JP5429276B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5429276B2
JP5429276B2 JP2011288146A JP2011288146A JP5429276B2 JP 5429276 B2 JP5429276 B2 JP 5429276B2 JP 2011288146 A JP2011288146 A JP 2011288146A JP 2011288146 A JP2011288146 A JP 2011288146A JP 5429276 B2 JP5429276 B2 JP 5429276B2
Authority
JP
Japan
Prior art keywords
fuel cell
load
accelerator
fuel
load request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011288146A
Other languages
English (en)
Other versions
JP2012099495A (ja
Inventor
敦史 大間
義隆 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011288146A priority Critical patent/JP5429276B2/ja
Publication of JP2012099495A publication Critical patent/JP2012099495A/ja
Application granted granted Critical
Publication of JP5429276B2 publication Critical patent/JP5429276B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池システム及びその運転方法に関するものであり、特には、自動車等の移動体を駆動するための燃料電池システム及びその運転方法に関するものである。
バッテリによって駆動する電動機を動力源とする電気自動車において、アクセル操作を一時的にオフにした場合には、車両の走行エネルギーを電動機にて回生してバッテリを充電する。そして、走行中に再びアクセル操作をオンにした場合には、バッテリによって電動機が駆動する(例えば、特許文献1)。
特開平10−271605号公報
電気自動車にて行われる上記の制御を燃料電池自動車にて行う場合には、アクセル操作を一時的にオフにした場合には、燃料電池本体の負荷が低下する。そして、走行中に再びアクセル操作をオンにした場合には、燃料電池本体の負荷が上昇し、酸化剤極の触媒層と電解質層との間に電位差が発生する。このように、燃料電池自動車の走行中にアクセル操作を一時的にオフとして再びオンとした場合には、アクセル操作に追従するために燃料電池には電位サイクルが発生する。
燃料電池本体に電位サイクルが発生すると、酸化剤極に使用する触媒の金属成分、特には白金が溶解する場合がある。触媒の金属成分が溶解した場合には、触媒が劣化し燃料電池本体の寿命が低下する。
本発明は、上記の問題点に鑑みてなされたものであり、酸化剤極における触媒の金属成分の溶解を抑制し、燃料電池システムの耐久性を向上させることを目的とする。
本発明は、電解質膜の一方の面に触媒層を有する燃料極を配置すると共に他方の面に触媒層を有する酸化剤極を配置した燃料電池を備え、燃料極に燃料ガスを供給すると共に前記酸化剤極に酸化剤ガスを供給して発電する燃料電池システムである。この燃料電池システムが、燃料電池が発電する電力によって駆動する外部負荷と、燃料電池から外部負荷へ出力する負荷の負荷要求を検出する負荷要求検出手段と、負荷要求が有負荷要求から無負荷要求に移行した場合に燃料電池の負荷を時間差を持たせて低減する負荷制御手段とを備え、負荷制御手段は、負荷要求が無負荷要求に移行する直前までの有負荷要求の継続時間が所定時間よりも大きいときに、時間差を持たせると判定する。
本発明によれば、負荷要求が有負荷要求から無負荷要求に移行した場合に、燃料電池の出力を時間差を持たせて低減するようにしたため、その時間差の間に負荷要求が無負荷要求の状態から再び有負荷要求の状態に移行した場合には、燃料電池に発生する電位サイクルを抑制することができる。したがって、酸化剤極の触媒における金属成分の溶解が抑制され、燃料電池システムの耐久性が向上する。
本発明の実施の形態1に係る燃料電池システム100を示す構成図である。 電位サイクル耐久試験における触媒の低下量を示すグラフである。 燃料電池システム100の制御手順を示すフローチャートである。 本発明の実施の形態2に係る燃料電池システム200の制御手順を示すフローチャートである。 本発明の実施の形態3に係る燃料電池システム300の制御手順を示すフローチャートである。
以下、図面を参照して本発明の実施の形態を説明する。
(実施の形態1)
図1を参照して、本発明の実施の形態1に係る燃料電池システム100について説明する。図1は燃料電池システム100を示す構成図である。
燃料電池システム100は、電力を発生することによって燃料電池ハイブリッド自動車(以下、「自動車」と称する。)等の移動体を運動させるものである。燃料電池システム100は電源として固体高分子型の燃料電池1を備える。燃料電池1は、固体高分子電解質膜(以下、「電解質膜」と称する。)2と、電解質膜2の一方の面に配置され、燃料側触媒層3aと燃料ガス拡散層3bとを有する燃料極3と、電解質膜2の他方の面に配置され、酸化剤側触媒層4aと酸化剤ガス拡散層4bとを有する酸化剤極4とによって単位燃料電池を構成する。
電解質膜2は、パーフルオロカーボンスルホン酸等が用いられている。また、燃料側触媒層3a及び酸化剤側触媒層4aは、白金黒や白金粒子をカーボンブラック等の担体にて担持したもの等が用いられる。
単位燃料電池は、燃料極3に燃料ガスとしての水素及び酸化剤極4に酸化剤ガスとしての空気をそれぞれ別々に配流させ、かつ集電体の機能も有するセパレータ(図示せず)を介して複数積層され、燃料電池スタックを構成する。なお、図1では、燃料電池として単位燃料電池構成を図示しているが、実際の燃料電池システム100では前記単位燃料電池を多数積層して構成された燃料電池スタックが用いられる。
燃料電池1には、高圧水素ボンベ(図示せず)から供給される水素をバルブ5を介して燃料極3に導入するための水素供給配管6と、燃料電池1から余剰水素を排出するための水素排出配管7と、コンプレッサー8にて昇圧された空気を酸化剤極4に導入するための空気供給配管9と、燃料電池1から空気を排出するための空気排出配管10とが接続されている。これにより、燃料電池1では、燃料極3に水素及び酸化剤極4に空気がそれぞれ独立して供給されることによって発電が行われる。
なお、燃料電池1から排出される水素は、バルブ11を開とすることによって燃焼器(図示せず)に導かれシステム外に排出される。また、これに代わり、水素排出配管7から分岐した水素循環配管12、及び水素循環配管12に設けられた水素循環ポンプ13によって、燃料電池1から排出された水素を水素供給配管6に戻すこともできる。このように構成すれば、燃料電池1に供給する水素を再循環させることができ、水素を効率良く使用することができる。
燃料電池1には外部負荷としてのモータ15が接続され、モータ15は燃料電池1にて発電された電力によって回転する。つまり、燃料電池1の発電エネルギはモータ15の回転による運動エネルギーに変換される。そして、モータ15の回転によって自動車の走行が可能となる。
モータ15には燃料電池1が発電した電力を充電する充電手段としての二次電池16と、回生ブレーキシステム17とが接続されている。
二次電池16は、燃料電池1が出力する負荷に応じて充放電される。すなわち、燃料電池1の負荷を補うために二次電池16からモータ15に負荷を出力する(放電)と、燃料電池1が発電した負荷を蓄える場合(充電)とがある。二次電池16には、二次電池の充電割合を検出する充電割合検出手段としての充電計19が取付けられている。なお、二次電池16の種類としては、リチウムイオン電池やニッケル水素電池の他、ウルトラキャパシタやコンデンサー等を用いることもできる。
回生ブレーキシステム17は、自動車が停止しようとするときに、モータ15を発電機として働かせることによって生じる抵抗にて自動車に制動作用を加えると共に、自動車の走行エネルギーをモータ15にて回生して二次電池16に回収する機能を有するものである。
燃料電池1には、燃料電池1が発電した電力を放電する放電装置としての放電抵抗18も接続されている。放電抵抗18は、二次電池16の充電量が所定値に達した場合に、燃料電池1の負荷を消費する機能を有する。
20は燃料電池システム100の全体の動作を制御するコントローラである。コントローラ20には、充電計19、燃料電池1の発電負荷を検出する負荷検出手段としての負荷検出計21、燃料電池1の電圧を検出する電圧検出手段としての電圧計22、燃料電池システム100における補機類の消費電力量、つまり所内負荷を検出する所内負荷検出手段としての所内負荷検出計23、及びモータ15の駆動によって走行する自動車を停止させる停止制御装置としてのブレーキの作動を検出する停止制御装置作動検出手段としてのブレーキ作動検出器25等の各種計器から出力される情報が入力される。
コントローラ20は、CPU、ROM、RAM等からなり、各種計器からの情報に基づいて、燃料電池1に導入する水素及び空気の供給量を制御し、燃料電池1の負荷を制御する。燃料電池1の負荷は、所内負荷と、燃料電池1全体の負荷から所内負荷を除いた正味負荷、つまり燃料電池1からモータ15へ出力する負荷とからなる。燃料電池1の負荷のうち、モータ15へ出力する負荷は、ドライバによって操作されるアクセルペダルの踏込み量に応じて変化する。
コントローラ20には、燃料電池1からモータ15へ出力する負荷の負荷要求、つまりアクセルペダル踏込み量を検出する負荷要求検出手段としてのアクセル踏込み量検出センサ24の情報が入力される。したがって、コントローラ20は、このアクセル踏込み量検出センサ24の情報を基にモータ15へ出力する燃料電池1の負荷を制御する。
次に、酸化剤極4の触媒層4aにおける白金の溶出に関して説明する。図2は、電位サイクル耐久試験における触媒の低下量を示すグラフである。グラフの横軸は、電位サイクル耐久試験時の単位電池電圧である。横軸のOC(V)は燃料電池が無負荷状態の単位電池電圧、またA〜E(V)は有負荷状態の単位電池電圧であり、本電位サイクル耐久試験は、単位電池電圧をOC(V)とA〜E(V)の各電圧との間で繰り返し増減させることによって行った。グラフの縦軸は、サイクリックボルタンメトリーを実施することによって求められる酸化剤極4の触媒層4aにおける触媒である白金の電気化学的表面積(以下、「ECA」と称する。)の低下量と、単位電池電圧をOC(V)に保持した場合のECAの低下量との比率(ECA低下量/ECA低下量atOC(V))である。
グラフ中の例えば単位電池電圧がB(V)時のプロットについて説明する。単位燃料電池にOC(V)とB(V)との間で電位サイクルをかける。つまり、単位燃料電池に負荷bをサイクル的に印加する。このときのECA低下量を、単位電池電圧をOC(V)に保持した場合のECA低下量にて除した値が縦軸のECA低下量の比率である。他のプロットも同じようにして得られる。なお、グラフ中の単位電池電圧がOC(V)時のプロットは、単位電池電圧をOC(V)に保持した場合の値である。また、各試験(各プロット)の試験時間は同一である。
本試験結果によれば、グラフからわかるように、酸化剤極4の触媒層4aにおける白金のECAは、OC(V)保持時と比較して電位サイクル印加時の方が低下し、かつOC(V)との電位差が大きい程低下する。また、単位電池電圧がB(V)を下回ると急激にECAの低下速度が加速する。さらに、単位電池電圧がD(V)を下回るとECAの低下速度が緩和する。このように、ECAの低下加速度、つまり触媒層の触媒溶解加速度は一定ではなく、加速度の大きい単位電池電圧の範囲が存在する。
本試験結果は、代表的な単位燃料電池を用いた一例であり、燃料電池を形成する電解質膜や触媒層の仕様を変えた場合、更には燃料電池(特に触媒層)の温度や、それに供給する水素や空気の湿度によって、触媒の溶出電圧は変化する。したがって、使用する燃料電池毎に本試験と同様の試験を行い、後述するコントローラ20のROMに記憶する設定電圧値等を決定するようにすればよい。なお、試験をする燃料電池がスタック化された燃料電池の場合には、グラフ横軸の単位電池電圧は、各単位燃料電池の平均値である平均単位電池電圧とする。
以下、図2及び図3を参照して、コントローラ20によって実行される燃料電池システム100の制御について説明する。図3は、燃料電池システム100の制御手順を示すフローチャートである。なお、燃料電池システム100に用いられる燃料電池1における酸化剤極4の触媒層4aの触媒の溶出電圧特性は、図2に示した特性である。
本制御は自動車が走行中、すなわちドライバによってアクセルペダルが踏込まれた状態(以下、「アクセルON」と称する。)にてスタートする。アクセルONの状態とは、燃料電池1からモータ15へ出力する負荷の負荷要求が有負荷要求の状態である。アクセルがONか否か、つまり、燃料電池1からモータ15へ出力する負荷の負荷要求が有負荷要求か否かは、アクセル踏込み量検出センサ24によって検出される。
ステップ101では、アクセル踏込み量検出センサ24によってアクセルペダルの踏込み量を検出し、アクセルペダルの踏込みが解除(以下、「アクセルOFF」と称する。)されたか否かを判定する。つまり、燃料電池1からモータ15へ出力する負荷の負荷要求が有負荷要求から無負荷要求に移行した否かを判定し、無負荷要求に移行した場合には、次のステップ102に進む。
ステップ102では、電圧計22にて燃料電池1の単位電池電圧を検出し、単位電池電圧がD(V)以上であるか否かを判定する。単位電池電圧がD(V)以上であると判定された場合にはステップ103に進み、ステップ101にてアクセルONからOFFに移行した際に、アクセルOFF移行直前までアクセルが連続30秒以上ONであったか否かを判定する。
ステップ103にてアクセルが連続30秒以上ONであったと判定された場合には、ステップ104に進み燃料電池1に印加される電圧を維持することによって燃料電池1の負荷をアクセルOFF移行直前の負荷に維持する。具体的には、燃料電池1の負荷を二次電池16に充電することによって燃料電池1の負荷を維持する。
これに対して、ステップ102及びステップ103の条件を満たさない場合、つまり、単位電池電圧がD(V)未満(ステップ102)であるか、又はアクセルが連続30秒以上ONでなかった(ステップ103)場合にはステップ110に進む。ステップ110では、燃料電池1の電圧を上昇させることによって、燃料電池1からモータ15へ出力する負荷をステップ状に低減し、本制御は終了する。燃料電池1の電圧が上昇することによって、酸化剤極4の触媒層4a表面には速やかに酸化皮膜が形成され、触媒の溶解量が低減される。
以上のように、ステップ102及びステップ103の条件を満たした場合にのみ、燃料電池1の負荷が維持される。これは、燃料電池システム100を自動車等の移動体に適用した場合、走行中にアクセルが一時的にOFFとなっても自動車は慣性力によって走行を継続し、再びアクセルONとなる場合がある。この場合、通常アクセルOFFにて燃料電池1の負荷は速やかに低減されるため、再びアクセルONとなった場合には、燃料電池の負荷が上昇することによって燃料電池1に電位サイクルが発生することになる。電位サイクルが発生すれば、上記した試験結果のように酸化剤極4における触媒層4aの触媒金属成分が溶解し、燃料電池が劣化する。
したがって、アクセルが一時的にOFFとなっても所定の条件を満たした場合には、燃料電池1の負荷を時間差を持たせて低減することによって、つまり無負荷要求に対する燃料電池1の負荷追従に遅れを持たせることによって、その時間差の間に再度アクセルがONとなった場合には、燃料電池1の負荷を低減する必要がなく燃料電池1に発生する電位サイクルを防ぐことができる。
そこで、燃料電池1の負荷低減に時間差を持たせるか否かを判定する所定の条件として、ステップ102では、酸化剤極4の触媒層4aの触媒溶解加速度を決定する燃料電池1の電圧を基に、時間差を持たせるか否かを判定する。具体的には、上記したように単位電池電圧がD(V)以上か否かを判定する。これは、図2に示したように、単位電池電圧がD(V)以上の範囲は、酸化剤極4の触媒層4aの触媒溶解加速度が大きい領域である。自動車走行中の単位電池電圧がこの範囲にある場合に、アクセルがOFFとなり再度ONとなった場合には、触媒層4aの溶解が加速する。したがって、単位電池電圧がD(V)以上である場合には、アクセルがOFFとなっても燃料電池1の負荷を低減することなく維持することとした。これにより、再度アクセルがONとなった場合に発生する電位サイクルを効果的に防止し、触媒層4aの溶解を抑制することができる。また、単位電池電圧がD(V)以上の範囲は、燃料電池1の負荷は比較的低負荷であるため、燃料電池1の負荷を維持しても燃料ガスの消費は少なく合理的である。このように、酸化剤極4の触媒層4aの触媒溶解加速度を決定する燃料電池1の電圧を基に、時間差を持たせるか否かを判定することによって、触媒層4aの溶解を効果的に抑制することができる。なお、このステップ102では単位電池電圧の範囲をD(V)以上と下限値を設定したが、D(V)以上B(V)以下のように上限値も設定するようにしてもよい。
さらに、燃料電池1の負荷低減に時間差を持たせるか否かを判定する所定の条件として、ステップ103では、負荷要求が無負荷要求に移行する直前までの有負荷要求の継続時間を基に、前記時間差を持たせるか否かを判定する。具体的には、上記したようにアクセルOFF移行直前までアクセルが連続30秒以上ONか否かを判定する。アクセルが連続30秒以上ONであったとは、アクセルONの状態が、モータ15の運動エネルギーを急にゼロにすることが困難な時間以上であったことを意味する。このような状態では、アクセルを間欠的にONとOFFを繰り返すような精細な制御を必要としない可能性が高いため、燃料電池1の負荷を維持することとしても問題がなく効果的となる。なお、30秒は一例であり、モータ15等の外部負荷の運動エネルギーを瞬時にゼロにすることが困難なアクセルONの継続時間であれば何秒に設定してもよい。
ステップ105では、充電計19にて検出した情報を基に、二次電池16の充電割合が80%以上か否かを判定する。二次電池16の充電割合が80%未満の場合には、燃料電池1の負荷はそのまま二次電池16に充電される。また、二次電池16の充電割合が80%以上の場合、又は80%に達した場合には、ステップ106に進み燃料電池1の負荷を放電抵抗18によって消費し燃料電池1の負荷を維持する。なお、80%は一例であり任意に設定することができる。また、放電抵抗18の負荷を制御できるようにすれば、燃料電池1の負荷を消費する手段を二次電池16から放電抵抗18に移行する際、燃料電池1に負荷変動が生じず、燃料電池1に発生する電位サイクルを防ぐことができる。
ステップ107では、ステップ1のアクセルOFF時から所定時間をカウントする。例えば5秒が経過した場合にはステップ108に進む。この所定時間の5秒は一例であり任意に設定することができる。
ステップ108では、アクセルが再度ONとなったか否かを判定する。再度アクセルONとなった場合には、自動車はアクセルON相当の燃料電池1の負荷にて走行を継続し(ステップ109)、本制御は終了する。このとき、燃料電池1の負荷は、ステップ104にてアクセルOFF移行直前の負荷に維持された状態であるため、再度アクセルONとなった場合でも燃料電池1には電位サイクルが発生し難い。また、ステップ108にてアクセルが再度ONとならずにOFFのままの場合には、ステップ110に進み、燃料電池1からモータ15へ出力する負荷をステップ状に低減し、本制御は終了する。
なお、以上の制御過程の任意のタイミングにて、ブレーキ作動検出器25がブレーキの作動を検出した場合(ステップ100)には、モータ15は負荷を必要としない状態であるため、ステップ110に進み燃料電池1からモータ15へ出力する負荷を低減し、本制御は停止する。
以上のように、コントローラ20は、アクセルがONからOFFに移行した場合において、所定の条件を満たしたときに、燃料電池1の負荷を時間差を持たせて低減するように燃料電池システム100を制御する。
以上の本実施の形態1の燃料電池システム100によれば、アクセルがONからOFFに移行した場合、無負荷要求に対する燃料電池1の負荷追従に時間差を持たせ、かつその時間差の間は燃料電池1の負荷を維持するようにしたため、その時間差の間にアクセルが再度ONに移行した場合には、燃料電池1の負荷の変化が少なく燃料電池1に電位サイクルが発生し難い。したがって、酸化剤極4における触媒層4aの触媒金属の溶解を抑制することができ、燃料電池1の耐久性が向上する。また、燃料電池1の負荷を維持している間は、燃料電池1の負荷は二次電池16に充電されるため経済的かつ効率的である。
(実施の形態2)
次に、本発明の実施の形態2に係る燃料電池システム200について説明する。実施の形態2に係る燃料電池システム200の構成は、図1に示した実施の形態1に係る燃料電池システム100の構成と同様であるため説明を省略する。ここでは、図2及び図4を参照して、コントローラ20によって実行される燃料電池システム200の制御について説明する。図4は、燃料電池システム200の制御手順を示すフローチャートである。なお、実施の形態1に係る燃料電池システム100と同様の処理については説明を省略し、異なる処理について説明する。また、燃料電池システム200に用いられる燃料電池1における酸化剤極4の触媒層4aの触媒の溶出電圧特性も、図2に示した特性である。
実施の形態1では、燃料電池1の負荷低減に時間差を持たせるか否かを判定する所定の条件としてステップ102、ステップ103を設けた。これに対して、実施の形態2では、ステップ202を設けた。
ステップ202では、モータ15の駆動によって走行する自動車の走行速度を基に、時間差を持たせるか否かを判定する。具体的には、移動体速度が80km/h以上か否かを判定する。移動体速度が80km/h以上の場合には、ステップ203に進み燃料電池1に印加される電圧を維持することによって燃料電池1の負荷をアクセルOFF移行直前の負荷に維持する。また、移動体速度が80km/h未満の場合には、ステップ214に進み燃料電池1の電圧を上昇させることによって、燃料電池1からモータ15へ出力する負荷をステップ状に低減し、本制御は終了する。
このステップ202における移動体速度が80km/h以上とは、移動体が急停止困難な所定速度以上にて走行していることを意味する。このような走行状態では、精細な速度制御を必要としない可能性が高いため、燃料電池1の負荷を維持することとしても問題がなく効果的となる。なお、80km/hは一例であり、移動体が急停止困難な速度であれば、どのような速度に設定してもよい。
ステップ203〜208は、実施の形態1におけるステップ204〜ステップ209の処理と同様であるが、ステップ207にてアクセルが再度ONとならずにOFFのままの場合には、実施の形態1とは異なる処理(ステップ209)を行う。ステップ209では、燃料電池1の単位電池電圧がD(V)未満か否かを判定する。
ステップ209において単位電池電圧がD(V)未満である場合には、ステップ210に進み単位電池電圧がD(V)となるまで燃料電池1からモータ15へ出力する負荷をステップ状に低減する。また、単位電池電圧がD(V)以上である場合には、ステップ214に進み燃料電池1からモータ15へ出力する負荷をステップ状に低減し、本制御は終了する。
ここで、ステップ209にて、単位電池電圧がD(V)未満である場合に、単位電池電圧がD(V)となるまで燃料電池1からモータ15へ出力する負荷を低減することにした理由について説明する。図2から、単位電池電圧がD(V)未満である場合には、触媒層4aの触媒溶解加速度が小さいことがわかる。換言すれば、単位電池電圧D(V)とは、触媒層4aの触媒溶解加速度が大きい範囲(図2では例えばB(V)以上D(V)以下)の下限値であるといえる。したがって、単位電池電圧がD(V)未満である場合には、電位サイクルが発生したとしても触媒層4aの触媒溶解には大きな影響を与えないため、単位電池電圧をD(V)まで変化させることとした。
このように、ステップ209及びステップ210は、燃料電池1の単位電池電圧が触媒層4aの触媒溶解加速度が大きい範囲の下限値未満であるときには、燃料電池1の単位電池電圧が、現在の単位電池電圧から前記下限値に変化するように燃料電池1の負荷を低減する制御である。なお、ステップ10では燃料電池1の単位電池電圧が、触媒溶解加速度が大きい範囲の下限値となるように燃料電池1の負荷を低減するようにしたが、燃料電池1の単位電池電圧が、現在の単位電池電圧以上かつ触媒溶解加速度が大きい範囲の下限値以下の任意の単位電池電圧となるように燃料電池1の負荷を低減するようにしてもよい。
ステップ210にて単位電池電圧をD(V)まで低減したら、ステップ211に進む。ステップ211では、ステップ210にて単位電池電圧をD(V)まで低減してから所定時間をカウントする。例えば、2秒が経過した場合にはステップ212に進む。この所定時間の2秒は一例であり任意に設定することができる。
ステップ212では、アクセルが再度ONとなったか否かを判定する。再度アクセルONとなった場合には、自動車はアクセルON相当の燃料電池1の負荷にて走行を継続し(ステップ213)、本制御は終了する。このとき、燃料電池1の単位電池電圧は、ステップ210にてD(V)にて設定維持された状態であるため、再度アクセルONとなった場合でも燃料電池1には電位サイクルが発生し難い。また、ステップ212にてアクセルが再度ONとならずにOFFのままの場合には、ステップ214に進み、燃料電池1からモータ15へ出力する負荷をステップ状に低減し、本制御は終了する。
本実施の形態2の燃料電池システム200によれば、燃料電池1の単位電池電圧が触媒層4aの触媒溶解加速度が大きい範囲の下限値未満であるときには、燃料電池1の単位電池電圧を前記下限値に一旦維持するようにしたので、単位電池電圧を維持している間に再度アクセルONとなる状況が発生した場合、燃料電池1に電位サイクルが発生し難い。また、単位電池電圧を前記下限値に一旦維持した後、燃料電池1の負荷が一旦低減し再度増加するような状況が発生して場合でも、燃料電池1に発生する電位差を低く抑えることができる。したがって、酸化剤極4における触媒層4aの触媒金属の溶解を抑制することができ、燃料電池1の耐久性が向上する。
(実施の形態3)
次に、本発明の実施の形態3に係る燃料電池システム300について説明する。実施の形態3に係る燃料電池システム300の構成は、図1に示した実施の形態1に係る燃料電池システム100の構成と同様であるため説明を省略する。ここでは、図2及び図5を参照して、コントローラ20によって実行される燃料電池システム300の制御について説明する。図5は、燃料電池システム300の制御手順を示すフローチャートである。なお、燃料電池システム300に用いられる燃料電池1における酸化剤極4の触媒層4aの触媒の溶出電圧特性も、図2に示した特性である。
実施の形態2に係る燃料電池システム200と同様の処理については説明を省略し、異なる処理について説明する。燃料電池システム300における燃料電池システム200との相違点は、燃料電池1の負荷低減に時間差を持たせるか否かを判定する所定の条件が異なる点である。
燃料電池システム300における所定の条件は、ステップ302及びステップ303である。ステップ302は、ステップ301にてアクセルONからOFFに移行した際に、アクセルOFF移行直前までアクセルが連続30秒以上ONであったか否かを判定するものである。これは、実施の形態1(図3)におけるステップ103と同様の処理である。
また、ステップ303は、モータ15の駆動によって走行する自動車等の移動体速度が30km/h以上140km/h以下の範囲内か否かを判定する。つまり、実施の形態2(図4)におけるステップ202の同じようにモータ15の駆動によって走行する自動車の走行速度を基に、時間差を持たせるか否かを判定する。このような走行状態では、精細な速度制御を必要としない可能性が高いため、燃料電池1の負荷を維持することとしても問題がなく効果的となる。換言すれば、移動体の速度がこの速度範囲内でない場合には、減速又は加速を必要とする可能性が高いため、ステップ315に進み、燃料電池1からモータ15へ出力する負荷をステップ状に低減することとした。なお、30km/h以上140km/h以下は一例であり、任意に設定することができる。
以上のように、燃料電池1の負荷低減に時間差を持たせるか否かを判定する所定の条件に選択肢を持たせることによって、移動体の種類や、走行状況に応じて効率的で効果的な制御方法を設定することが可能となる。
なお、以上の実施の形態では、移動体として燃料電池ハイブリッド自動車を例に挙げて説明したが、燃料電池1から出力する負荷をモータやロータなどの回転体に伝達するようなシステムであれば、どのようなものでもよい。
本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
本発明は、燃料電池ハイブリッド自動車に適用することができる。
100,200,300 燃料電池システム
1 燃料電池
2 電解質膜
3 燃料極
3a 燃料側触媒層
4 酸化剤極
4a 酸化剤側触媒層
15 モータ
16 二次電池
18 放電抵抗
20 コントローラ
21 負荷検出計
22 電圧計
23 所内負荷検出計
24 アクセル踏込み量検出センサ

Claims (2)

  1. 電解質膜の一方の面に触媒層を有する燃料極を配置すると共に他方の面に触媒層を有する酸化剤極を配置した燃料電池を備え、前記燃料極に燃料ガスを供給すると共に前記酸化剤極に酸化剤ガスを供給して発電する燃料電池システムにおいて、
    前記燃料電池が発電する電力によって駆動する外部負荷と、
    前記燃料電池から前記外部負荷へ出力する負荷の負荷要求を検出する負荷要求検出手段と、
    前記負荷要求が有負荷要求から無負荷要求に移行した場合に、前記燃料電池の負荷を時間差を持たせて低減する負荷制御手段とを備え、
    前記負荷制御手段は、
    前記負荷要求が無負荷要求に移行する直前までの有負荷要求の継続時間が所定時間よりも大きいときに、前記時間差を持たせると判定することを特徴とする燃料電池システム。
  2. 電解質膜の一方の面に触媒層を有する燃料極を配置すると共に他方の面に触媒層を有する酸化剤極を配置した燃料電池を備え、前記燃料極に燃料ガスを供給すると共に前記酸化剤極に酸化剤ガスを供給して発電する燃料電池システムにおいて、
    前記燃料電池が発電する電力によって駆動する外部負荷と、
    前記燃料電池から前記外部負荷へ出力する負荷の負荷要求を検出する負荷要求検出手段と、
    前記負荷要求が有負荷要求から無負荷要求に移行した場合に、前記燃料電池の負荷を時間差を持たせて低減する負荷制御手段とを備え、
    前記負荷制御手段は、
    前記外部負荷の駆動によって走行する移動体の走行速度が所定速度よりも大きいときに、前記時間差を持たせると判定することを特徴とする燃料電池システム。
JP2011288146A 2011-12-28 2011-12-28 燃料電池システム Expired - Fee Related JP5429276B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288146A JP5429276B2 (ja) 2011-12-28 2011-12-28 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288146A JP5429276B2 (ja) 2011-12-28 2011-12-28 燃料電池システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005256618A Division JP4997731B2 (ja) 2005-09-05 2005-09-05 燃料電池システム、及びその運転方法

Publications (2)

Publication Number Publication Date
JP2012099495A JP2012099495A (ja) 2012-05-24
JP5429276B2 true JP5429276B2 (ja) 2014-02-26

Family

ID=46391119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288146A Expired - Fee Related JP5429276B2 (ja) 2011-12-28 2011-12-28 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5429276B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7159929B2 (ja) 2019-03-14 2022-10-25 トヨタ自動車株式会社 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271706A (ja) * 1997-03-24 1998-10-09 Toyota Motor Corp 電源装置および電気自動車
JP2002124282A (ja) * 2000-10-16 2002-04-26 Honda Motor Co Ltd 燃料電池システム
JP2003151600A (ja) * 2001-11-09 2003-05-23 Toyota Motor Corp 燃料電池を駆動源とする移動体

Also Published As

Publication number Publication date
JP2012099495A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
CN101828296B (zh) 二次电池的控制系统及搭载有该控制系统的电动车辆以及二次电池的控制方法
US9034495B2 (en) Fuel cell system
CN101222062B (zh) 用于改善燃料电池系统中功率增加瞬态响应的方法
JP5505024B2 (ja) 燃料電池自動車及びその制御方法
US20070141416A1 (en) Floating base load hybrid strategy for a hybrid fuel cell vehicle to increase the durability of the fuel cell system
US9748590B2 (en) Fuel cell system
JP6761203B2 (ja) 車両用燃料電池の電力制御装置
JP4380676B2 (ja) 移動体
JP4379922B2 (ja) 移動体
JP4814930B2 (ja) 燃料電池システム
JP4978019B2 (ja) 燃料電池システム
JP2017204407A (ja) 燃料電池システム及びその制御方法
JP4997731B2 (ja) 燃料電池システム、及びその運転方法
US8326477B2 (en) Heel and toe driving on fuel cell vehicle
US9520605B2 (en) Fuel cell system
JP5769083B2 (ja) 燃料電池システム及び燃料電池車両
CN111791712B (zh) 燃料电池车辆
US20210129824A1 (en) Vehicle system, vehicle control method, and storage medium
JP4685846B2 (ja) 燃料電池車両
JP5429276B2 (ja) 燃料電池システム
US20170077533A1 (en) Control method and system of fuel cell system
JP2009043545A (ja) 燃料電池システム
JP2006331775A (ja) 燃料電池システム、その制御方法及びそれを搭載した車両
JP6167864B2 (ja) 燃料電池システムおよび燃料電池車両、燃料電池システムの制御方法
JP2007151346A (ja) 移動体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees