JP5430542B2 - Refrigerant condenser - Google Patents

Refrigerant condenser Download PDF

Info

Publication number
JP5430542B2
JP5430542B2 JP2010269333A JP2010269333A JP5430542B2 JP 5430542 B2 JP5430542 B2 JP 5430542B2 JP 2010269333 A JP2010269333 A JP 2010269333A JP 2010269333 A JP2010269333 A JP 2010269333A JP 5430542 B2 JP5430542 B2 JP 5430542B2
Authority
JP
Japan
Prior art keywords
pipe
core
refrigerant
liquid
liquid receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010269333A
Other languages
Japanese (ja)
Other versions
JP2012117777A (en
Inventor
雄一 松元
祐介 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2010269333A priority Critical patent/JP5430542B2/en
Priority to PCT/JP2011/075376 priority patent/WO2012073643A1/en
Publication of JP2012117777A publication Critical patent/JP2012117777A/en
Application granted granted Critical
Publication of JP5430542B2 publication Critical patent/JP5430542B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、冷媒凝縮器に関し、とくに、受液器と凝縮器との接続構造を改良した、組立が容易な冷媒凝縮器に関する。   The present invention relates to a refrigerant condenser, and more particularly to an easily assembled refrigerant condenser having an improved connection structure between a liquid receiver and a condenser.

冷凍回路に用いられる凝縮器として、気相および液相が混合された冷媒を気液分離する受液器が、ヘッダの側面部に一体的に接合された受液器一体型冷媒凝縮器が知られている。このような受液器一体型冷媒凝縮器においては、一般に、ヘッダを受液器へ接続する冷媒通路が備えられ、それぞれの部品はろう付けによって固定されている。   As a condenser used in a refrigeration circuit, a liquid receiver for gas-liquid separation of a refrigerant in which a gas phase and a liquid phase are mixed is known as a liquid receiver integrated refrigerant condenser integrally joined to a side surface of a header. It has been. Such a liquid receiver-integrated refrigerant condenser is generally provided with a refrigerant passage that connects the header to the liquid receiver, and each component is fixed by brazing.

例えば特許文献1には、凝縮部と過冷却部が一体に形成され、受液器が備えられた冷媒凝縮器について開示されている。この発明においては、凝縮部と受液器の間、および受液器と過冷却部の間を連通する一対の連通路が設けられており、各部材はアルミニウム材で成形され、一体ろう付けにて組付けられている。   For example, Patent Document 1 discloses a refrigerant condenser in which a condensing unit and a supercooling unit are integrally formed and provided with a liquid receiver. In the present invention, a pair of communication passages are provided to communicate between the condensing unit and the liquid receiver and between the liquid receiver and the supercooling unit, and each member is formed of an aluminum material and is integrally brazed. Are assembled.

特許3925158号Japanese Patent No. 3925158

しかしながら、特許文献1に開示された発明においては、右ヘッダタンク130と受液器140が直線状の連通路151を介して直接連通されており、それぞれの部材のろう付け時の固定については特に考慮されていない。このため、右ヘッダタンク130と受液器140と連通路151を一体でろう付け接合する際に、これらの組み付け状態を保持する保持治具等が必要となる。また、連通路151、152が直線状であるため流出入回路の設計の自由度が低く、例えばヘッダタンクからの流出部と受液器への流入部を別々の位置に設けることはできない。   However, in the invention disclosed in Patent Document 1, the right header tank 130 and the liquid receiver 140 are directly communicated with each other via the linear communication path 151, and the fixing of each member when brazing is particularly performed. Not considered. For this reason, when the right header tank 130, the liquid receiver 140, and the communication path 151 are integrally brazed and joined, a holding jig or the like for holding these assembled states is required. In addition, since the communication passages 151 and 152 are linear, the degree of freedom in designing the inflow / outflow circuit is low. For example, the outflow portion from the header tank and the inflow portion to the liquid receiver cannot be provided at different positions.

そこで本発明の課題は、とくにヘッダと受液器との間を連通する連通部材に関して、部品点数を増加させることなく簡素な構造にしてコストアップを抑えながら、流入出回路を自由に構成でき、製造、組み付けともに容易化された冷媒凝縮器を提供することにある。   Therefore, the problem of the present invention is that the communication member that communicates between the header and the liquid receiver, in particular, the inflow / outflow circuit can be freely configured while suppressing cost increase with a simple structure without increasing the number of parts, An object of the present invention is to provide a refrigerant condenser that is easy to manufacture and assemble.

上記課題を解決するために、本発明に係る冷媒凝縮器は、複数の冷却チューブ内に流入する気体冷媒を冷却して液体冷媒へと凝縮させる凝縮コアと、該凝縮コアの上流側に連通し前記気体冷媒が供給される凝縮コア入口側ヘッダ管と、前記凝縮コアの下流側に連通し前記凝縮コアから流出する前記液体冷媒を集める凝縮コア出口側ヘッダ管とからなる凝縮部と、該凝縮部から前記液体冷媒が流入管を通して流入する受液部と、該受液部から前記液体冷媒が流出管を通して供給される過冷却部とを有し、
該過冷却部が、複数の過冷却チューブ内に流入する液体冷媒をさらに冷却する過冷却コアと、該過冷却コアの上流側に連通し前記受液部から前記液体冷媒が供給される過冷却コア入口側ヘッダ管と、前記過冷却コアの下流側に連通し前記過冷却コアから流出する液体冷媒を集める過冷却コア出口側ヘッダ管とからなり、
前記流入管が、前記凝縮コア出口側ヘッダ管内に開口した上流側の一端から前記受液部内に開口した下流側の他端まで一体に形成され、該流入管が少なくともU形管部を有し、該流入管のU形管部は、下流側部分が前記受液部に対し略垂直に挿通されるとともに、上流側部分が前記凝縮コア出口側ヘッダ管に対し略垂直に挿通されており、
前記流出管が、前記受液部内に開口した上流側の一端から前記過冷却コア入口側ヘッダ管内に開口した下流側の他端まで一体に形成され、該流出管が少なくともU形管部を有し、該流出管のU形管部は、上流側部分が前記受液部に対し略垂直に挿通されるとともに、下流側部分が前記過冷却コア入口側ヘッダ管に対し略垂直に挿通されており、
前記凝縮コア出口側ヘッダ管および前記過冷却コア入口側ヘッダ管が一体に形成されるとともに、前記受液部が前記凝縮コア出口側ヘッダ管および前記過冷却コア入口側ヘッダ管に隣接して配列されることにより、前記受液部の側部、前記凝縮コア出口側ヘッダ管の側部および前記過冷却コア入口側ヘッダ管の側部からなる一対の側面部が形成され、前記流入管のU形管部および前記流出管のU形管部が、前記一対の側面部の一方に、略垂直に突設されていることを特徴とするものからなる。
In order to solve the above problems, a refrigerant condenser according to the present invention communicates with a condensing core that cools gaseous refrigerant flowing into a plurality of cooling tubes and condenses it into liquid refrigerant, and upstream of the condensing core. A condensing unit comprising a condensing core inlet-side header pipe to which the gaseous refrigerant is supplied, a condensing core outlet-side header pipe communicating with the downstream side of the condensing core and collecting the liquid refrigerant flowing out of the condensing core; A liquid receiving part through which the liquid refrigerant flows from an inlet through an inflow pipe, and a supercooling part to which the liquid refrigerant is supplied from the liquid receiving part through an outflow pipe,
The supercooling core further cools the liquid refrigerant flowing into the plurality of subcooling tubes, and the supercooling is connected to the upstream side of the supercooling core and the liquid refrigerant is supplied from the liquid receiver. A core inlet-side header pipe, and a supercooling core outlet-side header pipe that communicates with the downstream side of the supercooling core and collects liquid refrigerant flowing out of the supercooling core,
The inflow pipe is integrally formed from one end on the upstream side opened in the header pipe on the outlet side of the condensation core to the other end on the downstream side opened in the liquid receiving section, and the inflow pipe has at least a U-shaped pipe section. The U-shaped pipe portion of the inflow pipe has a downstream portion inserted substantially perpendicular to the liquid receiving portion and an upstream portion inserted substantially perpendicular to the condensation core outlet side header tube,
The outflow pipe is integrally formed from one end on the upstream side opened in the liquid receiving part to the other end on the downstream side opened in the header pipe on the supercooling core inlet side, and the outflow pipe has at least a U-shaped pipe part. The U-shaped pipe part of the outflow pipe has an upstream part inserted substantially perpendicularly to the liquid receiving part and a downstream part inserted substantially perpendicularly to the supercooling core inlet side header pipe. And
The condensation core outlet side header pipe and the supercooling core inlet side header pipe are integrally formed, and the liquid receiving portion is arranged adjacent to the condensation core outlet side header pipe and the supercooling core inlet side header pipe As a result, a pair of side surfaces including a side portion of the liquid receiving portion, a side portion of the condensing core outlet side header pipe, and a side portion of the subcooling core inlet side header pipe are formed, and a U side of the inflow pipe is formed. The shaped pipe part and the U-shaped pipe part of the outflow pipe are provided so as to project substantially vertically on one of the pair of side face parts .

本発明に係る冷媒凝縮器においては、流入管が、凝縮コア出口側ヘッダ管内に開口した上流側の一端から受液部内に開口した下流側の他端まで一体に形成されるとともに、流出管が、受液部内に開口した上流側の一端から過冷却コア入口側ヘッダ管内に開口した下流側の他端まで一体に形成されているので、受液器内の流出入通路と出入口パイプが一体化された簡素な構造にて冷媒の円滑な流動を実現することが可能となる。また、液体冷媒が過冷却部によってさらに冷却されるため、冷媒回路の成績係数の向上が実現できる。   In the refrigerant condenser according to the present invention, the inflow pipe is integrally formed from one end on the upstream side opened in the header pipe on the outlet side of the condensing core to the other end on the downstream side opened in the liquid receiver, and the outflow pipe is formed Since it is integrally formed from one end on the upstream side opened in the liquid receiving section to the other end on the downstream side opened in the header pipe on the inlet side of the supercooling core, the inflow / outlet passage and the inlet / outlet pipe in the liquid receiver are integrated. A smooth flow of the refrigerant can be realized with the simple structure. Further, since the liquid refrigerant is further cooled by the supercooling unit, the coefficient of performance of the refrigerant circuit can be improved.

このような本発明に係る冷媒凝縮器においては、前記流入管の下流側部分が前記受液部内に挿通されるとともに、上流側部分が前記凝縮コア出口側ヘッダ管内に前記下流側部分の挿通方向に対し平行に挿通されていることが好ましい。このような構造を採用することにより、前記流入管は2本の平行な挿通部によって支えられた状態となり、ろう付け前の仮組みにおいても簡単な保持部材で組み付けることができ、組み付け作業およびろう付け作業の簡素化が実現できる。   In such a refrigerant condenser according to the present invention, the downstream part of the inflow pipe is inserted into the liquid receiving part, and the upstream part is inserted into the condensation core outlet side header pipe in the insertion direction of the downstream part. It is preferable that it is inserted in parallel to. By adopting such a structure, the inflow pipe is supported by two parallel insertion portions and can be assembled with a simple holding member even in a temporary assembly before brazing. Simplification can be realized.

さらに、流入管が受液器の冷媒導入パイプと冷媒流入通路を兼ねるように一体で形成されるとともに、流出管が受液器の冷媒流出通路と冷媒導出パイプを兼ねるように一体で形成されることにより、さらなる組み付け作業の簡素化が実現可能となる。   Further, the inflow pipe is integrally formed so as to serve as a refrigerant introduction pipe and a refrigerant inflow passage of the liquid receiver, and the outflow pipe is formed as one body so as to serve as a refrigerant outflow path of the liquid receiver and the refrigerant outlet pipe. As a result, further simplification of assembly work can be realized.

本発明に係る冷媒凝縮器においては、前記流入管の前記下流側部分の先端部が、前記受液部内の内壁面に沿って上向きに配置されていることが好ましい。これにより、液体冷媒が受液部内の内壁面に沿って受液部へ安定的に流入するようになり、受液部内に貯留される液体冷媒の液面の乱れが最小限に抑えられる。従って、液体冷媒への気体の混入が防止され、冷媒凝縮器の性能低下を防ぐことができる。   In the refrigerant condenser according to the present invention, it is preferable that a distal end portion of the downstream portion of the inflow pipe is arranged upward along an inner wall surface in the liquid receiving portion. As a result, the liquid refrigerant can stably flow into the liquid receiving part along the inner wall surface in the liquid receiving part, and the liquid level of the liquid refrigerant stored in the liquid receiving part can be minimized. Therefore, mixing of the gas into the liquid refrigerant is prevented, and the performance deterioration of the refrigerant condenser can be prevented.

前記流入管は、直管部と、該直管部の軸と垂直な方向に延びるU形管部とからなる構造とすることができる。このような単純な形状は、通常のパイプを所望の形状に曲げることで容易に製造することが可能であり、製造コストの低減が実現できる。   The inflow pipe may have a structure including a straight pipe portion and a U-shaped pipe portion extending in a direction perpendicular to the axis of the straight pipe portion. Such a simple shape can be easily manufactured by bending a normal pipe into a desired shape, and a reduction in manufacturing cost can be realized.

前記流入管の出口は、前記流入管の入口よりも上側に設けられていることが好ましい。このような構造によれば、前記流入管へ導入された液体冷媒のうち、前記流入管の出口から溢れた液体冷媒だけが受液部へ流入するようになり、受液部内に貯留される液体冷媒の液面の乱れが最小限に抑えられるため、冷媒凝縮器の性能低下を防ぐことができる。   It is preferable that the outlet of the inflow pipe is provided above the inlet of the inflow pipe. According to such a structure, out of the liquid refrigerant introduced into the inflow pipe, only the liquid refrigerant overflowing from the outlet of the inflow pipe flows into the liquid receiving section, and the liquid stored in the liquid receiving section. Since the disturbance of the liquid level of the refrigerant can be minimized, it is possible to prevent the refrigerant condenser from degrading.

前記流出管は、上流側部分が前記受液部内に挿通されるとともに下流側部分が前記過冷却コア入口側ヘッダ管内に前記上流側部分の挿通方向に対し平行に挿通されていることが好ましい。このような構造にすれば、前記流出管は2本の平行な挿通部によって支えられるため、組み付け作業およびろう付け作業の簡素化が実現できる。   It is preferable that an upstream portion of the outflow pipe is inserted into the liquid receiving portion, and a downstream portion is inserted into the subcooling core inlet side header pipe in parallel to the insertion direction of the upstream portion. With such a structure, since the outflow pipe is supported by two parallel insertion portions, the assembling work and the brazing work can be simplified.

本発明に係る冷媒凝縮器においては、前記流出管の前記上流側部分の先端部が、前記受液部内の内壁面に沿って下向きに配置されていることが望ましい。これにより、液体冷媒が受液部内の内壁面に沿って受液部へ安定的に流入するようになるため、受液部内に貯留される液体冷媒の液面の乱れが最小限に抑えられ、冷媒凝縮器の性能低下を防ぐことができる。   In the refrigerant condenser according to the present invention, it is preferable that a tip portion of the upstream portion of the outflow pipe is disposed downward along an inner wall surface in the liquid receiving portion. Thereby, since the liquid refrigerant stably flows into the liquid receiving part along the inner wall surface in the liquid receiving part, the disturbance of the liquid surface of the liquid refrigerant stored in the liquid receiving part is minimized, The performance degradation of the refrigerant condenser can be prevented.

前記流出管は、直管部と、該直管部の軸と垂直な方向に延びるU形管部とからなる構造とすることができる。このような単純な形状は、通常のパイプを所望の形状に曲げることで容易に製造することが可能であり、製造コストの低減が実現できる。   The outflow pipe may have a structure including a straight pipe part and a U-shaped pipe part extending in a direction perpendicular to the axis of the straight pipe part. Such a simple shape can be easily manufactured by bending a normal pipe into a desired shape, and a reduction in manufacturing cost can be realized.

前記流出管の入口は、前記受液部の下底部近傍に設けられていることが好ましい。前記流出管の入口が、受液部内に貯留される液体冷媒の液面よりも下に配置されることで、過冷却部に流入する液体冷媒への気体の混入が防止され、冷媒凝縮器の性能低下を防ぐことができる。   It is preferable that an inlet of the outflow pipe is provided in the vicinity of a lower bottom portion of the liquid receiving portion. By arranging the inlet of the outflow pipe below the liquid level of the liquid refrigerant stored in the liquid receiving part, the gas refrigerant is prevented from being mixed into the liquid refrigerant flowing into the supercooling part. Performance degradation can be prevented.

このように、本発明に係る冷媒凝縮器によれば、流入管が、凝縮コア出口側ヘッダ管内に開口した上流側の一端から受液部内に開口した下流側の他端まで一体に形成されるとともに、流出管が、受液部内に開口した上流側の一端から過冷却コア入口側ヘッダ管内に開口した下流側の他端まで一体に形成されているので、簡素な構造にて冷媒の円滑な流動を実現することが可能となる。   Thus, according to the refrigerant condenser according to the present invention, the inflow pipe is integrally formed from one end on the upstream side opened in the header pipe on the condensing core outlet side to the other end on the downstream side opened in the liquid receiver. In addition, since the outflow pipe is integrally formed from one end on the upstream side opened in the liquid receiving part to the other end on the downstream side opened in the header pipe on the supercooling core inlet side, the refrigerant can be smoothly flowed with a simple structure. It is possible to realize the flow.

本発明の一実施態様に係る冷媒凝縮器の斜視図である。It is a perspective view of the refrigerant condenser concerning one embodiment of the present invention. 図1に示した冷媒凝縮器の、流入管付近における部分拡大図である。It is the elements on larger scale in the inflow pipe vicinity of the refrigerant | coolant condenser shown in FIG. 図1に示した冷媒凝縮器の部分横断面図であり、(A)は流入管付近を上側から見た部分横断面図、(B)は流出管付近を下側から見た部分横断面図である。FIG. 2 is a partial cross-sectional view of the refrigerant condenser shown in FIG. 1, (A) is a partial cross-sectional view of the vicinity of the inflow pipe as viewed from above, and (B) is a partial cross-sectional view of the vicinity of the outflow pipe as viewed from below. It is. 本発明の他の実施態様に係る冷媒凝縮器の部分横断面図であり、(A)は流入管付近を上側から見た部分横断面図、(B)は流出管付近を下側から見た部分横断面図である。It is the partial cross-sectional view of the refrigerant condenser which concerns on other embodiment of this invention, (A) is the partial cross-sectional view which looked at the inflow pipe vicinity from the upper side, (B) looked at the outflow pipe vicinity from the lower side. It is a partial cross-sectional view.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1、図2、および図3は、本発明の第一の実施態様に係る冷媒凝縮器を示している。図1において、冷媒凝縮器1は、複数の冷却チューブ6内に流入する気体冷媒を冷却して液体冷媒へと凝縮させる凝縮コア4と、凝縮コア4の上流側に連通し気体冷媒が供給される凝縮コア入口側ヘッダ管3と、凝縮コアの下流側に連通し凝縮コアから流出する液体冷媒を集める凝縮コア出口側ヘッダ管5とからなる凝縮部2を上部に有しており、凝縮コア出口側ヘッダ管5は流入管8を経由して、図示しない固定部材により凝縮コア出口側ヘッダ管5に固定された受液部7へ連通されている。冷媒凝縮器1の下部には、受液部7から液体冷媒が流出管9を通して供給される過冷却部10が設けられており、過冷却部10は、複数の過冷却チューブ14内に流入する液体冷媒をさらに冷却する過冷却コア12と、過冷却コア12の上流側に連通し受液部7から液体冷媒が供給される過冷却コア入口側ヘッダ管11と、過冷却コア12の下流側に連通し過冷却コア12から流出する液体冷媒を集める過冷却コア出口側ヘッダ管13とからなる。本実施態様において、凝縮コア出口側ヘッダ管5と過冷却コア入口側ヘッダ管11との間は仕切り15によって区画されている。なお、凝縮コア入口側ヘッダ管3、凝縮コア出口側ヘッダ管5、過冷却コア入口側ヘッダ管11、および過冷却コア出口側ヘッダ管13の内部には、冷媒の流路を区画すべく、仕切り15とは異なる一つ以上の仕切り(図示略)が設けられていてもよい。また、受液部7内には、冷媒内の異物を除去するフィルタ部材(図示略)や冷媒内の水分を除去する乾燥部材(図示略)が設けられていてもよい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1, 2 and 3 show a refrigerant condenser according to a first embodiment of the present invention. In FIG. 1, the refrigerant condenser 1 is connected to a condensation core 4 that cools a gaseous refrigerant flowing into a plurality of cooling tubes 6 and condenses it into a liquid refrigerant, and is connected to the upstream side of the condensation core 4 to be supplied with gaseous refrigerant. A condensing part 2 comprising a condensing core inlet side header pipe 3 and a condensing core outlet side header pipe 5 connected to the downstream side of the condensing core and collecting liquid refrigerant flowing out of the condensing core. The outlet side header pipe 5 is communicated with the liquid receiving part 7 fixed to the condensation core outlet side header pipe 5 by a fixing member (not shown) via the inflow pipe 8. A subcooling unit 10 to which liquid refrigerant is supplied from the liquid receiving unit 7 through the outflow pipe 9 is provided at the lower part of the refrigerant condenser 1, and the subcooling unit 10 flows into the plurality of subcooling tubes 14. A supercooling core 12 that further cools the liquid refrigerant, a supercooling core inlet-side header pipe 11 that communicates with the upstream side of the supercooling core 12 and is supplied with the liquid refrigerant from the liquid receiver 7, and a downstream side of the supercooling core 12 And a supercooling core outlet side header pipe 13 for collecting the liquid refrigerant flowing out from the supercooling core 12. In this embodiment, the partition 15 is partitioned between the condensation core outlet side header pipe 5 and the supercooled core inlet side header pipe 11. In addition, in order to divide the refrigerant flow path inside the condensation core inlet side header pipe 3, the condensation core outlet side header pipe 5, the supercooling core inlet side header pipe 11, and the supercooling core outlet side header pipe 13, One or more partitions (not shown) different from the partition 15 may be provided. Further, a filter member (not shown) for removing foreign substances in the refrigerant and a drying member (not shown) for removing moisture in the refrigerant may be provided in the liquid receiving unit 7.

図1において、凝縮コア入口側ヘッダ管3には冷媒の入口通路ブロック16が、過冷却コア出口側ヘッダ管13には冷媒の出口通路ブロック17が、それぞれ設けられている。冷媒の入口通路ブロック16から冷媒凝縮器1へ導入された気体冷媒は、複数の冷却チューブ6において空気との熱交換により冷却された後、凝縮コア出口側ヘッダ管5より流入管8を通じて受液部7内へ導入され、受液部7内において気液分離される。受液部7内において分離された液体冷媒は、受液部7内に一旦貯留された後、流出管9を通じて過冷却コア入口側ヘッダ管11へ導入され、複数の過冷却チューブ14を介した空気との熱交換によりさらに冷却され、出口通路ブロック17より冷媒凝縮器1の外部へ導出される。   In FIG. 1, a refrigerant inlet passage block 16 is provided in the condensing core inlet side header pipe 3, and a refrigerant outlet passage block 17 is provided in the subcooling core outlet side header pipe 13. The gaseous refrigerant introduced from the refrigerant inlet passage block 16 to the refrigerant condenser 1 is cooled by heat exchange with air in the plurality of cooling tubes 6, and then received from the condenser core outlet header pipe 5 through the inlet pipe 8. It is introduced into the part 7 and is separated into gas and liquid in the liquid receiving part 7. The liquid refrigerant separated in the liquid receiving part 7 is temporarily stored in the liquid receiving part 7 and then introduced into the supercooling core inlet side header pipe 11 through the outflow pipe 9, via the plurality of supercooling tubes 14. It is further cooled by heat exchange with air and is led out of the refrigerant condenser 1 from the outlet passage block 17.

なお、図1の冷媒凝縮器1は略平板形状であり、一面側(図1における背面側)が床面に接した状態で静置することが可能である。また、流入管の上流側部分23と流入管の下流側部分25との間に存在する流入管の外部露出部分24、および流出管の上流側部分33と流出管の下流側部分35との間に存在する流出管の外部露出部分34は、略平板形状である冷媒凝縮器1の他面側(図1における正面側)に配置されている。このような構造によれば、流入管8および流出管9を、冷媒凝縮器1とそれに固定された受液器7に組み付ける際に、流入管8および流出管9を冷媒凝縮器1と受液器7に差し込んだ状態で冷媒凝縮器1を静置することが可能となり、特殊な保持部材を用いることなく流入管8および流出管9を所望の位置にろう付けすることができるので、仮組作業およびろう付け作業が容易化される。   Note that the refrigerant condenser 1 in FIG. 1 has a substantially flat plate shape, and can be left standing in a state where one surface side (the back surface side in FIG. 1) is in contact with the floor surface. Further, the externally exposed portion 24 of the inflow pipe existing between the upstream portion 23 of the inflow pipe and the downstream portion 25 of the inflow pipe, and the space between the upstream portion 33 of the outflow pipe and the downstream portion 35 of the outflow pipe. The externally exposed portion 34 of the outflow pipe existing in is disposed on the other surface side (front side in FIG. 1) of the refrigerant condenser 1 having a substantially flat plate shape. According to such a structure, when the inflow pipe 8 and the outflow pipe 9 are assembled to the refrigerant condenser 1 and the liquid receiver 7 fixed thereto, the inflow pipe 8 and the outflow pipe 9 are received from the refrigerant condenser 1 and the liquid receiver. The refrigerant condenser 1 can be allowed to stand in a state of being inserted into the vessel 7, and the inflow pipe 8 and the outflow pipe 9 can be brazed to desired positions without using a special holding member. Work and brazing work are facilitated.

図2は、図1の冷媒凝縮器1の流入管8付近における部分拡大図を示している。また、図3の(A)は冷媒凝縮器1の流入管8付近を上側から見た部分横断面図を示しており、図3の(B)は冷媒凝縮器1の流出管9付近を下側から見た部分横断面図を示している。図2および図3の(A)において、流入管8は、直管部20と、直管部20の軸と垂直な方向に延びるU形管部21とからなる構造であり、流入管8の下流側部分25が受液部内に挿通されるとともに、流入管8の上流側部分23が凝縮コア出口側ヘッダ管5内に下流側部分25の挿通方向に対し平行に挿通されている。また、流入管の出口26は、流入管の入口22よりも上側に設けられているので、冷媒が気液混合状態で流入管8から流出して受液部7へ流入する際にも、受液部7内に貯留される液体冷媒の液面の乱れは最小限に抑えられる。本実施態様における流入管8はパイプを所定の形状に曲げることで製造され、製造コストの削減が実現されている。また、流入管8の挿通部はパイプと曲面を単純に接合することで固定でき、特殊な仮固定具を必要としないため、仮組み作業が容易化され、ろう付け信頼性の向上が実現される。   FIG. 2 shows a partially enlarged view of the refrigerant condenser 1 in FIG. 1 in the vicinity of the inflow pipe 8. 3A shows a partial cross-sectional view of the vicinity of the inlet pipe 8 of the refrigerant condenser 1 as viewed from above, and FIG. 3B shows the vicinity of the outlet pipe 9 of the refrigerant condenser 1 below. The partial cross-sectional view seen from the side is shown. In FIG. 2 and FIG. 3A, the inflow pipe 8 has a structure including a straight pipe portion 20 and a U-shaped pipe portion 21 extending in a direction perpendicular to the axis of the straight pipe portion 20. The downstream portion 25 is inserted into the liquid receiving portion, and the upstream portion 23 of the inflow pipe 8 is inserted into the condensation core outlet side header pipe 5 in parallel with the insertion direction of the downstream portion 25. Further, since the outlet 26 of the inflow pipe is provided above the inlet 22 of the inflow pipe, even when the refrigerant flows out of the inflow pipe 8 in the gas-liquid mixed state and flows into the liquid receiving section 7, it is received. Disturbances in the liquid level of the liquid refrigerant stored in the liquid part 7 can be minimized. Inflow pipe 8 in this embodiment is manufactured by bending a pipe into a predetermined shape, and a reduction in manufacturing cost is realized. Further, the insertion portion of the inflow pipe 8 can be fixed by simply joining the pipe and the curved surface, and no special temporary fixing tool is required, so that the temporary assembly work is facilitated and the brazing reliability is improved. The

図2および図3の(B)において、流出管9は、流入管8と同様、直管部30と、直管部30の軸と垂直な方向に延びるU形管部31とからなる構造であり、流出管9の上流側部分33が受液部7内に挿通されるとともに下流側部分35が過冷却コア入口側ヘッダ管11内に上流側部分33の挿通方向に対し平行に挿通されている。また、流出管9の入口32は、受液部7の下底部近傍に設けられており、過冷却部10に流入する液体冷媒への気体の混入が防止されている。この流出管9はパイプを所定の形状に曲げることで製造されており、流入管8と同様、製造コストの削減、仮組み作業の容易化、およびろう付け信頼性の向上が実現されている。なお、流出管9の入口32は、受液部7の下部に貯留された液体冷媒を優先的に流出させるべく、吸上げ構造(図示略)となっていることが好ましい。   In FIG. 2 and FIG. 3B, the outflow pipe 9 has a structure including a straight pipe portion 30 and a U-shaped pipe portion 31 extending in a direction perpendicular to the axis of the straight pipe portion 30, similarly to the inflow pipe 8. Yes, the upstream portion 33 of the outflow pipe 9 is inserted into the liquid receiving portion 7 and the downstream portion 35 is inserted into the subcooling core inlet header pipe 11 in parallel with the insertion direction of the upstream portion 33. Yes. Further, the inlet 32 of the outflow pipe 9 is provided in the vicinity of the lower bottom portion of the liquid receiving unit 7, and gas mixing into the liquid refrigerant flowing into the supercooling unit 10 is prevented. The outflow pipe 9 is manufactured by bending the pipe into a predetermined shape, and, like the inflow pipe 8, reduction in manufacturing cost, ease of temporary assembly work, and improvement of brazing reliability are realized. In addition, it is preferable that the inlet 32 of the outflow pipe 9 has a suction structure (not shown) so that the liquid refrigerant stored in the lower portion of the liquid receiving unit 7 flows out preferentially.

図4は、本発明の第二の実施態様に係る冷媒凝縮器の部分横断面図を示している。図4の(A)は、本発明の第二の実施態様に係る冷媒凝縮器の流入管8付近を上側から見た部分横断面図を示しており、図4の(B)は流出管9付近を下側から見た部分横断面図を示している。本発明の第二の実施態様においては、流入管8の下流側部分25の先端部27が受液部7内の内壁面に沿って上向きに配置されるとともに、流出管9の上流側部分33の先端部37が、受液部7内の内壁面に沿って下向きに配置されており、その他の部分は本発明の第一の実施態様と同様の構成になっている。このように、流入管の下流側部分の先端部27および流出管の上流側部分の先端部37を受液部7内の内壁面に沿って配置することにより、受液部7の底面に貯留される液体冷媒の液面の乱れが最小限に抑えられ、冷媒凝縮器の性能低下を防ぐことができる。なお、本実施態様においても、流出管9の入口32は、受液部7の下部に貯留された液体冷媒を優先的に流出させるべく、吸上げ構造(図示略)となっていることが好ましい。   FIG. 4 shows a partial cross-sectional view of the refrigerant condenser according to the second embodiment of the present invention. 4A shows a partial cross-sectional view of the vicinity of the inflow pipe 8 of the refrigerant condenser according to the second embodiment of the present invention as viewed from above, and FIG. 4B shows the outflow pipe 9. The partial cross-sectional view which looked at the vicinity from the lower side is shown. In the second embodiment of the present invention, the distal end portion 27 of the downstream portion 25 of the inflow pipe 8 is disposed upward along the inner wall surface in the liquid receiving portion 7, and the upstream portion 33 of the outflow pipe 9. The tip portion 37 is disposed downward along the inner wall surface in the liquid receiving portion 7, and the other portions have the same configuration as that of the first embodiment of the present invention. As described above, the distal end portion 27 of the downstream portion of the inflow pipe and the distal end portion 37 of the upstream portion of the outflow pipe are arranged along the inner wall surface in the liquid receiving portion 7, so that they are stored on the bottom surface of the liquid receiving portion 7. The disturbance of the liquid level of the liquid refrigerant to be performed can be minimized, and the performance degradation of the refrigerant condenser can be prevented. In this embodiment as well, the inlet 32 of the outflow pipe 9 preferably has a suction structure (not shown) so that liquid refrigerant stored in the lower part of the liquid receiving section 7 flows out preferentially. .

本発明に係る冷媒凝縮器の用途はとくに限定されないが、コストダウン、製造の容易化、工程の簡素化の要求が強い車両用空調装置に用いて好適なものである。   The application of the refrigerant condenser according to the present invention is not particularly limited, but is suitable for use in a vehicle air conditioner that is highly demanded of cost reduction, easy manufacturing, and simplified process.

1 冷媒凝縮器
2 凝縮部
3 凝縮コア入口側ヘッダ管
4 凝縮コア
5 凝縮コア出口側ヘッダ管
6 冷却チューブ
7 受液部
8 流入管
9 流出管
10 過冷却部
11 過冷却コア入口側ヘッダ管
12 過冷却コア
13 過冷却コア出口側ヘッダ管
14 過冷却チューブ
15 仕切り
16 入口通路ブロック
17 出口通路ブロック
20 流入管の直管部
21 流入管のU形管部
22 流入管の入口
23 流入管の上流側部分
24 流入管の外部露出部分
25 流入管の下流側部分
26 流入管の出口
27 流入管の下流側部分の先端部
30 流出管の直管部
31 流出管のU形管部
32 流出管の入口
33 流出管の上流側部分
34 流出管の外部露出部分
35 流出管の下流側部分
36 流出管の出口
37 流出管の上流側部分の先端部
DESCRIPTION OF SYMBOLS 1 Refrigerant condenser 2 Condensing part 3 Condensing core inlet side header pipe 4 Condensing core 5 Condensing core outlet side header pipe 6 Cooling tube 7 Liquid receiving part 8 Inflow pipe 9 Outflow pipe 10 Supercooling part 11 Supercooling core inlet side header pipe 12 Supercooling core 13 Supercooling core outlet side header pipe 14 Supercooling tube 15 Partition 16 Inlet passage block 17 Outlet passage block 20 Straight pipe portion 21 of inflow pipe U-shaped pipe portion 22 of inflow pipe Inlet 23 of inflow pipe Upstream of inflow pipe Side portion 24 Externally exposed portion 25 of the inflow tube Downstream portion 26 of the inflow tube Outlet 27 of the inflow tube The distal end portion 30 of the downstream portion of the inflow tube The straight pipe portion 31 of the outflow tube The U-shaped tube portion 32 of the outflow tube Inlet 33 Upstream portion 34 of outflow pipe Externally exposed portion 35 of outflow pipe Downstream portion 36 of outflow pipe Outlet 37 of outflow pipe Tip of upstream portion of outflow pipe

Claims (9)

複数の冷却チューブ内に流入する気体冷媒を冷却して液体冷媒へと凝縮させる凝縮コアと、該凝縮コアの上流側に連通し前記気体冷媒が供給される凝縮コア入口側ヘッダ管と、前記凝縮コアの下流側に連通し前記凝縮コアから流出する前記液体冷媒を集める凝縮コア出口側ヘッダ管とからなる凝縮部と、該凝縮部から前記液体冷媒が流入管を通して流入する受液部と、該受液部から前記液体冷媒が流出管を通して供給される過冷却部とを有し、
該過冷却部が、複数の過冷却チューブ内に流入する液体冷媒をさらに冷却する過冷却コアと、該過冷却コアの上流側に連通し前記受液部から前記液体冷媒が供給される過冷却コア入口側ヘッダ管と、前記過冷却コアの下流側に連通し前記過冷却コアから流出する液体冷媒を集める過冷却コア出口側ヘッダ管とからなり、
前記流入管が、前記凝縮コア出口側ヘッダ管内に開口した上流側の一端から前記受液部内に開口した下流側の他端まで一体に形成され、該流入管が少なくともU形管部を有し、該流入管のU形管部は、下流側部分が前記受液部に対し略垂直に挿通されるとともに、上流側部分が前記凝縮コア出口側ヘッダ管に対し略垂直に挿通されており、
前記流出管が、前記受液部内に開口した上流側の一端から前記過冷却コア入口側ヘッダ管内に開口した下流側の他端まで一体に形成され、該流出管が少なくともU形管部を有し、該流出管のU形管部は、上流側部分が前記受液部に対し略垂直に挿通されるとともに、下流側部分が前記過冷却コア入口側ヘッダ管に対し略垂直に挿通されており、
前記凝縮コア出口側ヘッダ管および前記過冷却コア入口側ヘッダ管が一体に形成されるとともに、前記受液部が前記凝縮コア出口側ヘッダ管および前記過冷却コア入口側ヘッダ管に隣接して配列されることにより、前記受液部の側部、前記凝縮コア出口側ヘッダ管の側部および前記過冷却コア入口側ヘッダ管の側部からなる一対の側面部が形成され、前記流入管のU形管部および前記流出管のU形管部が、前記一対の側面部の一方に、略垂直に突設されていることを特徴とする冷媒凝縮器。
A condensing core that cools the gaseous refrigerant flowing into the plurality of cooling tubes and condenses it into a liquid refrigerant, a condensing core inlet-side header pipe that communicates with the upstream side of the condensing core and is supplied with the gaseous refrigerant, and the condensation A condensing part comprising a condensing core outlet side header pipe that communicates with the downstream side of the core and collects the liquid refrigerant flowing out of the condensing core; a liquid receiving part through which the liquid refrigerant flows from the condensing part through an inflow pipe; A supercooling part to which the liquid refrigerant is supplied from the liquid receiving part through an outflow pipe,
The supercooling core further cools the liquid refrigerant flowing into the plurality of subcooling tubes, and the supercooling is connected to the upstream side of the supercooling core and the liquid refrigerant is supplied from the liquid receiver. A core inlet-side header pipe, and a supercooling core outlet-side header pipe that communicates with the downstream side of the supercooling core and collects liquid refrigerant flowing out of the supercooling core,
The inflow pipe is integrally formed from one end on the upstream side opened in the header pipe on the outlet side of the condensation core to the other end on the downstream side opened in the liquid receiving section, and the inflow pipe has at least a U-shaped pipe section. The U-shaped pipe portion of the inflow pipe has a downstream portion inserted substantially perpendicular to the liquid receiving portion and an upstream portion inserted substantially perpendicular to the condensation core outlet side header tube,
The outflow pipe is integrally formed from one end on the upstream side opened in the liquid receiving part to the other end on the downstream side opened in the header pipe on the supercooling core inlet side, and the outflow pipe has at least a U-shaped pipe part. The U-shaped pipe part of the outflow pipe has an upstream part inserted substantially perpendicularly to the liquid receiving part and a downstream part inserted substantially perpendicularly to the supercooling core inlet side header pipe. And
The condensation core outlet side header pipe and the supercooling core inlet side header pipe are integrally formed, and the liquid receiving portion is arranged adjacent to the condensation core outlet side header pipe and the supercooling core inlet side header pipe As a result, a pair of side surfaces including a side portion of the liquid receiving portion, a side portion of the condensing core outlet side header pipe, and a side portion of the subcooling core inlet side header pipe are formed, and a U side of the inflow pipe is formed. A refrigerant condenser, wherein a shape pipe part and a U-shaped pipe part of the outflow pipe are projected substantially vertically on one of the pair of side face parts .
前記流入管は、下流側部分が前記受液部内に挿通されるとともに、上流側部分が前記凝縮コア出口側ヘッダ管内に前記下流側部分の挿通方向に対し平行に挿通されている、請求項1に記載の冷媒凝縮器。   The downstream part of the inflow pipe is inserted into the liquid receiving part, and the upstream part is inserted in the condensation core outlet side header pipe in parallel with the insertion direction of the downstream part. A refrigerant condenser as described in 1. 前記流入管の前記下流側部分の先端部が、前記受液部内の内壁面に沿って上向きに配置されている、請求項1または2に記載の冷媒凝縮器。   The refrigerant condenser according to claim 1 or 2, wherein a tip portion of the downstream portion of the inflow pipe is disposed upward along an inner wall surface in the liquid receiving portion. 前記流入管が、直管部と、該直管部の軸と垂直な方向に延びる前記U形管部とからなる、請求項1〜3のいずれかに記載の冷媒凝縮器。 The refrigerant condenser in any one of Claims 1-3 in which the said inflow pipe consists of a straight pipe part and the said U-shaped pipe part extended in the direction perpendicular | vertical to the axis | shaft of this straight pipe part. 前記流入管の出口が、前記流入管の入口よりも上側に設けられている、請求項1〜4のいずれかに記載の冷媒凝縮器。   The refrigerant condenser in any one of Claims 1-4 with which the exit of the said inflow tube is provided above the entrance of the said inflow tube. 前記流出管は、上流側部分が前記受液部内に挿通されるとともに下流側部分が前記過冷却コア入口側ヘッダ管内に前記上流側部分の挿通方向に対し平行に挿通されている、請求項1〜5のいずれかに記載の冷媒凝縮器。   The upstream portion of the outflow pipe is inserted into the liquid receiving portion, and the downstream portion is inserted into the subcooling core inlet-side header pipe in parallel to the insertion direction of the upstream portion. The refrigerant condenser in any one of -5. 前記流出管の前記上流側部分の先端部が、前記受液部内の内壁面に沿って下向きに配置されている、請求項1〜6のいずれかに記載の冷媒凝縮器。   The refrigerant condenser in any one of Claims 1-6 by which the front-end | tip part of the said upstream part of the said outflow tube is arrange | positioned downward along the inner wall face in the said liquid receiving part. 前記流出管が、直管部と、該直管部の軸と垂直な方向に延びる前記U形管部とからなる、請求項1〜7のいずれかに記載の冷媒凝縮器。 The outflow pipe, a straight pipe portion, and a said U-shaped pipe portion extending in the axial direction perpendicular straight tube portion, the refrigerant condenser according to any one of claims 1 to 7. 前記流出管の入口が、前記受液部の下底部近傍に設けられている、請求項1〜8のいずれかに記載の冷媒凝縮器。   The refrigerant condenser in any one of Claims 1-8 with which the inlet_port | entrance of the said outflow tube is provided in the lower bottom part vicinity of the said liquid receiving part.
JP2010269333A 2010-12-02 2010-12-02 Refrigerant condenser Expired - Fee Related JP5430542B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010269333A JP5430542B2 (en) 2010-12-02 2010-12-02 Refrigerant condenser
PCT/JP2011/075376 WO2012073643A1 (en) 2010-12-02 2011-11-04 Refrigerant condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269333A JP5430542B2 (en) 2010-12-02 2010-12-02 Refrigerant condenser

Publications (2)

Publication Number Publication Date
JP2012117777A JP2012117777A (en) 2012-06-21
JP5430542B2 true JP5430542B2 (en) 2014-03-05

Family

ID=46171592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269333A Expired - Fee Related JP5430542B2 (en) 2010-12-02 2010-12-02 Refrigerant condenser

Country Status (2)

Country Link
JP (1) JP5430542B2 (en)
WO (1) WO2012073643A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438621B (en) * 2013-08-28 2015-11-18 广东志高空调有限公司 A kind of variable stream air-conditioning condenser
CN104121425A (en) * 2013-12-18 2014-10-29 东风柳州汽车有限公司 Automotive air conditioner condenser
CN104501480B (en) * 2014-12-26 2017-03-15 长城汽车股份有限公司 Vehicle and its condenser
JP6481668B2 (en) 2015-12-10 2019-03-13 株式会社デンソー Refrigeration cycle equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627382B2 (en) * 1996-06-24 2005-03-09 株式会社デンソー Refrigerant condensing device and refrigerant condenser
JP4041634B2 (en) * 1999-03-30 2008-01-30 カルソニックカンセイ株式会社 Condenser
JP2000314574A (en) * 1999-04-28 2000-11-14 Showa Alum Corp Condenser provided with receiver tank
JP2001124439A (en) * 1999-10-25 2001-05-11 Showa Alum Corp Condenser with supercooling unit
JP2002162134A (en) * 2000-11-20 2002-06-07 Denso Corp Freezing cycle device
JP4155830B2 (en) * 2003-01-17 2008-09-24 株式会社日本クライメイトシステムズ Mounting structure of liquid receiver
JP2006207920A (en) * 2005-01-27 2006-08-10 Denso Corp Connecting structure of heat exchanger
JP2008281326A (en) * 2007-04-11 2008-11-20 Calsonic Kansei Corp Refrigerating unit and heat exchanger used for the refrigerating unit

Also Published As

Publication number Publication date
JP2012117777A (en) 2012-06-21
WO2012073643A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5142109B2 (en) Evaporator
JPWO2010047320A1 (en) Capacitor
JP6722242B2 (en) Condenser
JP2008008577A (en) Refrigerating cycle
JP5430542B2 (en) Refrigerant condenser
US10094601B2 (en) Condenser
US10337808B2 (en) Condenser
JP2006266570A (en) Vehicular cooling device
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2001012823A (en) Refrigerant condenser
JP2001174103A (en) Refrigerant condenser
CN107606825B (en) Condenser
JP2008267753A (en) Heat exchanger
JP6572031B2 (en) Capacitor
JP2010065880A (en) Condenser
JP5904738B2 (en) Two-phase heat exchanger and header assembly
JP2010223464A (en) Evaporator
WO2021095439A1 (en) Heat exchanger
JP2018200132A (en) Condenser
KR200279353Y1 (en) Integral Condenser
JP2003254641A (en) Refrigerating system, condenser for refrigerating cycle and refrigerant outlet structure thereof
WO2020110638A1 (en) Heat exchanger
JP2008256234A (en) Evaporator
JP2008267752A (en) Heat exchanger
JP2006207995A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees