JP5411475B2 - Method for producing regenerated hydrotreating catalyst and method for producing petroleum product - Google Patents

Method for producing regenerated hydrotreating catalyst and method for producing petroleum product Download PDF

Info

Publication number
JP5411475B2
JP5411475B2 JP2008246528A JP2008246528A JP5411475B2 JP 5411475 B2 JP5411475 B2 JP 5411475B2 JP 2008246528 A JP2008246528 A JP 2008246528A JP 2008246528 A JP2008246528 A JP 2008246528A JP 5411475 B2 JP5411475 B2 JP 5411475B2
Authority
JP
Japan
Prior art keywords
catalyst
regenerated
producing
group
hydrotreating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008246528A
Other languages
Japanese (ja)
Other versions
JP2010075831A (en
Inventor
睦修 岩波
渉 佐原
大 亀塚
信治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Japan Petroleum Energy Center JPEC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Energy Center JPEC, JX Nippon Oil and Energy Corp filed Critical Japan Petroleum Energy Center JPEC
Priority to JP2008246528A priority Critical patent/JP5411475B2/en
Publication of JP2010075831A publication Critical patent/JP2010075831A/en
Application granted granted Critical
Publication of JP5411475B2 publication Critical patent/JP5411475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

本発明は、留出石油留分を処理するための再生水素化処理用触媒の製造方法及び留出石油留分を原料とする石油製品の製造方法に関する。   The present invention relates to a method for producing a regenerated hydrotreating catalyst for treating a distillate petroleum fraction, and a method for producing a petroleum product using the distillate petroleum fraction as a raw material.

原油には含硫黄化合物、含窒素化合物、含酸素化合物等が不純物として含まれ、原油を分留して得られる各留出石油留分中にもこれら不純物が含まれる。これら留出石油留分中の前記不純物は、水素の存在下に水素化活性を有する触媒に接触せしめる水素化処理と呼ばれる工程により、その含有量を低減することが行われている。特に含硫黄化合物の含有量を低減する脱硫がよく知られている。最近は環境負荷低減の観点から、石油製品中の含硫黄化合物をはじめとする前記不純物の含有量に対する規制、低減の要求が一層厳しくなっており、所謂「サルファー・フリー」と呼ばれる石油製品が多く生産されている。   Crude oil contains sulfur-containing compounds, nitrogen-containing compounds, oxygen-containing compounds and the like as impurities, and these impurities are also contained in each distillate petroleum fraction obtained by fractionating crude oil. The content of the impurities in these distillate petroleum fractions is reduced by a process called hydrotreatment in which the impurities are brought into contact with a catalyst having hydrogenation activity in the presence of hydrogen. In particular, desulfurization for reducing the content of sulfur-containing compounds is well known. Recently, from the viewpoint of reducing environmental impact, regulations on the content of impurities, including sulfur-containing compounds in petroleum products, and demands for reduction have become more stringent, and there are many so-called “sulfur-free” petroleum products. Has been produced.

前記留出石油留分の水素化処理に使用する水素化処理用触媒は、一定の期間使用されるとコークや硫黄分の沈着等により活性が低下することから、交換が行われる。特に上記「サルファー・フリー」が求められるようになり、灯油、軽油、減圧軽油といった留分の水素化処理設備において、高い水素化処理能力が求められている。その結果、触媒交換頻度が増大し、結果として触媒コストの上昇や触媒廃棄量の増加をもたらしている。   The hydrotreating catalyst used for the hydrotreating of the distillate petroleum fraction is exchanged because its activity decreases due to the deposition of coke and sulfur when used for a certain period of time. In particular, the above-mentioned “sulfur-free” has been demanded, and high hydrotreating capacity is demanded in hydrotreating equipment for fractions such as kerosene, light oil and vacuum gas oil. As a result, the frequency of catalyst replacement increases, resulting in an increase in catalyst cost and an increase in the amount of catalyst discarded.

この対策として、これらの設備においては使用済みの水素化処理用触媒を再生処理した再生触媒の使用が一部行われている(例えば、特許文献1、2を参照。)。
特開昭52−68890号公報 特開平5−123586号公報
As a countermeasure against this, some of these facilities use a regenerated catalyst obtained by regenerating a used hydroprocessing catalyst (see, for example, Patent Documents 1 and 2).
JP 52-68890 A JP-A-5-123586

再生触媒の使用に当って、水素化処理と再生処理とを複数回繰り返しても水素化処理用触媒の活性を維持することができれば、再生した水素化処理用触媒(以下、「再生水素化処理用触媒」又は単に「再生触媒」という。)の使用のメリットは一層大きなものとなる。従来の再生処理において、水素化処理用触媒の使用中に生じる活性低下の主原因であるカーボンあるいは硫黄の沈着の観点からは、再生処理により活性を回復させることができる。しかし、再生処理自体が、触媒上に担持された活性金属の構造を変化せしめる等して、触媒活性を低下させてしまうことがある。また、触媒の再生前の使用履歴、再生処理方法等によって再生後の触媒活性は異なるため、再生触媒、特に複数回再生後の再生触媒は安定して充分な活性を有するとは限らない。   In using the regenerated catalyst, if the activity of the hydrotreating catalyst can be maintained even if the hydrotreating process and the regenerating process are repeated several times, the regenerated hydrotreating catalyst (hereinafter referred to as “regenerated hydrotreating process”). The advantage of the use of “catalyst” or simply “regenerated catalyst”) is even greater. In the conventional regeneration process, the activity can be recovered by the regeneration process from the viewpoint of deposition of carbon or sulfur, which is the main cause of the decrease in activity that occurs during the use of the hydrotreating catalyst. However, the regeneration process itself may reduce the catalytic activity, for example, by changing the structure of the active metal supported on the catalyst. In addition, since the catalyst activity after regeneration differs depending on the use history before regeneration of the catalyst, the regeneration treatment method, and the like, the regeneration catalyst, particularly the regeneration catalyst after regeneration multiple times, does not always have a stable and sufficient activity.

さらに、再生触媒を使用した場合には、未再生の触媒を使用した場合に比較して、水素化処理後の生成油の色相が悪化する傾向にあるとの問題もある。   Furthermore, when the regenerated catalyst is used, there is also a problem that the hue of the product oil after the hydrotreating tends to deteriorate compared to the case where an unregenerated catalyst is used.

上記のような理由により、水素化処理設備において、必ずしも再生触媒が充分に採用されていないのが実情である。そのため、水素化処理用触媒の再生における活性低下が抑制され、安定して高い活性を有する再生触媒が供給され、また再生触媒の使用に際して、生成油の色相が改善されることが強く要望されている。   For the reasons described above, the actual situation is that the regenerated catalyst is not sufficiently employed in the hydrotreating equipment. For this reason, there is a strong demand for the reduction of the activity in the regeneration of the hydrotreating catalyst to be suppressed, to supply a regenerated catalyst having a stable and high activity, and to improve the hue of the produced oil when using the regenerated catalyst. Yes.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、使用済みの水素化処理用触媒から、安定して高い活性を有し、且つ、色相に優れた生成油を与える再生水素化処理用触媒を製造可能な、再生水素化処理用触媒の製造方法を提供することにある。また、本発明の他の目的は、前記再生水素化処理用触媒を用いた、経済的な石油製品の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is a regenerated hydrogen that gives a product oil having a stable and high activity and excellent hue from a used hydroprocessing catalyst. An object of the present invention is to provide a method for producing a regenerated hydrotreating catalyst capable of producing a hydrotreating catalyst. Another object of the present invention is to provide an economical method for producing petroleum products using the regenerated hydrotreating catalyst.

本発明者らは、上記目的を達成すべく鋭意研究した結果、特定の使用済みの水素化処理用触媒を、特定の条件にて再生処理することにより、再生時の活性低下が抑制され、且つ、色相に優れた生成油を与える再生水素化処理用触媒が得られることを見出し、本発明を完成するに至った。   As a result of earnest research to achieve the above object, the present inventors have regenerated a specific used hydroprocessing catalyst under specific conditions, thereby suppressing a decrease in activity during regeneration, and The present inventors have found that a regenerated hydrotreating catalyst that gives a product oil excellent in hue can be obtained, and the present invention has been completed.

すなわち、本発明は、少なくとも1種の周期表第6族金属及び少なくとも1種の第8〜10族金属を含有する使用済みの水素化処理用触媒を、温度250〜350℃、前記触媒の単位容積当りの流速が20〜200NL/h・L−触媒である空気流下に、2〜8時間再生処理する再生工程を備えることを特徴とする再生水素化処理用触媒の製造方法を提供する。 That is, the present invention provides a spent hydrotreating catalyst containing at least one group 6 metal of the periodic table and at least one group 8-10 metal at a temperature of 250 to 350 ° C. Provided is a method for producing a regenerated hydrotreating catalyst characterized by comprising a regeneration step of regenerating for 2 to 8 hours under an air flow having a flow rate per volume of 20 to 200 NL / h · L-catalyst .

本発明の再生水素化処理用触媒の製造方法においては、上記再生水素化処理用触媒中の残存カーボン量が2.0%以下、且つ、X線回折分析における、上記周期表第6族金属と第8〜10族金属とを含む複合金属酸化物に帰属される回折ピークが検出されないことが好ましい。   In the method for producing a regenerative hydrotreating catalyst of the present invention, the amount of residual carbon in the regenerated hydrotreating catalyst is 2.0% or less, and the periodic table Group 6 metal in X-ray diffraction analysis is used. It is preferable that a diffraction peak attributed to a composite metal oxide containing a Group 8-10 metal is not detected.

また、本発明の再生水素化処理用触媒の製造方法においては、上記水素化処理用触媒が、アルミニウム酸化物を含む無機担体に、全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種10〜30質量%と、周期表第8〜10族金属から選択される少なくとも1種1〜7質量%とを担持させて得られる触媒であることが好ましい。   Further, in the method for producing a regenerative hydrotreating catalyst of the present invention, the hydrotreating catalyst is selected from Group 6 metals of the periodic table on the basis of the total catalyst mass as an inorganic carrier containing aluminum oxide. It is preferable that the catalyst is obtained by supporting 10 to 30% by mass of at least one type and 1 to 7% by mass of at least one type selected from Group 8 to 10 metal of the periodic table.

さらに、本発明の再生水素化処理用触媒の製造方法においては、上記周期表第6族金属から選ばれる少なくとも1種がモリブデンであり、上記周期表第8〜10族金属から選ばれる少なくとも1種がコバルト及び/又はニッケルであることが好ましい。   Furthermore, in the method for producing a regenerative hydrotreating catalyst of the present invention, at least one selected from Group 6 metals of the periodic table is molybdenum, and at least one selected from Group 8 to 10 metals of the periodic table. Is preferably cobalt and / or nickel.

また、本発明は、上記本発明の再生水素化触媒の製造方法により、再生水素化処理用触媒を製造する第1の工程と、第1の工程で得られた再生水素化処理用触媒を用いて留出石油留分の水素化処理を行う工程と、を備えることを特徴とする石油製品の製造方法を提供する。   Moreover, this invention uses the 1st process of manufacturing the catalyst for regenerated hydrogenation processes by the manufacturing method of the regenerated hydrogenation catalyst of the said invention, and the catalyst for regenerated hydrogenation processes obtained at the 1st process. And a process for hydrotreating a distillate oil fraction. A method for producing a petroleum product is provided.

本発明の石油製品の製造方法においては、第2の工程の運転条件が、水素分圧3〜13MPa、LHSV0.05〜5h−1、反応温度200℃〜410℃、水素/油比17〜1348Nm /m 100〜8000SCF/BBLであることが好ましい。 In the method for producing a petroleum product of the present invention, the operating conditions of the second step are as follows: hydrogen partial pressure 3 to 13 MPa, LHSV 0.05 to 5 h −1 , reaction temperature 200 ° C. to 410 ° C., hydrogen / oil ratio 17 to 1348 Nm. 3 / m 3 ( 100 to 8000 SCF / BBL ) is preferable.

また、本発明の石油製品の製造方法においては、留出石油留分の蒸留試験による留出温度が130〜450℃であり、前記石油製品の色相がL1.5以下であることが好ましい。   Moreover, in the manufacturing method of the petroleum product of this invention, it is preferable that the distillation temperature by the distillation test of a distillate petroleum fraction is 130-450 degreeC, and the hue of the said petroleum product is L1.5 or less.

本発明の再生水素化処理用触媒の製造方法は、充分な活性を有する再生水素化処理用触媒を簡便に製造できるという効果を有する。また、本発明の石油製品の製造方法は、充分な活性を有し且つ安価な再生水素化処理用触媒を用いた実用性の高い製造プロセスを実現することができ、且つ、色相に優れる製品を与えることができるという効果を有し、コスト削減、廃棄物排出量の低減、留出石油留分の水素化処理の効率化、品質に優れる石油製品の生産等の点で非常に有用である。   The method for producing a regenerated hydrotreating catalyst of the present invention has an effect that a regenerated hydrotreating catalyst having sufficient activity can be easily produced. In addition, the method for producing a petroleum product of the present invention can realize a highly practical production process using a regenerated hydrotreating catalyst that has sufficient activity and is inexpensive, and has an excellent hue. It is very useful in terms of cost reduction, reduction of waste discharge, efficiency of hydrotreatment of distillate oil fraction, production of petroleum products with excellent quality, and the like.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

(水素化処理用触媒)
本発明に使用される水素化処理用触媒は、少なくとも1種の周期表第6族金属及び少なくとも1種の第8〜10族金属を含有する。前記周期表第6族金属としてはモリブデン、タングステン、クロムが好ましく、モリブデン、タングステンがさらに好ましく、モリブデンが特に好ましい。前記周期表第8〜10族金属としては、鉄、コバルト、ニッケルが好ましく、コバルト、ニッケルがより好ましく、コバルトが特に好ましい。これらの金属はそれぞれ単独で用いてもよく、2種以上を混合して用いてもよい。具体的な金属の例としては、モリブデン−コバルト、モリブデン−ニッケル、タングステン−ニッケル、モリブデン−コバルト−ニッケル、タングステン−コバルト−ニッケルなどが好ましく用いられる。なお、ここで周期表とは、国際純正・応用化学連合(IUPAC)により規定された長周期型の周期表をいう。
(Hydroprocessing catalyst)
The hydrotreating catalyst used in the present invention contains at least one Group 6 metal of the periodic table and at least one Group 8-10 metal. The Periodic Table Group 6 metal is preferably molybdenum, tungsten, or chromium, more preferably molybdenum or tungsten, and particularly preferably molybdenum. As said group 8-10 metal of a periodic table, iron, cobalt, and nickel are preferable, cobalt and nickel are more preferable, and cobalt is especially preferable. These metals may be used alone or in combination of two or more. As specific examples of the metal, molybdenum-cobalt, molybdenum-nickel, tungsten-nickel, molybdenum-cobalt-nickel, tungsten-cobalt-nickel, and the like are preferably used. Here, the periodic table is a long-period type periodic table defined by the International Union of Pure and Applied Chemistry (IUPAC).

本発明に係る水素化処理用触媒は、上記金属がアルミニウム酸化物を含む無機担体に担持されたものであることが好ましい。前記アルミニウム酸化物を含む無機担体の好ましい例としては、アルミナ、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタニア、あるいは各種ゼオライト、セビオライト、モンモリロナイト等の各種粘土鉱物などの多孔性無機化合物をアルミナに添加した担体などを挙げることができ、中でもアルミナが特に好ましい。   The hydrotreating catalyst according to the present invention is preferably one in which the metal is supported on an inorganic carrier containing aluminum oxide. Preferred examples of the inorganic carrier containing aluminum oxide include alumina, alumina-silica, alumina-boria, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-silica-zirconia, alumina-silica-titania, and various types. Examples include a carrier in which a porous inorganic compound such as various clay minerals such as zeolite, ceviolite, and montmorillonite is added to alumina, among which alumina is particularly preferable.

本発明に係る水素化処理用触媒は、アルミニウム酸化物を含む無機担体に、全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種10〜30質量%と、周期表第8〜10族金属から選択される少なくとも1種1〜7質量%とを担持させて得られる触媒であることが好ましい。周期表第6族金属及び周期表第8〜10族金属それぞれの担持量が、それぞれの下限未満である場合には、触媒が充分な水素化処理活性を発揮しない傾向にあり、一方、それぞれの上限を超える場合には、触媒コストが上昇する上に、担持金属の凝集等が起こり易く、触媒が充分な水素化処理活性を発揮しない傾向にある。   The catalyst for hydrotreating according to the present invention has an inorganic carrier containing aluminum oxide, 10 to 30% by mass selected from Group 6 metals of the periodic table, based on the total catalyst mass, A catalyst obtained by supporting 1 to 7% by mass of at least one selected from Group 8 to 10 metals is preferred. When the supported amount of each of the periodic table group 6 metal and the periodic table group 8 to 10 metal is less than the lower limit of each, the catalyst tends not to exhibit sufficient hydrotreating activity, When the upper limit is exceeded, the catalyst cost increases and the supported metal tends to agglomerate and the like, and the catalyst tends not to exhibit sufficient hydrotreating activity.

前記金属を前記無機担体に担持する際に用いる前記金属種の前駆体は限定されないが、該金属の無機塩、有機金属化合物等が使用され、水溶性の無機塩が好ましく使用される。担持工程においては、これら金属前駆体の溶液、好ましくは水溶液を用いて担持を行うことが好ましい。担持操作としては、例えば、浸漬法、含浸法、共沈法等の公知の方法が好ましく採用される。   The precursor of the metal species used when the metal is supported on the inorganic carrier is not limited, but an inorganic salt of the metal, an organic metal compound, or the like is used, and a water-soluble inorganic salt is preferably used. In the supporting step, it is preferable to support using a solution of these metal precursors, preferably an aqueous solution. As the supporting operation, for example, a known method such as an immersion method, an impregnation method, a coprecipitation method, or the like is preferably employed.

前記金属前駆体が担持された担体は、乾燥後、好ましくは酸素の存在下に焼成され、金属種は一旦酸化物とされることが好ましい。さらに留出石油留分の水素化処理を行う前に、予備硫化と呼ばれる硫化処理により、前記金属種を硫化物とすることが好ましく行われる。   The carrier on which the metal precursor is supported is preferably dried and then calcined in the presence of oxygen, and the metal species is once converted to an oxide. Furthermore, before performing the hydrogenation process of the distillate petroleum fraction, it is preferable that the metal species is converted into a sulfide by a sulfidation process called preliminary sulfidation.

(再生処理工程)
留出石油留分の水素化処理設備において一定の期間使用され、活性が一定の水準以下に低下した水素化処理用触媒は、再生処理に供される。再生処理を行う設備は特に限定されないが、留出石油留分の水素化処理設備とは異なる設備で行われることが好ましい。すなわち、留出石油留分の水素化処理設備の反応器に触媒を充填したままの状態で再生処理を行うのではなく、反応器より触媒を抜き出し、抜き出された触媒を再生処理のための設備に移動させて、該設備により再生処理を行うことが好ましい。
(Regeneration process)
The hydrotreating catalyst that has been used for a certain period of time in the hydrotreating equipment of the distillate petroleum fraction and whose activity has fallen below a certain level is subjected to a regeneration treatment. Although the equipment for performing the regeneration treatment is not particularly limited, it is preferably carried out in equipment different from the hydrotreating equipment for the distillate petroleum fraction. That is, instead of performing the regeneration process with the catalyst in the reactor of the hydrotreating equipment of the distillate petroleum fraction, the catalyst is extracted from the reactor, and the extracted catalyst is used for the regeneration process. It is preferable to move to an equipment and perform a regeneration process using the equipment.

本発明で使用する、使用済みの触媒の再生処理を行うための形態は限定されないが、使用済みの触媒から微粉化した触媒、場合により触媒以外の充填材等を篩い分けにより除去する工程、使用済みの触媒に付着した油分を除去する工程(脱油工程)、使用済みの触媒に沈着したカーボン、硫黄分等を除去する工程(再生工程)からこの順に構成されるものであることが好ましい。   Although the form for performing the regeneration treatment of the used catalyst used in the present invention is not limited, the step of using a pulverized catalyst from the used catalyst, and in some cases removing the filler other than the catalyst by sieving, use It is preferable that the step is configured in this order from a step of removing oil adhering to the used catalyst (deoiling step) and a step of removing carbon deposited on the used catalyst, sulfur content, etc. (regeneration step).

このうち、脱油工程は、酸素が実質的に存在しない雰囲気、例えば窒素雰囲気下に、使用済み触媒を加熱することにより、油分を揮散せしめる方法などが好ましく採用される。その条件としては、例えば、300〜400℃程度の温度において、窒素の流速を、単位触媒容積当りの流速として5〜150NL/h・L−触媒として、3〜7時間加熱することが好ましい。また、脱油工程は、軽質の炭化水素類にて油分を洗浄する方法、あるいはスチーミングによる油分の除去等の方法によるものであってもよい。   Among these, the method of volatilizing oil by heating a used catalyst in an atmosphere where oxygen is not substantially present, for example, a nitrogen atmosphere, is preferably employed. As the condition, for example, at a temperature of about 300 to 400 ° C., it is preferable to heat the nitrogen at a flow rate of 5 to 150 NL / h · L-catalyst as a flow rate per unit catalyst volume for 3 to 7 hours. The deoiling step may be performed by a method of washing oil with light hydrocarbons or a method of removing oil by steaming.

前記再生工程においては、分子状酸素が存在する雰囲気下、好ましくは空気中、特には空気流中にて使用済みの触媒を加熱することが好ましい。再生工程の条件としては、温度が好ましくは250〜380℃、さらに好ましくは260〜350℃、特に好ましくは280〜320℃である。温度が250℃を下回る場合には、使用済みの触媒に沈着したカーボンあるいは硫黄分等が充分に除去されず、再生触媒の活性が充分に向上しない傾向にある。一方、温度が380℃を超える場合には、触媒中の金属種の構造が変化し、凝集等により再生触媒の活性が低下する傾向にある。   In the regeneration step, it is preferable to heat the used catalyst in an atmosphere where molecular oxygen is present, preferably in air, particularly in an air stream. As conditions for the regeneration step, the temperature is preferably 250 to 380 ° C, more preferably 260 to 350 ° C, and particularly preferably 280 to 320 ° C. When the temperature is lower than 250 ° C., carbon or sulfur content deposited on the used catalyst is not sufficiently removed, and the activity of the regenerated catalyst tends not to be sufficiently improved. On the other hand, when the temperature exceeds 380 ° C., the structure of the metal species in the catalyst changes, and the activity of the regenerated catalyst tends to decrease due to aggregation or the like.

空気流中にて再生処理を行う場合、空気の流速は、使用済みの触媒単位容積当りの流速として、好ましくは20〜200NL/h・L−触媒、さらに好ましくは30〜180NL/h・L−触媒、特に好ましくは40〜170NL/h・L−触媒である。流速が20NL/h・L−触媒未満である場合、使用済みの触媒に沈着したカーボンあるいは硫黄分等が充分に除去されず、再生触媒の活性が充分に向上しない傾向にある。一方、流速が200NL/h・L−触媒を超える場合には、触媒中の金属種の構造が変化し、凝集等により再生触媒の活性が低下する傾向にある。   When the regeneration treatment is performed in an air flow, the flow rate of air is preferably 20 to 200 NL / h · L-catalyst, more preferably 30 to 180 NL / h · L- A catalyst, particularly preferably 40 to 170 NL / h · L-catalyst. When the flow rate is less than 20 NL / h · L-catalyst, carbon or sulfur content deposited on the used catalyst is not sufficiently removed, and the activity of the regenerated catalyst tends not to be sufficiently improved. On the other hand, when the flow rate exceeds 200 NL / h · L-catalyst, the structure of the metal species in the catalyst changes, and the activity of the regenerated catalyst tends to decrease due to aggregation or the like.

再生処理の時間は、好ましくは2〜8時間、さらに好ましくは2.5〜7時間、特に好ましくは3〜6時間である。処理時間が2時間未満の場合には、カーボン、硫黄分等の触媒活性を低下せしめた物質の除去が効率的に進行しない傾向にある。一方、処理時間が8時間を超える場合には、触媒中の活性金属が複合金属酸化物を形成する、凝集を起こす等して、得られる再生触媒の活性が低下する傾向にある。なお、本願において「カーボン」とは、水素化処理用触媒を使用中に、その表面に沈着する、炭化水素が高度に環化・縮合したために該触媒を溶剤にて抽出しても該触媒から分離することができない炭素に富む物質をいう。 The time for the regeneration treatment is preferably 2 to 8 hours, more preferably 2.5 to 7 hours, and particularly preferably 3 to 6 hours. When the treatment time is less than 2 hours, the removal of substances having reduced catalytic activity such as carbon and sulfur content tends not to proceed efficiently. On the other hand, when the treatment time exceeds 8 hours, the activity of the resulting regenerated catalyst tends to decrease due to the active metal in the catalyst forming a composite metal oxide or causing aggregation. In the present application, the term “carbon” means that the hydrocarbon deposited on the surface of the hydrotreating catalyst during use is highly cyclized / condensed and extracted from the catalyst even if the catalyst is extracted with a solvent. A substance rich in carbon that cannot be separated.

前記再生処理工程において得られた再生水素化処理用触媒は、その中に含まれる残留カーボン量が、再生水素化処理用触媒の質量基準で、好ましくは2.0質量%以下、さらに好ましくは1.5質量%以下、特に好ましくは1質量%以下である。2.0質量%を超える場合には、再生触媒の水素化処理活性が充分高くない傾向にある。なお、本願において「残留カーボン」とは、使用済みの水素化処理用触媒を再生処理した後に該再生触媒中に残留するカーボンをいい、再生水素化処理用触媒中の残留カーボン量は、JIS M 8819に規定する「石炭類及びコークス類−機器分析装置による元素分析方法」に準拠して測定を行う。   The regenerated hydrotreating catalyst obtained in the regenerative treatment step has a residual carbon content of preferably 2.0% by mass or less, more preferably 1 based on the mass of the regenerated hydrotreating catalyst. 0.5% by mass or less, particularly preferably 1% by mass or less. When it exceeds 2.0 mass%, the hydrogenation activity of the regenerated catalyst tends not to be sufficiently high. In the present application, “residual carbon” refers to carbon remaining in the regenerated catalyst after regenerating the used hydrogenation catalyst. The amount of residual carbon in the regenerated hydrotreating catalyst is JIS M Measurement is performed in accordance with “Coal and cokes—elemental analysis method using instrumental analyzer” defined in 8819.

前記再生処理工程において得られた再生水素化処理用触媒の一部を抜き出し、その中に含まれる残留カーボン量を定量し、残留カーボン量が2.0質量%以下である場合に、該再生水素化処理用触媒を回収し、留出石油留分の水素化処理に供すると判定することが好ましい。一方、残留カーボン量が2.0質量%を超える場合には、当該再生水素化処理用触媒を回収せず、廃棄すると判定することが好ましい。   A part of the regenerative hydrotreating catalyst obtained in the regeneration treatment step is extracted, and the amount of residual carbon contained therein is quantified. When the amount of residual carbon is 2.0% by mass or less, It is preferable to determine that the catalyst for hydrotreating is recovered and used for the hydrotreating of the distillate petroleum fraction. On the other hand, when the amount of residual carbon exceeds 2.0 mass%, it is preferable to determine that the regenerated hydrotreating catalyst is not recovered and discarded.

前記再生処理工程において得られた再生水素化処理用触媒は、その中に含まれる周期表第6族金属と周期表第8〜10族金属とが、複合金属酸化物を形成していないことが好ましい。前記複合金属酸化物とは、周期表第6族金属、周期表第8〜10族金属及び酸素からなる化合物であり、再生触媒中に前記複合酸化物が形成される場合には、金属種の分散が低下して凝集が進行しており、触媒の水素化処理活性が低下する傾向にある。   In the regenerative hydrotreating catalyst obtained in the regeneration treatment step, the periodic table group 6 metal and the periodic table groups 8 to 10 metal contained therein do not form a composite metal oxide. preferable. The composite metal oxide is a compound composed of a Group 6 metal of the periodic table, a Group 8-10 metal of the periodic table and oxygen, and when the composite oxide is formed in the regenerated catalyst, The dispersion is reduced and the agglomeration proceeds, and the hydrotreating activity of the catalyst tends to be reduced.

前記複合金属酸化物の形成は、X線回折分析(以下、「XRD」という。)により好ましく確認することができる。以下にXRDによる前記複合金属酸化物の形成の確認方法の詳細を述べる。XRD分析の典型的な条件は以下の通りである。
X線源:CuKα
発散スリット:1/2゜
受光スリット:0.15mm
散乱スリット:1/2゜
2θ:10〜90゜
ステップ幅:0.02゜
管電圧:50kV
管電流:200mA
モノクロメーター使用
走査モード:連続走査
走査速度:1°/分
The formation of the composite metal oxide can be preferably confirmed by X-ray diffraction analysis (hereinafter referred to as “XRD”). Details of a method for confirming the formation of the composite metal oxide by XRD will be described below. Typical conditions for XRD analysis are as follows.
X-ray source: CuKα
Divergence slit: 1/2 ° light receiving slit: 0.15 mm
Scattering slit: 1/2 ° 2θ: 10-90 ° Step width: 0.02 ° Tube voltage: 50 kV
Tube current: 200 mA
Monochrome meter scanning mode: Continuous scanning Scanning speed: 1 ° / min

当該再生触媒に含まれる金属種から想定される複合金属酸化物に帰属されるXRDピークに着目し、その有無により前記複合金属酸化物の有無の判定を行う。当該ピークの有無の判定は以下の基準により行うことが好ましい。すなわち、複合金属酸化物の主ピークのピークトップが観測される2θ値を2θmとし、2θm−2°と2θm+4°の2点を結んだ直線をベースラインとする。主ピークのピークトップ高さから、2θmにおけるベースライン高さを引いた値を複合金属酸化物の主ピークの高さHmとする。また、基準として2θ=46°に観測されるアルミナ(担体がアルミナである場合)に帰属されるピークのピークトップ高さHsを、2θ=46±4°の2点を結んだ直線をベースラインとして、前記複合金属酸化物ピークの場合と同様に求める。そして、Hm<0.25×Hsのとき、複合金属酸化物は検出限界以下、すなわち「検出されない」と判定する。なお、周期表第6族金属がモリブデンであり、周期表第8〜10族金属がコバルトである場合を例に挙げると、モリブデンとコバルトからなる複合金属酸化物に帰属される回折ピークの2θmは27°である。   Paying attention to the XRD peak attributed to the composite metal oxide assumed from the metal species contained in the regenerated catalyst, the presence or absence of the composite metal oxide is determined based on the presence or absence. The determination of the presence or absence of the peak is preferably performed according to the following criteria. That is, the 2θ value at which the peak top of the main peak of the composite metal oxide is observed is 2θm, and a straight line connecting two points of 2θm−2 ° and 2θm + 4 ° is used as the baseline. A value obtained by subtracting the baseline height at 2θm from the peak top height of the main peak is defined as the height Hm of the main peak of the composite metal oxide. Also, as a reference, the peak top height Hs of the peak attributed to alumina observed when 2θ = 46 ° (when the carrier is alumina) is the baseline connecting the two points of 2θ = 46 ± 4 °. As in the case of the composite metal oxide peak. When Hm <0.25 × Hs, the composite metal oxide is determined to be below the detection limit, that is, “not detected”. For example, when the Group 6 metal of the periodic table is molybdenum and the Group 8-10 metal of the periodic table is cobalt, 2θm of the diffraction peak attributed to the composite metal oxide composed of molybdenum and cobalt is 27 °.

前記再生処理工程において得られた再生水素化処理用触媒の一部を抜き出し、XRDにより前記複合金属酸化物が検出されない場合に、該再生水素化処理用触媒を回収し、留出石油留分の水素化処理に供すると判定することが好ましい。一方、前記複合金属酸化物が検出される場合には、当該再生水素化処理用触媒を回収せず、廃棄すると判定することが好ましい。   A part of the regenerated hydrotreating catalyst obtained in the regenerating treatment step is extracted, and when the composite metal oxide is not detected by XRD, the regenerated hydrotreated catalyst is recovered, and the distillate petroleum fraction is recovered. It is preferable to determine to use for the hydrogenation treatment. On the other hand, when the composite metal oxide is detected, it is preferable to determine that the regenerated hydrotreating catalyst is not recovered and discarded.

なお、本発明の石油製品の製造方法における再生水素化処理用触媒を製造する工程は、本発明の再生水素化触媒の製造方法により、再生水素化処理用触媒を製造する工程であり、上記の工程を包含するものである。本発明の石油製品の製造方法における水素化処理用触媒、再生処理工程の態様は上記と同様であるため、ここでは重複する説明を省略する。   The step of producing a regenerated hydrotreating catalyst in the method for producing a petroleum product of the present invention is a step of producing a regenerated hydrotreating catalyst by the method for producing a regenerated hydrogenating catalyst of the present invention. The process is included. Since the aspects of the hydrotreating catalyst and the regeneration process in the method for producing petroleum products of the present invention are the same as those described above, redundant descriptions are omitted here.

(水素化処理工程)
本発明の留出石油留分の水素化処理工程においては、水素化処理反応の前に、当該設備に充填された再生触媒を、予備硫化と呼ばれる硫黄化合物による触媒の処理により活性金属種を金属硫化物とすることが好ましい。
(Hydrogenation process)
In the hydrotreating process of the distillate petroleum fraction of the present invention, before the hydrotreating reaction, the regenerated catalyst packed in the equipment is treated with a catalyst by a sulfur compound called presulfurization to convert the active metal species into a metal. It is preferable to use a sulfide.

予備硫化の条件としては特に限定されないが、留出石油留分の水素化処理に使用する原料油に硫黄化合物を添加し、これを温度200〜380℃、LHSV 1〜2h−1、圧力は水素化処理運転時と同一、処理時間48時間以上の条件にて、前記再生触媒に連続的に接触せしめることが好ましい。前記原料油に添加する硫黄化合物としては限定されないが、ジメチルジスルフィド(DMDS)、硫化水素等が好ましく、これらを原料油に対して原料油の質量基準で1質量%程度添加することが好ましい。 Although it does not specifically limit as conditions for preliminary sulfidation, a sulfur compound is added to the feedstock used for the hydrogenation process of the distillate petroleum fraction, this is temperature 200-380 degreeC, LHSV 1-2h- 1 , Pressure is hydrogen. It is preferable that the regenerated catalyst is continuously contacted under the same conditions as in the oxidization treatment operation and in a treatment time of 48 hours or longer. Although it does not limit as a sulfur compound added to the said raw material oil, Dimethyl disulfide (DMDS), hydrogen sulfide, etc. are preferable, and it is preferable to add these about 1 mass% with respect to the mass of a raw material oil with respect to raw material oil.

前記の工程である留出石油留分の水素化処理工程における運転条件は特に限定されず、触媒の活性金属種が硫化物である状態を維持する目的で、DMDS等の硫黄化合物を原料油に少量添加してもよいが、通常は原料油中に既に含有される硫黄化合物により硫化物である状態を維持することが可能であるので、硫黄化合物は特に添加しないことが好ましい。   The operating conditions in the hydrotreating process of the distillate petroleum fraction, which is the above process, are not particularly limited, and a sulfur compound such as DMDS is used as a feedstock for the purpose of maintaining a state where the active metal species of the catalyst is a sulfide. Although it may be added in a small amount, it is usually preferable not to add a sulfur compound because it is possible to maintain a sulfide state by the sulfur compound already contained in the feedstock.

前記水素化処理工程における反応器入口における水素分圧は好ましくは3〜13MPa、より好ましくは3.5〜12MPa、特に好ましくは4〜11MPaである。水素分圧が3MPa未満の場合は触媒上のコーク生成が激しくなり触媒寿命が短くなる傾向にある。一方、水素分圧が13MPaを超える場合は反応器や周辺機器等の建設費が上昇し、経済性が失われる懸念がある。   The hydrogen partial pressure at the reactor inlet in the hydrotreating step is preferably 3 to 13 MPa, more preferably 3.5 to 12 MPa, and particularly preferably 4 to 11 MPa. When the hydrogen partial pressure is less than 3 MPa, coke formation on the catalyst becomes intense and the catalyst life tends to be shortened. On the other hand, when the hydrogen partial pressure exceeds 13 MPa, there is a concern that the construction cost of the reactor, peripheral equipment, and the like will increase and the economy will be lost.

前記水素化処理工程におけるLHSVは、好ましくは0.05〜5h−1、より好ましくは0.1〜4.5h−1、特に好ましくは0.2〜4h−1の範囲で行うことができる。LHSVが0.05h−1未満である場合には、反応器の建設費が過大となり経済性が失われる懸念がある。一方、LHSVが5h−1を超える場合には原料油の水素化処理が十分に達成されない懸念がある。 LHSV in the hydrotreatment step is preferably 0.05~5H -1, more preferably 0.1~4.5H -1, particularly preferably may be in the range of 0.2~4h -1. When LHSV is less than 0.05 h −1 , there is a concern that the construction cost of the reactor becomes excessive and the economic efficiency is lost. On the other hand, when LHSV exceeds 5h- 1 , there is a concern that the hydrogenation treatment of the raw material oil is not sufficiently achieved.

前記水素化処理工程における水素化反応温度は、好ましくは200℃〜410℃、より好ましくは220℃〜400℃、特に好ましくは250℃〜395℃である。反応温度が200℃を下回る場合には、原料油の水素化処理が十分に達成されない傾向にある。一方、反応温度が410℃を上回る場合には、副生成物であるガス分の発生が増加するため、目的とする精製油の収率が低下することとなり望ましくない。   The hydrogenation reaction temperature in the hydrotreating step is preferably 200 ° C to 410 ° C, more preferably 220 ° C to 400 ° C, and particularly preferably 250 ° C to 395 ° C. When the reaction temperature is lower than 200 ° C., the hydrogenation treatment of the raw material oil tends not to be sufficiently achieved. On the other hand, when the reaction temperature exceeds 410 ° C., the generation of a gas component as a by-product increases, which is not desirable because the yield of the target refined oil decreases.

前記水素化処理工程における水素/油比は、好ましくは17〜1348Nm /m 100〜8000SCF/BBL、より好ましくは20〜1180Nm /m 120〜7000SCF/BBL、特に好ましくは25〜1011Nm /m 150〜6000SCF/BBLの範囲で行うことができる。水素/油比が17Nm /m 100SCF/BBL未満の場合には、リアクター出口での触媒上のコーク生成が進行し、触媒寿命が短くなる傾向にある。一方、水素/油比が1348Nm /m 8000SCF/BBLを超える場合には、リサイクルコンプレッサーの建設費が過大になり、経済性が失われる懸念がある。 The hydrogen / oil ratio in the hydrotreating step is preferably 17 to 1348 Nm 3 / m 3 ( 100 to 8000 SCF / BBL ) , more preferably 20 to 1180 Nm 3 / m 3 ( 120 to 7000 SCF / BBL ) , particularly preferably. 25~1011Nm 3 / m 3 may be in the range of (150~6000SCF / BBL). When the hydrogen / oil ratio is less than 17 Nm 3 / m 3 ( 100 SCF / BBL ) , coke formation on the catalyst at the reactor outlet proceeds and the catalyst life tends to be shortened. On the other hand, when the hydrogen / oil ratio exceeds 1348 Nm 3 / m 3 ( 8000 SCF / BBL ) , there is a concern that the construction cost of the recycle compressor becomes excessive and the economic efficiency is lost.

前記水素化処理工程における反応形式は特に限定されないが、通常は、固定床、移動床等の種々のプロセスから選ぶことができるが、固定床が好ましい。また反応器は塔状であることが好ましい。   The reaction type in the hydrotreating step is not particularly limited, but usually, it can be selected from various processes such as a fixed bed and a moving bed, but a fixed bed is preferable. The reactor is preferably tower-shaped.

本発明の留出石油留分の水素化処理に供される原料油としては、蒸留試験による留出温度が好ましくは130〜450℃、さらに好ましくは140〜430℃、特に好ましくは150〜410℃の範囲のものが使用される。留出温度が130℃を下回る原料油を用いた場合には水素化処理反応が気相での反応となり、上記の触媒では性能が充分に発揮されない傾向にある。一方、留出温度が450℃を上回る原料油を用いた場合には、原料油中に含まれる重金属などの触媒に対する被毒物の含有量が大きくなり、上記触媒の寿命が大きく低下する。原料油として用いる留出石油留分のその他の性状としては特に限定されないが、代表的な性状としては、比重(15/4℃)0.8200〜0.9700、 硫黄分含有量1.0〜4.0質量%である。   As the feedstock to be subjected to the hydrotreating of the distillate petroleum fraction of the present invention, the distillation temperature by distillation test is preferably 130 to 450 ° C, more preferably 140 to 430 ° C, particularly preferably 150 to 410 ° C. Those in the range are used. When a feed oil having a distillation temperature lower than 130 ° C. is used, the hydrotreating reaction becomes a reaction in the gas phase, and the above-mentioned catalyst tends not to exhibit sufficient performance. On the other hand, when a feedstock having a distillation temperature exceeding 450 ° C. is used, the content of poisonous substances with respect to the catalyst such as heavy metals contained in the feedstock is increased, and the life of the catalyst is greatly reduced. The other properties of the distillate petroleum fraction used as the feedstock are not particularly limited, but typical properties include specific gravity (15/4 ° C.) 0.8200 to 0.9700, sulfur content 1.0 to It is 4.0 mass%.

本発明の石油製品の製造方法において、得られる石油製品の色相は、JIS K 2580に規定する「石油製品−色試験方法」の「6.ASTM色試験方法」に準拠して測定された値において、L1.5以下であることが好ましい。一般に、再生水素化処理用触媒を用いて軽油等の留出石油留分を水素化処理した場合には、生成油の色相は、再生処理を行っていない水素化処理用触媒を用いた場合に比較して、悪化する傾向にある。然るに、本発明の石油製品の製造方法において得られる石油製品の色相は、従来の再生水素化処理用触媒を用いた場合に比較して改善され、製品としての規格を満足するL1.5以下とすることが可能となる。   In the method for producing a petroleum product of the present invention, the hue of the resulting petroleum product is a value measured according to “6. ASTM color test method” of “Petroleum product-color test method” defined in JIS K 2580. L1.5 or less is preferable. In general, when a distillate petroleum fraction such as light oil is hydrotreated using a regenerated hydrotreating catalyst, the hue of the product oil is the same as when using a hydrotreating catalyst that has not been regenerated. In comparison, it tends to get worse. However, the hue of the petroleum product obtained in the method for producing a petroleum product of the present invention is improved as compared with the case of using a conventional regenerated hydrotreating catalyst, and is L1.5 or less which satisfies the standard as a product. It becomes possible to do.

なお、本発明における硫黄含有量とは、JIS K 2541―1992に規定する「原油及び石油製品―硫黄分試験方法」の「6.放射線式励起法」に準拠して測定される硫黄含有量を意味する。また、本願における蒸留試験とは、JIS K 2254に規定する「石油製品―蒸留試験方法」の「6.減圧法蒸留試験方法」に準拠して行われるものを意味する。また、本願における留出石油留分の密度とは、JIS K 2249に規定する「原油及び石油製品−密度試験方法及び密度・質量・容量換算表(抜粋)」の「5.振動式密度試験方法」に準拠して測定されるものをいう。   The sulfur content in the present invention is the sulfur content measured in accordance with “6. Radiation excitation method” of “Crude oil and petroleum products—Sulfur content test method” prescribed in JIS K2541-1992. means. Moreover, the distillation test in this application means what is performed based on "6. Vacuum distillation test method" of "Petroleum product-Distillation test method" prescribed | regulated to JISK2254. In addition, the density of the distillate petroleum fraction in the present application is “crude oil and petroleum products—density test method and density / mass / capacity conversion table (extract)” prescribed in JIS K 2249, “5. "Is measured in accordance with". "

また、再生触媒の水素化処理活性を直接評価する手段として、同一運転条件での脱硫速度定数が挙げられる。脱硫速度定数とは下記の式により定義される。
脱硫速度定数=LHSV×(1/生成油硫黄含有量−1/原料油硫黄含有量)
Further, as a means for directly evaluating the hydrotreating activity of the regenerated catalyst, a desulfurization rate constant under the same operating conditions can be mentioned. The desulfurization rate constant is defined by the following equation.
Desulfurization rate constant = LHSV × (1 / produced oil sulfur content−1 / raw oil sulfur content)

ただし、新触媒の活性はその製造者、製造単位等によりそれぞれ異なるため、水素化処理用触媒を使用した後再生処理して得られる再生触媒の活性は、相当する新触媒の活性基準での相対的な活性により評価することが妥当と考えられる。そこで、下記の式により定義される比活性により再生触媒の活性を評価する。
比活性=再生触媒の脱硫速度定数/新触媒の脱硫速度定数
However, since the activity of the new catalyst differs depending on the manufacturer, production unit, etc., the activity of the regenerated catalyst obtained by regenerating after using the hydrotreating catalyst is relative to the activity standard of the corresponding new catalyst. It is considered appropriate to evaluate based on specific activity. Therefore, the activity of the regenerated catalyst is evaluated based on the specific activity defined by the following equation.
Specific activity = desulfurization rate constant of regenerated catalyst / desulfurization rate constant of new catalyst

次に実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples.

[実施例1]
(再生水素化処理用触媒)
活性金属としてモリブデン及びコバルトをアルミナ担体に担持した触媒であって、軽油の水素化処理設備において2年間使用された後抜き出された使用済み水素化処理用触媒を用意した。この使用済み水素化処理用触媒を、電気炉中にて、使用済みの触媒の単位容積当りの流速が15NL/h・L−触媒である窒素気流下に、300℃、3時間加熱して脱油を行った。その後、脱油済みの触媒を、触媒単位容積当りの流速が50NL/h・L−触媒である空気流下に、電気炉中にて、300℃、5時間再生処理して、再生触媒1を得た。得られた再生触媒1の残留カーボン量の定量及びXRD分析によるコバルト・モリブデン複合酸化物の分析を、それぞれ上述の試験方法により実施した。その結果、残留カーボン量は再生触媒の質量を基準として0.7質量%、コバルト・モリブデン複合酸化物に帰属されるXRDピークは検出されなかった。
[Example 1]
(Regenerative hydrogenation catalyst)
There was prepared a catalyst for supporting hydrotreating molybdenum and cobalt as active metals on an alumina carrier, which was extracted after being used in a hydroprocessing facility for light oil for 2 years. The spent hydrotreating catalyst is removed by heating in an electric furnace at 300 ° C. for 3 hours in a nitrogen stream where the flow rate per unit volume of the spent catalyst is 15 NL / h · L-catalyst. Went oil. Thereafter, the deoiled catalyst is regenerated in an electric furnace at 300 ° C. for 5 hours under an air flow having a flow rate per unit volume of 50 NL / h · L-catalyst to obtain a regenerated catalyst 1. It was. Quantification of the amount of residual carbon of the obtained regenerated catalyst 1 and analysis of the cobalt-molybdenum composite oxide by XRD analysis were carried out by the above test methods, respectively. As a result, the amount of residual carbon was 0.7% by mass based on the mass of the regenerated catalyst, and no XRD peak attributed to the cobalt-molybdenum composite oxide was detected.

(水素化処理反応)
固定床連続流通式反応装置に再生触媒1を充填し、まず触媒の予備硫化を行った。すなわち、密度851.6kg/m、蒸留試験における初留点231℃、終留点376℃、原料油の質量を基準とした硫黄原子としての硫黄分1.18質量%、色相L1.5である軽油相当の留分に、該留分の質量基準で1質量%のDMDSを添加し、これを48時間前記触媒に対して連続的に供給した。その後、前記軽油相当の留分を原料油として用い、反応温度380℃、水素分圧6MPa、LHSV1h−1、水素/油比169Nm /m 1000SCF/BBLの条件にて水素化処理反応を行った。生成油中の硫黄分含有量から、脱硫速度定数を求めた。また、使用した使用済み触媒に相当する未使用の触媒を用いて同様の反応を行って脱硫速度定数を求め、これらから再生触媒1の比活性を算出した。また、生成油の色相を測定した。結果を表1に示す。なお、原料油及び生成油の性状に関する分析は、全て上述の試験方法によって行った。
(Hydrogenation reaction)
The regenerated catalyst 1 was charged into a fixed bed continuous flow reactor, and the catalyst was first presulfided. That is, with a density of 851.6 kg / m 3 , an initial boiling point in the distillation test of 231 ° C., a final boiling point of 376 ° C., a sulfur content of 1.18% by mass as a sulfur atom based on the mass of the feedstock, and a hue of L1.5 To a fraction corresponding to a certain gas oil, 1% by mass of DMDS based on the mass of the fraction was added, and this was continuously fed to the catalyst for 48 hours. Thereafter, the fraction corresponding to the light oil is used as a raw material oil, and the hydrogenation reaction is carried out under the conditions of a reaction temperature of 380 ° C., a hydrogen partial pressure of 6 MPa, LHSV1h −1 , and a hydrogen / oil ratio of 169 Nm 3 / m 3 ( 1000 SCF / BBL ). Went. The desulfurization rate constant was determined from the sulfur content in the product oil. In addition, the same reaction was performed using an unused catalyst corresponding to the used catalyst used, the desulfurization rate constant was obtained, and the specific activity of the regenerated catalyst 1 was calculated therefrom. In addition, the hue of the product oil was measured. The results are shown in Table 1. In addition, all the analyzes regarding the property of raw material oil and produced | generated oil were performed by the above-mentioned test method.

[実施例2〜4]
(再生水素化処理用触媒)
実施例1で用いたものと同一の使用済み水素化処理用触媒を用い、それぞれ表1記載の再生条件とした以外は実施例1と同様の操作により再生処理を行い、再生触媒2〜4を得た。再生触媒2〜4の残留カーボン量及びXRDによるコバルト・モリブデン複合酸化物の分析結果を表1に示す。
[Examples 2 to 4]
(Regenerative hydrogenation catalyst)
Using the same spent hydrotreating catalyst as used in Example 1, and using the same regeneration conditions as shown in Table 1, regeneration treatment was performed in the same manner as in Example 1, and regenerated catalysts 2 to 4 were Obtained. Table 1 shows the amount of carbon remaining in the regenerated catalysts 2 to 4 and the analysis results of the cobalt-molybdenum composite oxide by XRD.

(水素化処理反応)
それぞれ再生触媒2〜4を使用した以外は、実施例1と同様の操作により、水素化処理反応を行った。比活性及び色相の結果を表1に示す。
(Hydrogenation reaction)
A hydrotreatment reaction was performed in the same manner as in Example 1 except that the regenerated catalysts 2 to 4 were used. The specific activity and hue results are shown in Table 1.

[比較例1〜4]
(再生水素化処理用触媒)
実施例1で用いたものと同一の使用済み水素化処理用触媒を用い、それぞれ表1記載の再生条件とした以外は実施例1と同様の操作により再生処理を行い、再生触媒4〜7を得た。再生触媒4〜7の残留カーボン量及びXRDによるコバルト・モリブデン複合酸化物構造の分析結果を表1に示す。
[Comparative Examples 1-4]
(Regenerative hydrogenation catalyst)
Using the same spent hydrotreating catalyst as used in Example 1, and using the same regeneration conditions as shown in Table 1, regeneration treatment was performed in the same manner as in Example 1, and the regenerated catalysts 4 to 7 were used. Obtained. Table 1 shows the amount of carbon remaining in the regenerated catalysts 4 to 7 and the analysis results of the cobalt-molybdenum composite oxide structure by XRD.

(水素化処理反応)
それぞれ再生触媒4〜7を使用した以外は、実施例1と同様の操作により、水素化処理反応を行った。比活性及び生成油色相の結果を表1に示す。
(Hydrogenation reaction)
A hydrotreatment reaction was carried out in the same manner as in Example 1 except that the regenerated catalysts 4 to 7 were used. The results of specific activity and product oil hue are shown in Table 1.

Figure 0005411475
Figure 0005411475

表1の結果から、本発明の方法に従い、使用済みの水素化処理用触媒を温度250〜380℃、空気流量20〜200NL/h・L−触媒、時間2〜8時間の条件で再生処理をし、残留カーボン量が2.0質量%以下で、かつ、XRD分析により、前記周期表第6族金属と第8〜10族金属とを含む複合金属酸化物に帰属されるX線回折ピークが検出限界以下にすることによって、新触媒対比で約92%以上の活性を維持し、且つ、生成油の色相がL1.5以下を保っていることが判る(実施例1〜4)。一方、比較例4〜8においては、実施例1〜4と同一の原料油を水素化処理しているが、いずれの場合も新触媒対比での活性が約89%以下となり活性低下が大きい。また、生成油の色相が実施例対比で悪化する傾向にある。   From the results of Table 1, according to the method of the present invention, the used hydrotreating catalyst was regenerated under the conditions of a temperature of 250 to 380 ° C., an air flow rate of 20 to 200 NL / h · L-catalyst, and a time of 2 to 8 hours. And the X-ray diffraction peak attributed to the complex metal oxide containing a Group 6 metal and a Group 8 to 10 metal in the periodic table is determined by XRD analysis. By making it below the detection limit, it can be seen that the activity of about 92% or more is maintained in comparison with the new catalyst, and the hue of the product oil is maintained at L1.5 or less (Examples 1 to 4). On the other hand, in Comparative Examples 4 to 8, the same raw material oil as in Examples 1 to 4 was hydrotreated, but in either case, the activity relative to the new catalyst was about 89% or less and the activity was greatly reduced. In addition, the hue of the product oil tends to deteriorate compared to the examples.

Claims (8)

少なくとも1種の周期表第6族金属及び少なくとも1種の第8〜10族金属を含有する使用済みの水素化処理用触媒を、温度250〜350℃、前記触媒の単位容積当りの流速が20〜200NL/h・L−触媒である空気流下に、2〜8時間再生処理する再生工程を備えることを特徴とする再生水素化処理用触媒の製造方法。 A spent hydroprocessing catalyst containing at least one Group 6 metal and at least one Group 8-10 metal is treated at a temperature of 250-350 ° C. and a flow rate per unit volume of the catalyst of 20 A method for producing a regenerated hydrotreating catalyst, comprising a regeneration step of regenerating for 2 to 8 hours under an air stream of ~ 200 NL / h · L-catalyst. 前記再生工程の前に、窒素雰囲気において、少なくとも1種の周期表第6族金属及び少なくとも1種の第8〜10族金属を含有する使用済みの水素化処理用触媒を、300〜400℃の温度で加熱する脱油工程を備えることを特徴とする請求項1に記載の再生水素化処理用触媒の製造方法。Prior to the regeneration step, a spent hydrotreating catalyst containing at least one Group 6 metal and at least one Group 8-10 metal in a nitrogen atmosphere is heated to 300-400 ° C. The method for producing a regenerated hydrotreating catalyst according to claim 1, further comprising a deoiling step of heating at a temperature. 前記再生水素化処理用触媒中の残存カーボン量が2.0質量%以下、且つ、X線回折分析における、前記周期表第6族金属と第8〜10族金属とを含む複合金属酸化物に帰属される回折ピークが検出されないことを特徴とする請求項1又は2に記載の再生水素化処理用触媒の製造方法。 In the composite metal oxide, the amount of carbon remaining in the regenerated hydrotreating catalyst is 2.0% by mass or less, and the X-ray diffraction analysis includes the Group 6 metal of the periodic table and the Group 8-10 metal. The method for producing a regenerated hydrotreating catalyst according to claim 1 or 2 , wherein an assigned diffraction peak is not detected. 前記水素化処理用触媒が、アルミニウム酸化物を含む無機担体に、全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種10〜30質量%と、周期表第8〜10族金属から選択される少なくとも1種1〜7質量%とを担持させて得られる触媒であることを特徴とする請求項1〜のいずれか1項に記載の再生水素化処理用触媒の製造方法。 The hydrotreating catalyst is an inorganic carrier containing aluminum oxide, 10 to 30% by mass selected from Group 6 metals of the periodic table based on the total catalyst mass, and 8 to 10 of the periodic table. The production of a regenerative hydrotreating catalyst according to any one of claims 1 to 3 , wherein the catalyst is obtained by supporting 1 to 7% by mass of at least one selected from group metals. Method. 前記周期表第6族金属から選ばれる少なくとも1種がモリブデンであり、前記周期表第8〜10族金属から選ばれる少なくとも1種がコバルト及び/又はニッケルであることを特徴とする請求項1〜のいずれか1項に記載の再生水素化処理用触媒の製造方法。 The at least one selected from the Group 6 metals of the periodic table is molybdenum, and at least one selected from the Group 8 to 10 metals of the periodic table is cobalt and / or nickel. 5. The method for producing a regenerated hydrotreating catalyst according to any one of 4 . 請求項1〜のいずれか1項に記載の再生水素化触媒の製造方法により、再生水素化処理用触媒を製造する第1の工程と、
前記第1の工程で得られた再生水素化処理用触媒を用いて留出石油留分の水素化処理を行う工程と、
を備えることを特徴とする石油製品の製造方法。
A first step of producing a regenerated hydrogenation catalyst by the method for producing a regenerated hydrogenation catalyst according to any one of claims 1 to 5 ,
Hydrotreating a distillate petroleum fraction using the regenerated hydrotreating catalyst obtained in the first step;
A method for producing a petroleum product, comprising:
前記第2の工程の運転条件が、水素分圧3〜13MPa、LHSV0.05〜5h−1、反応温度200℃〜410℃、水素/油比17〜1348Nm/m(100〜8000SCF/BBL)であることを特徴とする請求項に記載の石油製品の製造方法。 The operating conditions of the second step are as follows: hydrogen partial pressure 3 to 13 MPa, LHSV 0.05 to 5 h −1 , reaction temperature 200 ° C. to 410 ° C., hydrogen / oil ratio 17 to 1348 Nm 3 / m 3 (100 to 8000 SCF / BBL The method for producing a petroleum product according to claim 6 , wherein: 前記留出石油留分の蒸留試験による留出温度が130〜450℃であり、前記石油製品の色相がL1.5以下であることを特徴とする請求項又はに記載の石油製品の製造方法。 The petroleum product production according to claim 6 or 7 , wherein the distillation temperature of the distilled petroleum fraction is 130 to 450 ° C, and the hue of the petroleum product is L1.5 or less. Method.
JP2008246528A 2008-09-25 2008-09-25 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product Expired - Fee Related JP5411475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246528A JP5411475B2 (en) 2008-09-25 2008-09-25 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246528A JP5411475B2 (en) 2008-09-25 2008-09-25 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Publications (2)

Publication Number Publication Date
JP2010075831A JP2010075831A (en) 2010-04-08
JP5411475B2 true JP5411475B2 (en) 2014-02-12

Family

ID=42206903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246528A Expired - Fee Related JP5411475B2 (en) 2008-09-25 2008-09-25 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Country Status (1)

Country Link
JP (1) JP5411475B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613524B2 (en) * 2010-10-22 2014-10-22 Jx日鉱日石エネルギー株式会社 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748497B2 (en) * 1999-07-05 2011-08-17 アルベマーレ ネザーランズ ビー.ブイ. Method for regenerating additive-containing catalyst
JP2006035052A (en) * 2004-07-23 2006-02-09 Nippon Oil Corp Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method
JP4773274B2 (en) * 2006-06-05 2011-09-14 出光興産株式会社 Regeneration method for heavy oil hydrotreating catalyst

Also Published As

Publication number Publication date
JP2010075831A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4610664B1 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
EP2753424B1 (en) Catalytic system and process for the total hydroconversion of heavy oils
JP4887433B2 (en) Regenerated hydrotreating catalyst
US4975399A (en) Regeneration of hydrotreating catalyst
JPH0598270A (en) Catalytic hydrogenation of heavy hydrocarbon oil
JP4891934B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
WO2015147222A1 (en) Method for regenerating and utilizing heavy-oil desulfurization catalyst
TW201601838A (en) Method for regenerating and utilizing heavy-oil desulfurization catalyst
JP5537222B2 (en) Method for producing hydrogenated HAR oil
JP5411475B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP5268484B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
JP2011200797A (en) Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst
JP4891937B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP5961423B2 (en) Method for hydrotreating highly aromatic hydrocarbon oil
JP5695548B2 (en) Method for producing pre-sulfided regenerated hydrotreating catalyst, method for producing regenerated hydrotreating catalyst, method for selecting regenerating treatment conditions for hydrotreating catalyst, and method for producing petroleum product
JP4410034B2 (en) Process for producing low sulfur catalytic cracking gasoline
EP3134205B1 (en) High activity hydrotreating catalysts
JP5613524B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP2015085307A (en) Method for producing hydrotreating catalyst and method for producing hydrocarbon oil
JP2008143917A (en) Hydrocarbon oil hydroforming process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5411475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees