JP5427084B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5427084B2
JP5427084B2 JP2010070417A JP2010070417A JP5427084B2 JP 5427084 B2 JP5427084 B2 JP 5427084B2 JP 2010070417 A JP2010070417 A JP 2010070417A JP 2010070417 A JP2010070417 A JP 2010070417A JP 5427084 B2 JP5427084 B2 JP 5427084B2
Authority
JP
Japan
Prior art keywords
fine
blast furnace
coke
particle size
grained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010070417A
Other languages
Japanese (ja)
Other versions
JP2011202229A (en
Inventor
山口  泰弘
健太郎 野澤
信夫 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010070417A priority Critical patent/JP5427084B2/en
Publication of JP2011202229A publication Critical patent/JP2011202229A/en
Application granted granted Critical
Publication of JP5427084B2 publication Critical patent/JP5427084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、細粒焼結鉱を使用する高炉操業方法に関する。   The present invention relates to a blast furnace operating method using fine-grained sintered ore.

高炉の通気性を維持しながら焼結鉱の粒径を下げることができれば、焼結工場の製造歩留を上げるのみならず、高炉における焼結鉱の還元効率を高め、還元材比を下げることになり、コスト面からの効果が大きい。   If the particle size of the sintered ore can be reduced while maintaining the air permeability of the blast furnace, not only the production yield of the sintering plant can be increased, but also the reduction efficiency of the sintered ore in the blast furnace can be increased and the reducing material ratio can be reduced. Therefore, the cost effect is great.

焼結鉱の粒径を低下させながら高炉の通気性を維持する方法として焼結鉱の粒度別装入法が知られている。この方法では、例えば、焼結鉱を焼結工場または高炉庫下で5mmのスクリーンで篩った後、その篩上の5mm超の粗粒焼結鉱は高炉に装入し、その篩下の5mm以下は再度3mmのスクリーンで篩った後、その3〜5mmの細粒焼結鉱は上記粗粒焼結鉱とは別に高炉に装入する。通常、細粒焼結鉱を高炉の周辺部に装入し、該周辺部の通気性とガス量の調整に使用している(非特許文献1参照)。   As a method for maintaining the air permeability of the blast furnace while reducing the particle size of the sintered ore, a method of charging the sintered ore according to the particle size is known. In this method, for example, after sintering the sinter with a 5 mm screen in a sinter factory or blast furnace, coarse sinter over 5 mm on the sieve is charged into the blast furnace, After sieving with a 3 mm screen again for 5 mm or less, the 3-5 mm fine-grained ore is charged into a blast furnace separately from the coarse-grained ore. Usually, fine-grained sintered ore is charged in the peripheral part of the blast furnace and used for adjusting the air permeability and gas amount in the peripheral part (see Non-Patent Document 1).

ところが、焼結鉱製造条件の変動等によって、細粒焼結鉱の粒度が小さくなったり、量が多くなったりした場合には、高炉周辺部の通気性が悪化してガス量が減少し、細粒といえども還元が遅れ、炉熱不足に至ることがある。このような場合には、細粒焼結鉱の使用量を減じたり、使用を中止したりする必要があった。   However, when the particle size of the fine-grained sinter becomes smaller or the amount increases due to fluctuations in the sinter production conditions, etc., the gas permeability decreases due to the deterioration of the air permeability around the blast furnace, Even fine particles may be delayed in reduction, resulting in insufficient furnace heat. In such a case, it was necessary to reduce the amount of fine-grained sintered ore used or to stop using it.

ここで、特許文献1には、焼結鉱を粗粒と細粒に分別し、粗粒を高炉の中心部から中間部に、細粒を高炉の周辺部に装入する粒度別装入法を採用している高炉操業法において、細粒焼結鉱と小塊コークスをあらかじめ混合しておき、該混合物を高炉の周辺部に装入する高炉操業法が提案され、細粒焼結鉱と混合する小塊コークスの粒度は、細粒焼結鉱の粒度と同じかそれ以上であることが望ましいことが開示されている。   Here, in Patent Document 1, the sintered ore is separated into coarse particles and fine particles, and the coarse particles are charged from the central portion of the blast furnace to the intermediate portion, and the fine particles are charged into the peripheral portion of the blast furnace. In the blast furnace operation method adopting the blast furnace operation method, a fine sinter ore and small coke are mixed in advance, and the blast furnace operation method in which the mixture is charged to the periphery of the blast furnace is proposed. It is disclosed that the particle size of the small coke to be mixed is desirably equal to or greater than the particle size of the fine sinter.

この方法によれば、細粒焼結鉱の粒度が小さくなっても、小塊コークスがスペーサの役割をしてその通気性を悪化せず、周辺ガス流が維持されるとともに、細粒焼結鉱と混合された小塊コークスは粒度の小さい分だけまた細粒焼結鉱と混合された小塊コークスは粒度の小さい分だけCO2 との反応がより活発であり、かつ細粒焼結鉱のCO還元で生成したCO2 がコークスのより近くにあり、反応が速いため還元効率が向上し、高い還元効率のもとで高生産性で安定的に高炉を操業することができるとしている。 According to this method, even if the particle size of the fine-grained sintered ore becomes small, the small coke does not deteriorate the air permeability by acting as a spacer, the surrounding gas flow is maintained, and the fine-grained sintered ore is maintained. The small coke mixed with the ore has a smaller particle size and the small coke mixed with the fine sinter ore has a more active reaction with CO 2 by the smaller particle size and the fine sinter ore. The CO 2 produced by the CO reduction is closer to the coke, and the reaction is fast, so that the reduction efficiency is improved, and the blast furnace can be stably operated with high productivity under high reduction efficiency.

しかしながら、その実施例では、細粒焼結鉱の平均粒度として11〜15mm、小塊コークスの平均粒度として20〜25mmといった比較的大きい粒度を使用する例が記載されているのみであり、5mm以下といった非常に小さい粒度の細粒焼結鉱を使用する場合についてまでこの方法が適用しうるか否かについては不明であった。   However, the example only describes an example using a relatively large particle size such as 11 to 15 mm as the average particle size of the fine-grained sintered ore and 20 to 25 mm as the average particle size of the small coke. It was unclear whether this method could be applied to the case of using a fine sinter having a very small particle size.

また、特許文献2には、焼結鉱を含む鉱石とコークスを炉頂から交互に装入する高炉の操業方法において、装入する焼結鉱の1〜30wt%を粒径1〜5mmの細粒焼結鉱とする際に、該細粒焼結鉱による高炉内の鉱石層の還元率低下量を求め、前記還元率低下量を補う3〜25mmの小塊コークスの装入量を算出し、該小塊コークスを前記鉱石層に混合して装入する高炉の操業方法が提案されている。   Patent Document 2 discloses that in an operation method of a blast furnace in which ore and coke containing sintered ore are alternately charged from the top of the furnace, 1 to 30 wt% of the charged ore is charged with a fine particle size of 1 to 5 mm. When making the grain sintered ore, calculate the reduction rate of the ore layer in the blast furnace by the fine grain sintered ore, and calculate the charging amount of 3 to 25 mm small coke to compensate for the reduction rate reduction amount A method of operating a blast furnace in which the small coke is mixed and charged in the ore layer has been proposed.

しかしながら、この方法は、焼結鉱の粒度別装入法を行うものでなく、あくまで鉱石中の粒径1〜5mmの細粒焼結鉱の量に応じて添加量が調整された3〜25mmの小塊コークスを鉱石層全体に混合して装入するものである。   However, this method does not perform the charging method according to the particle size of the sintered ore, but the addition amount is adjusted to 3 to 25 mm depending on the amount of the fine sintered ore having a particle size of 1 to 5 mm in the ore. The small coke is mixed and charged into the entire ore layer.

したがって、5mm超の粗粒焼結鉱と5mm以下の細粒焼結鉱を別々に装入する焼結鉱粒度別装入法を採用している高炉において、5mm以下の細粒焼結鉱の粒度や量の変動によって生じる操業の不具合を確実に解消しうる高炉操業方法はいまだ確立していなかった。   Therefore, in a blast furnace that employs a sinter ore particle-size charging method in which coarse sinter of more than 5 mm and fine sinter of 5 mm or less are charged separately, There has not yet been established a blast furnace operation method that can reliably eliminate operational problems caused by fluctuations in particle size and quantity.

堀 隆一ら,鉄と鋼,vol.78(1992)No.8,p.56−62Ryuichi Hori et al., Iron and Steel, vol. 78 (1992) No. 8, p. 56-62

特開平6−100908号公報JP-A-6-100908 特開平8−295907号公報JP-A-8-295907

そこで、本発明は、細粒焼結鉱を使用する高炉操業において、細粒焼結鉱の粒度や量が変動しても、焼結工場における製造歩留を高く維持しつつ、細粒焼結鉱の還元遅れを防止するとともに高炉の通気性を維持してより安定な操業を実現しうる高炉操業方法を提供することを目的とする。   Therefore, in the blast furnace operation using the fine-grained sintered ore, the present invention maintains a high production yield in the sintering plant, even if the particle size and amount of the fine-grained sintered ore fluctuate, An object of the present invention is to provide a method for operating a blast furnace capable of preventing a delay in reduction of the ore and maintaining more stable operation by maintaining the air permeability of the blast furnace.

請求項1に記載の発明は、焼結鉱を細粒焼結鉱と粗粒焼結鉱とに分別し、前記細粒焼結鉱に小粒コークスをあらかじめ混合しておき、該混合物と前記粗粒焼結鉱とを別々に装入する粒度別装入法を採用している高炉操業方法において、前記細粒焼結鉱の平均粒径が3〜5mmであり、かつ、前記小粒コークスの平均粒径が、前記細粒焼結鉱の平均粒径の1.2〜2.0倍であることを特徴とする高炉操業方法である。   According to the first aspect of the present invention, the sintered ore is separated into fine-grained sintered ore and coarse-grained sintered ore, and small-grain coke is mixed in advance with the fine-grained sintered ore. In the blast furnace operation method adopting a particle-size charging method for separately charging the grain sintered ore, the average grain size of the fine grain sintered ore is 3 to 5 mm, and the average of the small grain coke The blast furnace operating method is characterized in that the particle size is 1.2 to 2.0 times the average particle size of the fine-grained sintered ore.

本発明において、平均粒径とは、篩い分け法で分級後、各篩目間の代表径とその篩目間の質量から算出される質量平均粒径である。例えば、篩目がD、D、…、D、Dn+1(D<D<・・・<D<Dn+1)の篩を用いて分級したとき、篩目DとDk+1間の質量がWである場合、質量平均粒径dは、d=Σk=1,n(W×d)/Σk=1,n(W)で定義される。ここに、dは篩目DとDk+1間の代表径であり、d=(D+Dk+1)/2である。 In the present invention, the average particle diameter is a mass average particle diameter calculated from the representative diameter between each sieve mesh and the mass between the sieve meshes after classification by a sieving method. For example, when the sieve meshes are classified using a sieve of D 1 , D 2 ,..., D n , D n + 1 (D 1 <D 2 <... <D n <D n + 1 ), the sieve meshes D k and D when the mass between the k + 1 is W k, mass average particle diameter d m is defined by d m = Σ k = 1, n (W k × d k) / Σ k = 1, n (W k) . Here, d k is a representative diameter between the meshes D k and D k + 1 , and d k = (D k + D k + 1 ) / 2.

請求項2に記載の発明は、微粉炭比120kg/t−pig以上で操業を行う請求項1に記載の高炉操業方法である。   The invention described in claim 2 is the blast furnace operating method according to claim 1, wherein the operation is performed at a pulverized coal ratio of 120 kg / t-pig or more.

請求項3に記載の発明は、高炉内中心部に塊コークスの一部を装入しつつ、高炉内周辺部に塊コークスの残部と鉱石類を層状に装入するコークス中心装入法で操業を行う請求項1または2に記載の高炉操業方法である。   The invention according to claim 3 is operated by the coke center charging method in which a part of the lump coke is charged in the center part of the blast furnace and the remainder of the lump coke and ore are charged in layers in the periphery of the blast furnace. It is a blast furnace operating method of Claim 1 or 2 which performs.

本発明によれば、焼結鉱を細粒焼結鉱と粗粒焼結鉱とに分別し、前記細粒焼結鉱に小粒コークスを予め混合しておき、該混合物と前記粗粒焼結鉱とを別々に装入する粒度別装入法を採用している高炉操業方法において、前記細粒焼結鉱の平均粒径を3〜5mmとし、かつ、前記小粒コークスの平均粒径を、前記細粒焼結鉱の平均粒径の1.2〜2.0倍とすることで、細粒焼結鉱の粒度や量が変動しても、焼結工場における製造歩留を高く維持しつつ、細粒焼結鉱の還元遅れを防止するとともに高炉内の通気性を維持することが可能となり、より安定した高炉操業が実現できるようになった。   According to the present invention, the sintered ore is separated into fine-grained sintered ore and coarse-grained sintered ore, and small-grain coke is mixed in advance with the fine-grained sintered ore. In the blast furnace operation method adopting a charging method classified by particle size separately charging the ore, the average particle size of the fine-grained sintered ore is 3 to 5 mm, and the average particle size of the small coke, By setting the average particle size of the fine-grained sintered ore to 1.2 to 2.0 times, even if the particle size and amount of the fine-grained sintered ore fluctuate, the production yield in the sintering plant is maintained high. However, it became possible to prevent the delay of reduction of fine-grained sintered ore and maintain the air permeability in the blast furnace, and more stable blast furnace operation could be realized.

小粒コークスの体積配合率と、細粒焼結鉱および小粒コークスの混合物からなる充填層の空隙率との関係を示すグラフ図である。It is a graph which shows the relationship between the volume compounding rate of a small grain coke, and the porosity of the packed bed which consists of a mixture of a fine grain sintered ore and a small grain coke. (小粒コークスの平均粒径/細粒焼結鉱の平均粒径)比と、相対空隙率との関係を示すグラフ図である。It is a graph which shows the relationship between (average particle diameter of a small coke / average particle diameter of a fine-grain sintered ore) ratio and a relative porosity. 発明例と比較例における、温度Tとガス化反応速度定数kとの関係を示すグラフ図である。In comparative example invention embodiment is a graph showing the relationship between the temperature T and the gasification reaction rate constant k S.

以下、本発明の実施の形態について、さらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

本発明は、焼結鉱を細粒焼結鉱と粗粒焼結鉱とに分別し、前記細粒焼結鉱に小粒コークスをあらかじめ混合しておき、該混合物と前記粗粒焼結鉱とを別々に装入する粒度別装入法を採用している高炉操業方法において、前記細粒焼結鉱の平均粒径が3〜5mmであり、かつ、前記小粒コークスの平均粒径が、前記細粒焼結鉱の平均粒径の1.2〜2.0倍であることを特徴とする。   The present invention separates the sintered ore into fine-grained ore and coarse-grained ore, and previously mixed the fine-grained ore with small-size coke, and the mixture and the coarse-grained ore and In the blast furnace operating method adopting a particle-by-particle charging method for separately charging, the average particle size of the fine-grained sintered ore is 3 to 5 mm, and the average particle size of the small-grain coke is The average particle size of the fine-grained sintered ore is 1.2 to 2.0 times.

上記のように、本発明で用いる細粒焼結鉱の平均粒径は3〜5mmとする。ここで、細粒焼結鉱の平均粒径の下限を3mmとしたのは、細粒焼結鉱の粒度を小さくしすぎると、小粒コークスと混合しても通気性が維持できなくなることに加え、そもそも高炉への装入時に細粒焼結鉱がダストとして飛散してしまうおそれが高まるためである。一方上限を5mmとしたのは、細粒焼結鉱の粒度を大きくしすぎると、焼結工場における製造歩留が低下するためである。   As described above, the average particle diameter of the fine-grained sintered ore used in the present invention is 3 to 5 mm. Here, the lower limit of the average particle size of the fine-grained sinter is set to 3 mm. In addition to the fact that the particle size of the fine-grained sinter is too small, the air permeability cannot be maintained even when mixed with the small-grain coke. This is because, in the first place, there is an increased risk that the fine-grained sintered ore will be scattered as dust during charging into the blast furnace. On the other hand, the upper limit is set to 5 mm because the production yield in the sintering plant decreases if the particle size of the fine-grained sintered ore is too large.

また、小粒コークスの平均粒径を、細粒焼結鉱の平均粒径の1.2〜2.0倍としたのは、以下の解析結果に基づくものである。   The average particle size of the small coke is 1.2 to 2.0 times the average particle size of the fine-grained sintered ore based on the following analysis results.

まず、粒度範囲が4〜5mm(平均粒径4.5mm)の細粒焼結鉱に対して、粒度範囲の異なる3種類の小粒コークスを混合して得られた混合物からなる充填層の空隙率を、2成分粒子モデルを用いて計算により求めた。なお、上記細粒焼結鉱のみからなる充填層の空隙率は0.4、小粒コークスのみからなる充填層の空隙率は、その粒度範囲に関わらず0.5とした。   First, the porosity of a packed bed made of a mixture obtained by mixing three types of small coke with different particle size ranges for fine-grained sintered ore with a particle size range of 4 to 5 mm (average particle size 4.5 mm). Was obtained by calculation using a two-component particle model. The porosity of the packed bed made only of the fine-grained sintered ore was 0.4, and the porosity of the packed bed made only of the small-grain coke was 0.5 regardless of the particle size range.

上記混合物中における小粒コークスの体積混合率と、該混合物からなる充填層の空隙率の関係を図1に示す。同図に見られるとおり、粒度範囲が8〜20mm(平均粒径14mm)の小粒コークス(後記実施例の「小塊コークス」に相当)とを混合した場合には、小粒コークス(小塊コークス相当)の空隙間に細粒焼結鉱が充填されてしまうため、充填層の空隙率は小粒コークス(小塊コークス相当)の体積混合率の増加に伴ってむしろ低下する傾向を示すのに対し、粒度範囲が6〜8mm(平均粒径7mm)、または、0〜6mm(平均粒径3mm)の小粒コークスを混合した場合には、充填層の空隙率は小粒コークスの体積混合率の増加に伴って上昇する傾向を示すことがわかった。   FIG. 1 shows the relationship between the volume mixing ratio of small coke in the mixture and the porosity of the packed bed made of the mixture. As seen in the figure, when mixed with small coke having a particle size range of 8 to 20 mm (average particle size 14 mm) (corresponding to “small coke” in the examples described later), small coke (corresponding to small coke) ) Is filled with fine-grained sinter, so the porosity of the packed bed tends to decrease with an increase in the volume mixing ratio of small coke (corresponding to small coke), When small particle coke with a particle size range of 6 to 8 mm (average particle size 7 mm) or 0 to 6 mm (average particle size 3 mm) is mixed, the porosity of the packed bed increases with the volume mixing rate of the small particle coke. Showed a tendency to increase.

この結果から、小粒コークスのサイズとしては、大きいものを用いるよりも、むしろ細粒焼結鉱のサイズに近づける方が、混合物の空隙率は上昇し、通気性が維持できるものと想定された。   From this result, it was postulated that the porosity of the mixture increased and the air permeability could be maintained by approaching the size of the fine-grained sintered ore rather than using a large-sized coke.

そこで、図1のデータを、〔小粒コークスの平均粒径/細粒焼結鉱の平均粒径〕比R1を横軸とし、混合物の相対空隙率eを縦軸としてプロットし直すと図2が得られた。ここに、混合物の相対空隙率eとは、細粒焼結鉱のみ(つまり小粒コークスの混合なし)からなる充填層の空隙率εを基準値(1.0)として、小粒コークスを体積混合率で0.03混合した混合物からなる充填層の空隙率εを相対値で表すものであり、e=ε/εで定義される値である。 Accordingly, when the data in FIG. 1 is plotted again with the [average particle size of small coke / average particle size of fine sinter] ratio R1 as the horizontal axis and the relative porosity e M of the mixture as the vertical axis, the data in FIG. was gotten. Here, the relative porosity e M of the mixture is defined as the volume of small coke, with the porosity ε 0 of the packed bed made of only fine-grained sinter (that is, no mixing of small coke) as the reference value (1.0). The porosity ε M of a packed bed made of a mixture mixed by 0.03 at a mixing rate is expressed as a relative value, and is a value defined by e M = ε M / ε 0 .

図2より、R1が2.0以下の範囲であれば相対空隙率は1.0を上回り、充填層の空隙率が上昇して通気性が維持できるのに対し、R1が2.0を超えると相対空隙率が1.0を下回り、小粒コークスの混合により却って充填層の空隙率が低下し、通気性が悪化するおそれのあることがわかる。また、小粒コークスの粒度が大きくなると、C+CO→2COの反応式で示されるガス化反応速度が低下するので、細粒焼結鉱の還元遅れを防止する効果が減少する。よって、R1の上限を2.0とした。一方、R1が小さくなりすぎると、すなわち、小粒コークスの粒度が小さくなりすぎると、小粒コークスは細粒焼結鉱よりも見掛け密度が小さいことから、高炉への装入時にダストとして飛散してしまう問題が生じる。よって、R1の下限は1.2、すなわち、小粒コークスの粒度の下限は、上記見掛け密度の差異を考慮して細粒焼結の粒度より少し大きめとした。 From FIG. 2, when R1 is in the range of 2.0 or less, the relative porosity exceeds 1.0, the porosity of the packed layer is increased and air permeability can be maintained, whereas R1 exceeds 2.0. It can be seen that the relative porosity is less than 1.0, and the porosity of the packed bed is decreased by mixing small coke, which may deteriorate the air permeability. Moreover, since the gasification reaction rate shown by the reaction formula of C + CO 2 → 2CO is reduced when the particle size of the small coke is increased, the effect of preventing the reduction delay of the fine-grained sintered ore is reduced. Therefore, the upper limit of R1 is set to 2.0. On the other hand, if R1 is too small, that is, if the particle size of the small coke is too small, the small coke has an apparent density smaller than that of the fine-grained sintered ore, so that it will be scattered as dust when charged into the blast furnace. Problems arise. Therefore, the lower limit of R1 is 1.2, that is, the lower limit of the particle size of the small coke is set slightly larger than the particle size of the fine particle sintering in consideration of the difference in the apparent density.

以上のように、細粒焼結鉱の平均粒径を3〜5mmとし、かつ、小粒コークスの平均粒径を、前記細粒焼結鉱の平均粒径の1.2〜2.0倍とすることで、細粒焼結鉱と小粒コークスの混合物からなる充填層の空隙率を確保することができるとともに、小粒コークスの存在による細粒焼結鉱の還元促進効果も得られるので、細粒焼結鉱の粒度や量が変動しても、焼結工場における製造歩留を高く維持しつつ、高炉内の通気性を維持することが可能となり、より安定した高炉操業が実現できる。   As described above, the average particle size of the fine-grained sintered ore is 3 to 5 mm, and the average particle size of the small-grained coke is 1.2 to 2.0 times the average particle size of the fine-grained sintered ore. As a result, the porosity of the packed bed made of a mixture of fine sinter and fine coke can be secured, and the effect of promoting the reduction of fine sinter due to the presence of fine coke can be obtained. Even if the particle size and quantity of the sintered ore fluctuate, it is possible to maintain the air permeability in the blast furnace while maintaining a high production yield in the sintering plant, and more stable blast furnace operation can be realized.

本発明は、微粉炭比120kg/t−pig以上で操業を行う高炉操業方法に適用するのが、さらに好ましい。   The present invention is more preferably applied to a blast furnace operation method in which operation is performed at a pulverized coal ratio of 120 kg / t-pig or more.

微粉炭比が120kg/t−pig以上になると、還元材比一定の条件下ではコークス比が低下し、O/Cが上昇するので、細粒焼結鉱を充填した部分における通気性の確保がさらに難しくなるが、本発明の適用により該充填部分の通気性をより確実に確保でき、安定操業が維持できるようになり、高微粉炭比操業のメリットである、コークスと微粉炭の置換によるコスト低減効果をさらに確実に享受できることとなる。   When the pulverized coal ratio is 120 kg / t-pig or more, the coke ratio decreases and the O / C increases under the condition of a constant reducing material ratio, so that the air permeability in the portion filled with the fine-grained sintered ore is ensured. Although it becomes more difficult, the application of the present invention can ensure the air permeability of the filling portion more reliably, maintain stable operation, and the cost of replacement of coke and pulverized coal, which is an advantage of high pulverized coal ratio operation. The reduction effect can be enjoyed more reliably.

また、本発明は、高炉内中心部に塊コークスの一部を装入しつつ、高炉内周辺部に塊コークスの残部と鉱石類を層状に装入するコークス中心装入法で操業を行う高炉操業方法に適用するのが、さらに好ましい。   Further, the present invention provides a blast furnace in which operation is performed by a coke center charging method in which a part of the lump coke is charged in the center of the blast furnace and the remainder of the lump coke and ore are charged in layers in the periphery of the blast furnace. More preferably, it is applied to the operation method.

コークス中心装入法を適用している高炉では、必然的に高炉内周辺部のO/Cが高くなるため、この部分に細粒焼結鉱を装入すると、通気性が悪化するおそれが高まるが、本発明の適用により高炉内周辺部の通気性を確保でき、適正な高炉内ガス流分布を維持できる。   In the blast furnace to which the coke center charging method is applied, the O / C in the peripheral part of the blast furnace is inevitably increased. Therefore, when fine-grained sintered ore is charged in this part, there is a risk that the air permeability may deteriorate. However, by applying the present invention, air permeability in the periphery of the blast furnace can be secured and an appropriate gas flow distribution in the blast furnace can be maintained.

本発明の適用性を確証するため、出願人の加古川製鉄所第1高炉(内容積:4550m)にて、細粒焼結鉱および小粒コークスの装入量を種々変更し、高炉内の圧力損失に及ぼす影響を調査した。なお、同高炉においては、全操業期間を通じてコークス中心装入法を採用し、細粒焼結鉱以外の鉱石類(粗粒焼結鉱+ペレット+塊鉱石)には、小粒コークスとの合計量が30kg/thm(一定)となるように添加量を調整した、粒度範囲が8〜20mm(平均粒径17mm)の小塊コークスをあらかじめ混合して装入した。また、細粒焼結鉱または細粒焼結鉱と小粒コークスの混合物を別装入する場合は該混合物を高炉内周辺部に装入した。 In order to confirm the applicability of the present invention, the amount of fine-grained sintered ore and small-sized coke charged was changed variously in the applicant's Kakogawa Works 1 blast furnace (internal volume: 4550 m 3 ), and the pressure in the blast furnace The effect on loss was investigated. In the same blast furnace, the coke center charging method is adopted throughout the operation period, and ores other than fine sinter (coarse sinter + pellet + lump ore) are combined with small coke. The small amount of coke having a particle size range of 8 to 20 mm (average particle size 17 mm), the amount of which was adjusted so as to be 30 kg / thm (constant), was previously mixed and charged. In addition, when a fine-grained sinter or a mixture of fine-grained sinter and small-grain coke was charged separately, the mixture was charged in the periphery of the blast furnace.

その結果を下記表1に示す。操業期間1においては、細粒焼結鉱への小粒コークス混合の効果を検証し、操業期間2においては、小粒コークスを混合した細粒焼結鉱の装入量の影響を検証した。   The results are shown in Table 1 below. In the operation period 1, the effect of mixing the small-grain coke to the fine-grained sintered ore was verified, and in the operation period 2, the influence of the charging amount of the fine-grained sintered ore mixed with the fine-grained coke was verified.

同表から明らかなように、操業期間1においては、焼結鉱粒度別装入法を適用しない参考例1の操業を基準として、平均粒径が3〜5mmの範囲にある細粒焼結鉱のみを別装入した比較例1の操業では、高炉内における上部圧損、下部圧損、全圧損ともに上昇した。これに対し、同じ粒径範囲にある細粒焼結鉱に、平均粒径比R1が1.2〜2.0の範囲にある小粒コークスを混合してから別装入した発明例1の操業では、高炉内における上部圧損、下部圧損、全圧損ともに参考例1の操業とほぼ同程度の圧損を維持した。この結果より、細粒焼結鉱に適正粒度の小粒コークスを混合することにより、高炉内の通気性を維持できることが確認できた。   As is clear from the table, in the operation period 1, the fine-grained sintered ore having an average particle size in the range of 3 to 5 mm based on the operation of Reference Example 1 in which the charging method according to the sintered ore particle size is not applied. In the operation of Comparative Example 1 in which only the pressure was charged separately, the upper pressure loss, the lower pressure loss, and the total pressure loss in the blast furnace increased. On the other hand, the operation of Invention Example 1 in which small-grain coke having an average particle size ratio R1 in the range of 1.2 to 2.0 was mixed with fine-grained sintered ore in the same particle size range and then charged separately. The upper pressure loss, the lower pressure loss, and the total pressure loss in the blast furnace were maintained at almost the same pressure loss as the operation of Reference Example 1. From this result, it was confirmed that the air permeability in the blast furnace can be maintained by mixing small coke having an appropriate particle size with fine-grained sintered ore.

また、操業期間2においては、小粒コークスを混合した細粒焼結鉱の量を段階的に増加したが、細粒焼結鉱比3.4質量%までの範囲では、高炉内圧損にほとんど変化はみられず、通気性が維持されることが確認できた。   In operation period 2, the amount of fine-grained sinter mixed with fine-grained coke was increased stepwise, but in the range up to 3.4% by mass of fine-grained sinter, the pressure loss in the blast furnace almost changed. It was confirmed that air permeability was maintained.

また、上記参考例2と発明例3の各操業時において、高炉炉口から、高炉内の径方向および高さ方向の温度分布およびガス組成分布を測定するためのガス採取機構付き垂直水平ゾンデ(例えば、特開2000−54013号公報参照)を投入し、高炉内周辺部における高さ方向の温度TおよびCO、COガス濃度の変化を測定した。そして、その測定結果を用いて、高炉内周辺部におけるC+CO→2COの反応式で示されるガス化反応の速度定数kを求め、温度Tとガス化反応速度定数kとの関係をアレニウス・プロットすることにより図3を得た。なお、同図における縦軸の「k(相対値)」は、参考例2の1/T=0.00070におけるガス化反応速度定数kS・0を基準(1.0)として相対値で表示したものである。 In each operation of Reference Example 2 and Invention Example 3, a vertical horizontal sonde with a gas sampling mechanism for measuring the temperature distribution and gas composition distribution in the radial direction and the height direction in the blast furnace from the blast furnace port ( For example, Japanese Unexamined Patent Publication No. 2000-54013 was introduced, and changes in temperature T and CO and CO 2 gas concentrations in the height direction in the periphery of the blast furnace were measured. Then, using the measurement result, the rate constant k S of the gasification reaction indicated by the reaction formula of C + CO 2 → 2CO in the periphery of the blast furnace is obtained, and the relationship between the temperature T and the gasification reaction rate constant k S is represented by Arrhenius -Figure 3 was obtained by plotting. Note that “k S (relative value)” on the vertical axis in the figure is a relative value based on the gasification reaction rate constant k S · 0 at 1 / T = 0.00070 in Reference Example 2 as a reference (1.0). It is displayed.

同図に示すように、細粒焼結鉱を別装入しない参考例2の操業時に比べて、細粒焼結鉱に小粒コークスを混合して別装入した発明例3の操業時の方が、細粒焼結鉱を装入した高炉内周辺部におけるガス化反応速度定数が明確に大きくなっており、小粒コークス混合による細粒焼結鉱の還元促進効果が得られることが確認できた。   As shown in the figure, compared to the operation of Reference Example 2 in which fine-grained sintered ore is not charged separately, the operation of Invention Example 3 in which small-grained coke is mixed and charged separately compared to the operation of Reference Example 2 However, the gasification reaction rate constant in the periphery of the blast furnace charged with fine-grained sinter was clearly increased, and it was confirmed that the effect of promoting the reduction of fine-grained sinter by mixing fine-grained coke was obtained. .

Figure 0005427084
Figure 0005427084

Claims (3)

焼結鉱を細粒焼結鉱と粗粒焼結鉱とに分別し、前記細粒焼結鉱に小粒コークスをあらかじめ混合しておき、該混合物と前記粗粒焼結鉱とを別々に装入する粒度別装入法を採用している高炉操業方法において、前記細粒焼結鉱の平均粒径が3〜5mmであり、かつ、前記小粒コークスの平均粒径が、前記細粒焼結鉱の平均粒径の1.2〜2.0倍であることを特徴とする高炉操業方法。   The sintered ore is separated into fine-grained ore and coarse-grained ore, and small-grain coke is mixed in advance with the fine-grained ore, and the mixture and the coarse-grained ore are loaded separately. In the blast furnace operation method adopting the charging method according to particle size, the average particle size of the fine-grained sintered ore is 3 to 5 mm, and the average particle size of the small-grain coke is the fine-grain sintered A blast furnace operating method characterized by being 1.2 to 2.0 times the average particle size of the ore. 微粉炭比120kg/t−pig以上で操業を行う請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the operation is performed at a pulverized coal ratio of 120 kg / t-pig or more. 高炉内中心部に塊コークスの一部を装入しつつ、高炉内周辺部に塊コークスの残部と鉱石類を層状に装入するコークス中心装入法で操業を行う請求項1または2に記載の高炉操業方法。   3. The operation according to claim 1, wherein the operation is performed by a coke center charging method in which a part of the lump coke is charged in the center portion of the blast furnace and the remainder of the lump coke and ore are charged in layers in the periphery of the blast furnace. Blast furnace operation method.
JP2010070417A 2010-03-25 2010-03-25 Blast furnace operation method Active JP5427084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070417A JP5427084B2 (en) 2010-03-25 2010-03-25 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070417A JP5427084B2 (en) 2010-03-25 2010-03-25 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2011202229A JP2011202229A (en) 2011-10-13
JP5427084B2 true JP5427084B2 (en) 2014-02-26

Family

ID=44879171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070417A Active JP5427084B2 (en) 2010-03-25 2010-03-25 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5427084B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522331B2 (en) * 2012-05-17 2014-06-18 Jfeスチール株式会社 Raw material charging method to blast furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130611A (en) * 1984-07-20 1986-02-12 Nippon Kokan Kk <Nkk> Method for operating blast furnace
JPH06100909A (en) * 1992-09-22 1994-04-12 Nippon Steel Corp Operation of blast furnace
JPH08120311A (en) * 1994-10-18 1996-05-14 Nippon Steel Corp Method for charging raw material of blast furnace
JPH08239705A (en) * 1995-01-06 1996-09-17 Nippon Steel Corp Method for suppressing formation of deposition in blast furnace
JP4971662B2 (en) * 2006-03-30 2012-07-11 株式会社神戸製鋼所 Blast furnace operation method

Also Published As

Publication number Publication date
JP2011202229A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5630399B2 (en) Method for producing sintered ore using fine powder raw material
CN102498190A (en) Process for producing ferro coke
JP2009185356A (en) Method for producing sintered ore
JP6167829B2 (en) Blast furnace operation method
WO2015045369A1 (en) Method for charging raw materials into blast furnace
JP5427084B2 (en) Blast furnace operation method
JP4971812B2 (en) Blast furnace operation method
CN103080007A (en) Method for production of trichlorosilane and silicon for use in the production of trichlorosilane
JP5168802B2 (en) Method for producing sintered ore
JP6303685B2 (en) How to charge the bellless blast furnace
JP4971662B2 (en) Blast furnace operation method
JP2014037575A (en) Production method of reduced iron
JP5426997B2 (en) Blast furnace operation method
CN108753329B (en) Method for improving yield of high-strength coke prepared by low-rank coal blending
JP4997712B2 (en) Blast furnace operation method
JP2008088476A (en) Method for operating blast furnace
RU2518880C1 (en) Blast furnace charging process
WO2018180233A1 (en) Method for manufacturing granular sintered raw material and method for manufacturing sintered ore
JP6070131B2 (en) Method for producing reduced iron
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JP2012046828A (en) Method for producing sintered ore
JP4155225B2 (en) Blast furnace operation method
EP2495339B1 (en) Method for operating blast furnace
JP2007270192A (en) Method for charging ore into blast furnace
JP2015193898A (en) Method for charging sintering blending raw material comprising magnetization component raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150