JP5418082B2 - 操舵制御装置及び操舵制御方法 - Google Patents

操舵制御装置及び操舵制御方法 Download PDF

Info

Publication number
JP5418082B2
JP5418082B2 JP2009204795A JP2009204795A JP5418082B2 JP 5418082 B2 JP5418082 B2 JP 5418082B2 JP 2009204795 A JP2009204795 A JP 2009204795A JP 2009204795 A JP2009204795 A JP 2009204795A JP 5418082 B2 JP5418082 B2 JP 5418082B2
Authority
JP
Japan
Prior art keywords
steering
motor
output torque
turning
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009204795A
Other languages
English (en)
Other versions
JP2011051563A (ja
Inventor
佑文 蔡
孝彰 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009204795A priority Critical patent/JP5418082B2/ja
Publication of JP2011051563A publication Critical patent/JP2011051563A/ja
Application granted granted Critical
Publication of JP5418082B2 publication Critical patent/JP5418082B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、操向輪を転舵する操舵制御装置及び操舵制御方法に関する。
特許文献1では、操舵制御装置を開示している。
特許文献1に開示の操舵制御装置は、二つのラック・アンド・ピニオン機構(以下、ラック・ピニオン機構と記載する。)を備えた、いわゆるデュアルピニオンタイプの電動式パワーステアリング装置である。すなわち、この装置は、ラックバーのラック歯にピニオン歯を介して噛合する第1及び第2のピニオン軸を有する。そして、この装置は、ステアリングホイールに連係する第1ピニオン軸にトルクを付与する第1電動モータを接続し、第2ピニオン軸に第2電動モータを接続している。
特開2004−243988号公報
しかしながら、互いに噛み合うピニオン歯とラック歯との間にはいわゆる噛み合い隙間が存在するため、2つのピニオン軸それぞれからラックバーに回転トルクを伝達すると、ラックバーには噛み合い隙間が減少する方向に捩れる(回転する)力が作用する。
かかるラックバーの捩れにより、一方のラックピニオン機構の噛み合い位置が他方のラックピニオン機構にとって適正な噛み合い位置とはならなくなってしまう。この結果、他方のラックピニオン機構において操舵補助力の伝達ロスが生じてしまうといった問題があった。
本発明の課題は、他方のラック・ピニオン機構において操舵補助力の伝達ロスを低減することである。
前記課題を解決するために、本発明は、ラックバーのラック歯にピニオン歯が噛合するピニオン軸に回転力を付与し、ラックバーを軸方向に移動させる第1電動モータを有する第1操舵機構を備える。また、本発明は、一対の圧力室に発生した差圧に基づいてラックバーに対し該ラックバーの軸方向に推進力を付与するパワーシリンダ、一対の圧力室の各圧力室に選択的に作動油を供給するポンプ及び該ポンプを駆動制御する第2電動モータを有する第2操舵機構を備える。
さらに、本発明は、転舵輪の目標転舵角を算出すると共に転舵輪の実転舵角を検出し、目標転舵角と実転舵角との差分を基に、第1及び第2電動モータが出力する合計出力トルクを算出する。また、本発明は、合計出力トルクを、第1電動モータが出力する第1モータ出力トルクと第2電動モータが出力する第2モータ出力トルクとに配分する。さらに、本発明は、第1電動モータを駆動制御して該第1電動モータに第1モータ出力トルクを出力させると共に、第2電動モータを駆動制御して該第2電動モータに第2モータ出力トルクを出力させる。
そして、本発明は、車両の走行状態が直進走行状態に近いほど、第1モータ出力トルクを大きく補正すると共に第2出力トルクを小さく補正する。
本発明によれば、第2操舵機構により、ラックの軸方向に荷重を伝達するようにしたためラックに捩れが発生することがなくなり、他方のラック・ピニオン機構において操舵補助力の伝達ロスを低減することができる。
また、本発明によれば、車両の走行状態が直進走行状態のときには、車両の走行状態が旋回走行状態のときよりも、前記第1モータ出力トルクを大きくすると共に前記第2モータ出力トルクを小さくすることにより、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構の駆動力と、油圧により駆動する構成のために耐久性が高い第2操舵機構の駆動力との比率を変化させ、より高い転舵応答性の発揮及び駆動する部材の耐久性の低下抑制の両立を図ることができる。
第1の実施形態の操舵制御装置の構成を示す図である。 各ECUの処理の説明に使用した図である。 転舵指令電流とゲインK1との関係の一例を示す特性図である。 転舵指令電流、第1操舵機構の出力トルク、及び第2操舵機構の出力トルクとの関係の一例を示す特性図である。 第1及び第2操舵機構のT−N−I特性線図の一例を示す図である。 第1の実施形態の変形例であり、転舵指令角を基に、ゲイン設定をする構成を示す図である。 第1の実施形態の変形例であり、操舵角を基に、ゲイン設定をする構成を示す図である。 第1の実施形態の変形例であり、路面反力値を基に、ゲイン設定をする構成を示す図である。 第1の実施形態の変形例であり、ヨーレイトを基に、ゲイン設定をする構成を示す図である。 第1の実施形態の変形例であり、横加速度を基に、ゲイン設定をする構成を示す図である。 第2の実施形態における第1転舵モータECU等の構成を示す図である。 車速とゲインK2との関係の一例を示す特性図である。
(第1の実施形態)
(構成)
第1の実施形態は、本発明を適用した操舵制御装置である。
図1は、操舵制御装置の構成を示す。図1に示すように、本実施形態は、車両のラックピニオン式ステアリング装置に操舵制御装置を適用したものである。この操舵制御装置は、ステアリングホイール1と転舵輪11L,11Rとが機械的に切り離され、ステアリングホイール1の操舵角に基づいて転舵輪11L,11Rが転舵される、いわゆるステアバイワイヤ式のステアリング装置でもある。
この車両では、ステアリングホイール1にステアリング軸2(第1操舵軸)を連係している。ステアリング軸2には、操舵角センサ3、トルクセンサ4、反力発生モータ5及びクラッチ6が設けてある。
操舵角センサ3は、ステアリング軸2の回転角を検出することによりステアリングホイール1の操舵角を検出する。トルクセンサ4は、ステアリング軸2に入力されるトルクを検出する。操舵角センサ3及びトルクセンサ4は、検出した操舵角及び操舵トルクを反力モータECU50に出力する。
反力発生モータ5は、操舵反力を発生させる。後述のように、反力モータECU50が、反力発生モータ5を駆動制御する。反力発生モータ5は、減速機構を介してステアリング軸2に連係し、減速機構及びステアリング軸2を介してステアリングホイール1に操舵反力を付与する。反力発生モータ5及び減速機構は、反力アクチュエータを構成する。
クラッチ6は、フェールセーフ手段としての動力断続機構である。クラッチ6は、ステアリング軸2とピニオン軸7(第2操舵軸)とを機械的に断続可能にする。クラッチ6は、第1操舵機構30又は第2操舵機構40の少なくとも一方が正常動作しない場合にステアリング軸2とピニオン軸7とを機械的に連結する。
なお、クラッチ6は第1操舵機構30又は第2操舵機構40の両方が正常に作動している通常時には解放して(ステアリング軸2とピニオン軸13との機械的接続を切断して)いるため、以下ではクラッチ6は解放されているものとして説明する。
また、この車両では、転舵輪11L,11Rにラックバー(転舵ラック)12を連係している。ラックバー12は、軸方向にラック歯(ラックギヤ)12aを有する。ピニオン軸13のピニオン歯(ピニオンギヤ)13aが、このラック歯12aに噛合している。これにより、ピニオン軸13は、ピニオン歯13aを介してラックバー12と連係し、ピニオン軸13の回転に伴ってラックバー12が軸方向に移動して転舵輪11L,11Rが転舵駆動される。
また、この車両は、ピニオン軸13に転舵角センサ14を有する。転舵角センサ14は、転舵輪11L,11Rの転舵実角(実際の転舵角であり、実転舵角ともいう)を検出する。転舵角センサ14は、ピニオン軸13の回転角を検出し、検出した転舵実角を後述の第1転舵モータECU60に出力する。
つまり、ピニオン軸13の回転角に対する転舵輪11L,11Rの転舵実角は、ラックバー12のラック歯12aとピニオン歯13aとのギヤ比によって一意に決まる。このことから、ピニオン軸13の回転角は転舵実角であり、転舵角センサ14はピニオン軸13の回転角(すなわち転舵実角)を検出して第1転舵モータECU60に出力する。
なお、転舵角センサ14は、ピニオン軸13自体の回転角を検出するものに限られない。前述のようにピニオン軸13の回転角に対する転舵輪11L,11Rの転舵実角は、ラックバー12のラック歯12aとピニオン歯13aとのギヤ比によって一意に決まる。このことから、ピニオン軸13自体の回転角に応じて一意に決まる値を検出できれば良く、例えば、転舵角センサ14をラックバー12の移動量を検出するセンサとし、ラックバー12の移動量を基に、転舵輪11L,11Rの転舵実角を検出することもできる。
また、この車両は、路面反力センサ21R,21L及び車速センサ22を有する。路面反力センサ21R,21Lは、左右前輪11L,11Rのハブ部に設けられ、路面から転舵輪11L,11Rに入力する横力を検出することにより、路面からの反力をそれぞれ検出する。路面反力センサ21R,21Lは、検出した反力を反力モータECU50に出力する。
車速センサ22は、例えば左右前輪11L,11Rの回転数を検出し、検出した回転数から車速を検出する。車速センサ22は、検出した車速を反力モータECU50に出力する。
第1操舵機構30は、ピニオン軸13に対して回転力を付与して、左右前輪11L,11Rを転舵駆動する。
第1操舵機構30は、図1に示すように、減速部31、第1転舵モータ32、及びモータ回転角センサ33を有する。減速部31は、ピニオン軸13の外周に設けたウォームホイール35と、第1転舵モータ32の駆動軸と同軸上に設けた、ウォームホイール35とギヤ結合するウォームシャフト36とを有する。
減速部31は、このような構成により、限られたスペースの中で十分な減速比を得ることができる。また、ウォームホイール35の歯部を樹脂製とすることで、ウォームシャフト36との噛み合いによって生じうるギヤノイズを抑制することもできる。
第1転舵モータ32は、減速部31を介してピニオン軸13に連係している。第1転舵モータ32は、その内部に、第1転舵モータ32の回転角を検出するモータ回転角センサ33を有する。モータ回転角センサ33は、例えばレゾルバである。モータ回転角センサ33は、検出した第1転舵モータ32の回転角(転舵実角)を第1転舵モータECU60に出力する。第1転舵モータ32は前述のように減速器31を介してピニオン軸13に連係しているため、第1転舵モータ32に対するピニオン軸13の回転角は減速器31の減速比によって一意に決まる。このため、例えば、第1転舵モータECU60が、第1転舵モータ32の回転角を基に、転舵輪11L,11Rの転舵実角を算出することもできる。
以上のように、第1操舵機構30は、ギヤ結合により操舵力を発生可能な構成をなす。すなわち、第1操舵機構30は、第1転舵モータ32が後述する第1転舵モータECU60によって制御されて回転駆動することにより、通常時には、ピニオン軸13を回転駆動して、左右前輪11L,11Rを転舵駆動する。
また、この車両では、ラックバー12に第2操舵機構40を連係している。第2操舵機構40は、操舵角センサ3の検出値を基に、ラックバー12に推進力(軸方向に移動する力)を発生させ、ラックバー12を軸方向に駆動させることによって左右前輪11L,11Rを転舵駆動する。
第2操舵機構40は、図1に示すように、パワーシリンダ41、オイルポンプ42、及び第2転舵モータ43を有する。
パワーシリンダ41は、ラックバー12の外周側に該ラックバー12を囲繞するように設けた円筒状のシリンダチューブ41aと、ラックバー12の外周に嵌着させたピストン41bとを有する。パワーシリンダ41は、ピストン41bによってシリンダチューブ41a内の空間を二室に隔成して、一対の圧力室P1,P2を形成している。パワーシリンダ41は、一対の圧力室P1,P2に発生した差圧に基づきラックバー12に推進力を付与する。
オイルポンプ42は、一対の吐出口45a,45bを各配管44a,44bを介して各圧力室P1,P2に接続している。これにより、オイルポンプ42は、正逆回転して各圧力室P1,P2に選択的に作動油を供給する。オイルポンプ42は例えば可逆式ポンプ(正逆回転することにより、吐出方向を選択的に可変なポンプ)である。
このような構成の第2操舵機構40は、第2転舵モータ43の駆動により、オイルポンプ42が駆動する。ここで、後述の第2転舵モータECU70が第2転舵モータ43の回転方向及び回転数を制御する。
そして、第2操舵機構40では、オイルポンプ42の駆動により、パワーシリンダ41の各圧力室P1,P2間に差圧が発生する。この差圧により、ラックバー12に推進力が発生し、操舵力が発生する。
また、各配管44a,44bの間には、各圧力室P1,P2同士を直接的に連通させる連通路44cが設けてある。連通路44cの途中には、いわゆるフェールセーフバルブ46が設けてある。フェールセーフバルブ46は、例えば、第2転舵モータECU70や第2転舵モータ43が正常動作しない場合等の緊急時に開弁して、両圧力室P1,P2を連通させる。これにより、第2操舵機構40に異常が発生してクラッチ6が接続された際に、運転者がステアリングホイール1を操舵して、左右前輪11L,11Rを転舵可能とする。
操舵制御装置は、操舵制御装置のシステム全体を制御するものとして、反力モータECU(疑似反力制御部)50、第1転舵モータECU(第1操舵制御部)60、及び第2転舵モータECU(第2操舵制御部)70を有する。反力モータECU50、第1転舵モータECU60、及び第1転舵モータECU70は、相互に通信可能になっている。これにより、ECU50、60、70の各ECUに入力するデータは、相互に送信及び受信されることにより各ECUにより共有されている。
反力モータECU50は、操舵角センサ3、反力センサ21L,21R、車速センサ22の検出値等を基に、反力発生モータ5を駆動制御する。第1転舵モータECU60は、後述する第1転舵モータ32を駆動するための転舵指令電流であり、ゲイン調整した値を反力モータECU50に出力している。
具体的には、反力モータECU50は、下記(1)式により反力発生モータ5を駆動制御するための操舵反力指令値を算出する。
操舵反力指令値=KS1×路面反力値+KS2×転舵指令電流 ・・・(1)
ここで、路面反力値(路面反力検出値)は、反力センサ21L,21Rの検出値である。転舵指令電流は、第1転舵モータ32を駆動するための転舵指令電流であり、ゲイン調整した値である。KS1,KS2は、路面反力値及び転舵指令電流それぞれのゲインである。KS1とKS2とは、それらの加算値が1.0になるような値である(KS1+KS2=1.0)。
反力モータECU50は、算出した操舵反力指令値を基に、操舵反力をステアリングホイール1に擬似的に付与する。具体的には、反力モータECU50は、通常時には、操舵があった場合に通常のステアリング装置において、転舵輪11L,11Rが路面から受ける路面反力に起因してステアリングホイール1に発生する操舵反力をステアリングホイール1に擬似的に付与する。ここで、通常のステアリング装置とは、ステアリングホイール1と転舵輪11L,11Rとが機械的に接続された一般的な(ステアバイワイヤ式ではない)ステアリング装置である。
このように、ステアリングホイール1に擬似的な操舵反力を付与することで、運転者は、通常のステアリング装置と同様の操舵フィーリングを得ることができる。
また、第1転舵モータECU60は、転舵角センサ14によって検出された転舵実角と後述する転舵指令角を基に、第1転舵モータ32を駆動制御する。さらに、第2転舵モータECU70は、他のECU50,60からの情報等を基に、第2転舵モータ43を駆動制御する。
図2は、各ECU50,60,70の処理を具体的に説明するための図である。ここでは、通常時のECU50,60,70の処理を説明する。通常時のECU50等の処理とは、第1及び第2転舵モータECU60,70が共に正常に機能している状態にあり、かつクラッチ6を連結していない状態のECU50等の処理である。
反力モータECU50は、操舵角センサ3によって検出された操舵角を基に、転舵輪11L,11Rの目標転舵角である転舵指令角を算出する。具体的には、反力モータECU50は、予め記憶した操舵角に対する転舵指令角のマップを参照して、操舵角に対応した転舵指令角を算出する。なお、操舵角に対する転舵指令角の算出方法はこれに限らず、例えば操舵角に対して予め定められた比を乗算して転舵指令角を算出しても良いし、車速に応じて操舵角に対する転舵指令角を変更しても良い。反力モータECU50は、算出した転舵指令角を第1転舵モータECU60に出力する。
図2に示すように、第1転舵モータECU60は、トルク指令値演算部61、転舵指令電流演算部62、転舵電流配分演算部63、ゲイン設定部64、並びに第1及び第2乗算器65,66を有する。
第1転舵モータECU60では、反力モータECU50が算出した転舵指令角θ及び転舵角センサ14が検出した転舵実角θをトルク指令値演算部61に入力する。
トルク指令値演算部61は、転舵指令角θ及び転舵実角θを基に、転舵輪11L,11Rの転舵角を転舵指令角に一致させるトルク指令値Tを算出する。トルク指令値Tは、第1及び第2転舵モータ32,43それぞれが出力するトルクの合計トルク(出力トルク合計)相当である。
具体的には、トルク指令値演算部61は、転舵指令角θ及び転舵実角θを用いて、下記(2)式によりトルク指令値Tを算出する。
=α×(θ−θ) ・・・(2)
ここで、αは予め実験等によって求めて設定された所定のゲインである。(2)式によれば、トルク指令値Tは、転舵指令角θと転舵実角θとの偏差を零にするための値となる。
トルク指令値演算部61は、算出したトルク指令値Tを転舵指令電流演算部62に出力する。
転舵指令電流演算部62は、トルク指令値Tを基に、転舵指令電流Iを算出する。転舵指令電流Iは、第1転舵モータ32及び第2転舵モータ43を駆動する駆動電流値相当である。
具体的には、転舵指令電流演算部62は、トルク指令値Tを用いて、下記(3)式により転舵指令電流Iを算出する。
=β×T
=α×β×(θ−θ)
・・・(3)
ここで、βは予め実験等によって求められた、トルク値を電流値に変換するための所定のゲインである。(3)式によれば、転舵指令電流Iは、トルク指令値Tと値そのものは異なるが、トルク指令値Tと同様に、転舵指令角θと転舵実角θとの偏差を零にするための値となる。
なお、(3)式に記載の通り、転舵指令電流Iは転舵指令角θと転舵実角θとの偏差に所定のゲイン(α×β)を乗算した値である。このため、本実施形態においてはトルク指令値演算部61にて転舵指令角θと転舵実角θとの偏差に基づいてトルク指令値Tを算出し、転舵指令電流演算部62にてトルク指令値Tにゲインβを乗算して転舵指令電流Iを算出している。しかし、この限りではなく、例えばトルク指令値演算部61を設けずに転舵指令電流演算部62にて転舵指令角θと転舵実角θとの偏差に所定のゲイン(α×β)を乗算して転舵指令電流Iを求めても良い。
転舵指令電流演算部62は、算出した転舵指令電流Iを転舵電流配分演算部63及びゲイン設定部64に出力する。
転舵電流配分演算部63は、予め設定した電流配分比率に従い、転舵指令電流を、第1転舵モータ32を駆動するための転舵指令電流と第2転舵モータ43を駆動するための転舵指令電流とに配分する演算を行う。例えば、第1転舵モータ32を駆動するための転舵指令電流と第2転舵モータ43を駆動するための転舵指令電流との比率が5:5となるように電流配分比率を予め設定している。
なお、モータに供給する電流とモータの駆動トルクとには相関関係が有るため、転舵電流配分演算部62は転舵トルクを配分するトルク配分手段とも言える。
以下の説明では、第1転舵モータ32を駆動するための転舵指令電流を第1モータ転舵指令電流と称し、第2転舵モータ43を駆動するための転舵指令電流を第2モータ転舵指令電流と称する。
転舵電流配分演算部63は、算出した第1及び第2モータ転舵指令電流を第1及び第2乗算器65,66それぞれに出力する。
ゲイン設定部64は、転舵指令電流演算部62からの転舵指令電流を基に、ゲイン設定をする。
図3は、転舵指令電流とゲインK1との関係の一例を示す。図3に示すように、転舵指令電流が小さい領域では、ゲインK1が小さい値で一定値になる(例えばK1=0.5)。そして、転舵指令電流がある値になると、転舵指令電流が大きくなるほど、ゲインK1が大きくなる。そして、転舵指令電流がある値に達すると、転舵指令電流の大きさにかかわらず、ゲインK1が大きい値で一定値になる(例えばK1=0.7)。このように、概略として、転舵指令電流が大きいほど、ゲインK1が大きくなる。
ここで、転舵指令電流が小さい領域では、ゲインK1の例が0.5になっている。しかし、ゲインK1が、それ以外の値、例えば0.4になることもできる。
なお、転舵指令電流は、転舵輪11L,11Rを転舵するための指令電流である。よって、車両の走行状態が旋回走行状態である場合には転舵輪11L,11Rにはセルフアライニングトルク(SAT)等が入力し、操舵装置はこれに抗して転舵輪11L,11Rを転舵(又は保舵)することになるため、直進走行状態(ステアリングが中立位置)である場合に比べて転舵指令電流が大きくなる。つまり、車両の旋回状態がきつい(旋回度合いが大きい)ほど転舵指令電流が大きくなる。
よって、図3に示す転舵指令電流とゲインK1との関係は、車両の旋回度合いが大きいほど、ゲインK1が大きくなる関係を示している。言い換えれば、車両の走行状態が直進状態に近づくほどゲインK1が小さくなる関係を示している。
ゲイン設定部64は、このような図3に示す関係をマップ等として有している。ゲイン設定部64は、そのマップ等を用いて、転舵指令電流に対応するゲインK1を設定する。ゲイン設定部64は、設定したゲイン(以下、第2走行状態対応ゲインという。)K1を第2乗算器66に出力する。また、ゲイン設定部64は、1.0から第2走行状態対応ゲインK1を減算した値(1.0−K1、以下、第1走行状態対応ゲインK1´という。)を第1乗算器65に出力する。
第1乗算器65は、第1走行状態対応ゲインK1´(=1.0−K1)と第1モータ転舵指令電流とを乗算する。第1乗算器65は、その乗算値(K1´×第1モータ転舵指令電流)を第1転舵モータ32に出力する。
第2乗算器66は、第2走行状態対応ゲインK1と第2モータ転舵指令電流とを乗算する。第2乗算器66は、その乗算値(K1×第2モータ転舵指令電流)を第2転舵モータECU70に出力する。
以上のように、第1転舵モータECU60は、ゲイン設定部64、第1及び第2乗算部65,66により、転舵指令電流を基に、ゲイン調整(ゲインK1,K1´を設定)して第1モータ転舵指令電流と第2モータ転舵指令電流との配分を補正している。例えば、配分は、転舵指令電流が大きいほど、第1モータ転舵指令電流が小さく、第2モータ転舵指令電流が大きくなる配分となる。
ゲイン調整後の第1モータ転舵指令電流と第2モータ転舵指令電流との関係は、直進走行領域(図3において転舵指令電流が中立から中立付近までの領域で、以下では中立領域と記載する。)と旋回走行領域(図3において転舵指令電流が中立付近よりも大きい領域で、以下では中立以外の領域と記載する。)で整理すると、次のようになる。
直進走行領域(中立領域)の場合(K1=0.5(K1<0.5))
K1´×第1モータ転舵指令電流≧K1×第2モータ転舵指令電流
旋回走行領域(中立以外の領域)の場合(K1>0.5)
K1´×第1モータ転舵指令電流<K1×第2モータ転舵指令電流
第1転舵モータECU60は、ゲイン調整した第1モータ転舵指令電流を基に、第1転舵モータ32を駆動制御する。一方、第2転舵モータECU70は、ゲイン調整した第2モータ転舵指令電流を基に、第2転舵モータ43を駆動制御する。
この第1及び第2転舵モータ32,43の駆動制御により、ラックバー12が駆動し、転舵輪11L,11Rが転舵する。
通常時には、以上のような処理を各ECU50,60,70が行っている。
なおここで、一般的にモータへの供給電流とモータの駆動トルクとには相関関係が有るため、転舵指令電流Iの電流配分を行なう転舵電流配分演算部63はトルク指令値Tの配分を行なう出力トルク配分手段と言え、転舵指令電流(車両の走行状態)に応じてゲインを設定するゲイン設定部64及び乗算器65、66は配分されたトルクを転舵指令電流(車両の走行状態)に応じて補正するトルク補正手段(走行状態対応出力トルク補正手段)と言える。
また、前述の通りモータへの供給電流とモータの駆動トルクとには相関関係が有るため、例えば転舵電流配分演算部63を、トルク指令値Tを入力して第1転舵モータの出力トルクと第2転舵モータの出力トルクとに分配する出力トルク配分演算部とし、乗算器65、66は配分されたトルクにゲインK1,K1′を乗算するトルク補正部とし、補正された最終的なトルクに前述のゲイン(α×β)を乗算して、ゲイン調整した第1モータ転舵指令電流及び第2モータ転舵指令電流を算出することもできる。
一方、第2操舵機構40が正常動作せずクラッチ6が連結した場合には、第1転舵モータECU60が、トルクセンサ4によって検出された操舵トルクに基づいて第1転舵モータ32を駆動制御する。これにより、第1転舵モータ32の回転力は、運転者によるステアリングホイール1の操舵力を補助する。このとき、第2転舵モータECU70は、第2転舵モータ43を停止させている。
また、第1操舵機構30が正常動作せずクラッチ6が連結した場合には、第2転舵モータECU70が、トルクセンサ4によって検出された操舵トルクに基づいて第2転舵モータ43を駆動制御する。これにより、運転者によるステアリングホイール1の操舵力を補助する。このとき、第1転舵モータECU60は、第1転舵モータ32を停止させている。
また、第2転舵モータECU70は、第2転舵モータ43が正常動作しない場合等の緊急時にフェールセーフバルブ46を開弁して、両圧力室P1,P2を連通させる制御をする。
(動作及び作用)
(通常時の動作及び作用)
通常時には、操舵制御装置は、操舵角センサ3の検出値(ステアリング軸2の回転角)等を基に、転舵指令角を算出する。
そして、操舵制御装置は、算出した転舵指令角及び転舵角センサ14が検出した転舵実角を基に、転舵実角を転舵指令角に一致させるトルク指令値を算出する。操舵制御装置は、算出したトルク指令値を基に、転舵指令電流を算出する。
続いて、操舵制御装置は、算出した転舵指令電流を基に、予め設定した電流配分比率に従い、第1及び第2モータ転舵指令電流を算出する。一方、操舵制御装置は、転舵指令電流演算部62からの転舵指令電流を基に、ゲインK1を設定する。そして、操舵制御装置は、設定した第1及び第2走行状態対応ゲインK1´,K1により第1及び第2モータ転舵指令電流を補正する(K1´×第1モータ転舵指令電流、K1×第2モータ転舵指令電流)。すなわち、操舵制御装置は、第1及び第2モータ転舵指令電流の電流配分比率を補正する。
そして、操舵制御装置は、補正した第1及び第2モータ転舵指令電流を基に、第1及び第2転舵モータ32,43を駆動制御する。
これにより、操舵制御装置は、第1及び第2操舵機構30,40によりラックバー12を駆動して、転舵輪11L,11Rを転舵する。
ここで、トルク指令値は、第1及び第2転舵モータ32,43それぞれが出力するトルクの合計トルク相当である。そして、操舵制御装置は、そのトルク指令値から算出した転舵指令電流を基に、予め設定した電流配分比率に従い第1及び第2モータ転舵指令電流を算出している。これにより、操舵制御装置は、第1及び第2モータ転舵指令電流を基に、第1及び第2転舵モータ32,43を駆動制御することで、電流配分比率と同じ比率で前記合計トルクから配分した各トルクを、第1及び第2転舵モータ32,43から出力させている。
そして、操舵制御装置は、転舵指令電流又はトルクの配分比率を最終的に決定付ける第2走行状態対応ゲインK1を、転舵指令電流が小さいとき、転舵指令電流が大きいときよりも、小さくしている(前記図3)。
これにより、転舵指令電流が大きくなると、第1走行状態対応ゲインK1´が小さくなると共に第2走行状態対応ゲインK1が大きくなる。また、転舵指令電流が小さくなると、第1走行状態対応ゲインK1´が大きくなると共に第2走行状態対応ゲインK1が小さくなる。ここで、転舵指令電流と車両の走行状態との関係は、旋回走行状態から直進走行状態に近づくほど転舵指令電流が小さく変化するものとなる。
この結果、転舵指令電流が大きくなると、すなわち、旋回走行状態になると、第1モータ転舵指令電流が小さくなるため、第1転舵モータ32の出力トルクが小さくなる。その一方で、第2モータ転舵指令電流が大きくなるため、第2転舵モータ43の出力トルクが大きくなる。また、転舵指令電流が小さくなると、すなわち、直進走行状態になると、第1モータ転舵指令電流が大きくなるため、第1転舵モータ32の出力トルクが大きくなる。その一方で、第2モータ転舵指令電流が小さくなるため、第2転舵モータ43の出力トルクが小さくなる。
これにより、操舵制御装置は、高い転舵応答性が要求される直進走行時又は旋回開始初期には、旋回走行時よりも、第1転舵モータ32の出力トルクを大きくして、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構30の駆動力を大きくする。この結果、操舵制御装置は、直進走行時等で転舵応答性を高くする要求に応えることができる。
ここで、要求される高い転舵応答性は、例えば、俊敏な車両挙動や、外乱によらない絶対的な直進性能を実現できる転舵応答性である。
また、操舵制御装置は、高い転舵応答性がそれほど要求されないが、ラックバー12にかかる負荷が大きくなる旋回走行時には、直進走行時よりも、第2転舵モータ43の出力トルクを大きくし、第1転舵モータ32の出力トルクを抑える。これにより、操舵制御装置は、第1転舵モータ32が駆動する部材の耐久性の低下を抑制できる。具体的には、操舵制御装置は、第1転舵モータ32が駆動する部材となる、ピニオン歯13a、或いはラックピニオン機構の耐久性の低下を抑制できる。
図4は、転舵指令電流、第1操舵機構30の出力トルク(駆動力)、及び第2操舵機構40の出力トルク(駆動力)との関係の一例を示す。
図4に示すように、第1操舵機構30の出力トルクは、転舵指令電流に対する追従特性が高い、すなわち位相遅れが小さい。その一方で、第2操舵機構40の出力トルクは、転舵指令電流に対する追従特性が低い、すなわち位相遅れが大きい。この結果、第2操舵機構40の転舵応答性は、第1操舵機構30の転舵応答性と比較して低いものとなる。
図5は、第1及び第2操舵機構30,40のT(トルク)−N(回転数)−I(電流)特性線図の一例を示す。ここで、トルクは、第1及び第2操舵機構30,40の出力トルクである。回転数は、第1及び第2操舵機構30,40のモータ32,43の回転数である。電流は、そのモータ32,43それぞれの駆動電流(転舵指令電流)である。
図5に示すように、第1操舵機構30及び第2操舵機構40を同一電流値で駆動した場合、第2操舵機構40の方が大きいトルクを発生させることができる。すなわち、第2操舵機構40の方が、油圧を用いて駆動する構成であるため、電流値に対する出力トルクのゲインが高くなっている。又は、第1操舵機構30の方が電流値に対する出力トルクのゲインが低くなっている。
従って、第1操舵機構30(第1転舵モータ32)と第2操舵機構40(第2転舵モータ43)とで同一トルクを発生させようとすると、第1転舵モータ32へ供給される電流値が第2転舵モータ43へ供給される電流値よりも大きくなる。すなわち、第1転舵モータ32は第2転舵モータ43よりも大きな電流値が供給されることによりモータの温度が上昇し易く、耐久性が低くなる可能性が有る。
また、第1操舵機構30のラック・ピニオン機構はギヤ結合であるため、第1転舵モータ32が駆動する部材(ピニオンギヤやラックギヤ等)の耐久性は、第2転舵モータ43が駆動する部材の耐久性と比較して低いものとなる。
第1及び第2操舵機構30,40は、以上の図4及び図5のような特性を有する。これに対して、本実施形態における操舵制御装置は、前述のように、第1及び第2転舵モータ32,43の出力トルクを車両の走行状態に応じて調整することで、高い転舵応答性の発揮と耐久性を両立することができる。すなわち、車両の走行状態が直進走行状態に近いほど第1モータ転舵指令電流を大きくすると共に第2モータ転舵指令電流を小さくしている。これにより、車両の走行状態が直進状態に近く高い転舵応答性が求められる場合には、第1転舵モータ32の出力トルクを大きくすると共に第2転舵モータ43の出力トルクを小さくして、高い転舵応答性を発揮することができる。さらに、車両の走行状態が旋回状態であり、大きな転舵トルクが要求される場合には、第2転舵モータ43の出力トルクを大きくすると共に第1転舵モータ32の出力トルクを小さくして、第1転舵モータ32及びラック・ピニオン機構の耐久性を向上させることができる。
なお、本実施形態では、転舵指令電流(駆動電流)の電流配分比率を変更することでトルクの配分比率を変更している。このように転舵指令電流の電流配分比率を変更してトルク配分を変更した場合でも、第1及び第2転舵モータ32,43が出力する出力トルクの加算値は合計トルクと等しい値となる。
例えば、転舵指令電流(第1及び第2モータ転舵指令電流の加算値)を2X(A)とし、下記のように、電流配分比率が5:5のときの第1転舵モータ32の出力トルクをY(N)とし、第2転舵モータ43の出力トルクを2Y(N)とする。すなわち、2X(A)の転舵指令電流を得た合計トルクを3Y(N)とする。
このようにした場合、電流配分比率を6:4にすると、第1及び第2転舵モータ32,43の第1及び第2モータ転舵指令電流及び各出力トルクは次のようになる。
電流配分比率が5:5の場合
第1転舵モータ32:第1モータ転舵指令電流=1.0X、出力トルク=1.0Y
第2転舵モータ43:第2モータ転舵指令電流=1.0X、出力トルク=2.0Y
電流配分比率が6:4の場合
第1転舵モータ32:第1モータ転舵指令電流=1.2X、出力トルク=1.2Y
第2転舵モータ43:第2モータ転舵指令電流=0.8X、出力トルク=1.6Y
よって、電流配分比率が5:5のときに合計トルクが3.0Y(N)になるのに対して、電流配分比率が6:4のときに合計トルクが2.8Y(N)となり、合計トルクが小さくなる。
しかし、出力トルクが変化すると、転舵実角θがその影響を受け、トルク指令値T(∝(θ−θ))が変化し、転舵指令電流I(∝(θ−θ))が変化する。この結果、(θ−θ)の偏差が一定の偏差に収束するようになるため、トルク指令値T、すなわち合計トルクも一定値に収束するようになる。
よって、転舵指令電流の電流配分比率を変更してトルク配分を変更した場合でも、第1及び第2転舵モータ32,43が出力する出力トルクの加算値と合計トルクとは等しい値となる。
(正常動作しない時の動作及び作用)
操舵制御装置は、第1及び第2操舵機構30,40のうち少なくとも一方が正常動作しない場合には、クラッチ6を連結して、ステアリングホイール1に入力の操舵力をピニオン軸6に直接伝達することを可能にする。このとき、操舵制御装置は、正常に作動している方の操舵機構をいわゆる操舵補助として機能させる。
なお、この第1の実施形態では、第1転舵モータ32は第1電動モータに対応する。第2転舵モータ43は第2電動モータに対応する。反力モータECU50は目標転舵角算出手段に対応する。転舵角センサ14は実転舵角検出手段に対応する。トルク指令値演算部61は合計出力トルク算出手段に対応する。転舵電流配分演算部63は出力トルク配分手段に対応する。第1及び第2転舵モータECU60,70はモータ制御手段に対応する。ゲイン設定部64、並びに第1及び第2乗算器65,66は走行状態対応出力トルク補正手段に対応する。転舵指令電流演算部62は駆動電流値算出手段に対応する。
(第1の実施形態の効果)
(1)第1操舵機構は、ラックバーのラック歯にピニオン歯が噛合するピニオン軸に回転力を付与し、ラックバーを軸方向に移動させる第1電動モータを有する。
また、第2操舵機構は、一対の圧力室に発生した差圧に基づいてラックバーに対し該ラックバーの軸方向に推進力を付与するパワーシリンダ、一対の圧力室の各圧力室に選択的に作動油を供給するポンプ及び該ポンプを駆動制御する第2電動モータを有する。
これにより、操舵制御装置は、第2操舵機構により、ラックの軸方向に荷重を伝達するようにしたためラックに捩れが発生することがなくなり、他方のラック・ピニオン機構において操舵補助力の伝達ロスを低減することができる。
(2)合計出力トルク算出手段は、目標転舵角算出手段が算出した目標転舵角と実転舵角検出手段が検出した実転舵角との差分を基に、第1及び第2電動モータが出力する合計出力トルクを算出する。出力トルク配分手段は、合計出力トルク算出手段が算出した合計出力トルクを、第1電動モータが出力する第1モータ出力トルクと第2電動モータが出力する第2モータ出力トルクとに配分する。
さらに、モータ制御手段は、第1電動モータを駆動制御して該第1電動モータに第1モータ出力トルクを出力させると共に、第2電動モータを駆動制御して該第2電動モータに第2モータ出力トルクを出力させる。
そして、走行状態対応出力トルク補正手段は、車両の走行状態が直進走行状態に近いほど、第1モータ出力トルクを大きく補正すると共に第2モータ出力トルクを小さく補正する。
これにより、操舵制御装置は、旋回走行状態のときには、第1操舵機構の駆動力を抑えつつ、第2操舵機構の駆動力を大きくすることができ、直進走行状態のときには、第2操舵機構の駆動力を抑えつつ、第1操舵機構の駆動力を大きくすることができる。
すなわち、操舵制御装置は、車両の走行状態が直進走行状態に近いほど、第1モータ出力トルクを大きく補正すると共に第2モータ出力トルクを小さく補正することで、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構側の駆動力を大きくしている。
これにより、操舵制御装置は、直進走行時に、そのときに要求される高い転舵応答性を発揮できる。
また、操舵制御装置は、車両の走行状態が直進走行状態に近いほど、第1モータ出力トルクを大きくすると共に第2モータ出力トルクを小さくするため、直進走行状態から旋回走行状態となるほど、第1モータ出力トルクが小さくなると共に第2モータ出力トルクが大きくなる。
これにより、操舵制御装置は、ラックバーにかかる負荷が大きくなる旋回走行時に第1電動モータの出力トルクを抑えることで、第1電動モータ及び第1電動モータが駆動する部材の耐久性の低下を抑制できる。
したがって、操舵制御装置は、より高い転舵応答性の発揮及び駆動する部材の耐久性の低下抑制の両立を図ることができる。
(3)走行状態対応出力トルク補正手段は、出力トルク配分手段がした第1モータ出力トルクと第2モータ出力トルクとへの配分の比率を補正することにより、第1モータ出力トルク及び第2モータ出力トルクの補正をする。
このように、配分比率を補正するだけで、操舵制御装置は、第1モータ出力トルクを大きくする、又は小さくする補正をする一方で、第2モータ出力トルクを、その反対に、小さくする、又は大きくする補正をすることができる。
(4)駆動電流値算出手段は、合計出力トルク算出手段が算出した合計出力トルクを基に、第1及び第2電動モータを駆動する駆動電流値を算出する。
これに対応して、出力トルク配分手段は、駆動電流値算出手段が算出した駆動電流値を、第1電動モータを駆動する第1モータ駆動電流値と第2電動モータを駆動する第2モータ駆動電流値とに配分することにより、合計出力トルク算出手段が算出した合計出力トルクを、第1電動モータが出力する第1モータ出力トルクと第2電動モータが出力する第2モータ出力トルクとに配分する。
さらに、モータ制御手段は、第1モータ駆動電流値を基に第1電動モータを駆動制御して該第1電動モータに前記第1モータ出力トルクを出力させると共に、第2モータ駆動電流値を基に第2電動モータを駆動制御して該第2電動モータに第2モータ出力トルクを出力させる。
そして、走行状態対応出力トルク補正手段は、車両の走行状態が直進走行状態に近いほど、第1モータ駆動電流値を大きく補正すると共に第2モータ駆動電流値を小さく補正することにより、車両の走行状態が直進走行状態に近いほど、第1モータ出力トルクを大きく補正すると共に第2モータ出力トルクを小さく補正する。
これにより、操舵制御装置は、第1及び第2電動モータを駆動制御するための第1及び第2モータ駆動電流値を補正することで、第1及び第2モータ出力トルクを補正することができる。
(5)走行状態対応出力トルク補正手段は、駆動電流値算出手段が算出した駆動電流値(転舵指令電流)が小さいほど、車両の走行状態が直進走行状態に近いことを検出する。
このように、駆動電流を用いることで、操舵制御装置は、容易に車両の走行状態を検出できる。
(6)操舵反力付与手段は、ステアリングホイールに操舵反力を付与する。そして、操舵反力制御手段は、第1モータ出力トルク(具体的には第1モータ駆動電流値)を基に、操舵反力付与手段を駆動制御する。
これにより、操舵制御装置は、第1モータ出力トルクに基づく転舵応答特性に合致させた応答特性で操舵反力を付与できる。
例えば、操舵制御装置は、車両の走行状態が直進走行状態に近いほど操舵反力を大きくし、ステアリングが中立位置に近いほど操舵反力を大きくすることにより、直進走行時には運転者にダイレクトな操舵感(ステアリングのしっかり感)を与えることができる。また、操舵制御装置は、車両の走行状態が直進走行状態から旋回走行状態となるほど操舵反力を小さくし、運転者に通常の操舵感(滑らかな操舵感)を与えることができる。
(7)第2操舵機構40は、パワーシリンダ41の両圧力室P1,P2の差圧によりラックバー12に外力を付与し、流体圧により転舵力を発生している。
このように流体圧により転舵力を発生することで、操舵制御装置は、ラックバー12の捩れを招来することなく転舵力を発生させることができる。
このため、操舵制御装置では、ピニオン軸13のピニオン歯(ピニオンギヤ)とラックバー12のラック歯(ラックギヤ)との噛み合いに支障を来す恐れがない。
この結果、操舵制御装置は、ピニオン軸13とラックバー12との間における操舵力の伝達ロスの発生を防止できる。
(8)操舵制御装置では、ラックバー12の捩れを回避することで、ピニオン軸13のピニオン歯(ピニオンギヤ)とラックバー12のラック歯(ラックギヤ)との噛み合いについて余計な負荷を与える恐れもない。
これにより、操舵制御装置は、かかるラック・ピニオン機構の耐久性の低下を抑制できる。
(第1の実施形態の変形例)
(1)この第1の実施形態では、操舵制御装置は、走行状態に応じて第2走行状態対応ゲインK1を設定して転舵指令電流又はトルクの配分比率を変更することで、走行状態に応じて第1及び第2転舵モータ32,43の出力トルクを補正している。これに対して、そのような配分比率に従うことなく、走行状態に応じて第1及び第2転舵モータ32,43の出力トルクを補正することもできる。すなわち例えば、第1及び第2モータ転舵指令電流の合計値が転舵指令電流演算部62が出力する転舵指令電流に一致することを条件とせず、直進走行状態のときには、旋回走行状態のときよりも、第1モータ駆動電流値を大きくすると共に第2モータ駆動電流値を小さくする補正をする。
これにより、操舵制御装置は、走行状態に応じた第1及び第2転舵モータ32,43の出力トルクの補正の自由度を高くすることができる。
(2)第1の実施形態では、反力モータECU50が算出した転舵指令角を基に、ゲイン設定部64がゲイン設定をすることもできる。図6は、そのようなゲイン設定を実現する構成を示す。
図6に示すように、反力モータECU50は、算出した転舵指令角をゲイン設定部64に出力する。ゲイン設定部64は、反力モータECU50からの転舵指令角を基に、ゲイン設定をする。
具体的には、ゲイン設定部64は、転舵指令角が大きいほど、第2走行状態対応ゲインK1を大きい値に設定する。言い換えれば、転舵指令角が小さいほど、第2走行状態対応ゲインK1を小さい値に設定する。ゲイン設定部64は、設定した第2走行状態対応ゲインK1を第2乗算器66に出力する。また、ゲイン設定部64は、1.0からゲインK1を減算した減算値である第1走行状態対応ゲインK1´を第1乗算器65に出力する。
そして、第1乗算器65は、第1走行状態対応ゲインK1´と第1モータ転舵指令電流との乗算値(K1´×第1モータ転舵指令電流)を第1転舵モータ32に出力する。また、第2乗算器66は、第2走行状態対応ゲインK1と第2モータ転舵指令電流との乗算値(K1×第2モータ転舵指令電流)を第2転舵モータECU70に出力する。
ここで、転舵指令角が小さいほど、車両の走行状態は、直進走行状態又はそれに近い状態になる。また、転舵指令角が大きいほど、車両の走行状態は、旋回走行状態又はそれに近い状態になる。よって、転舵指令角が大きくなっていくと、車両の走行状態は、直進走行状態から旋回走行状態に変化するようになる。そして、このとき、第2走行状態対応ゲインK1が大きくなる。
これにより、操舵制御装置は、高い転舵応答性が要求される直進走行状態に近いほど、第1転舵モータ32の出力トルクを大きくして、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構30の駆動力を大きくする。この結果、操舵制御装置は、直進走行時等にて転舵応答性を高くする要求に応えることができる。
また、操舵制御装置は、高い転舵応答性がそれほど要求されないが、ラックバー12にかかる負荷が大きくなる旋回走行時には、直進走行時よりも、第2転舵モータ43の出力トルクを大きくし、第1転舵モータ32の出力トルクを抑える。これにより、操舵制御装置は、第1転舵モータ32が駆動する部材の耐久性の低下を抑制できる。
そして、操舵制御装置は、転舵指令角(目標転舵角)を用いることで、容易に車両の走行状態の検出ができる。
(3)第1の実施形態では、操舵角センサ3が検出した操舵角を基に、ゲイン設定部64がゲイン設定をすることもできる。図7は、そのようなゲイン設定を実現する構成を示す。
図7に示すように、操舵角センサ3は、検出した操舵角をゲイン設定部64に出力する。ゲイン設定部64は、操舵角センサ3からの操舵角を基に、ゲイン設定をする。
具体的には、ゲイン設定部64は、操舵角が大きいほど、第2走行状態対応ゲインK1を大きい値に設定する。言い換えれば、操舵角が小さいほど、第2走行状態対応ゲインK1を小さい値に設定する。ゲイン設定部64は、設定した第2走行状態対応ゲインK1を第2乗算器66に出力する。また、ゲイン設定部64は、1.0からゲインK1を減算した減算値である第1走行状態対応ゲインK1´を第1乗算器65に出力する。
そして、第1乗算器65は、第1走行状態対応ゲインK1´と第1モータ転舵指令電流との乗算値(K1´×第1モータ転舵指令電流)を第1転舵モータ32に出力する。また、第2乗算器66は、第2走行状態対応ゲインK1と第2モータ転舵指令電流との乗算値(K1×第2モータ転舵指令電流)を第2転舵モータECU70に出力する。
ここで、操舵角が小さいほど、車両の走行状態は、直進走行状態又はそれに近い状態になる。また、操舵角が大きいほど、車両の走行状態は、旋回走行状態又はそれに近い状態になる。よって、操舵角が大きくなっていくと、車両の走行状態は、直進走行状態から旋回走行状態に変化するようになる。そして、このとき、第2走行状態対応ゲインK1が大きくなる。
これにより、操舵制御装置は、高い転舵応答性が要求される直進走行時又は旋回開始初期には、旋回走行時よりも、第1転舵モータ32の出力トルクを大きくして、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構30の駆動力を大きくする。この結果、操舵制御装置は、直進走行時等にて転舵応答性を高くする要求に応えることができる。
また、操舵制御装置は、高い転舵応答性がそれほど要求されないが、ラックバー12にかかる負荷が大きくなる旋回走行時には、直進走行時よりも、第2転舵モータ43の出力トルクを大きくし、第1転舵モータ32の出力トルクを抑える。これにより、操舵制御装置は、第1転舵モータ32が駆動する部材の耐久性の低下を抑制できる。
そして、操舵制御装置は、操舵角を用いることで、容易に車両の走行状態の検出ができる。
(4)第1の実施形態では、路面反力センサ21R,21Lが検出した路面反力値を基に、ゲイン設定部64がゲイン設定をすることもできる。図8は、そのようなゲイン設定を実現する構成を示す。
図8に示すように、路面反力センサ21R,21Lは、検出した路面反力値をゲイン設定部64に出力する。ゲイン設定部64は、路面反力センサ21R,21Lからの路面反力値を基に、ゲイン設定をする。例えば、ゲイン設定部64は、各路面反力センサ21R,21Lからの路面反力値の平均値を基に、ゲイン設定をする。
具体的には、ゲイン設定部64は、路面反力値が大きいほど、第2走行状態対応ゲインK1を大きい値に設定する。言い換えれば、路面反力値が小さいほど、第2走行状態対応ゲインK1を小さい値に設定する。ゲイン設定部64は、設定した第2走行状態対応ゲインK1を第2乗算器66に出力する。また、ゲイン設定部64は、1.0からゲインK1を減算した減算値である第1走行状態対応ゲインK1´を第1乗算器65に出力する。
そして、第1乗算器65は、第1走行状態対応ゲインK1´と第1モータ転舵指令電流との乗算値(K1´×第1モータ転舵指令電流)を第1転舵モータ32に出力する。また、第2乗算器66は、第2走行状態対応ゲインK1と第2モータ転舵指令電流との乗算値(K1×第2モータ転舵指令電流)を第2転舵モータECU70に出力する。
ここで、旋回半径が小さいほど(又は直進走行時と比較して旋回走行時の場合)、路面からタイヤ(転舵輪11L,11R)に入力する路面反力値は大きい値になる。これにより、車両の走行状態が直進走行状態から旋回走行状態に変化していくほど、路面反力値が大きくなり、第2走行状態対応ゲインK1が大きくなる。
これにより、操舵制御装置は、高い転舵応答性が要求される直進走行時又は旋回開始初期には、旋回走行時よりも、第1転舵モータ32の出力トルクを大きくして、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構30の駆動力を大きくする。この結果、操舵制御装置は、直進走行時等にて転舵応答性を高くする要求に応えることができる。
また、操舵制御装置は、高い転舵応答性がそれほど要求されないが、ラックバー12にかかる負荷が大きくなる旋回走行時には、直進走行時よりも、第2転舵モータ43の出力トルクを大きくし、第1転舵モータ32の出力トルクを抑える。これにより、操舵制御装置は、第1転舵モータ32が駆動する部材の耐久性の低下を抑制できる。
そして、操舵制御装置は、路面反力値を用いることで、容易に車両の走行状態の検出ができる。特に、ステア・バイ・ワイヤ制御を行っている車両においては、路面から転舵輪に入力する路面反力を検出する路面反力センサを備えていることが多く、このような車両においてはセンサを追加することなく容易に車両の走行状態の検出ができる。
(5)第1の実施形態では、車両挙動としての車両のヨーレイトを基に、ゲイン設定部64がゲイン設定をすることもできる。図9は、そのようなゲイン設定を実現する構成を示す。
図9に示すように、車両は、ヨーレイトを検出するヨーレイトセンサ101を備えている。ヨーレイトセンサ101は、検出した車両のヨーレイトをゲイン設定部64に出力する。ゲイン設定部64は、ヨーレイトを基に、ゲイン設定をする。
具体的には、ゲイン設定部64は、ヨーレイトが大きいほど、第2走行状態対応ゲインK1を大きい値に設定する。言い換えれば、ヨーレイトが小さいほど、第2走行状態対応ゲインK1を小さい値に設定する。ゲイン設定部64は、設定した第2走行状態対応ゲインK1を第2乗算器66に出力する。また、ゲイン設定部64は、1.0からゲインK1を減算した減算値である第1走行状態対応ゲインK1´を第1乗算器65に出力する。
そして、第1乗算器65は、第1走行状態対応ゲインK1´と第1モータ転舵指令電流との乗算値(K1´×第1モータ転舵指令電流)を第1転舵モータ32に出力する。また、第2乗算器66は、第2走行状態対応ゲインK1と第2モータ転舵指令電流との乗算値(K1×第2モータ転舵指令電流)を第2転舵モータECU70に出力する。
ここで、旋回半径が小さいほど(又は直進走行時と比較して旋回走行時の場合)、ヨーレイトは大きい値になる。これにより、車両の走行状態が直進走行状態から旋回走行状態に変化していくとき、ヨーレイトが大きくなり、第2走行状態対応ゲインK1が大きくなる。
これにより、操舵制御装置は、高い転舵応答性が要求される直進走行時又は旋回開始初期には、旋回走行時よりも、第1転舵モータ32の出力トルクを大きくして、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構30の駆動力を大きくする。この結果、操舵制御装置は、直進走行時等にて転舵応答性を高くする要求に応えることができる。
また、操舵制御装置は、高い転舵応答性がそれほど要求されないが、ラックバー12にかかる負荷が大きくなる旋回走行時には、直進走行時よりも、第2転舵モータ43の出力トルクを大きくし、第1転舵モータ32の出力トルクを抑える。これにより、操舵制御装置は、第1転舵モータ32が駆動する部材の耐久性の低下を抑制できる。
そして、操舵制御装置は、ヨーレイトを用いることで、容易に車両の走行状態の検出ができる。特に、車両のヨーレイトを検出して、車両の挙動を制御する車両挙動制御装置(いわゆる、ビークル・ダイナミクス・コントロール:VDC)を備えた車両においては、センサを追加すること無く、容易に車両の走行状態を検出することができる。
(6)第1の実施形態では、車両挙動としての車両の横加速度を基に、ゲイン設定部64がゲイン設定をすることもできる。図10は、そのようなゲイン設定を実現する構成を示す。
図10に示すように、車両は、横加速度を検出する横加速度センサ102を備えている。横加速度センサ102は、検出した車両の横加速度をゲイン設定部64に出力する。ゲイン設定部64は、横加速度を基に、ゲイン設定をする。
具体的には、ゲイン設定部64は、横加速度が大きいほど、第2走行状態対応ゲインK1を大きい値に設定する。言い換えれば、横加速度が小さいほど、第2走行状態対応ゲインK1を小さい値に設定する。ゲイン設定部64は、設定した第2走行状態対応ゲインK1を第2乗算器66に出力する。また、ゲイン設定部64は、1.0からゲインK1を減算した減算値である第1走行状態対応ゲインK1´を第1乗算器65に出力する。
そして、第1乗算器65は、第1走行状態対応ゲインK1´と第1モータ転舵指令電流との乗算値(K1´×第1モータ転舵指令電流)を第1転舵モータ32に出力する。また、第2乗算器66は、第2走行状態対応ゲインK1と第2モータ転舵指令電流との乗算値(K1×第2モータ転舵指令電流)を第2転舵モータECU70に出力する。
ここで、旋回半径が小さいほど(又は直進走行時と比較して旋回走行時の場合)、横加速度は大きい値になる。これにより、車両の走行状態が直進走行状態から旋回走行状態に変化していくとき、横加速度が大きくなり、第2走行状態対応ゲインK1が大きくなる。
これにより、操舵制御装置は、高い転舵応答性が要求される直進走行時又は旋回開始初期には、旋回走行時よりも、第1転舵モータ32の出力トルクを大きくして、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構30の駆動力を大きくする。この結果、操舵制御装置は、直進走行時等にて転舵応答性を高くする要求に応えることができる。
また、操舵制御装置は、高い転舵応答性がそれほど要求されないが、ラックバー12にかかる負荷が大きくなる旋回走行時には、直進走行時よりも、第2転舵モータ43の出力トルクを大きくし、第1転舵モータ32の出力トルクを抑える。これにより、操舵制御装置は、第1転舵モータ32が駆動する部材の耐久性の低下を抑制できる。
そして、操舵制御装置は、横加速度を用いることで、容易に車両の走行状態の検出ができる。なお、横加速度は必ずしも横加速度センサによって検出した値でなくとも良く、操舵角やヨーレート、車速等により算出した値であっても良い。
(第2の実施形態)
(構成)
第2の実施形態は、前記第1の実施形態と同様、操舵制御装置である。
第2の実施形態では、車両の直進走行状態や旋回走行状態の情報に加えて、車速を基に、ゲイン調整して第1モータ転舵指令電流と第2モータ転舵指令電流との配分を補正している。
第2の実施形態の操舵制御装置の構成は、前記図1に示した第1の実施形態の操舵制御装置の構成と同一である。しかし、第2の実施形態では、第1転舵モータECU60の構成が異なる。
以下の説明で、特に言及がない限りは、第2の実施形態の構成は、前記第1の実施形態の構成と同一である。
図11は、第2の実施形態における第1転舵モータECU60等の構成を示す。図11に示すように、第2の実施形態における第1転舵モータECU60は、前記第1の実施形態と同様なゲイン設定部(以下、走行状態対応ゲイン設定部という。)64の他に、もう一つのゲイン設定部(以下、車速対応ゲイン設定部という。)104を備える。また、第2の実施形態における第1転舵モータECU60は、さらに第3及び第4乗算器105,106を備える。
第1転舵モータECU60では、車速センサ22が検出した車速を車速対応ゲイン設定部104に入力する。車速対応ゲイン設定部104は、車速を基に、ゲイン設定をする。
図12は、車速とゲインK2との関係の一例を示す。図12に示すように、車速とゲインK2との関係を、大別して、極低速域、低速域、及び中高速域の3つの領域に分けることができる。極低速域では、ゲインK2は、車速にかかわらず、大きい値で一定値になる(例えばK2=0.7)。低速域では、車速が大きくなるほど、ゲインK2が小さくなる。中高速域では、ゲインK2は、車速にかかわらず、小さい値で一定値になる(例えばK2=0.5)。また、車両停止時では、ゲインK2は、極低速域の値よりも大きい値になる(例えばK2=0.75)。このように、概略として、車速が大きいほど、ゲインK2が小さくなる。
ここで、中高速域では、ゲインK2の例が0.5になっている。しかし、ゲインK2が、それ以外の値、例えば0.4とすることもできる。
車速対応ゲイン設定部104は、このような図12に示す関係をマップ等として有している。車速対応ゲイン設定部104は、そのマップ等を用いて、車速に対応するゲインK2を設定する。車速対応ゲイン設定部104は、設定したゲイン(以下、第2車速対応ゲインという。)K2を第4乗算器106に出力する。また、車速対応ゲイン設定部104は、1.0からゲインK2を減算した値(1.0−K2、以下、第1車速対応ゲインK2´という。)を第3乗算器105に出力する。
第3乗算器105は、第1車速対応ゲインK2´(=1.0−K2)と第1乗算器65が出力した第1モータ転舵指令電流(K1´×第1モータ転舵指令電流)とを乗算する。第3乗算器105は、その乗算値(K1´×K2´×第1モータ転舵指令電流)を第1転舵モータ32に出力する。
第4乗算器106は、第2車速対応ゲインK2と第2乗算器66が出力した第2モータ転舵指令電流(K1×第2モータ転舵指令電流)とを乗算する。第4乗算器106は、その乗算値(K1×K2×第2モータ転舵指令電流)を第2転舵モータECU70に出力する。
以上のように、第1転舵モータECU60は、ゲイン設定部64,104、第1〜第4乗算部65,66,105,106により、転舵指令電流及び車速を基に、ゲイン調整して第1モータ転舵指令電流と第2モータ転舵指令電流との配分を補正している。例えば、配分は、転舵指令電流が大きくなるほど、第1モータ転舵指令電流が小さく、第2モータ転舵指令電流が大きくなる配分となる。さらに、配分は、車速が小さくなるほど、第1モータ転舵指令電流が小さく、第2モータ転舵指令電流が大きくなる配分となる。
第1及び第2走行状態対応ゲインK1´,K1が同等な値(K1´=K1=0.5)であるとして、低速域と中高速域で整理すると、ゲイン調整後の第1モータ転舵指令電流と第2モータ転舵指令電流との関係は、次のようになる。
中高速域の場合(K2=0.5(K2<0.5)、K1=0.5)
K2´×第1モータ転舵指令電流≧K2×第2モータ転舵指令電流
低速域の場合(K2>0.5、K1=0.5)
K2´×第1モータ転舵指令電流<K2×第2モータ転舵指令電流
第1転舵モータECU60は、ゲイン調整した第1モータ転舵指令電流を基に、第1転舵モータ32を駆動制御する。一方、第2転舵モータECU70は、ゲイン調整した第2モータ転舵指令電流を基に、第2転舵モータ43を駆動制御する。
この第1及び第2転舵モータ32,43の駆動制御により、ラックバー12が駆動し、転舵輪11L,11Rが転舵する。
(動作及び作用)
特に、第2の実施形態では、車速が小さくなるほど、第1車速対応ゲインK2´が小さくなると共に第2車速対応ゲインK2が大きくなる。この結果、車速が小さくなると、第1モータ転舵指令電流が小さくなるため、第1転舵モータ32の出力トルクが小さくなる。その一方で、第2モータ転舵指令電流が大きくなるため、第2転舵モータ43の出力トルクが大きくなる。また、車速が大きくなるほど、第1モータ転舵指令電流が大きくなるため、第1転舵モータ32の出力トルクが大きくなる。その一方で、第2モータ転舵指令電流が小さくなるため、第2転舵モータ43の出力トルクが小さくなる。
これにより、操舵制御装置は、高い転舵応答性が要求される中高速域では、第1転舵モータ32の出力トルクを大きくして、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構30の駆動力を大きくする。この結果、操舵制御装置は、中高速域にて転舵応答性を高くする要求に応えることができる。
また、操舵制御装置は、高い転舵応答性がそれほど要求されないが大きな転舵トルクが要求される低速域では、第2転舵モータ43の出力トルクを大きくし、第1転舵モータ32の出力トルクを抑える。これにより、操舵制御装置は、第1転舵モータ32が駆動する部材の耐久性の低下を抑制できる。具体的には、操舵制御装置は、第1転舵モータ32が駆動する部材となる、ピニオン歯13a、或いはラックピニオン機構の耐久性の低下を抑制できる。
なお、この第2の実施形態では、車速対応ゲイン設定部104、並びに第3及び第4乗算器105,106は車速対応出力トルク補正手段に対応する。
(第2の実施形態の効果)
(1)車速対応出力トルク補正手段は、車速が小さいときほど、第1モータ出力トルクを小さく補正すると共に第2モータ出力トルクを大きく補正する。
これにより、操舵制御装置は、車速が大きいときには、車速が小さいときよりも、第1モータ出力トルクを大きくすると共に第2モータ出力トルクを小さくすることで、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構側の駆動力を大きくしている。この結果、操舵制御装置は、車速が大きいとき、そのときに要求される高い転舵応答性を発揮できる。
また、操舵制御装置は、車速が小さいときには、車速が大きいときよりも、第1モータ出力トルクを小さくすると共に第2モータ出力トルクを大きくすることで、第1電動モータの出力トルクを抑えている。これにより、操舵制御装置は、大きな転舵トルクが要求される低速域で第1電動モータの出力トルクを抑えることで、第1電動モータが駆動する部材の耐久性の低下を抑制できる。
このように、操舵制御装置は、より高い転舵応答性の発揮及び駆動する部材の耐久性の低下抑制の両立を図ることができる。
(2)操舵制御装置は、停車時には、第2車速対応ゲインK2を最大値にすることで、第1モータ駆動電流値を最小値にすると共に第2モータ駆動電流値を最大値にしている。
ここで、停車時の操舵、すなわち据え切り時には、車輪の反力が非常に大きくなり、非常に大きな転舵トルクが必要となる。この結果、第1電動モータが駆動する部材にかかる負荷も非常に大きくなる。
このような場合でも、操舵制御装置は、第1モータ駆動電流値(第1電動モータの出力トルク)を最小値にしているので、第1電動モータが駆動する部材の耐久性の低下を抑制できる。
(3)走行状態対応出力トルク補正手段は、車両の走行状態が直進走行状態に近いほど、第1モータ出力トルクを大きく補正すると共に第2モータ出力トルクを小さく補正する。
これにより、操舵制御装置は、直進走行状態に近いほど、第1モータ出力トルクを大きくすると共に第2モータ出力トルクを小さくすることで、ギヤ結合の構成により高い転舵応答性を有する第1操舵機構側の駆動力を大きくしている。
この結果、操舵制御装置は、直進走行時に、そのときに要求される高い転舵応答性を発揮できる。
また、操舵制御装置は、直進走行状態から旋回走行状態となるほど、第1モータ出力トルクが小さくなると共に第2モータ出力トルクを大きくなる。
これにより、操舵制御装置は、ラックバーにかかる負荷が大きくなる旋回走行時に第1電動モータの出力トルクを抑えることで、第1電動モータ及び第1電動モータが駆動する部材の耐久性の低下を抑制できる。
このように、操舵制御装置は、より高い転舵応答性の発揮及び駆動する部材の耐久性の低下抑制の両立を図ることができる。
1 ステアリングホイール、2 ステアリング軸、12 ラックバー、13 ピニオン軸、14 転舵角センサ(実転舵角検出手段)、30 第1操舵機構、32 第1転舵モータ(第1電動モータ)、33 モータ回転角センサ、40 第2操舵機構、41 パワーシリンダ、42 オイルポンプ、43 第2転舵モータ(第2電動モータ)、50 反力モータECU(目標転舵角算出手段)、60 第1転舵モータECU(モータ制御手段)、61 トルク指令値演算部(合計出力トルク算出手段)、62 転舵指令電流演算部(駆動電流値算出手段)、63 転舵電流配分演算部(出力トルク配分手段)、64 ゲイン設定部(走行状態対応ゲイン設定部、走行状態対応出力トルク補正手段)、65,66 乗算器(走行状態対応出力トルク補正手段)、70 第2転舵モータECU(モータ制御手段)、104 車速対応ゲイン設定部(車速対応出力トルク補正手段)、105,106 乗算器(車速対応出力トルク補正手段)

Claims (10)

  1. ピニオン歯を有するピニオン軸と、
    前記ピニオン歯に噛合するラック歯を有し、前記ピニオン軸の回転に伴い軸方向に移動して転舵輪を転舵するラックバーと、
    前記ピニオン軸に回転力を付与する第1電動モータを有する第1操舵機構と、
    一対の圧力室に発生した差圧に基づいて、前記ラックバーに対し該ラックバーの軸方向に推進力を付与するパワーシリンダ、前記一対の圧力室の各圧力室に選択的に作動油を供給するポンプ及び該ポンプを駆動制御する第2電動モータを有する第2操舵機構と、
    前記転舵輪の目標転舵角を算出する目標転舵角算出手段と、
    前記転舵輪の実転舵角を検出する実転舵角検出手段と、
    前記目標転舵角算出手段が算出した目標転舵角と前記実転舵角検出手段が検出した実転舵角との差分を基に、前記第1及び第2電動モータが出力する合計出力トルクを算出する合計出力トルク算出手段と、
    前記合計出力トルク算出手段が算出した合計出力トルクを、前記第1電動モータが出力する第1モータ出力トルクと前記第2電動モータが出力する第2モータ出力トルクとに配分する出力トルク配分手段と、
    前記第1電動モータを駆動制御して該第1電動モータに前記第1モータ出力トルクを出力させると共に、前記第2電動モータを駆動制御して該第2電動モータに前記第2モータ出力トルクを出力させるモータ制御手段と、
    前記出力トルク配分手段がした第1モータ出力トルクと第2モータ出力トルクとへの配分の比率を補正することにより、車両の走行状態が直進走行状態に近いほど、前記第1モータ出力トルクを大きく補正すると共に前記第2モータ出力トルクを小さく補正する走行状態対応出力トルク補正手段と、
    を備えることを特徴とする操舵制御装置。
  2. 前記合計出力トルク算出手段が算出した合計出力トルクを基に、前記第1及び第2電動モータを駆動する駆動電流値を算出する駆動電流値算出手段を備え、
    前記出力トルク配分手段は、前記駆動電流値算出手段が算出した駆動電流値を、前記第1電動モータを駆動する第1モータ駆動電流値と前記第2電動モータを駆動する第2モータ駆動電流値とに配分することにより、前記合計出力トルク算出手段が算出した合計出力トルクを、前記第1電動モータが出力する第1モータ出力トルクと前記第2電動モータが出力する第2モータ出力トルクとに配分し、
    前記モータ制御手段は、前記第1モータ駆動電流値を基に前記第1電動モータを駆動制御して該第1電動モータに前記第1モータ出力トルクを出力させると共に、前記第2モータ駆動電流値を基に前記第2電動モータを駆動制御して該第2電動モータに前記第2モータ出力トルクを出力させ、
    前記走行状態対応出力トルク補正手段は、車両の走行状態が直進走行状態に近いほど、前記第1モータ駆動電流値を大きく補正すると共に前記第2モータ駆動電流値を小さく補正することにより、車両の走行状態が直進走行状態に近いほど、前記第1モータ出力トルクを大きく補正すると共に前記第2モータ出力トルクを小さく補正すること
    を特徴とする請求項1に記載の操舵制御装置。
  3. 前記走行状態対応出力トルク補正手段は、前記駆動電流値算出手段が算出した駆動電流値が小さいほど、前記車両の走行状態が直進走行状態に近いことを検出することを特徴とする請求項に記載の操舵制御装置。
  4. ステアリングホイールに操舵反力を付与する操舵反力付与手段と、
    前記第1モータ出力トルクを基に、前記操舵反力付与手段を駆動制御する操舵反力制御手段と、
    を備えることを特徴とする請求項1〜の何れか1項に記載の操舵制御装置。
  5. 前記走行状態対応出力トルク補正手段は、前記目標転舵角算出手段が算出した目標転舵角が小さいほど、前記車両の走行状態が直進走行状態に近いことを検出することを特徴とする請求項1〜の何れか1項に記載の操舵制御装置。
  6. 前記ステアリングホイールの操舵角を検出する操舵角検出手段を備え、
    前記走行状態対応出力トルク補正手段は、前記操舵角検出手段が検出した操舵角が小さいほど、前記車両の走行状態が直進走行状態に近いことを検出することを特徴とする請求項1〜の何れか1項に記載の操舵制御装置。
  7. 車輪が受ける路面反力を検出する路面反力検出手段を備え、
    前記走行状態対応出力トルク補正手段は、前記路面反力検出手段が検出した路面反力値が小さいほど、前記車両の走行状態が直進走行状態に近いことを検出することを特徴とする請求項1〜の何れか1項に記載の操舵制御装置。
  8. 車両のヨーレイトを検出するヨーレイト検出手段を備え、
    前記走行状態対応出力トルク補正手段は、前記ヨーレイト検出手段が検出したヨーレイトが小さいほど、前記車両の走行状態が直進走行状態に近いことを検出することを特徴とする請求項1〜の何れか1項に記載の操舵制御装置。
  9. 車両の横加速度を検出する横加速度検出手段を備え、
    前記走行状態対応出力トルク補正手段は、前記横加速度検出手段が検出した横加速度が小さいほど、前記車両の走行状態が直進走行状態に近いことを検出することを特徴とする請求項1〜の何れか1項に記載の操舵制御装置。
  10. ピニオン歯を有するピニオン軸と、
    前記ピニオン歯に噛合するラック歯を有し、前記ピニオン軸の回転に伴い軸方向に移動して転舵輪を転舵するラックバーと、
    前記ピニオン軸に回転力を付与する第1電動モータを有する第1操舵機構と、
    一対の圧力室に発生した差圧に基づいて、前記ラックバーに対し該ラックバーの軸方向に推進力を付与するパワーシリンダ、前記一対の圧力室の各圧力室に選択的に作動油を供給するポンプ及び該ポンプを駆動制御する第2電動モータを有する第2操舵機構と、を備える操舵制御装置の操舵制御方法であって、
    前記転舵輪の目標転舵角を算出すると共に、前記転舵輪の実転舵角を検出する第1ステップと、
    前記目標転舵角と前記実転舵角との差分を基に、前記第1及び第2電動モータが出力する合計出力トルクを算出する第2ステップと、
    前記合計出力トルクを、前記第1電動モータが出力する第1モータ出力トルクと前記第2電動モータが出力する第2モータ出力トルクとに配分する第3ステップと、
    車両の走行状態が直進走行状態のときには、前記第1電動モータが出力する第1モータ出力トルクと前記第2電動モータが出力する第2モータ出力トルクとに配分の比率を補正することで、車両の走行状態が旋回走行状態に近いほど、前記第1モータ出力トルクを大きく補正すると共に前記第2モータ出力トルクを小さく補正する第4ステップと、
    前記第1電動モータを駆動制御して該第1電動モータに前記第1モータ出力トルクを出力させると共に、前記第2電動モータを駆動制御して該第2電動モータに前記第2モータ出力トルクを出力させる第5ステップと、
    を有することを特徴とする操舵制御方法。
JP2009204795A 2009-09-04 2009-09-04 操舵制御装置及び操舵制御方法 Expired - Fee Related JP5418082B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204795A JP5418082B2 (ja) 2009-09-04 2009-09-04 操舵制御装置及び操舵制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204795A JP5418082B2 (ja) 2009-09-04 2009-09-04 操舵制御装置及び操舵制御方法

Publications (2)

Publication Number Publication Date
JP2011051563A JP2011051563A (ja) 2011-03-17
JP5418082B2 true JP5418082B2 (ja) 2014-02-19

Family

ID=43941019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204795A Expired - Fee Related JP5418082B2 (ja) 2009-09-04 2009-09-04 操舵制御装置及び操舵制御方法

Country Status (1)

Country Link
JP (1) JP5418082B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106809273A (zh) * 2017-01-11 2017-06-09 北京汽车股份有限公司 电动助力转向系统、控制方法及车辆
JP6984345B2 (ja) * 2017-11-22 2021-12-17 株式会社ジェイテクト 操舵制御装置
JP7024637B2 (ja) * 2018-07-13 2022-02-24 株式会社豊田自動織機 産業車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225354A (ja) * 2004-02-12 2005-08-25 Nissan Motor Co Ltd 車両用操舵装置
JP2006213094A (ja) * 2005-02-01 2006-08-17 Toyota Motor Corp パワーステアリング装置
JP2008260329A (ja) * 2007-04-10 2008-10-30 Jtekt Corp 動力舵取装置

Also Published As

Publication number Publication date
JP2011051563A (ja) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5418056B2 (ja) 操舵制御装置
KR100867698B1 (ko) 자동차의 스티어 바이 와이어 시스템
JP4884056B2 (ja) 車両用操舵制御装置
US20170369095A1 (en) Steering control device
WO2011048702A1 (ja) 車両の電動パワーステアリング装置
JP7387998B2 (ja) 操舵制御装置
JP2006082804A (ja) アクティブ前輪操舵のための力及び位置の制御
JP2010143240A (ja) 操舵制御装置
WO2017159107A1 (ja) パワーステアリング装置
CN112074449A (zh) 用于控制车辆转向的方法和系统
JP2005262926A (ja) 車両用操舵装置
SE544124C2 (en) A method and a system arrangement for vehicle steering and a vehicle with such a system
JP5418082B2 (ja) 操舵制御装置及び操舵制御方法
JP4639146B2 (ja) パワーステアリング装置
JP6523720B2 (ja) 後輪転舵制御装置
JP7488164B2 (ja) 操舵装置
JP2010137745A (ja) 車両用操舵制御装置
JP7342414B2 (ja) 操舵制御装置
JP6511673B2 (ja) パワーステアリング裝置
JP5418081B2 (ja) 操舵制御装置及び操舵制御方法
JP5994649B2 (ja) 操舵制御装置
JP2008030591A (ja) 制動制御装置およびその方法
JP2008179318A (ja) 車両用操舵制御装置
WO2013132807A1 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP2009035149A (ja) 車両用操舵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5418082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees