心として旋回させた位置で待機させ、この状態でアウトボード側等速自在継手J1をハブ輪4に固定し、さらにナックル部材6を中立位置に戻してからインボード側等速自在継手J2をディファレンシャル5に固定するという煩雑な作業が必要となる。加えて、軸受外輪3bのナックル部材6へのボルト止めやナット8の締め込み等の多くの締結作業が必要となる。従って、ドライブシャフトの組付け工程が煩雑化しており、この点がコスト高の要因となっている。また、多くのナットやボルトを必要とし、部品点数が多くなることもコスト面で不利になっている。さらに、ナックル部材の旋回に伴ってドライブシャフトが旋回するので、広い作業スペースが必要となる点も問題となる。   However, in the above-described conventional process, the knuckle member 6 assembled with the wheel bearing 3 and the hub wheel 4 is made to wait in advance at a position rotated from the neutral position around the kingpin center, and in this state, the outboard side constant velocity universal joint The complicated work of fixing J1 to the hub wheel 4 and further fixing the inboard side constant velocity universal joint J2 to the differential 5 after returning the knuckle member 6 to the neutral position is required. In addition, many fastening operations such as bolting of the bearing outer ring 3b to the knuckle member 6 and tightening of the nut 8 are required. Therefore, the assembly process of the drive shaft is complicated, and this point is a factor of high cost. Moreover, many nuts and bolts are required, and the number of parts is also disadvantageous in terms of cost. Further, since the drive shaft turns with the turning of the knuckle member, a large work space is required.

ところで、ナットの締め付け作業は、アウトボード側等速自在継手J1の外側継手部材7とハブ輪4とを予め結合一体化しておくことで省略することができる。しかしながら、両者の結合部には、コーナリング中のモーメント荷重をはじめ、車両走行に伴って大荷重が作用するので、これに耐え得るような高強度を有しかつコスト的にも安価な結合構造が必要とされる。   By the way, the tightening operation of the nut can be omitted by previously connecting and integrating the outer joint member 7 of the outboard side constant velocity universal joint J1 and the hub wheel 4. However, since a large load acts on the joint between the two, including the moment load during cornering, as the vehicle travels, the joint structure has a high strength that can withstand this and is inexpensive. Needed.

そこで、本発明は、ハブ輪、軸受、および等速自在継手を含む駆動車輪用軸受ユニットのナックル部材への組付け工程を簡略化することを主要な目的とする。   Therefore, the main object of the present invention is to simplify the process of assembling the drive wheel bearing unit including the hub wheel, the bearing, and the constant velocity universal joint to the knuckle member.

併せて、部品点数を削減し、構造を簡素化することを主な目的とする。   In addition, the main purpose is to reduce the number of parts and simplify the structure.

本発明は、上記目的を達成するために、内周に複数のアウタレースを有する外方部材と、前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された二列の転動体と、車輪に取り付けられるハブ輪と、アウトボード側等速自在継手とを備える駆動車輪用軸受ユニットにおいて、外方部材の外周面が車体側のナックル部材の内周面に嵌合組込みされ、アウトボード側等速自在継手の最大外径寸法がナックル部材の最小内径寸法よりも小さく、かつ以下の(1)〜(3)の何れか一以上の特徴を有するものである:
(1)インボード側の転動体とアウトボード側の転動体のPCDを互いに異ならせる、
(2)インボード側の転動体とアウトボード側の転動体の径寸法を互いに異ならせる、
(3)インボード側の転動体とアウトボード側の転動体の数を互いに異ならせる。
In order to achieve the above object, the present invention provides an outer member having a plurality of outer races on an inner periphery, an inner member having a plurality of inner races facing the outer races, and an outer member and an inner race facing each other. In the drive wheel bearing unit comprising two rows of rolling elements arranged on the wheel, a hub wheel attached to the wheel, and a constant velocity universal joint on the outboard side, the outer peripheral surface of the outer member is the inner side of the knuckle member on the vehicle body side. Fitted into the peripheral surface, the maximum outer diameter of the constant velocity universal joint on the outboard side is smaller than the minimum inner diameter of the knuckle member, and has one or more of the following features (1) to (3) Is:
(1) The PCDs of the inboard side rolling element and the outboard side rolling element are different from each other.
(2) The diameter dimensions of the rolling elements on the inboard side and the rolling elements on the outboard side are different from each other.
(3) The number of rolling elements on the inboard side and the number of rolling elements on the outboard side are different from each other.

ここでいう「等速自在継手」の用語は、ブーツ、ブーツバンド等の付属品も含むものとする。これら付属品も含めたアウトボード側等速自在継手の最大外径寸法がナックル部材の最小内径寸法よりも小さく設定される(以下のインボード側等速自在継手でも同じ)。   The term “constant velocity universal joint” here includes accessories such as boots and boot bands. The maximum outer diameter of the outboard side constant velocity universal joint including these accessories is set smaller than the minimum inner diameter of the knuckle member (the same applies to the following inboard side constant velocity universal joint).

かかる構成から、アウトボード側等速自在継手の外側継手部材とハブ輪とを結合した状態で、アウトボード側から外方部材をナックル部材に嵌合組込みすることにより、軸受ユニットをナックル部材に固定することが可能となる。かかる作業は、軸受ユニットを車軸方向へ押し込むだけで行うことができ、しかも基本的に外方部材をナックル部材にボルト止めする必要もない。従って、軸受ユニットの車両への組付け作業を簡略化することができる。   With this configuration, the outer joint member of the constant velocity universal joint on the outboard side and the hub wheel are joined, and the outer member is fitted and assembled to the knuckle member from the outboard side, thereby fixing the bearing unit to the knuckle member. It becomes possible to do. Such an operation can be performed simply by pushing the bearing unit in the direction of the axle, and there is basically no need to bolt the outer member to the knuckle member. Therefore, the work of assembling the bearing unit to the vehicle can be simplified.

また、インボード側転動体とアウトボード側転動体のPCDを互いに異ならせることにより、何れか一方の転動体列で負荷容量を上げることができる。従って、軸受部に作用する荷重がインボード側とアウトボード側で異なる場合でも、軸受ユニットを極端に大型化させること無く高剛性化や長寿命化が可能となる。インボード側転動体とアウトボード側転動体の径寸法を互いに異ならせたり、あるいはインボード側転動体とアウトボード側転動体の数を互いに異ならせたりしてもよい。これらの構成(PCDの相違、転動体径の相違、あるいは転動体数の相違)の二つ以上を組合わせることも可能である。   Further, by making the PCDs of the inboard side rolling element and the outboard side rolling element different from each other, the load capacity can be increased in any one of the rolling element rows. Therefore, even when the load acting on the bearing portion is different between the inboard side and the outboard side, it is possible to increase the rigidity and extend the life without extremely increasing the size of the bearing unit. The inboard-side rolling elements and the outboard-side rolling elements may have different diameters, or the inboard-side rolling elements and the outboard-side rolling elements may have different numbers. It is also possible to combine two or more of these configurations (difference in PCD, difference in rolling element diameter, or difference in the number of rolling elements).

嵌合組込みに際し、外方部材の外周面をナックル部材の内周面に圧入すれば、圧入と同時に外方部材とナックル部材とを強固に結合することができる。圧入により軸受隙間が負隙間に設定される。この際、従来のように、ナットの締め付けトルクを管理して予圧付与作業を行う必要がない。   When the outer peripheral surface of the outer member is press-fitted into the inner peripheral surface of the knuckle member when fitting and assembling, the outer member and the knuckle member can be firmly coupled simultaneously with the press-fitting. The bearing gap is set to a negative gap by press fitting. At this time, unlike the prior art, it is not necessary to manage the tightening torque of the nut and perform the preloading operation.

ハブ輪とアウトボード側等速自在継手の外側継手部材の結合は、素材の塑性流動を利用した塑性結合や溶接等を用いて行う他、従来と同様にナットを用いて行うこともできる。塑性結合の一例として、ハブ輪および外側継手部材のうち、何れか一方に設けられた雄部を、他方に設けられ、雄部と異形の雌部に圧入することにより、ハブ輪と外側継手部材とを塑性結合したものが挙げられる。この場合、圧入に伴って生じる塑性流動により、雄部と雌部の接合部分に存在する空隙の一部または全てが充足されるので、雄部と雌部を強固に結合し、一体化することができる。しかもこの結合は、雄部と雌部の何れか一方を他方に圧入するだけで行われるので作業性も良好である。   The coupling between the hub wheel and the outer joint member of the constant velocity universal joint on the outboard side can be performed by using a plastic coupling or welding utilizing the plastic flow of the material, or by using a nut as in the conventional case. As an example of plastic coupling, a male part provided on one of the hub wheel and the outer joint member is provided on the other, and the male part and the female part deformed are press-fitted into the hub wheel and the outer joint member. And those obtained by plastic bonding. In this case, since the plastic flow generated by the press-fitting will fill a part or all of the gap existing in the joint between the male part and the female part, the male part and the female part should be firmly coupled and integrated. Can do. In addition, since this connection is performed simply by press-fitting either one of the male part and the female part into the other, workability is also good.

アウトボード側等速自在継手とインボード側等速自在継手を中間軸を介して連結し、両側の等速自在継手の最大外径寸法をナックル部材の最小内径寸法よりも小さくすることにより、駆動車輪用軸受ユニットを、アウトボード側等速自在継手およびインボード側等速自在継手を有するドライブシャフトと、ハブ輪とを一体化したアセンブリの状態で車体に組み付けることができる。この組み付けは、ナックル部材の内周に、インボード側等速自在継手およびアウトボード側等速自在継手を順次挿入し、次いで外方部材をナックル部材の内周に圧入することにより行われる。   Drives by connecting the constant velocity universal joint on the outboard side and the constant velocity universal joint on the inboard side via an intermediate shaft, and making the maximum outer diameter of the constant velocity universal joints on both sides smaller than the minimum inner diameter of the knuckle member. The wheel bearing unit can be assembled to the vehicle body in an assembly state in which the drive shaft having the outboard side constant velocity universal joint and the inboard side constant velocity universal joint and the hub wheel are integrated. This assembly is performed by sequentially inserting the inboard side constant velocity universal joint and the outboard side constant velocity universal joint into the inner periphery of the knuckle member, and then press-fitting the outer member into the inner periphery of the knuckle member.

本発明によれば、ハブ輪、軸受、およびアウトボード側等速自在継手を含む駆動車輪用軸受ユニットのナックル部材への組付け工程を簡略化することができる。併せて部品点数を削減し、構造を簡素化すると共に、低コスト化を図ることができる。さらには、軸受ユニットの高剛性化や長寿命化を達成することができる。   ADVANTAGE OF THE INVENTION According to this invention, the assembly | attachment process to the knuckle member of the bearing unit for drive wheels containing a hub ring, a bearing, and an outboard side constant velocity universal joint can be simplified. In addition, the number of parts can be reduced, the structure can be simplified, and the cost can be reduced. Furthermore, it is possible to achieve high rigidity and long life of the bearing unit.

本発明に係る駆動車輪用軸受ユニットの実施形態を以下に詳述する。   Embodiments of a drive wheel bearing unit according to the present invention will be described in detail below.

図1に本発明にかかる駆動輪用軸受ユニットの第1の実施形態を示す。この軸受ユニットは、ハブ輪10、軸受部20、およびアウトボード側等速自在継手30で構成される。   FIG. 1 shows a first embodiment of a drive wheel bearing unit according to the present invention. This bearing unit includes a hub wheel 10, a bearing portion 20, and an outboard side constant velocity universal joint 30.

ハブ輪10は、その外周面に車輪(図示せず)を取り付けるための車輪取付フランジ11を備えている。この車輪取付フランジ11の円周方向に複数の雌ねじ12が形成され、この雌ねじ12にはホイール、ディスクを固定するためのハブボルト(図示省略)が螺合される。ハブ輪10の外周面に形成された小径段部13には、内輪28が適当な締め代をもって圧入されている。内輪28の内周面と小径段部13の外周面との間には、止め輪29が介装され、この止め輪29によって内輪28とハブ輪10の軸方向の位置決めがなされる。ハブ輪10は、旋削あるいは鍛造によって製作される。   The hub wheel 10 includes a wheel mounting flange 11 for mounting a wheel (not shown) on its outer peripheral surface. A plurality of female screws 12 are formed in the circumferential direction of the wheel mounting flange 11, and hub bolts (not shown) for fixing the wheel and the disk are screwed into the female screws 12. An inner ring 28 is press-fitted into the small-diameter step 13 formed on the outer peripheral surface of the hub ring 10 with an appropriate tightening allowance. A retaining ring 29 is interposed between the inner circumferential surface of the inner ring 28 and the outer circumferential surface of the small diameter step portion 13, and the positioning of the inner ring 28 and the hub wheel 10 in the axial direction is performed by the retaining ring 29. The hub wheel 10 is manufactured by turning or forging.

軸受部20は、背面配列した複列アンギュラ玉軸受構造で、複列のインナレース21およびアウタレース22と、対向するインナレース21とアウタレース22との間に配置した転動体23と、アウトボード側(図面左側)の転動体列およびインボード側(図面右側)の転動体列をそれぞれ円周方向等間隔に保持する保持器24とを有する。図示例では、アウトボード側のインナレース21がハブ輪10の外周面に、インボード側のインナレース21が内輪28の外周面に形成されている。この場合、ハブ輪10および内輪28が複列のインナレースを有する内方部材25を構成する。   The bearing portion 20 has a double-row angular ball bearing structure arranged on the back surface, a double-row inner race 21 and an outer race 22, a rolling element 23 disposed between the inner race 21 and the outer race 22 facing each other, and an outboard side ( The holder 24 holds the rolling element row on the left side of the drawing and the rolling element row on the inboard side (right side of the drawing) at equal intervals in the circumferential direction. In the illustrated example, the inner race 21 on the outboard side is formed on the outer peripheral surface of the hub wheel 10, and the inner race 21 on the inboard side is formed on the outer peripheral surface of the inner ring 28. In this case, the hub wheel 10 and the inner ring 28 constitute an inner member 25 having a double row inner race.

アウタレース22は、リング状一体の外方部材26の内周面に形成されている。外方部材26の外周面26aは、止め輪溝26bを除く全体が均一径の円筒面状である。従来の外方部材と異なり、ナックル部材6に取り付けるためのフランジは設けられていない。外方部材26の軸方向両端の内周面には、シール27a、27bが圧入固定されている。外方部材26の外周面26aとナックル部材6の内周面6aとの間には止め輪53が介在しており、この止め輪53が外方部材26およびナックル部材6と軸方向で係合することで、外方部材26のナックル部材6からの抜け止めがなされている。止め輪53は、インボード側の転動体23とアウトボード側の転動体23との間の軸方向中心線Oよりもアウトボード側に配設される。   The outer race 22 is formed on the inner peripheral surface of the ring-shaped integrated outer member 26. The outer peripheral surface 26a of the outer member 26 is a cylindrical surface having a uniform diameter as a whole except for the retaining ring groove 26b. Unlike the conventional outer member, the flange for attaching to the knuckle member 6 is not provided. Seals 27 a and 27 b are press-fitted and fixed to the inner peripheral surfaces of both ends in the axial direction of the outer member 26. A retaining ring 53 is interposed between the outer peripheral surface 26 a of the outer member 26 and the inner peripheral surface 6 a of the knuckle member 6, and the retaining ring 53 is engaged with the outer member 26 and the knuckle member 6 in the axial direction. By doing so, the outer member 26 is prevented from coming off from the knuckle member 6. The retaining ring 53 is disposed on the outboard side with respect to the axial center line O between the inboard side rolling element 23 and the outboard side rolling element 23.

アウトボード側のシール27aは、芯金をゴム等の弾性材料で被覆して内径側に複数(例えば3つ)のシールリップを形成した構成で、芯金を外方部材26の内周面に圧入することで外方部材26に固定される。シールリップは、ハブ輪10の外周面とフランジ部11のインボード側端面にそれぞれ接触している。   The outboard-side seal 27a has a configuration in which a core metal is covered with an elastic material such as rubber and a plurality of (for example, three) seal lips are formed on the inner diameter side, and the core metal is formed on the inner peripheral surface of the outer member 26. The outer member 26 is fixed by press-fitting. The seal lip is in contact with the outer peripheral surface of the hub wheel 10 and the inboard side end surface of the flange portion 11.

インボード側のシール27bは、カセットシールと呼ばれるもので、芯金の内径側に形成した複数(例えば3つ)のシールリップを断面逆L字型のスリンガに接触させた構成を有する。芯金を外方部材26の内周面に圧入し、スリンガを内輪28の外周面に圧入することで、シール27bが開口部に固定される。このシール27a、27bによって軸受部20の両端開口部が密封され、内部に充填されたグリースの漏洩ならびに外部からの水や異物の侵入を防止するようになっている。   The inboard-side seal 27b is called a cassette seal, and has a configuration in which a plurality of (for example, three) seal lips formed on the inner diameter side of the core metal are brought into contact with a slinger having an inverted L-shaped cross section. The seal 27b is fixed to the opening by pressing the cored bar into the inner peripheral surface of the outer member 26 and pressing the slinger into the outer peripheral surface of the inner ring 28. Both ends of the bearing portion 20 are sealed by the seals 27a and 27b to prevent leakage of grease filled in the inside and intrusion of water and foreign matters from the outside.

図1に示す軸受ユニットでは、アウトボード側の転動体23のPCD(P1)よりもインボード側の転動体23のPCD(P2)の方が大きくなっている。組立工程における誤組の問題を回避するため、両列の転動体23のボール径は同径とされる。PCDの相違からアウトボード側の転動体列よりもインボード側の転動体列の方が転動体数が多くなっている。以上の構成から、軸受ユニットの軸方向寸法の増大なしに軸受スパン(両レース面に加わる力の作用方向の作用線と軸心との交点の間隔)の増大を図ることができ、しかもインナレース21に組み込み可能な転動体数が増えるので、軸受部20の高剛性化と長寿命化を図ることができる。   In the bearing unit shown in FIG. 1, the PCD (P2) of the rolling element 23 on the inboard side is larger than the PCD (P1) of the rolling element 23 on the outboard side. In order to avoid the problem of erroneous assembly in the assembly process, the ball diameters of the rolling elements 23 in both rows are the same. Due to the difference in PCD, the number of rolling elements in the inboard rolling element row is larger than that in the outboard side rolling element row. With the above configuration, it is possible to increase the bearing span (interval between the line of action in the direction of the action of the force applied to both race surfaces and the axis) without increasing the axial dimension of the bearing unit, and to the inner race. Since the number of rolling elements that can be incorporated into the bearing 21 is increased, it is possible to increase the rigidity and the life of the bearing portion 20.

図1では、インボード側の転動体列のPCD(P2)をアウトボード側よりも大きくし、かつインボード側の転動体列の転動体数をインボード側よりも多くした場合を例示しているが、図20に示すように、反対にアウトボード側の転動体列のPCD(P1)を大きくし、アウトボード側の転動体列の転動体数を多くしてもよい。また、図21(a)(b)に示すように、インボード側の転動体23の径とアウトボード側の転動体23の径を異ならせても同様の効果が期待できる。このように転動体のPCDの相違、転動体径の相違、および転動体数の相違のうち、何れか一つの構成を採用し、あるいは、二つ以上の構成を組合わせて採用することにより、上記の効果をより顕著に得ることができる。   In FIG. 1, the case where the PCD (P2) of the rolling element row on the inboard side is made larger than that on the outboard side and the number of rolling elements in the rolling body row on the inboard side is increased as compared with the inboard side However, as shown in FIG. 20, the PCD (P1) of the rolling body row on the outboard side may be increased to increase the number of rolling bodies in the rolling body row on the outboard side. Further, as shown in FIGS. 21A and 21B, the same effect can be expected even if the diameter of the rolling element 23 on the inboard side is different from the diameter of the rolling element 23 on the outboard side. Thus, by adopting any one of the differences in the PCD of the rolling elements, the difference in the diameter of the rolling elements, and the difference in the number of rolling elements, or by combining two or more structures, The above effects can be obtained more remarkably.

なお、図1に示す軸受ユニットでは、転動体23としてボールを例示しているが、車重が嵩む場合等には、円錐ころを転動体23として使用することもできる。   In the bearing unit shown in FIG. 1, a ball is exemplified as the rolling element 23, but a tapered roller can be used as the rolling element 23 when the vehicle weight increases.

アウトボード側等速自在継手30は、中間軸2のアウトボード側の一端に設けられ、内周面にトラック溝が形成された外側継手部材31と、外側継手部材31のトラック溝と対向するトラック溝が外周面に形成された内側継手部材32と、外側継手部材31のトラック溝と内側継手部材32のトラック溝との間に組み込まれたトルク伝達ボール33と、外側継手部材31と内側継手部材32との間に介在してトルク伝達ボール33を円周方向等間隔に保持するケージ34とで構成される。内側継手部材32は、その内周に挿入した中間軸2のアウトボード側の軸端とセレーション35を介して結合されている。   The outboard-side constant velocity universal joint 30 is provided at one end of the intermediate shaft 2 on the outboard side, and has an outer joint member 31 having a track groove formed on the inner peripheral surface, and a track facing the track groove of the outer joint member 31. An inner joint member 32 having a groove formed on the outer peripheral surface, a torque transmission ball 33 incorporated between a track groove of the outer joint member 31 and a track groove of the inner joint member 32, and the outer joint member 31 and the inner joint member. And a cage 34 that is interposed between them and holds the torque transmission balls 33 at equal intervals in the circumferential direction. The inner joint member 32 is coupled to the shaft end on the outboard side of the intermediate shaft 2 inserted in the inner periphery thereof via a serration 35.

外側継手部材31は、例えば鍛造によって製作され、内側継手部材32、ケージ34およびトルク伝達ボール33を収容したマウス部31aと、マウス部31aから軸方向に一体的に延びる中実のステム部31bとを有する。マウス部31aの開口側の外周面と中間軸2の外周面には、それぞれブーツバンド36を介して蛇腹状ブーツ37の大径開口端および小径開口端が固定されている。このように外側継手部材31と中間軸2の間の空間をブーツ37で被覆することにより、グリースが外部へ漏洩したり、あるいは継手内部へ水やダスト等の異物が侵入したりする事態を防止している。   The outer joint member 31 is manufactured by forging, for example, and includes a mouth portion 31a that houses the inner joint member 32, the cage 34, and the torque transmission ball 33, and a solid stem portion 31b that extends integrally from the mouth portion 31a in the axial direction. Have A large-diameter open end and a small-diameter open end of a bellows-shaped boot 37 are fixed to the outer peripheral surface of the mouth portion 31a and the outer peripheral surface of the intermediate shaft 2 via a boot band 36, respectively. Thus, by covering the space between the outer joint member 31 and the intermediate shaft 2 with the boot 37, it is possible to prevent a situation where grease leaks to the outside or foreign matters such as water and dust enter the joint. is doing.

外側継手部材31のステム部31bは、後述の各種結合構造によりハブ輪10と結合される。結合方法としては、ナットを用いるような可逆的な結合方法も採用することもできるが、好ましくは、ハブ輪10と外側継手部材31の可逆的な分離・結合が許容されていない非分離の結合構造を採用するのが望ましい。   The stem portion 31b of the outer joint member 31 is coupled to the hub wheel 10 by various coupling structures described later. As the coupling method, a reversible coupling method using a nut may be employed, but preferably, the hub wheel 10 and the outer joint member 31 are not allowed to be reversibly separated and coupled. It is desirable to adopt a structure.

ハブ輪10と外側継手部材13とを非分離に結合する際、外側継手部材31の肩面38を内輪28のインボード側の端面と当接させ、さらに内輪28のアウトボード側の端面もハブ輪10と軸方向で当接させることで、複列のインナレース21の間隔が規定寸法に保持され、予圧(予備予圧)が付与される。   When the hub wheel 10 and the outer joint member 13 are connected in a non-separable manner, the shoulder surface 38 of the outer joint member 31 is brought into contact with the end surface on the inboard side of the inner ring 28, and the end surface on the outboard side of the inner ring 28 is also a hub. By abutting with the wheel 10 in the axial direction, the interval between the double-row inner races 21 is maintained at a specified dimension, and a preload (preliminary preload) is applied.

外方部材26の外周面26aは、車体側のナックル部材6の内周面6aに嵌合組込みされる。   The outer peripheral surface 26 a of the outer member 26 is fitted and incorporated into the inner peripheral surface 6 a of the knuckle member 6 on the vehicle body side.

ここでいう嵌合組込みは、外方部材26をナックル部材6に嵌合することにより両者の組込みが完了することを意味する。この組込みは、例えば外方部材26の円筒面状の外周面26aをナックル部材6の円筒状内周面6aにアウトボード側から圧入することにより行うことができる。   As used herein, fitting and fitting means that the fitting of the outer member 26 and the knuckle member 6 completes the fitting of both. This incorporation can be performed, for example, by press-fitting the cylindrical outer peripheral surface 26a of the outer member 26 into the cylindrical inner peripheral surface 6a of the knuckle member 6 from the outboard side.

このように外方部材26の外周面26aに圧入面を設け、この外方部材26をナックル部材6の内周に圧入固定することにより、従来のように、フランジ付き外方部材をナックル部材の複数箇所にボルト止めする場合に比べ、ボルトの締結作業を省略でき、その分だけ部品点数や作業工数を減じて低コスト化を図ることができる。   Thus, by providing a press-fit surface on the outer peripheral surface 26a of the outer member 26 and press-fitting and fixing the outer member 26 to the inner periphery of the knuckle member 6, the outer member with a flange can be attached to the knuckle member as in the prior art. Compared with the case of bolting to a plurality of locations, the bolt fastening operation can be omitted, and the number of parts and the number of work steps can be reduced accordingly, thereby reducing the cost.

また、外方部材26をナックル部材6に圧入することで、圧入後の外方部材26には、ラジアル方向の縮径力が作用し、この縮径力によって軸受隙間が縮小する。従って、上記予備予圧量を加味して圧入代を適切に設定すれば、圧入後に適正量の負隙間(例えば0〜100μm、好ましくは0〜30μm)を得ることが可能となる。この場合、ナットの締め込みによる予圧付与作業が不要となるので、軸受ユニットの組付け作業性を更に向上させることができる。なお、0よりも大きい正隙間であると、軸受剛性が不充分となって耐久性が低下し、負隙間量が100μmを上回ると、逆に予圧が過大となって異常発熱の原因となる点が問題となる。   In addition, by pressing the outer member 26 into the knuckle member 6, radial contraction force acts on the outer member 26 after press-fitting, and the bearing gap is reduced by the contraction force. Accordingly, if the press-fitting allowance is appropriately set in consideration of the preliminary preload amount, an appropriate amount of negative gap (for example, 0 to 100 μm, preferably 0 to 30 μm) can be obtained after press-fitting. In this case, since the preload application work by tightening the nut is not necessary, the assembly workability of the bearing unit can be further improved. If the positive clearance is larger than 0, the bearing rigidity is insufficient and the durability is lowered, and if the negative clearance exceeds 100 μm, the preload is excessively increased, causing abnormal heat generation. Is a problem.

必要に応じて、ナックル部材6の内周面6aのインボード側端部には、外方部材26の端面と軸方向で係合する凸部6bが設けられる。凸部6bを設けた場合、図1に示すように、アウトボード側から圧入した外方部材26のインボード側端面が凸部6bに当接すると同時に、ナックル部材6の内周面6aに形成した止め輪溝6cと外方部材26の外周面26aに形成した止め輪溝26bとが対向し、外方部材26の止め輪溝26bに収容した止め輪53が弾性的に拡径してナックル部材6および外方部材26の双方と軸方向で係合する。   If necessary, the inboard side end of the inner peripheral surface 6a of the knuckle member 6 is provided with a convex portion 6b that engages with the end surface of the outer member 26 in the axial direction. When the convex portion 6b is provided, as shown in FIG. 1, the inboard side end surface of the outer member 26 press-fitted from the outboard side is in contact with the convex portion 6b and at the same time formed on the inner peripheral surface 6a of the knuckle member 6 The retaining ring groove 6c and the retaining ring groove 26b formed on the outer peripheral surface 26a of the outer member 26 are opposed to each other, and the retaining ring 53 accommodated in the retaining ring groove 26b of the outer member 26 is elastically expanded in diameter to knuckle. It engages both the member 6 and the outer member 26 in the axial direction.

圧入だけでも十分な固定力が得られる場合は、凸部6および止め輪53の何れか一方または双方を省略することもできる。図33は凸部6bを省略した場合を示し、図34は止め輪53を省略した場合を例示している(図34に示すように、併せてハブ輪10と内輪28の間の止め輪29を省略することもできる)。   If a sufficient fixing force can be obtained only by press-fitting, either one or both of the convex portion 6 and the retaining ring 53 can be omitted. FIG. 33 illustrates a case where the convex portion 6b is omitted, and FIG. 34 illustrates a case where the retaining ring 53 is omitted (as shown in FIG. 34, the retaining ring 29 between the hub ring 10 and the inner ring 28 is also illustrated. Can be omitted).

止め輪53を使用する場合、極力アウトボード側に止め輪53を配置するのが望ましい。具体的には、図1に示すように、インボード側の転動体23とアウトボード側の転動体23との間の軸方向中心線Oよりもアウトボード側に止め輪53を配設するのが望ましい。これにより、外方部材26を圧入する際、止め輪53のナックル部材内周面6aに対する摺動距離を短縮できるので、止め輪53の引きずりによるナックル部材内周面6aの損傷回避を図ることができる。   When the retaining ring 53 is used, it is desirable to dispose the retaining ring 53 on the outboard side as much as possible. Specifically, as shown in FIG. 1, a retaining ring 53 is disposed on the outboard side with respect to the axial center line O between the inboard side rolling element 23 and the outboard side rolling element 23. Is desirable. Thus, when the outer member 26 is press-fitted, the sliding distance of the retaining ring 53 relative to the knuckle member inner circumferential surface 6 a can be shortened, so that the knuckle member inner circumferential surface 6 a can be prevented from being damaged by dragging the retaining ring 53. it can.

かかる嵌合組込みにおいては、アウトボード側等速自在継手30の最大外径寸法D1をナックル部材6の最小内径寸法Dnよりも小さくする(D1<Dn)。これにより、まずアウトボード側等速自在継手30をナックル部材6の内周に挿入し、引き続いて軸受部20の外方部材26をナックル部材6の内周に圧入することにより、ハブ輪10、軸受部20およびアウトボード側等速自在継手30を予めアセンブリにした状態で車両に組付けることが可能となる。この組み付け時には、アセンブリの押し込み方向が一定となるので、組み付け時の作業性も良好となる。   In such fitting and incorporation, the maximum outer diameter D1 of the outboard side constant velocity universal joint 30 is made smaller than the minimum inner diameter Dn of the knuckle member 6 (D1 <Dn). As a result, first, the outboard side constant velocity universal joint 30 is inserted into the inner periphery of the knuckle member 6, and then the outer member 26 of the bearing portion 20 is press-fitted into the inner periphery of the knuckle member 6. The bearing portion 20 and the outboard side constant velocity universal joint 30 can be assembled to the vehicle in a state of being assembled in advance. At the time of this assembly, the pushing direction of the assembly is constant, so that the workability at the time of assembly is also good.

ここで、ナックル部材6の「最小内径寸法Dn」は、ナックル部材6のうちで最も内径側に存在する部分の内径寸法を意味する。図1に示す実施形態のように、ナックル部材6の内周面に凸部6bを設けた場合、凸部6bの内径寸法が「最小内径寸法Dn」となる。図33に示すように凸部6bを省略した場合、ナックル部材6の内周面6aが「最小内径寸法Dn」となる。   Here, the “minimum inner diameter dimension Dn” of the knuckle member 6 means the inner diameter dimension of the portion of the knuckle member 6 that is present on the innermost diameter side. When the convex portion 6b is provided on the inner peripheral surface of the knuckle member 6 as in the embodiment shown in FIG. When the convex portion 6b is omitted as shown in FIG. 33, the inner peripheral surface 6a of the knuckle member 6 becomes the “minimum inner diameter dimension Dn”.

また、アウトボード側等速自在継手の「最大外径寸法D1」は、ブーツ37およびブーツバンド36等の付属品も含めた状態で、最も外径側に存在する部分の外径寸法をいう。例えば図1に示すアウトボード側等速自在継手30では、ブーツ最大径部37aの外径寸法がアウトボード側等速自在継手30の最大外径寸法D1となる。   Further, the “maximum outer diameter dimension D1” of the outboard side constant velocity universal joint refers to the outer diameter dimension of the portion existing on the outermost diameter side in a state including accessories such as the boot 37 and the boot band 36. For example, in the outboard-side constant velocity universal joint 30 shown in FIG. 1, the outer diameter of the boot maximum diameter portion 37 a is the maximum outer diameter D1 of the outboard-side constant velocity universal joint 30.

併せて図4に示すように、ドライブシャフト1のインボード側等速自在継手40の最大外径寸法D2をナックル部材6の最小内径寸法Dnよりも小さくすれば(D2<Dn)、ドライブシャフト1とハブ輪10と軸受部20とを予めアセンブリにした状態(以下、ドライブシャフトアセンブリと呼ぶ)でも車両への組み付けが可能となる。すなわち、ドライブシャフトアセンブリを、インボード側等速自在継手40、中間軸2、アウトボード側等速自在継手30の順に順次ナックル部材6の内周に挿入し、次いで外方部材26の外周面26aをナックル部材6の内周面に圧入することにより、車両への組み付けが完了する。これにより、組付け作業現場での作業工数を減じることができ、作業性が高まる。この場合、従来工程のようにナックル部材6を旋回させる必要もないので、作業スペースも最小限で足りる。インボード側等速自在継手40の最大外径寸法D2は、アウトボード側等速自在継手30の場合と同様に、ブーツ37およびブーツバンド36等の付属品も含めた状態でのインボード側等速自在継手40の最大外径寸法を意味する。   In addition, as shown in FIG. 4, if the maximum outer diameter D2 of the inboard constant velocity universal joint 40 of the drive shaft 1 is made smaller than the minimum inner diameter Dn of the knuckle member 6 (D2 <Dn), the drive shaft 1 Even in a state in which the hub wheel 10 and the bearing portion 20 are assembled in advance (hereinafter referred to as a drive shaft assembly), it can be assembled to the vehicle. That is, the drive shaft assembly is sequentially inserted into the inner periphery of the knuckle member 6 in the order of the inboard side constant velocity universal joint 40, the intermediate shaft 2, and the outboard side constant velocity universal joint 30, and then the outer peripheral surface 26a of the outer member 26. Is pressed into the inner peripheral surface of the knuckle member 6 to complete the assembly to the vehicle. Thereby, the work man-hour at the assembly work site can be reduced, and workability is enhanced. In this case, it is not necessary to turn the knuckle member 6 as in the conventional process, so that the work space is minimized. The maximum outer diameter D2 of the inboard side constant velocity universal joint 40 is the same as that of the outboard side constant velocity universal joint 30, and the inboard side in a state including accessories such as the boot 37 and the boot band 36. This means the maximum outer diameter of the quick universal joint 40.

図5に示すように、外方部材26の外周面26aのうち、シール27a、27bの外径側領域と、これに対向するナックル部材6の内周面6aとの間に隙間55を形成するのが望ましい。隙間55は、図示のように、外方部材26の外周面26aにヌスミ部56を形成する他、ナックル部材6の内周面6aにヌスミ部(図示省略)を形成することによっても形成可能である。なお、外方部材26とナックル部材との間の圧入代は、アウタレース22の外径側領域で確保されていれば足りるので、同図に破線で示すように、さらにアウタレース22間の外径側領域にヌスミ部57を形成してもよい。これにより、圧入面積が減じられるので、圧入時の作業性をより高めることができ、その一方で、圧入時には軸受部20に規定の予圧を付与することができる。   As shown in FIG. 5, a gap 55 is formed between the outer diameter side regions of the seals 27a and 27b in the outer peripheral surface 26a of the outer member 26 and the inner peripheral surface 6a of the knuckle member 6 facing the outer peripheral surface 26a. Is desirable. As shown in the figure, the gap 55 can also be formed by forming a mussel portion 56 on the outer peripheral surface 26 a of the outer member 26, or by forming a mushy portion (not shown) on the inner peripheral surface 6 a of the knuckle member 6. is there. Note that the press-fitting allowance between the outer member 26 and the knuckle member only needs to be secured in the outer diameter side region of the outer race 22, and therefore, as shown by the broken line in FIG. A nuisance part 57 may be formed in the region. Thereby, since the press-fitting area is reduced, the workability at the time of press-fitting can be further increased, and on the other hand, a predetermined preload can be applied to the bearing portion 20 at the time of press-fitting.

外方部材26の圧入に際し、各アウタレース22の外径側で圧入代を均一に設定しておけば、軸受部20に付与される予圧量を安定化させることができる。   When the outer member 26 is press-fitted, if the press-fitting allowance is set uniformly on the outer diameter side of each outer race 22, the amount of preload applied to the bearing portion 20 can be stabilized.

図6に示すように、ナックル部材6の内周面6aに形成した止め輪溝6cのアウトボード壁面6c1をテーパ面状に形成することもできる。この場合、外方部材26を矢印で示すようにアウトボード側に所定の力で引き抜けば、テーパ面6c1の案内で止め輪53が縮径するので、ドライブシャフトアセンブリをナックル部材6から分離することが可能となり、当該アセンブリの保守点検作業や交換作業の作業性を高めることができる。嵌合組込み時の抜け止め効果と交換時の作業性の両立から、テーパ面6c1の角度θは15°〜30°の範囲に設定するのが望ましい。   As shown in FIG. 6, the outboard wall surface 6c1 of the retaining ring groove 6c formed in the inner peripheral surface 6a of the knuckle member 6 can be formed in a tapered surface shape. In this case, if the outer member 26 is pulled out to the outboard side with a predetermined force as indicated by an arrow, the retaining ring 53 is reduced in diameter by the guide of the tapered surface 6c1, so that the drive shaft assembly is separated from the knuckle member 6. This makes it possible to improve the workability of the assembly inspection and replacement work. It is desirable to set the angle θ of the tapered surface 6c1 in the range of 15 ° to 30 °, in order to achieve both the retaining effect when fitting and mounting and the workability during replacement.

ハブ輪10と外側継手部材31とは塑性結合される。この塑性結合は、ハブ輪10と外側継手部材31のうち、何れか一方の部材に雄部51を形成すると共に、他方の部材に雄部51と異形の雌部52を形成し、雄部51と雌部52を相互に圧入することによって行われる。図1では、雄部51を外側継手部材31のステム部31bに形成すると共に、雌部52を同じくハブ輪10のインボード側端部に形成した場合を例示している。雄部51および雌部52のうち、何れか一方は断面真円形状に形成され、他方は断面非真円形状に形成される。図7(a)は、その一例として、雄部51をセレーションのような歯形面に形成すると共に、雌部52を円筒面状に形成した場合を例示している。断面非真円状の雄部51は鍛造や転造で効率的にかつ精度良く形成することができる。   The hub wheel 10 and the outer joint member 31 are plastically coupled. This plastic coupling is performed by forming the male part 51 on one of the hub wheel 10 and the outer joint member 31 and forming the male part 51 and the deformed female part 52 on the other member. And the female portion 52 are pressed into each other. FIG. 1 illustrates a case where the male part 51 is formed on the stem part 31 b of the outer joint member 31 and the female part 52 is also formed on the inboard side end part of the hub wheel 10. One of the male part 51 and the female part 52 is formed in a perfect circle shape in cross section, and the other is formed in a non-circular shape in cross section. FIG. 7A illustrates, as an example, a case where the male part 51 is formed in a tooth-shaped surface such as serration and the female part 52 is formed in a cylindrical surface shape. The male part 51 having a non-circular cross section can be formed efficiently and accurately by forging or rolling.

この他、雄部51の形状としては、図8に示すように角筒面を採用することもできる。何れの形状であっても、断面真円状の雌部52の内径寸法Dfは、雄部51の断面輪郭線に内接する円Aの直径よりも大きく、外接する円Bの直径よりも小さい。   In addition, as the shape of the male part 51, a rectangular tube surface can be adopted as shown in FIG. Regardless of the shape, the inner diameter dimension Df of the female part 52 having a perfectly circular cross section is larger than the diameter of the circle A inscribed in the cross-sectional outline of the male part 51 and smaller than the diameter of the circumscribed circle B.

以上の形状を有する雄部51を雌部52の内周に圧入することで、接合部分に塑性流動が生じて両者間の隙間の全部または一部が充足される。これにより、ハブ輪10と外側継手部材31が塑性結合され、一体化される。   By press-fitting the male part 51 having the above shape into the inner periphery of the female part 52, plastic flow is generated in the joint part, and all or part of the gap between the two parts is satisfied. Thereby, the hub wheel 10 and the outer joint member 31 are plastically coupled and integrated.

図9に示すように、圧入後、さらにステム部31bの中実軸端の外周部(破線で示す)を加締め具59で加締めてフランジ部58を形成すれば、ハブ輪10の抜け止め効果が更に高まる。圧入のみで十分な結合強度が得られるのであれば、この加締め工程を省略することもできる。   As shown in FIG. 9, after press-fitting, if the flange portion 58 is formed by caulking the outer peripheral portion (shown by a broken line) of the solid shaft end of the stem portion 31b with a caulking tool 59, the hub wheel 10 is prevented from coming off. The effect is further increased. If sufficient bonding strength can be obtained only by press-fitting, this caulking step can be omitted.

この結合構造においては、予め断面非真円状の雄部51に熱処理を施して、図9に示すようにその表層Hを雌部52よりも高硬度にしておくのが望ましい。これにより、圧入に伴う雄部51の変形が抑えられ、雄部51が雌部52に食い込み易くなるので、結合強度をより一層高めることができる。図9に示す加締め加工を行う場合、加締めにより塑性変形させるステム部31bの軸端部分は未焼入れとし、フランジ部58の形成を容易なものとする。雄部51の熱処理方法としては、焼入れ範囲および焼入れ深さのコントロールが容易な高周波焼入れが望ましい。雌部52は基本的に熱処理を加えない生材とするが、雄部51の表面硬度を越えなければ熱処理を施しても構わない。   In this bonded structure, it is desirable to heat-treat the male part 51 having a non-circular cross section in advance so that the surface layer H is harder than the female part 52 as shown in FIG. Thereby, the deformation of the male part 51 due to the press-fitting is suppressed, and the male part 51 easily bites into the female part 52, so that the coupling strength can be further increased. When the caulking process shown in FIG. 9 is performed, the shaft end portion of the stem portion 31b to be plastically deformed by caulking is not quenched, and the flange portion 58 can be easily formed. As a heat treatment method for the male part 51, induction hardening in which the quenching range and the quenching depth are easily controlled is desirable. The female part 52 is basically a raw material not subjected to heat treatment, but may be subjected to heat treatment as long as the surface hardness of the male part 51 is not exceeded.

以上の説明では、雄部51を断面非真円状に形成し、雌部52を断面真円状に形成する場合を例示したが、コスト面等で特に問題がなければ、これとは逆に雄部51を断面真円状に形成し、雌部52を断面非真円状に形成しても構わない。断面非真円状の雌部52は例えばブローチ加工で形成することができる。この場合、断面非真円状の雌部52を断面真円状の雄部51よりも高硬度に形成する。   In the above description, the case where the male part 51 is formed in a non-circular shape in cross section and the female part 52 is formed in a circular shape in cross section has been exemplified. The male part 51 may be formed in a perfect circle shape in cross section, and the female part 52 may be formed in a non-circular shape in cross section. The female part 52 having a non-circular cross section can be formed by broaching, for example. In this case, the female part 52 having a non-circular cross section is formed with a higher hardness than the male part 51 having a circular cross section.

ところで、雄部51を雌部52に圧入すると、ハブ輪10が僅かに拡径方向に変形し、その影響がインナレース21におよぶ可能性がある。かかる事態を極力回避するため、両者の圧入部分は、図1に示すように、インボード側およびアウトボード側の転動体23の軸方向中心線O上に配置するのが好ましい。   By the way, when the male part 51 is press-fitted into the female part 52, the hub wheel 10 is slightly deformed in the diameter increasing direction, and the influence may be exerted on the inner race 21. In order to avoid such a situation as much as possible, it is preferable to arrange the press-fitting portions of both on the axial center line O of the rolling elements 23 on the inboard side and the outboard side as shown in FIG.

駆動車輪用軸受ユニットとしては、図11〜図17に示すように、アウトボード側のインナレース21をハブ輪10の外周面に形成し、インボード側のインナレース21を外側継手部材31の外周面に形成したタイプも使用することができる。図11〜図17の軸受ユニットでは、ハブ輪10と外側継手部材31とが各種方法で非分離に結合され、外側継手部材31の肩面38や端面がハブ輪10と軸方向に当接することで、複列のインナレース21間の寸法が規定され、かつ軸受部20に予備予圧が付与されている。この場合、ハブ輪10と外側継手部材31が複列のインナレース21を有する内方部材25を構成する。何れの実施形態においても、アウトボード側の転動体23のPCD(P1)よりもインボード側の転動体23のPCD(P2)の方が大きく、両列の転動体23のボール径は同径になっている。   As the drive wheel bearing unit, as shown in FIGS. 11 to 17, the inner race 21 on the outboard side is formed on the outer peripheral surface of the hub wheel 10, and the inner race 21 on the inboard side is formed on the outer periphery of the outer joint member 31. A type formed on the surface can also be used. In the bearing unit of FIGS. 11 to 17, the hub wheel 10 and the outer joint member 31 are non-separated by various methods, and the shoulder surface 38 and the end surface of the outer joint member 31 are in contact with the hub wheel 10 in the axial direction. Thus, the dimension between the double-row inner races 21 is defined, and a preliminary preload is applied to the bearing portion 20. In this case, the hub wheel 10 and the outer joint member 31 constitute the inner member 25 having the double-row inner race 21. In any embodiment, the PCD (P2) of the rolling elements 23 on the inboard side is larger than the PCD (P1) of the rolling elements 23 on the outboard side, and the ball diameters of the rolling elements 23 in both rows are the same diameter. It has become.

図11〜図17のうち、図11は本発明の第2の実施形態を示すもので、ハブ輪10と外側継手部材31とを拡径加締めで塑性結合したものである。拡径かしめでは、外側継手部材31のステム部31bが中空に形成され、そのアウトボード側の端部に他所より内径寸法を小さくした小径部31b1が形成される。ハブ輪10の内周にステム部31bを挿入した後、ステム部31bの内周に小径部31b1の内径寸法よりも大径のマンドレルを押し込んで小径部31b1を拡径させ、ハブ輪10の内周面に圧接させることにより、ハブ輪10と外側継手部材31とが塑性結合される。予めハブ輪10の内周面にローレット加工等で凹凸部15を形成し、この凹凸部15を熱処理により硬化させておけば、小径部31b1の拡径により凹凸部15をステム部31bの外周面に確実に食い込ませることができ、ハブ輪10と外側継手部材31とを強固に塑性結合することが可能となる。   11 to 17 show a second embodiment of the present invention, in which the hub wheel 10 and the outer joint member 31 are plastically coupled by diameter expansion caulking. In the expanded caulking, the stem portion 31b of the outer joint member 31 is formed hollow, and a small-diameter portion 31b1 having an inner diameter smaller than that of the other portion is formed at the end portion on the outboard side. After the stem portion 31b is inserted into the inner periphery of the hub wheel 10, a mandrel having a diameter larger than the inner diameter of the small diameter portion 31b1 is pushed into the inner periphery of the stem portion 31b to increase the diameter of the small diameter portion 31b1, and the inner diameter of the hub wheel 10 is increased. The hub wheel 10 and the outer joint member 31 are plastically coupled by being brought into pressure contact with the peripheral surface. If the concavo-convex portion 15 is formed in advance on the inner peripheral surface of the hub wheel 10 by knurling or the like and the concavo-convex portion 15 is hardened by heat treatment, the concavo-convex portion 15 is formed on the outer peripheral surface of the stem portion 31b by expanding the small diameter portion 31b1. Thus, the hub wheel 10 and the outer joint member 31 can be firmly plastically coupled.

なお、拡径加締めのように、外側継手部材31のステム部31bを中空に形成する場合、マウス部31a内部への異物の侵入およびグリースの流出等の事態を避けるため、ステム部31bの内周面にキャップ39を装着するのが望ましい。   In addition, when the stem portion 31b of the outer joint member 31 is formed to be hollow as in diameter expansion caulking, the inside of the stem portion 31b is avoided in order to avoid a situation such as entry of foreign matter into the mouth portion 31a and outflow of grease. It is desirable to attach a cap 39 to the peripheral surface.

図12は本発明の第3の実施形態を示すもので、ハブ輪10と外側継手部材31とを揺動加締めと呼ばれる方法で非分離に結合したものである。揺動加締めでは、ステム部31bのアウトボード側の軸端を円筒状に形成し、加締め具の揺動により円筒部を外径側に塑性変形させてフランジ31b2が形成される。フランジ31b2をハブ輪10の端面に当接させることにより、ハブ輪10の抜け止めが行なわれ、かつハブ輪10の内周面とステム部31bの外周面との間にスプライン60を形成することで、ハブ輪10と外側継手部材31の回り止めがなされる。   FIG. 12 shows a third embodiment of the present invention, in which the hub wheel 10 and the outer joint member 31 are non-separated by a method called swing caulking. In the swing caulking, the shaft end on the outboard side of the stem portion 31b is formed in a cylindrical shape, and the flange 31b2 is formed by plastically deforming the cylindrical portion to the outer diameter side by swinging the caulking tool. The flange 31b2 is brought into contact with the end surface of the hub wheel 10 to prevent the hub wheel 10 from coming off, and the spline 60 is formed between the inner peripheral surface of the hub wheel 10 and the outer peripheral surface of the stem portion 31b. Thus, the hub wheel 10 and the outer joint member 31 are prevented from rotating.

図13は本発明の第4の実施形態を示すもので、ハブ輪10と外側継手部材31とを溶接により非分離に結合したものである(溶接部分を符号61で示す)。溶接法としては、レーザビーム溶接、プラズマ溶接、電子ビーム溶接、高速パルス方式によるプロジェクション溶接等を例示することができる。ステム部31bはハブ輪10の内周に圧入されており、この圧入嵌合面を介してトルクを伝達することができるため、溶接部61にかかる負荷は小さく、従って、上記のように熱影響の少ない溶接法を採用することができる。   FIG. 13 shows a fourth embodiment of the present invention, in which the hub wheel 10 and the outer joint member 31 are joined in a non-separable manner by welding (the welded portion is indicated by reference numeral 61). Examples of the welding method include laser beam welding, plasma welding, electron beam welding, and high-speed pulse projection welding. Since the stem portion 31b is press-fitted into the inner periphery of the hub wheel 10 and torque can be transmitted through the press-fitting fitting surface, the load applied to the welded portion 61 is small. Less welding method can be adopted.

図11〜図13では、ハブ輪10の内周にステム部31bを嵌合する場合を例示したが、これとは逆に、中空状のステム部31bの内周にハブ輪10を嵌合して両者を非分離に結合することもできる(図14〜図17参照)。   11 to 13 exemplify the case where the stem portion 31b is fitted to the inner periphery of the hub wheel 10, conversely, the hub wheel 10 is fitted to the inner periphery of the hollow stem portion 31b. The two can also be joined in a non-separable manner (see FIGS. 14 to 17).

このうち、図14は第5の実施形態示すものであり、図1に示す第1の実施形態と同様に、雄部51と雌部52を互いに異形に形成し、雄部51を雌部52に圧入することにより、ハブ輪10と外側継手部材31とを塑性結合したものである。この場合、ハブ輪10のうち、インボード側の中実端部16の外周面に雄部51が形成され、これに対向するステム部31bの内周面に雌部52が形成される。図1に示す実施形態と同様に、雄部52の圧入後、図9に示す方法で、ハブ輪10の中実軸端16の外周部を加締めてフランジ部58を形成することにより、さらに結合強度を高めることができる。   Among these, FIG. 14 shows a fifth embodiment. Like the first embodiment shown in FIG. 1, the male part 51 and the female part 52 are formed differently from each other, and the male part 51 is changed to the female part 52. The hub wheel 10 and the outer joint member 31 are plastically coupled by press-fitting into the inner ring. In this case, a male part 51 is formed on the outer peripheral surface of the solid end part 16 on the inboard side of the hub wheel 10, and a female part 52 is formed on the inner peripheral surface of the stem part 31 b facing this. Similarly to the embodiment shown in FIG. 1, after the male portion 52 is press-fitted, the outer peripheral portion of the solid shaft end 16 of the hub wheel 10 is crimped by the method shown in FIG. 9 to form the flange portion 58. Bond strength can be increased.

図15は第6の実施形態を示すものであり、ハブ輪10と外側継手部材31とを上記拡径加締めにより塑性結合したものである。すなわち中空ハブ輪10の小径部31b1をマンドレルで拡径変形させ、ステム部31bの内周面に形成した凹凸部15を食い込ませることによりハブ輪10と外側継手部材31とが塑性結合されている。図16は第7の実施形態を示すものであり、ハブ輪10と外側継手部材31とを上記揺動加締めで塑性結合したものである。ハブ輪10のインボード側の中実軸端16に形成した円筒部を揺動加締めにより塑性変形させてフランジ17を形成し、このフランジ17をマウス部31aに密着させている。図17は第8の実施形態を示すものであり、両部材を上記の溶接法により非分離に結合したものである(溶接部分を符号61で示す)。   FIG. 15 shows a sixth embodiment, in which the hub wheel 10 and the outer joint member 31 are plastically coupled by the above-described enlarged diameter caulking. That is, the small diameter portion 31b1 of the hollow hub wheel 10 is expanded and deformed by a mandrel, and the concave and convex portions 15 formed on the inner peripheral surface of the stem portion 31b are bitten to plastically couple the hub wheel 10 and the outer joint member 31. . FIG. 16 shows a seventh embodiment, in which the hub wheel 10 and the outer joint member 31 are plastically coupled by the above-described swing caulking. A cylindrical portion formed at the solid shaft end 16 on the inboard side of the hub wheel 10 is plastically deformed by swinging and caulking to form a flange 17, which is in close contact with the mouth portion 31a. FIG. 17 shows an eighth embodiment in which both members are joined in a non-separated manner by the above-described welding method (the welded portion is indicated by reference numeral 61).

図2、図3は、駆動車輪用軸受ユニットの第9および第10の実施形態を示すものである。このうち、図2に示す第9の実施形態では、軸受部20の複列のインナレース21が何れもハブ輪10の外周に圧入した一体構造の内輪28外周面に形成されている。この場合、内輪28が複列のインナレース21を有する内方部材25を構成する。図3に示す第10の実施形態は、図2に示す一体構造の内輪28を軸方向で二分割してそれぞれハブ輪10の外周面に圧入し、二つの内輪28a、28bの各外周面にインナレース21を形成した例である。この実施形態では、二つの内輪28a、28bが複列のインナレース21を有する内方部材25を構成する。図2および図3に示す何れの実施形態でも、アウトボード側の転動体23のPCD(P1)よりもインボード側の転動体23のPCD(P2)の方が大きく、両列の転動体23のボール径は同径になっている。また、軸受部20の両端開口部はカセットシール27a、27bで密封されている。   2 and 3 show the ninth and tenth embodiments of the drive wheel bearing unit. Among these, in the ninth embodiment shown in FIG. 2, the double-row inner races 21 of the bearing portion 20 are all formed on the outer peripheral surface of the integral inner ring 28 press-fitted into the outer periphery of the hub wheel 10. In this case, the inner ring 28 constitutes the inner member 25 having the double-row inner race 21. In the tenth embodiment shown in FIG. 3, the integral inner ring 28 shown in FIG. 2 is divided into two parts in the axial direction and press-fitted into the outer peripheral surface of the hub wheel 10 respectively. This is an example in which an inner race 21 is formed. In this embodiment, the two inner rings 28 a and 28 b constitute the inner member 25 having the double-row inner race 21. 2 and 3, the PCD (P2) of the rolling element 23 on the inboard side is larger than the PCD (P1) of the rolling element 23 on the outboard side. The ball diameter is the same. Further, both end openings of the bearing portion 20 are sealed with cassette seals 27a and 27b.

以上に説明した点を除き、図2および図3に示す第9および第10の実施形態の構成は、図1に示す第1の実施形態と共通するので、共通する部材・要素に共通の参照番号を付して、重複部分の説明を省略する。   Except for the points described above, the configurations of the ninth and tenth embodiments shown in FIG. 2 and FIG. 3 are the same as those of the first embodiment shown in FIG. A number is attached and description of the overlapping part is omitted.

図18は、図1〜図3に示す軸受ユニットにおいて、上記の各種結合構造でハブ輪10と外側継手部材31とをアウトボード側端部で結合した例を示すものである。図18中の縦列左欄(符号1、4、7)は図1に示す軸受ユニット相当品を表し、縦列中欄(符号2、5、8)は図2に示す軸受ユニット相当品を表し、縦列右欄(符号3、6、9)は図3に示す軸受ユニット相当品をそれぞれ表す。また、横列上段(符号1〜3)は拡径加締めを適用したものを表し、横列中段(符号4〜6)は揺動加締めを適用したものを表し、横列下段(符号7〜9)は溶接を適用したものをそれぞれ表す。   FIG. 18 illustrates an example in which the hub wheel 10 and the outer joint member 31 are coupled to each other at the end portion on the outboard side in the bearing units illustrated in FIGS. In FIG. 18, the left column (reference numerals 1, 4, 7) represents the bearing unit equivalent shown in FIG. 1, and the middle column (reference numerals 2, 5, 8) represents the bearing unit equivalent shown in FIG. The right column (reference numerals 3, 6 and 9) in the column represents the bearing unit equivalent product shown in FIG. Further, the upper row (reference numerals 1 to 3) represents the one to which the diameter expansion caulking is applied, the middle row (reference numerals 4 to 6) represents the one to which the swing caulking is applied, and the lower row (reference numerals 7 to 9). Represents the one to which welding is applied.

図1では、ハブ輪10と内輪28、28a、28bの位置決めを止め輪29で行っているが、これに代えて揺動加締めで両者の位置決めを行うこともできる。図10はその一例で、ハブ輪10の小径段部13の円筒状の軸端を内輪28のインボード側端面を超えるまで延ばし、その突出部分の内径側で加締め具を揺動させることにより、突出部分を外径側に塑性変形させてフランジ17を形成したものである。フランジ17は内輪28のインボード側端面と密着している。図2および図3に示す軸受ユニットでも、同様に揺動加締めを施してフランジ17を形成することにより、ハブ輪10と内輪28、28a、28bの軸方向の位置決めを行うことができる。   In FIG. 1, the hub ring 10 and the inner rings 28, 28a, 28b are positioned by the retaining ring 29, but they can be positioned by swing caulking instead. FIG. 10 shows an example of this, by extending the cylindrical shaft end of the small-diameter step 13 of the hub wheel 10 over the inboard side end surface of the inner ring 28 and swinging the crimping tool on the inner diameter side of the protruding portion. The flange 17 is formed by plastically deforming the protruding portion toward the outer diameter side. The flange 17 is in close contact with the end face on the inboard side of the inner ring 28. In the bearing unit shown in FIGS. 2 and 3 as well, the hub ring 10 and the inner rings 28, 28 a, 28 b can be positioned in the axial direction by similarly performing rocking caulking to form the flange 17.

以上の各実施形態では、転動体23を保持器24で保持した軸受部20を例示しているが、図19に示すように保持器を用いない総転動体形式を採用することもできる。総転動体形式であれば、保持器を使用する場合に比べて組み込み可能な転動体数が増えるので、個々の転動体の負荷荷重を低減することができる。従って、高荷重条件下でも軸受ユニットの寿命向上を図ることができる。総転動体形式は、インボード側の転動体列とアウトボード側の転動体列との負荷荷重に差がある場合は、高荷重側にのみ採用することができる。もちろん双方の転動体列が同程度の荷重条件である場合は、双方を総転動体形式にすることもできる。通常は、インボード側のモーメント荷重が大きくなるので、インボード側の転動体列を総転動体形式にする。   In each of the above embodiments, the bearing portion 20 in which the rolling element 23 is held by the cage 24 is illustrated, but a total rolling element type that does not use the cage as shown in FIG. 19 can also be adopted. In the case of the total rolling element type, the number of rolling elements that can be incorporated is increased as compared with the case of using a cage, so that the load load of each rolling element can be reduced. Accordingly, the life of the bearing unit can be improved even under high load conditions. The total rolling element type can be used only on the high load side when there is a difference in load load between the inboard side rolling element row and the outboard side rolling element row. Of course, when both rolling element rows have the same load condition, both can be made into a total rolling element type. Usually, since the moment load on the inboard side becomes large, the rolling element row on the inboard side is made the total rolling element type.

なお、総転動体形式の場合、転動体間の円周方向の隙間が大きすぎると、転動体同士が激しく衝突して打音や発熱を生じる可能性があるので、転動体間の総隙間Sを転動体23の直径寸法Dbよりも小さくする(特に転動体23としてボールを使用する場合、総隙間Sはボール直径の約40%以下に設定する)のが望ましい。   In the case of the total rolling element type, if the circumferential gap between the rolling elements is too large, the rolling elements may collide violently and generate sound and heat generation. Is smaller than the diameter Db of the rolling element 23 (particularly, when a ball is used as the rolling element 23, the total clearance S is set to about 40% or less of the ball diameter).

図22に、駆動車輪用軸受ユニットの第11の実施形態を示す。   FIG. 22 shows an eleventh embodiment of the drive wheel bearing unit.

この軸受ユニットでは、外方部材26は、一対の軸受外輪261、262と、軸受外輪261、262間に配置したリング状の間座263とで構成される。両軸受外輪261、262の内周面にはそれぞれアウタレース22が形成されている。ハブ輪10の外周面には複列のインナレース21が直接形成され、これによりハブ輪10が内方部材25を構成する。図面ではハブ輪10のインボード側の端面を外側継手部材31の肩面38に当接させているが、ハブ輪10と外側継手部材31との間に十分な結合強度が確保されていれば、両者間に隙間を介在させることもできる。   In this bearing unit, the outer member 26 includes a pair of bearing outer rings 261 and 262 and a ring-shaped spacer 263 disposed between the bearing outer rings 261 and 262. Outer races 22 are formed on the inner peripheral surfaces of both bearing outer rings 261 and 262, respectively. Double rows of inner races 21 are directly formed on the outer peripheral surface of the hub wheel 10, whereby the hub wheel 10 constitutes the inner member 25. In the drawing, the end surface on the inboard side of the hub wheel 10 is brought into contact with the shoulder surface 38 of the outer joint member 31. However, if sufficient coupling strength is secured between the hub wheel 10 and the outer joint member 31. A gap can be interposed between the two.

軸受部20の両端開口部を密封するシール27のうち、アウトボード側のシール27aは、外径端をゴム等の弾性材料で被覆して複数(例えば2つ)のシールリップを形成した芯金271と、シールリップと接触するスリンガ272とで構成される。芯金271はハブ輪10の外周面に圧入固定され、スリンガ272はアウトボード側の軸受外輪262の内周面に圧入固定される。スリンガ272のアウトボード側の端部は、フランジ11のインボード側端面に近接してラビリンスシールを構成する。   Out of the seals 27 that seal the opening portions at both ends of the bearing portion 20, the seal 27 a on the outboard side is a core metal in which a plurality of (for example, two) seal lips are formed by covering the outer diameter end with an elastic material such as rubber. 271 and a slinger 272 in contact with the seal lip. The metal core 271 is press-fitted and fixed to the outer peripheral surface of the hub wheel 10, and the slinger 272 is press-fitted and fixed to the inner peripheral surface of the bearing outer ring 262 on the outboard side. The end on the outboard side of the slinger 272 is adjacent to the inboard side end surface of the flange 11 to form a labyrinth seal.

軸受外輪261、262および間座263の外周面は、何れも円筒面状である。軸受外輪261、262は何れも外周面を円筒面状とし、これをナックル部材6の内周面6aに圧入しているが、間座263の外径寸法は、軸受外輪261、262の外径寸法よりも僅かに小さく、ナックル部材6の内周面との間には僅かな隙間がある。間座263は、図24に示すように周方向で二分割されている。   The outer peripheral surfaces of the bearing outer rings 261 and 262 and the spacer 263 are all cylindrical surfaces. Each of the bearing outer rings 261, 262 has a cylindrical outer peripheral surface and is press-fitted into the inner peripheral surface 6a of the knuckle member 6. The outer diameter of the spacer 263 is the outer diameter of the bearing outer rings 261, 262. There is a slight gap between the inner peripheral surface of the knuckle member 6 and slightly smaller than the size. The spacer 263 is divided into two in the circumferential direction as shown in FIG.

アウトボード側の軸受外輪262は、止め輪53で位置決めされる。この止め輪53としては、図23に示すように、円周方向両端に外径側へ延びた操作部53aを有するC型が使用可能である。止め輪53をナックル部材6の内周面に形成した止め輪溝6cに嵌め込み、かつ操作部53aをナックル部材6に形成した軸方向の切欠き6dに収容することにより、止め輪53が軸受外輪262のアウトボード側端面と係合して外方部材26の位置決めが行なわれる。   The bearing outer ring 262 on the outboard side is positioned by a retaining ring 53. As the retaining ring 53, as shown in FIG. 23, a C-type having an operation portion 53a extending to the outer diameter side at both ends in the circumferential direction can be used. The retaining ring 53 is fitted into a retaining ring groove 6 c formed on the inner peripheral surface of the knuckle member 6, and the operation portion 53 a is accommodated in the axial notch 6 d formed on the knuckle member 6, so that the retaining ring 53 is supported by the bearing outer ring. The outer member 26 is positioned by engaging with the end face on the outboard side of 262.

この軸受ユニットの組立は、以下の手順で行なわれる。   The bearing unit is assembled in the following procedure.

まず図25に示すように、ハブ輪10の外周にアウトボード側のシール27aの芯金271を圧入固定する。   First, as shown in FIG. 25, the cored bar 271 of the seal 27 a on the outboard side is press-fitted and fixed to the outer periphery of the hub wheel 10.

次に、図26に示すように、ハブ輪10の外周に転動体23を組み込んでインナレース21に収容する。この際、転動体23は予め保持器24のポケットに収容した状態でハブ輪10の外周に組み込まれる。次いで、アウトボード側の軸受外輪262をハブ輪10の外周に挿入する。この際、予め軸受外輪262の内周面にスリンガ272を圧入しておく。軸受外輪262をアウトボード側に押し進めると、芯金271に形成したシールリップがスリンガ272の内周面に接触し、シール27aが構成される。また、軸受外輪262のアウタレース22に転動体23が収容される。   Next, as shown in FIG. 26, the rolling elements 23 are assembled on the outer periphery of the hub wheel 10 and accommodated in the inner race 21. At this time, the rolling element 23 is incorporated in the outer periphery of the hub wheel 10 in a state of being accommodated in the pocket of the cage 24 in advance. Next, the bearing outer ring 262 on the outboard side is inserted into the outer periphery of the hub wheel 10. At this time, the slinger 272 is press-fitted into the inner peripheral surface of the bearing outer ring 262 in advance. When the bearing outer ring 262 is pushed to the outboard side, the seal lip formed on the cored bar 271 contacts the inner peripheral surface of the slinger 272, and the seal 27a is formed. Further, the rolling element 23 is accommodated in the outer race 22 of the bearing outer ring 262.

次に図27に示すように、インボード側の軸受外輪261をハブ輪10の外周に挿入する。この際、軸受外輪261をアウトボード側の軸受外輪262に接触させる等して規定位置よりもアウトボード側に位置させることにより、軸受外輪261のインボード側端部とハブ輪10との間にボール径Dよりも大きな隙間δが形成されるので、この隙間δから転動体23を軸受外輪261とハブ輪10の間の空間に挿入する。規定数の転動体23を挿入したところで、インボード側の開口部から保持器24を押し込んでポケットに転動体23を収容し、各転動体23を円周方向等間隔に保持する。   Next, as shown in FIG. 27, the bearing outer ring 261 on the inboard side is inserted into the outer periphery of the hub wheel 10. At this time, the bearing outer ring 261 is positioned on the outboard side from the specified position by contacting the bearing outer ring 262 on the outboard side or the like, so that the inboard side end portion of the bearing outer ring 261 and the hub wheel 10 are interposed. Since a gap δ larger than the ball diameter D is formed, the rolling element 23 is inserted into the space between the bearing outer ring 261 and the hub ring 10 from this gap δ. When the prescribed number of rolling elements 23 has been inserted, the retainer 24 is pushed through the opening on the inboard side to accommodate the rolling elements 23 in the pockets, and the rolling elements 23 are held at equal intervals in the circumferential direction.

次に図28に示すように、軸受外輪261、262の間に隙間を形成し、当該隙間にハブ輪10を挟むようにして分割間座263を挿入する。これにより、インボード側の軸受外輪261が規定位置に配置され、インボード側の転動体23がインナレース21およびアウタレース22に所定の接触角をもって収容される。   Next, as shown in FIG. 28, a gap is formed between the bearing outer rings 261 and 262, and the split spacer 263 is inserted so that the hub ring 10 is sandwiched in the gap. As a result, the bearing outer ring 261 on the inboard side is disposed at the specified position, and the rolling element 23 on the inboard side is accommodated in the inner race 21 and the outer race 22 with a predetermined contact angle.

その後、図29に示すように、インボート側の軸受外輪261とハブ輪10との間に開口部にカセットシールを圧入し、シール27bを構成する。   Thereafter, as shown in FIG. 29, a cassette seal is press-fitted into the opening between the inboard-side bearing outer ring 261 and the hub wheel 10 to form a seal 27b.

以上の組立が完了した後、ハブ輪10をアウトボード側等速自在継手30の外側継手部材31と非分離に結合する。この時の結合方法は任意であり、図1に示す実施形態と同様に、雄部51を雌部52に圧入して塑性結合させる他、上記拡径加締め、揺動加締め、あるいは溶接等の手段で結合することもできる。その後、ナックル部材6の内周に、インボード側等速自在継手40、中間軸2、アウトボード側等速自在継手30の順で挿入し、最後に止め輪53を拡径させながら外方部材26を圧入し、インボード側の軸受外輪261を凸部6bに当接させる。その後、止め輪53を弾性的に縮径させて軸受外輪262のアウトボード側端面に係合させることにより、ドライブシャフトアセンブリの組み付けが完了する。   After the above assembly is completed, the hub wheel 10 is non-separated from the outer joint member 31 of the outboard side constant velocity universal joint 30. The coupling method at this time is arbitrary, and in the same manner as in the embodiment shown in FIG. 1, the male part 51 is press-fitted into the female part 52 to be plastically coupled, and the above-described diameter-expanded caulking, swing caulking, or welding, etc. It is also possible to combine them by the following means. Thereafter, the inboard side constant velocity universal joint 40, the intermediate shaft 2, and the outboard side constant velocity universal joint 30 are inserted in this order into the inner periphery of the knuckle member 6, and finally the outer ring member 53 is expanded while the diameter of the retaining ring 53 is increased. 26 is press-fitted, and the bearing outer ring 261 on the inboard side is brought into contact with the convex portion 6b. Thereafter, the retaining ring 53 is elastically reduced in diameter and engaged with the end face of the bearing outer ring 262 to complete the assembly of the drive shaft assembly.

以上の構成であれば、一対の軸受外輪261、262の間に、後入れ可能の間座263を配置しているので、ハブ輪10に直接インナレース21を形成している場合でも複列の転動体23を外方部材26とハブ輪10の間の空間に組み込むことができる。従って、図1〜図3の各実施形態での内輪28、28a、28bが不要となり、部品点数の削減による低コスト化を図ることが可能となる。   With the above configuration, since the insertable spacer 263 is disposed between the pair of bearing outer rings 261, 262, even when the inner race 21 is formed directly on the hub wheel 10, double rows The rolling element 23 can be incorporated in the space between the outer member 26 and the hub wheel 10. Accordingly, the inner rings 28, 28a, and 28b in each of the embodiments shown in FIGS. 1 to 3 are not necessary, and the cost can be reduced by reducing the number of parts.

この実施形態においては、図22に示すように軸受外輪262のアウトボード側端面と係合する止め輪53を使用する他、図1に示すように、アウトボード側の軸受外輪262の外周面26aとナックル部材6の内周面6aとの間に介在する止め輪53を使用することもできる。また、特に組み込み性に問題がなければ、アウトボード側のシール27aとして、図1に示すシール27aと同様に、芯金の内径端にシールリップを有し、芯金の外周面を外方部材26の内周面に圧入するタイプを使用することもできる。   In this embodiment, as shown in FIG. 22, a retaining ring 53 that engages with the end face on the outboard side of the bearing outer ring 262 is used, and as shown in FIG. 1, the outer peripheral face 26a of the bearing outer ring 262 on the outboard side. A retaining ring 53 interposed between the inner peripheral surface 6a of the knuckle member 6 can be used. If there is no particular problem in assemblability, the seal 27a on the outboard side has a seal lip at the inner diameter end of the cored bar as in the seal 27a shown in FIG. It is also possible to use a type that is press-fitted into the inner peripheral surface of 26.

図30に駆動車輪用軸受ユニットの第12の実施形態を示す。この駆動車輪用軸受ユニットは、ホイール80の内周に嵌合する円筒状のパイロット部72をハブ輪10と別部材、例えばブレーキロータ70に設けた例である。ブレーキロータ70は、ハブ輪10の車輪取付けフランジ11のアウトボード側端面とホイール80の間に配置され、その円周方向複数箇所にはハブボルトを挿通するための孔71が形成されている。   FIG. 30 shows a twelfth embodiment of the drive wheel bearing unit. This bearing unit for a drive wheel is an example in which a cylindrical pilot portion 72 fitted to the inner periphery of the wheel 80 is provided on a member different from the hub wheel 10, for example, the brake rotor 70. The brake rotor 70 is disposed between the end face on the outboard side of the wheel mounting flange 11 of the hub wheel 10 and the wheel 80, and holes 71 through which hub bolts are inserted are formed at a plurality of locations in the circumferential direction.

この実施形態においても、外方部材26の外周面26aがナックル部材6の内周面6aに嵌合組込みされ、アウトボード側等速自在継手30の最大外径寸法がナックル部材6の最小内径寸法よりも小さくなっている。また、アウトボード側の転動体23のPCD(P1)よりもインボード側の転動体23のPCD(P2)の方が大きく、両列の転動体23の径寸法は同径になっている。   Also in this embodiment, the outer peripheral surface 26 a of the outer member 26 is fitted and incorporated into the inner peripheral surface 6 a of the knuckle member 6, and the maximum outer diameter of the outboard side constant velocity universal joint 30 is the minimum inner diameter of the knuckle member 6. Is smaller than Further, the PCD (P2) of the rolling elements 23 on the inboard side is larger than the PCD (P2) of the rolling elements 23 on the outboard side, and the diameter dimensions of the rolling elements 23 in both rows are the same.

図1に示すように、通常、パイロット部72はハブ輪10のアウトボード側の端部に一体形成されており、それ故にハブ輪10の形状が複雑化している。そのため、実際にはハブ輪10を鍛造のみで成形することは難しく、旋削加工を加える場合が多い。また、パイロット部72には、部分的に防錆塗装を施す必要がある。以上から、ハブ輪10の製作コストは高騰する傾向にある。   As shown in FIG. 1, the pilot portion 72 is usually formed integrally with the end portion on the outboard side of the hub wheel 10, and therefore the shape of the hub wheel 10 is complicated. Therefore, in practice, it is difficult to form the hub wheel 10 only by forging, and turning is often performed. Further, the pilot portion 72 needs to be partially rust-proofed. From the above, the manufacturing cost of the hub wheel 10 tends to increase.

これに対し、ハブ輪10のパイロット部72を廃し、これを図30に示すように、ブレーキロータ70の例えば内径端部に設ければ、ハブ輪10のアウトボード側の形状が簡略化されるため、これを鍛造成形することが可能となり、かつハブ輪10への防錆塗装処理も不要となる。従って、ハブ輪10の低コスト化を図ることができ、かつ軽量化設計も可能となる。通常、ブレーキロータ70は鋳造で成形されるので、パイロット部72を有するブレーキロータ70は低コストに製作可能である。   On the other hand, if the pilot portion 72 of the hub wheel 10 is eliminated and is provided at, for example, the inner diameter end portion of the brake rotor 70 as shown in FIG. 30, the shape of the hub wheel 10 on the outboard side is simplified. Therefore, it becomes possible to forge-mold this, and the antirust coating process to the hub wheel 10 is also unnecessary. Therefore, the cost of the hub wheel 10 can be reduced, and a light weight design can be achieved. Since the brake rotor 70 is usually formed by casting, the brake rotor 70 having the pilot portion 72 can be manufactured at low cost.

図30は、中空ハブ輪10と内輪28とで内方部材25を形成した図1相当の軸受ユニットを表しているが、同様の構成は、一体内輪28で内方部材25を形成した図2相当の軸受ユニット(図31参照:第13の実施形態)、および分割内輪28a、28bで内方部材25を形成した図3相当の軸受ユニット(図32参照:第14の実施形態)でも採用することができる。なお、図30〜図32に示す軸受ユニットでは、揺動加締めによるフランジ17でハブ輪10と内輪28、28a、28bの位置決めを行っているが、図1に示すように、この位置決めを止め輪29で行うこともできる。   FIG. 30 shows a bearing unit corresponding to FIG. 1 in which the inner member 25 is formed by the hollow hub wheel 10 and the inner ring 28, but a similar configuration is shown in FIG. 2 in which the inner member 25 is formed by the integrated inner ring 28. The bearing unit (see FIG. 31: the thirteenth embodiment) corresponding to the equivalent and the bearing unit equivalent to FIG. 3 (see FIG. 32: the fourteenth embodiment) in which the inner member 25 is formed by the divided inner rings 28a, 28b are also employed. be able to. In the bearing unit shown in FIGS. 30 to 32, the hub wheel 10 and the inner rings 28, 28a, 28b are positioned by the flange 17 by swing caulking, but this positioning is stopped as shown in FIG. It can also be done with the wheel 29.

第1の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 1st Embodiment. 第9の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 9th Embodiment. 第10の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 10th Embodiment. ドライブシャフトの断面図である。It is sectional drawing of a drive shaft. 外方部材とナックル部材の圧入部を拡大して示す断面図である。It is sectional drawing which expands and shows the press fit part of an outward member and a knuckle member. 外方部材とナックル部材の圧入部を拡大して示す断面図である。It is sectional drawing which expands and shows the press fit part of an outward member and a knuckle member. (a)図はハブ輪と外側継手部材の結合部分における雄部の断面図、(b)図は同じく雌部の断面図である。(A) The figure is sectional drawing of the male part in the coupling | bond part of a hub ring and an outer joint member, (b) Figure is sectional drawing of a female part similarly. 雄部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a male part. ハブ輪と外側継手部材の塑性結合工程を示す断面図である。It is sectional drawing which shows the plastic coupling process of a hub ring and an outer joint member. 駆動輪用車輪軸受ユニットの断面図である。It is sectional drawing of the wheel bearing unit for drive wheels. 第2の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 2nd Embodiment. 第3の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 3rd Embodiment. 第4の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 4th Embodiment. 第5の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 5th Embodiment. 第6の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 6th Embodiment. 第7の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 7th Embodiment. 第8の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 8th Embodiment. 図1〜図3に示す軸受ユニットにおいて拡径加締め、揺動加締め、および溶接を適用した場合の構成を示す図である。It is a figure which shows the structure at the time of applying diameter expansion caulking, rocking caulking, and welding in the bearing unit shown in FIGS. 総転動体式の軸受構造を示す正面図である。It is a front view showing a total rolling element type bearing structure. 異なるPCDを有する転動体を概略図示する側面図である。It is a side view which illustrates schematically the rolling element which has different PCD. 径の異なる転動体を概略図示する側面図である。It is a side view which illustrates schematically the rolling element from which a diameter differs. 第11の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 11th Embodiment. 止め輪の断面図である。It is sectional drawing of a retaining ring. 間座の断面図である。It is sectional drawing of a spacer. 駆動車輪用軸受ユニットの組立工程を示す断面図である。It is sectional drawing which shows the assembly process of the bearing unit for drive wheels. 駆動車輪用軸受ユニットの組立工程を示す断面図である。It is sectional drawing which shows the assembly process of the bearing unit for drive wheels. 駆動車輪用軸受ユニットの組立工程を示す断面図である。It is sectional drawing which shows the assembly process of the bearing unit for drive wheels. 駆動車輪用軸受ユニットの組立工程を示す断面図である。It is sectional drawing which shows the assembly process of the bearing unit for drive wheels. 駆動車輪用軸受ユニットの組立工程を示す断面図である。It is sectional drawing which shows the assembly process of the bearing unit for drive wheels. 第12の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 12th Embodiment. 第13の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 13th Embodiment. 第14の実施形態にかかる駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels concerning 14th Embodiment. 駆動車輪用軸受ユニットの要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the bearing unit for drive wheels. 駆動車輪用軸受ユニットの要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the bearing unit for drive wheels. 車両の懸架装置周りの概略構造を示す断面図である。It is sectional drawing which shows schematic structure around the suspension apparatus of a vehicle.

符号の説明Explanation of symbols

1 ドライブシャフト
2 中間軸
6 ナックル部材
6a 内周面
6b 凸部
6c 止め輪溝
6c1 テーパ面
10 ハブ輪
11 フランジ
20 軸受部
21 インナレース
22 アウタレース
23 転動体
24 保持器
25 内方部材
26 外方部材
26a 外周面
27a シール
27b シール
28 内輪
28a 内輪
28b 内輪
29 止め輪
30 アウトボード側等速自在継手
31 外側継手部材
31a マウス部
31b ステム部
32 内側継手部材
33 トルク伝達ボール
34 ケージ
36 ブーツバンド
37 ブーツ
38 肩面
39 キャップ
40 インボード側等速自在継手
51 雄部
52 雌部
53 止め輪
56 ヌスミ部
57 ヌスミ部
70 ブレーキロータ
72 パイロット部
80 ホイール
Dn ナックル部材の最小内径寸法
D1 アウトボード側等速自在継手の最大外径寸法
D2 インボード側等速自在継手の最大外径寸法
O 軸方向中心線
P1 インボード側転動体列のPCD
P2 アウトボード側転動体列のPCD
DESCRIPTION OF SYMBOLS 1 Drive shaft 2 Intermediate shaft 6 Knuckle member 6a Inner peripheral surface 6b Protruding part 6c Retaining ring groove 6c1 Tapered surface 10 Hub wheel 11 Flange 20 Bearing part 21 Inner race 22 Outer race 23 Rolling body 24 Cage 25 Inner member 26 Outer member 26a Outer peripheral surface 27a Seal 27b Seal 28 Inner ring 28a Inner ring 28b Inner ring 29 Retaining ring 30 Outboard side constant velocity universal joint 31 Outer joint member 31a Mouse part 31b Stem part 32 Inner joint member 33 Torque transmission ball 34 Cage 36 Boot band 37 Boot 38 Shoulder surface 39 Cap 40 Inboard side constant velocity universal joint 51 Male part 52 Female part 53 Retaining ring 56 Nusumi part 57 Nusumi part 70 Brake rotor 72 Pilot part 80 Wheel Dn Minimum inner diameter dimension D1 of knuckle member Outboard side constant velocity universal joint Maximum outer diameter D2 Maximum outer diameter of the constant velocity universal joint on the inboard side O axial center line P1 PCD of the inboard side rolling element row
P2 PCD of outboard side rolling element row

Claims (4)

内周に複数のアウタレースを有する外方部材と、前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された二列の転動体と、車輪に取り付けられるハブ輪と、アウトボード側等速自在継手とを備える駆動車輪用軸受ユニットにおいて、
外方部材の外周面が車体側のナックル部材の内周面に嵌合組込みされ、アウトボード側等速自在継手の最大外径寸法がナックル部材の最小内径寸法よりも小さく、かつ以下の(1)〜(3)の何れか一以上の特徴を有する駆動車輪用軸受ユニット:
(1)インボード側の転動体とアウトボード側の転動体のPCDを互いに異ならせる、
(2)インボード側の転動体とアウトボード側の転動体の径寸法を互いに異ならせる、
(3)インボード側の転動体とアウトボード側の転動体の数を互いに異ならせる。
An outer member having a plurality of outer races on the inner periphery, an inner member having a plurality of inner races facing the outer race, two rows of rolling elements disposed between the outer race and the inner race facing each other, and a wheel In a drive wheel bearing unit comprising a hub wheel attached to an outboard and a constant velocity universal joint on the outboard side,
The outer peripheral surface of the outer member is fitted and incorporated into the inner peripheral surface of the knuckle member on the vehicle body side, the maximum outer diameter of the constant velocity universal joint on the outboard side is smaller than the minimum inner diameter of the knuckle member, and the following (1 ) To (3) any one or more of drive wheel bearing units:
(1) The PCDs of the inboard side rolling element and the outboard side rolling element are different from each other.
(2) The diameter dimensions of the rolling elements on the inboard side and the rolling elements on the outboard side are different from each other.
(3) The number of rolling elements on the inboard side and the number of rolling elements on the outboard side are different from each other.
外方部材の外周面をナックル部材の内周面に圧入した請求項1記載の駆動車輪用軸受ユニット。   The drive wheel bearing unit according to claim 1, wherein the outer peripheral surface of the outer member is press-fitted into the inner peripheral surface of the knuckle member. ハブ輪および外側継手部材のうち、何れか一方に設けられた雄部を、他方に設けられ、雄部と異形の雌部に圧入することにより、ハブ輪と外側継手部材とを塑性結合した請求項1または2記載の駆動車輪用軸受ユニット。   Claims in which the hub ring and the outer joint member are plastically coupled by press-fitting the male part provided on one of the hub wheel and the outer joint member into the other and the male part and the female part having a different shape. Item 3. A bearing unit for a drive wheel according to Item 1 or 2. アウトボード側等速自在継手とインボード側等速自在継手を中間軸を介して連結し、両側の等速自在継手の最大外径寸法をナックル部材の最小内径寸法よりも小さくした請求項1〜3何れか記載の駆動車輪用軸受ユニット。   The outboard side constant velocity universal joint and the inboard side constant velocity universal joint are connected via an intermediate shaft, and the maximum outer diameter dimension of the constant velocity universal joint on both sides is made smaller than the minimum inner diameter dimension of the knuckle member. 3. A drive wheel bearing unit according to any one of 3 above.
JP2006173168A 2006-06-22 2006-06-22 Bearing unit for driving wheel Withdrawn JP2008001243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173168A JP2008001243A (en) 2006-06-22 2006-06-22 Bearing unit for driving wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173168A JP2008001243A (en) 2006-06-22 2006-06-22 Bearing unit for driving wheel

Publications (1)

Publication Number Publication Date
JP2008001243A true JP2008001243A (en) 2008-01-10

Family

ID=39005975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173168A Withdrawn JP2008001243A (en) 2006-06-22 2006-06-22 Bearing unit for driving wheel

Country Status (1)

Country Link
JP (1) JP2008001243A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250296A (en) * 2008-04-03 2009-10-29 Ntn Corp Bearing device for wheel
WO2010021225A1 (en) * 2008-08-18 2010-02-25 Ntn株式会社 Bearing device for wheel, and axle module
JP2010042785A (en) * 2008-08-18 2010-02-25 Ntn Corp Bearing device for wheel
JP2010047059A (en) * 2008-08-19 2010-03-04 Ntn Corp Wheel bearing device and axle module
WO2010044344A1 (en) * 2008-10-14 2010-04-22 Ntn株式会社 Wheel bearing apparatus
JP2010112441A (en) * 2008-11-05 2010-05-20 Ntn Corp Wheel bearing device
WO2010058719A1 (en) * 2008-11-18 2010-05-27 Ntn株式会社 Bearing device for wheel
JP2010120461A (en) * 2008-11-18 2010-06-03 Ntn Corp Bearing device for wheel
JP2015116598A (en) * 2013-12-19 2015-06-25 株式会社キーレックス Press device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250296A (en) * 2008-04-03 2009-10-29 Ntn Corp Bearing device for wheel
WO2010021225A1 (en) * 2008-08-18 2010-02-25 Ntn株式会社 Bearing device for wheel, and axle module
JP2010042785A (en) * 2008-08-18 2010-02-25 Ntn Corp Bearing device for wheel
JP2010047059A (en) * 2008-08-19 2010-03-04 Ntn Corp Wheel bearing device and axle module
WO2010044344A1 (en) * 2008-10-14 2010-04-22 Ntn株式会社 Wheel bearing apparatus
JP2010112441A (en) * 2008-11-05 2010-05-20 Ntn Corp Wheel bearing device
WO2010058719A1 (en) * 2008-11-18 2010-05-27 Ntn株式会社 Bearing device for wheel
JP2010120461A (en) * 2008-11-18 2010-06-03 Ntn Corp Bearing device for wheel
JP2015116598A (en) * 2013-12-19 2015-06-25 株式会社キーレックス Press device

Similar Documents

Publication Publication Date Title
JP5079270B2 (en) Wheel bearing unit
US8480306B2 (en) Bearing unit for driving wheels
JP2008002578A (en) Bearing unit for drive wheel
JP2008001243A (en) Bearing unit for driving wheel
JP2008002579A (en) Bearing unit for drive wheel
JP2005193757A (en) Bearing apparatus for driving wheel
JP4338095B2 (en) Drive wheel bearing unit
JP6253909B2 (en) Wheel bearing device
WO2008007474A1 (en) Bearing device for wheel
JP2005297944A (en) Bearing device for wheel
JP2008002582A (en) Bearing unit for drive wheel
JP2008018765A (en) Bearing unit for drive wheel
JP5061818B2 (en) Wheel support device
JP2008002581A (en) Bearing unit for drive wheel
JP2008018767A (en) Drive shaft assembly
JP2007331555A (en) Driving wheel bearing unit
JP2008001237A (en) Bearing unit for driving wheel
JP2007321903A (en) Bearing device for wheel
JP2008001239A (en) Bearing unit for driving wheel
JP2007333117A (en) Bearing unit for driving wheel
JP5101051B2 (en) Drive wheel bearing unit
JP2017047716A (en) Bearing device for wheel
JP2007162828A (en) Wheel bearing device and axle module equipped therewith
JP2008247274A (en) Wheel bearing device
JP2008002580A (en) Bearing unit for drive wheel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901