JP4891937B2 - Method for producing regenerated hydrotreating catalyst and method for producing petroleum product - Google Patents

Method for producing regenerated hydrotreating catalyst and method for producing petroleum product Download PDF

Info

Publication number
JP4891937B2
JP4891937B2 JP2008048165A JP2008048165A JP4891937B2 JP 4891937 B2 JP4891937 B2 JP 4891937B2 JP 2008048165 A JP2008048165 A JP 2008048165A JP 2008048165 A JP2008048165 A JP 2008048165A JP 4891937 B2 JP4891937 B2 JP 4891937B2
Authority
JP
Japan
Prior art keywords
catalyst
regenerated
hydrotreating
producing
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008048165A
Other languages
Japanese (ja)
Other versions
JP2009202119A (en
Inventor
大 亀塚
睦修 岩波
渉 佐原
信治 木村
光男 石井
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Japan Petroleum Energy Center JPEC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Energy Center JPEC, JX Nippon Oil and Energy Corp filed Critical Japan Petroleum Energy Center JPEC
Priority to JP2008048165A priority Critical patent/JP4891937B2/en
Publication of JP2009202119A publication Critical patent/JP2009202119A/en
Application granted granted Critical
Publication of JP4891937B2 publication Critical patent/JP4891937B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、留出石油留分を処理するための再生水素化処理用触媒の製造方法及び石油製品の製造方法に関する。   The present invention relates to a method for producing a regenerated hydrotreating catalyst for treating a distillate petroleum fraction and a method for producing a petroleum product.

原油には含硫黄化合物、含窒素化合物、含酸素化合物等が不純物として含まれ、原油から蒸留等の工程を経て得られる石油製品類に関して、各留分を水素の存在下に水素化活性を有する触媒に接触せしめる水素化処理と呼ばれる工程により、これら不純物の含有量を低減することが行われている。特に含硫黄化合物の含有量を低減する脱硫がよく知られている。最近は環境負荷低減の観点から、石油製品中の含硫黄化合物をはじめとする前記不純物の含有量に対する規制、低減の要求が一層厳しくなっており、所謂「サルファー・フリー」の石油製品が多く生産されている。   Crude oil contains sulfur-containing compounds, nitrogen-containing compounds, oxygen-containing compounds, etc. as impurities, and petroleum products obtained from crude oil through a process such as distillation have hydrogenation activity for each fraction in the presence of hydrogen. The content of these impurities is reduced by a process called a hydrotreating process which is brought into contact with a catalyst. In particular, desulfurization for reducing the content of sulfur-containing compounds is well known. Recently, from the viewpoint of reducing environmental impact, regulations on the content of impurities, including sulfur-containing compounds in petroleum products, and the demand for reduction have become more stringent. Many so-called “sulfur-free” petroleum products are produced. Has been.

前記石油類の水素化処理に使用する水素化処理用触媒は、一定の期間使用されるとコークや硫黄分の沈着等により活性が低下することから、交換が行われる。特に上記「サルファー・フリー」が求められるようになり、灯油、軽油、減圧軽油といった留分の水素化処理設備において、高い水素化処理能力が求められる結果、触媒交換頻度が増大し、結果として触媒コストの上昇や触媒廃棄量の増加をもたらしている。   The hydrotreating catalyst used for the hydrotreating of petroleum is exchanged because its activity decreases due to the deposition of coke and sulfur when used for a certain period of time. In particular, the above-mentioned “sulfur-free” has been demanded, and in the hydrotreating equipment for fractions such as kerosene, light oil and vacuum gas oil, a high hydrotreating capacity is required. This has led to increased costs and increased catalyst waste.

この対策として、これらの設備においては使用済みの水素化処理用触媒を再生処理した再生触媒の使用が一部行われている(例えば、特許文献1、2を参照。)。
特開昭52−68890号公報 特開平5−123586号公報
As a countermeasure against this, some of these facilities use a regenerated catalyst obtained by regenerating a used hydroprocessing catalyst (see, for example, Patent Documents 1 and 2).
JP 52-68890 A JP-A-5-123586

再生触媒の使用に当って、水素化処理と再生処理とを複数回繰り返しても水素化処理用触媒の活性を維持することができれば、再生した水素化処理用触媒(以下、「再生水素化処理用触媒」又は単に「再生触媒」という。)の使用のメリットは一層大きなものとなる。しかし、従来の再生処理の場合、水素化処理用触媒の活性低下の原因の一つであるコーク沈着等の観点からは活性を回復させることができても、再生処理自体が触媒の活性を低下させてしまうことがある。また、触媒の再生前の使用履歴、再生処理方法等によって再生後の触媒活性は異なるため、再生触媒、特に複数回再生後の再生触媒は安定して充分な活性を有するとは限らない。なお、再生触媒を水素化処理設備に充填し、水素化処理運転を開始後にその活性が低いことが判明した場合には、原料油の処理速度の低減等が必要となり、大きな問題となる。   In using the regenerated catalyst, if the activity of the hydrotreating catalyst can be maintained even if the hydrotreating process and the regenerating process are repeated several times, the regenerated hydrotreating catalyst (hereinafter referred to as “regenerated hydrotreating process”). The advantage of the use of “catalyst” or simply “regenerated catalyst”) is even greater. However, in the case of the conventional regeneration process, even if the activity can be recovered from the viewpoint of coke deposition, which is one of the causes of the decrease in the activity of the hydrotreating catalyst, the regeneration process itself reduces the activity of the catalyst. I might let you. In addition, since the catalyst activity after regeneration differs depending on the use history before regeneration of the catalyst, the regeneration treatment method, and the like, the regeneration catalyst, particularly the regeneration catalyst after regeneration multiple times, does not always have a stable and sufficient activity. If it is found that the activity is low after the regenerated catalyst is charged into the hydrotreating equipment and the hydrotreating operation is started, it is necessary to reduce the processing speed of the raw material oil, which is a serious problem.

上記のような理由により、特に処理能力に余裕のない水素化処理設備においては、再生触媒の採用が見送られているのが実情である。また、再生触媒の使用に際しては事前の活性評価が必要となるが、試験設備を用いた水素化処理反応を実施することにより活性評価を行う方法は、長期間を要するため実用性が低い。   For the reasons described above, the adoption of regenerated catalyst is actually not being used particularly in hydroprocessing facilities with insufficient processing capacity. In addition, when the regenerated catalyst is used, a prior activity evaluation is required. However, the method of performing the activity evaluation by carrying out a hydrotreating reaction using a test facility requires a long period of time, and thus is not practical.

本発明は、かかる実情に鑑みてなされたものであり、充分な活性を有する再生水素化処理用触媒を簡便に製造する方法、並びに、該製造方法によって得られた再生水素化処理触媒を用いた石油製品の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a method for simply producing a regenerated hydrotreating catalyst having sufficient activity, and a regenerated hydrotreating catalyst obtained by the production method are used. It aims at providing the manufacturing method of petroleum products.

上記課題を解決するために、本発明は、周期表第6族金属及び第8〜10族金属からなる群より選択される少なくとも1種を含有する、使用済みの水素化処理用触媒を再生処理する第1の工程と、第1の工程により得られた再生処理後の触媒について透過型電子顕微鏡による観察を行い、触媒の再利用の適否を判定する第2の工程と、第2の工程により再利用が適と判定された触媒を回収する第3の工程と、を備える留出石油留分を処理するための再生水素化処理用触媒の製造方法を提供する。   In order to solve the above-mentioned problems, the present invention regenerates a used hydroprocessing catalyst containing at least one selected from the group consisting of Group 6 metals and Group 8 to 10 metals in the periodic table. A first step, a second step of observing the regenerated catalyst obtained in the first step with a transmission electron microscope and determining whether the catalyst is reused, and a second step And a third step of recovering a catalyst determined to be suitable for reuse, and a method for producing a regenerated hydrotreating catalyst for treating a distillate petroleum fraction.

上記第2の工程においては、透過型電子顕微鏡による観察を行い、100nm以上の金属の凝集物が見られない場合に、触媒の再利用が適と判定することが好ましい。   In the second step, it is preferable to determine that it is appropriate to reuse the catalyst when observation with a transmission electron microscope is performed and a metal aggregate of 100 nm or more is not observed.

また、上記第2の工程においては、集束イオンビームを用い、第1の工程により得られた再生処理後の触媒から厚み30nm〜200nmの試料を作製し、該試料について透過型電子顕微鏡による観察を行うことが好ましい。   In the second step, a sample having a thickness of 30 nm to 200 nm is prepared from the regenerated catalyst obtained in the first step using a focused ion beam, and the sample is observed with a transmission electron microscope. Preferably it is done.

また、水素化処理用触媒は、アルミニウム酸化物を含む無機担体に、全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種10〜30質量%と、周期表第8〜10族金属から選択される少なくとも1種1〜7質量%とを担持させて得られる触媒であることが好ましい。   In addition, the hydrotreating catalyst is an inorganic carrier containing aluminum oxide, based on the total catalyst mass, at least one selected from Group 6 metals of the Periodic Table, 10 to 30% by mass, and Periodic Tables 8 to 8 A catalyst obtained by supporting 1 to 7% by mass of at least one selected from Group 10 metals is preferred.

さらに、水素化処理用触媒においては、周期表第6族金属から選ばれる少なくとも1種がモリブデンであり、前記周期表第8〜10族金属から選ばれる少なくとも1種がコバルト及び/又はニッケルであることが好ましい。   Furthermore, in the hydrotreating catalyst, at least one selected from Group 6 metals of the periodic table is molybdenum, and at least one selected from Group 8 to 10 metals of the periodic table is cobalt and / or nickel. It is preferable.

また、本発明は、上記本発明の再生水素化処理用触媒の製造方法により、再生水素化処理用触媒を製造する第4の工程と、第4の工程で得られた再生水素化処理用触媒を用いて留出石油留分の水素化処理を行う第5の工程と、を備えることを特徴とする石油製品の製造方法を提供する。   The present invention also provides a fourth step for producing a regenerated hydrotreating catalyst by the method for producing a regenerated hydrotreating catalyst of the present invention, and a regenerated hydrotreating catalyst obtained in the fourth step. And a fifth step of hydrotreating a distillate petroleum fraction using the above-described method.

上記第5の工程の運転条件は、水素分圧3〜13MPa、LHSV0.05〜5h−1、反応温度200℃〜410℃、水素/油比100〜8000SCF/BBLであることが好ましい。 The operating conditions of the fifth step are preferably a hydrogen partial pressure of 3 to 13 MPa, an LHSV of 0.05 to 5 h −1 , a reaction temperature of 200 ° C. to 410 ° C., and a hydrogen / oil ratio of 100 to 8000 SCF / BBL.

また、本発明の石油製品の製造方法に供される留出石油留分は、その蒸留試験による留出温度が130〜700℃であることが好ましい。   Moreover, it is preferable that the distillation temperature by the distillation test of the distillate petroleum fraction used for the manufacturing method of the petroleum product of this invention is 130-700 degreeC.

本発明の再生水素化処理用触媒の製造方法は、充分な活性を有する再生水素化処理用触媒を簡便に製造できるという効果を有する。また、本発明の石油製品の製造方法は、充分な活性を有し且つ安価な再生水素化処理用触媒を用いた実用性の高い製造プロセスを実現することができるという効果を有し、コスト削減、廃棄物排出量の低減、留出石油留分の水素化処理の効率化等の点で非常に有用である。   The method for producing a regenerated hydrotreating catalyst of the present invention has an effect that a regenerated hydrotreating catalyst having sufficient activity can be easily produced. In addition, the petroleum product production method of the present invention has an effect that a highly practical production process using a regenerated hydrotreating catalyst having sufficient activity and a low cost can be realized, thereby reducing costs. It is very useful in terms of reducing the amount of waste discharged and increasing the efficiency of hydrotreating distillate oil fractions.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

(水素化処理用触媒)
本発明に使用される水素化処理用触媒は、周期表第6族金属及び第8〜10族金属からなる群より選択される少なくとも1種を含有する。前記周期表第6族金属としてはモリブデン、タングステン、クロムが好ましく、モリブデン、タングステンがさらに好ましく、モリブデンが特に好ましい。前記周期表第8〜10族金属としては、鉄、コバルト、ニッケルが好ましく、コバルト、ニッケルがより好ましく、コバルトが特に好ましい。これらの金属は単独で用いてもよく、2種以上を混合して用いてもよい。周期表第6族金属及び第8〜10族金属からなる群より選択される2種以上を用いる場合には、モリブデン−コバルト、モリブデン−ニッケル、タングステン−ニッケル、モリブデン−コバルト−ニッケル、タングステン−コバルト−ニッケルなどが好ましく用いられる。なお、ここで周期表とは、国際純正・応用化学連合(IUPAC)により規定された長周期型の周期表をいう。
(Hydroprocessing catalyst)
The hydrotreating catalyst used in the present invention contains at least one selected from the group consisting of Group 6 metals and Groups 8 to 10 metals of the periodic table. The Periodic Table Group 6 metal is preferably molybdenum, tungsten, or chromium, more preferably molybdenum or tungsten, and particularly preferably molybdenum. As said group 8-10 metal of a periodic table, iron, cobalt, and nickel are preferable, cobalt and nickel are more preferable, and cobalt is especially preferable. These metals may be used alone or in combination of two or more. When two or more selected from the group consisting of Group 6 metals and Group 8 to 10 metals in the periodic table are used, molybdenum-cobalt, molybdenum-nickel, tungsten-nickel, molybdenum-cobalt-nickel, tungsten-cobalt -Nickel etc. are preferably used. Here, the periodic table is a long-period type periodic table defined by the International Union of Pure and Applied Chemistry (IUPAC).

本発明に係る水素化処理用触媒は、上記活性金属がアルミニウム酸化物を含む無機担体に担持されたものであることが好ましい。前記アルミニウム酸化物を含む無機担体の好ましい例としては、アルミナ、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタニア、あるいは各種ゼオライト、セビオライト、モンモリロナイト等の各種粘土鉱物などの多孔性無機化合物をアルミナに添加した担体などを挙げることができ、中でもアルミナが特に好ましい。   The hydrotreating catalyst according to the present invention is preferably one in which the active metal is supported on an inorganic carrier containing aluminum oxide. Preferred examples of the inorganic carrier containing aluminum oxide include alumina, alumina-silica, alumina-boria, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-silica-zirconia, alumina-silica-titania, and various types. Examples include a carrier in which a porous inorganic compound such as various clay minerals such as zeolite, ceviolite, and montmorillonite is added to alumina, among which alumina is particularly preferable.

本発明に係る水素化処理用触媒は、アルミニウム酸化物を含む無機担体に、全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種10〜30質量%と、周期表第8〜10族金属から選択される少なくとも1種1〜7質量%とを担持させて得られる触媒であることが好ましい。   The catalyst for hydrotreating according to the present invention has an inorganic carrier containing aluminum oxide, 10 to 30% by mass selected from Group 6 metals of the periodic table, based on the total catalyst mass, A catalyst obtained by supporting 1 to 7% by mass of at least one selected from Group 8 to 10 metals is preferred.

前記活性金属を前記無機担体に担持する際に用いる活性金属種の前駆体は限定されないが、該金属の無機塩、有機金属化合物等が使用され、水溶性の無機塩が好ましく使用される。担持工程においては、これら活性金属前駆体の溶液、好ましくは水溶液を用いて担持を行うことが好ましい。担持操作としては、例えば、浸漬法、含浸法、共沈法等の公知の方法が好ましく採用される。   The precursor of the active metal species used when the active metal is supported on the inorganic carrier is not limited, but an inorganic salt of the metal, an organic metal compound, or the like is used, and a water-soluble inorganic salt is preferably used. In the supporting step, it is preferable to support using a solution of these active metal precursors, preferably an aqueous solution. As the supporting operation, for example, a known method such as an immersion method, an impregnation method, a coprecipitation method, or the like is preferably employed.

活性金属前駆体が担持された担体は、乾燥後、好ましくは酸素の存在下に焼成され、活性金属種は一旦酸化物とされることが好ましい。さらに留出石油留分の水素化処理を行う前に、予備硫化と呼ばれる硫化処理により、活性金属を硫化物とすることが好ましく行われる。   The carrier on which the active metal precursor is supported is preferably dried and then calcined in the presence of oxygen, and the active metal species is once converted to an oxide. Further, before the hydrotreating of the distillate petroleum fraction, the active metal is preferably converted into a sulfide by a sulfiding treatment called presulfiding.

本発明に係る水素化処理用触媒の形状は、粉末状であってもよいが、粒子状に成形されたものであることが好ましい。成形された触媒は、成形された前記無機担体に前記活性金属を担持して得られるものでもよく、また粉末状の前記無機担体に前記活性金属を担持した後にこれを成形して得られるものでもよい。成形は種々の方法が用いられるが、粉末状の前記無機担体、もしくは前記活性金属を担持した無機担体を圧縮により成形する方法、少量の水、酸水溶液等を添加して混練し、これを押し出して切断する方法等が好ましく採用される。また、成形に際して、成形性及び/又は成形された触媒の機械的強度の向上を目的として、前記無機担体に無機酸化物からなるバインダーを添加してもよい。成形された触媒粒子の形状は限定されないが、例えば球状、円筒状、ペレット状、断面が三つ葉型等の異形筒状などである。成形された触媒粒子は粉末状の触媒に比較して取り扱い性に優れ、また留出石油留分の水素化処理に際して被処理油の圧力損失の低減の効果を奏する。   The shape of the hydrotreating catalyst according to the present invention may be powder, but is preferably formed into particles. The molded catalyst may be obtained by supporting the active metal on the molded inorganic carrier, or may be obtained by molding the active metal after supporting the powdered inorganic carrier. Good. Various methods can be used for molding, such as a method in which the powdered inorganic carrier or the inorganic carrier carrying the active metal is molded by compression, a small amount of water, an acid aqueous solution, etc. are added and kneaded, and this is extruded. A method of cutting and the like is preferably employed. Further, at the time of molding, a binder made of an inorganic oxide may be added to the inorganic carrier for the purpose of improving moldability and / or mechanical strength of the molded catalyst. The shape of the molded catalyst particles is not limited, but may be, for example, a spherical shape, a cylindrical shape, a pellet shape, or a modified cylindrical shape such as a three-leaf type cross section. The shaped catalyst particles are excellent in handling properties compared to a powdered catalyst, and have the effect of reducing the pressure loss of the oil to be treated during the hydrotreating of the distillate petroleum fraction.

(再生処理工程)
留出石油留分の水素化処理設備において一定の期間使用され、活性が一定の水準以下に低下した水素化処理用触媒は、本発明の第1の工程において再生処理に供される。再生処理を行う設備は特に限定されないが、留出石油留分の水素化処理設備とは異なる設備で行われることが好ましい。すなわち、留出石油留分の水素化処理設備の反応器に触媒を充填したままの状態で再生処理を行うのではなく、反応器より触媒を抜き出し、抜き出された触媒を再生処理のための設備に移動させて、該設備により再生処理を行うことが好ましい。
(Regeneration process)
The hydrotreating catalyst that has been used for a certain period of time in the hydrotreating equipment of the distillate petroleum fraction and whose activity has fallen below a certain level is subjected to a regeneration treatment in the first step of the present invention. Although the equipment for performing the regeneration treatment is not particularly limited, it is preferably carried out in equipment different from the hydrotreating equipment for the distillate petroleum fraction. That is, instead of performing the regeneration process with the catalyst in the reactor of the hydrotreating equipment of the distillate petroleum fraction, the catalyst is extracted from the reactor, and the extracted catalyst is used for the regeneration process. It is preferable to move to an equipment and perform a regeneration process using the equipment.

本発明の第1の工程において使用する、使用済み触媒の再生処理を行うための形態は限定されないが、使用済み触媒から微粉化した触媒、及び場合により触媒以外の充填材等を篩い分けにより除去する工程、使用済み触媒に付着した油分を除去する工程(脱油工程)、使用済み触媒に沈着したコーク、硫黄分等を除去する工程(再生工程)からこの順に構成されるものであることが好ましい。   Although the form for performing the regeneration treatment of the used catalyst used in the first step of the present invention is not limited, the catalyst pulverized from the used catalyst and, in some cases, fillers other than the catalyst are removed by sieving. And a step of removing oil adhering to the used catalyst (deoiling step), a step of removing coke deposited on the used catalyst, a sulfur component (regeneration step), and the like. preferable.

このうち、脱油工程には、酸素が実質的に存在しない雰囲気、例えば窒素雰囲気下に、使用済み触媒を300〜400℃程度の温度に加熱することにより油分を揮散せしめる方法などが好ましく採用される。また、脱油工程は、軽質の炭化水素類にて油分を洗浄する方法、あるいはスチーミングによる油分の除去等の方法によるものであってもよい。   Among these, in the deoiling step, a method of volatilizing the oil by heating the used catalyst to a temperature of about 300 to 400 ° C. in an atmosphere where oxygen is not substantially present, for example, a nitrogen atmosphere is preferably employed. The The deoiling step may be performed by a method of washing oil with light hydrocarbons or a method of removing oil by steaming.

前記再生工程には、分子状酸素が存在する雰囲気下、例えば空気中、特には空気流中にて使用済み触媒を300〜700℃、好ましくは320〜550℃、さらに好ましくは330〜450℃、特に好ましくは340〜400℃の温度に加熱することにより、沈着したコーク、硫黄分等を酸化して除去する方法が好ましく採用される。加熱温度が前記下限温度を下回る場合には、コーク、硫黄分等の触媒活性を低下せしめた物質の除去が効率的に進行しない傾向にある。一方、加熱温度が前記上限温度を超える場合には、触媒中の活性金属が凝集を起こす、あるいは複合金属酸化物を形成する等して、得られる再生触媒の活性が低下する傾向にある。   In the regeneration step, the used catalyst is 300 to 700 ° C., preferably 320 to 550 ° C., more preferably 330 to 450 ° C. in an atmosphere where molecular oxygen exists, for example, in the air, particularly in the air stream. Particularly preferably, a method of oxidizing and removing the deposited coke, sulfur, etc. by heating to a temperature of 340 to 400 ° C. is preferably employed. When the heating temperature is lower than the lower limit temperature, the removal of substances having reduced catalytic activity such as coke and sulfur content tends not to proceed efficiently. On the other hand, when the heating temperature exceeds the upper limit temperature, the activity of the obtained regenerated catalyst tends to decrease due to aggregation of active metal in the catalyst or formation of a composite metal oxide.

(分析・判定工程)
前記第1の工程において再生処理が行われた後、再生処理に供された水素化処理用触媒(再生触媒)の一部が抜き出される。そして、第2の工程において、抜き出された再生触媒について透過型電子顕微鏡(TEM)による観察を行い、触媒の再利用の適否を判定する。触媒の再利用の適否の判定は、例えば、使用前の水素化処理用触媒との比較において、その活性低下が許容範囲内であるかという基準に基づいて行うことができる。すなわち、別途当該再生触媒を用いた水素化処理反応試験による該触媒の活性評価を行い、その結果と前記再生触媒のTEM観察の結果との相関を予め把握しておくことにより、再生触媒のTEM観察結果からその活性の程度を予測することが可能であり、これにより当該再生触媒を回収、再使用すべきか否かの判定が可能となる。
(Analysis / judgment process)
After the regeneration process is performed in the first step, a part of the hydrotreating catalyst (regenerated catalyst) provided for the regeneration process is extracted. In the second step, the extracted regenerated catalyst is observed with a transmission electron microscope (TEM) to determine whether the catalyst is reused. The determination as to whether or not the catalyst can be reused can be made based on, for example, a criterion of whether the decrease in activity is within an allowable range in comparison with the hydrotreating catalyst before use. That is, the activity of the catalyst is separately evaluated by a hydrotreating reaction test using the regenerated catalyst, and the correlation between the result and the result of TEM observation of the regenerated catalyst is grasped in advance. It is possible to predict the degree of activity from the observation result, and thereby it is possible to determine whether or not the regenerated catalyst should be recovered and reused.

TEM観察に供する試料は、その厚みが重要であり、厚みが厚すぎると電子線が透過せず、触媒中の活性金属の分散・凝集の状態が観察できない。このため、TEM観察用試料の厚みは、200nm以下であることが好ましく、より好ましくは150nm以下であり、更に好ましくは120nm以下であり、特に好ましくは80nm以下である。また、前記TEM観察用試料の厚みは30nm以上であることが好ましい。厚みが30nm未満である場合には、試料が破壊しやすく取り扱いが困難になる、あるいは後述するイオンの衝突によるダメージ層が残存しやすくなる傾向にある。試料の厚みが上記条件を満たすことで、観察視野における金属の凝集の有無の判定を容易に且つ確実に行うことができる。   The thickness of the sample used for TEM observation is important. If the thickness is too thick, the electron beam cannot be transmitted, and the state of dispersion / aggregation of the active metal in the catalyst cannot be observed. For this reason, the thickness of the TEM observation sample is preferably 200 nm or less, more preferably 150 nm or less, still more preferably 120 nm or less, and particularly preferably 80 nm or less. The thickness of the TEM observation sample is preferably 30 nm or more. When the thickness is less than 30 nm, the sample tends to be easily broken and difficult to handle, or a damage layer due to ion collision described later tends to remain. When the thickness of the sample satisfies the above conditions, it is possible to easily and reliably determine the presence or absence of metal aggregation in the observation field.

TEM観察に供する前記厚みを有する試料の作製は、触媒粒子を物理的又は機械的に切削・研磨する方法により好ましく行われる。この方法の例としては、超薄切片法、スパッタ・シンニング法、集束イオンビーム法などが挙げられる。本発明に係る水素化処理用触媒粒子は脆く、また硬さやスパッタ効率の異なる担体と活性金属とから構成される複合体である。このような触媒粒子の特定の部位から、確実に、且つ組織を保持した状態で上記厚さを有するTEM観察用試料を作製できるとの観点から、集束イオンビーム法(FIB)が特に好ましい。集束イオンビーム(FIB)/透過型電子顕微鏡(TEM)を適用することにより、対象とする再生触媒中の活性金属種に関する情報、中でも活性金属種の分散・凝集状態に関する情報が得られる。これらの情報は、再生触媒の水素化処理活性に密接に関係しており、これら情報から当該再生触媒の水素化処理活性、ひいては当該再生触媒の再利用、水素化処理への再使用の適否を判定することが可能である。   The preparation of the sample having the thickness for TEM observation is preferably performed by a method of physically or mechanically cutting and polishing the catalyst particles. Examples of this method include an ultrathin section method, a sputtering / thinning method, and a focused ion beam method. The catalyst particles for hydrotreating according to the present invention are fragile and are a composite composed of a support and an active metal having different hardness and sputtering efficiency. The focused ion beam method (FIB) is particularly preferable from the viewpoint that a sample for TEM observation having the above thickness can be produced reliably and in a state where the tissue is held from a specific portion of such catalyst particles. By applying a focused ion beam (FIB) / transmission electron microscope (TEM), information on the active metal species in the target regenerated catalyst, especially information on the dispersion / aggregation state of the active metal species can be obtained. These pieces of information are closely related to the hydrotreating activity of the regenerated catalyst, and from these pieces of information, it is determined whether the regenerated catalyst is hydrotreated, and therefore, whether the regenerated catalyst is reused or reused for hydrotreating. It is possible to determine.

FIBによるTEM観察用試料の作製方法の一例を以下に述べる。FIB照射の典型的な条件は以下の通りである。
イオン源:Ga
加速電圧:粗加工 40kV、仕上げ加工 10kV
デポジット:タングステン
An example of a method for preparing a sample for TEM observation by FIB will be described below. Typical conditions for FIB irradiation are as follows.
Ion source: Ga
Accelerating voltage: Roughing 40kV, Finishing 10kV
Deposit: Tungsten

触媒粒子の表面部位よりFIBによりTEM観察用試料を採取する場合、FIBを触媒表面に照射するに際し、予め保護膜としてのデポジット(タングステン)を触媒粒子表面上に蒸着により形成する。次いで、走査イオン顕微鏡で観察しながら、触媒粒子表面のデポジットが形成された領域の周辺部(触媒粒子表面が露出している部分)に集束Gaイオンを照射してスパッタリングを行う。かかるスパッタリングにより、触媒粒子表面に隆起部を形成し、次に隆起部の底部にGaイオンを照射してスパッタリングを行い、隆起部を触媒粒子より切り離して試料として採取する。これらの一連の操作を「粗加工」という。粗加工の場合、Gaイオンは高エネルギーであるため、ビームに照射された部分にGaイオンの衝突によるダメージ層が形成される。ダメージ層は後述する仕上げ加工において除去することができるが、採取された隆起部の側面の表層部に厚さ約20nmで形成されるTEM観察用試料の寸法を選定する際にはこのダメージ層の厚さも考慮することが望ましい。採取した試料はそのまま後述する仕上げ加工に供してもよいが、採取した試料について更に粗加工を施してもよい。   When a sample for TEM observation is collected from the surface portion of the catalyst particles by FIB, a deposit (tungsten) as a protective film is previously formed on the catalyst particle surface by vapor deposition when irradiating the catalyst surface with FIB. Next, while observing with a scanning ion microscope, sputtering is performed by irradiating focused Ga ions to the peripheral portion of the region where the catalyst particle surface deposit is formed (the portion where the catalyst particle surface is exposed). By this sputtering, a raised portion is formed on the surface of the catalyst particle, and then sputtering is performed by irradiating the bottom of the raised portion with Ga ions, and the raised portion is separated from the catalyst particle and collected as a sample. A series of these operations is called “rough machining”. In the case of rough machining, Ga ions are high energy, so that a damage layer is formed by collision of Ga ions in the portion irradiated with the beam. The damaged layer can be removed in the finishing process described later, but when selecting the size of the sample for TEM observation formed with a thickness of about 20 nm on the surface layer portion of the side surface of the collected raised portion, It is desirable to consider the thickness. The collected sample may be subjected to a finishing process described later as it is, but the collected sample may be further subjected to roughing.

触媒粒子からのTEM観察用試料の採取位置としては、触媒粒子の中心部位及び表面部位の2箇所とすることが好ましい。ここで、「中心部位」とは、触媒粒子の重心を中心として、触媒粒子の全体積に対する割合が13体積%となるように相似縮小した仮想粒子(以下、「仮想粒子A」という)の表面より内側の領域を意味し、また、「表面部位」とは、触媒粒子の表面と仮想粒子Aの表面との間の領域(触媒粒子全体積に対して87体積%を占める領域)を意味する。   The sampling position of the sample for TEM observation from the catalyst particles is preferably two locations, the central portion and the surface portion of the catalyst particles. Here, the “center portion” is the surface of a virtual particle (hereinafter referred to as “virtual particle A”) whose similarity is reduced so that the ratio to the total volume of the catalyst particle becomes 13% by volume with the center of gravity of the catalyst particle as the center. An inner region is meant, and the “surface part” means a region between the surface of the catalyst particles and the surface of the virtual particles A (region occupying 87% by volume with respect to the total volume of the catalyst particles). .

さらに、前記中心部位は、触媒粒子の重心を中心として、触媒の全体積に対する割合が2体積%となるように相似縮小した仮想粒子(以下、「仮想粒子B」という)の内部に位置する領域であることがより好ましい。一方、前記表面部位は、触媒粒子の表面と、触媒粒子の重心を中心として、触媒の全体積に対する割合が42体積%となるように相似縮小した仮想粒子(以下、「仮想粒子C」という)との間の領域(触媒粒子全体積に対して58体積%を占める領域)であることがより好ましい。さらに、仮想粒子Bの表面と仮想粒子Cの表面との間の領域(触媒粒子全体に対して40体積%を占める領域)からTEM観察用試料を採取してもよい。   Furthermore, the central portion is a region located inside virtual particles (hereinafter referred to as “virtual particles B”) that are similarly reduced with the center of gravity of the catalyst particles as the center so that the ratio to the total volume of the catalyst is 2% by volume. It is more preferable that On the other hand, the surface portion is a virtual particle (hereinafter referred to as “virtual particle C”) that is similar and reduced so that the ratio to the total volume of the catalyst is 42% by volume centered on the surface of the catalyst particle and the center of gravity of the catalyst particle. It is more preferable that it is a region between them (region occupying 58% by volume with respect to the total volume of the catalyst particles). Furthermore, a sample for TEM observation may be collected from a region between the surface of the virtual particle B and the surface of the virtual particle C (region occupying 40% by volume with respect to the entire catalyst particle).

触媒粒子の中心部位よりTEM観察用試料を採取する場合には、まず触媒粒子の中心部位が露出するように触媒粒子を切断する。切断は目視あるいは拡大鏡、光学顕微鏡での観察下に鋭利な刃物等で行うことができる。そして、その切断面上にある中心部位
に保護膜としてのデポジットを形成し、以下、上述の触媒粒子表面部位より試料を採取する場合と同様にして、FIBにより試料を形成、採取することが好ましい。
When a sample for TEM observation is collected from the central part of the catalyst particles, the catalyst particles are first cut so that the central part of the catalyst particles is exposed. Cutting can be performed with a sharp blade or the like under visual observation or observation with a magnifier or an optical microscope. Then, a deposit as a protective film is formed at the central portion on the cut surface, and it is preferable to form and collect a sample by FIB in the same manner as in the case of collecting a sample from the above-mentioned catalyst particle surface portion. .

次に、粗加工後の試料に対し、加速電圧をなるべく小さい電圧(望ましくは最低電圧)とし、時間をかけてGaイオン照射によるスパッタリングを行う(仕上げ加工)。これにより、更なるダメージ層の形成を抑制しつつ、試料を一層薄膜化することができ、TEM観察に好適な試料を得ることができる。なお、粗加工の際に形成されたダメージ層は、仕上げ加工の際に除去される。   Next, with respect to the sample after rough processing, the acceleration voltage is made as low as possible (preferably the lowest voltage), and sputtering by Ga ion irradiation is performed over time (finishing processing). Thereby, it is possible to further reduce the thickness of the sample while suppressing the formation of a further damaged layer, and it is possible to obtain a sample suitable for TEM observation. Note that the damaged layer formed during the roughing process is removed during the finishing process.

このようにして得られた試料についてTEM観察を行い、触媒の再利用の適否を判定する。なお、TEM観察の典型的な条件は下記の通りである。
(TEM測定条件)
電子銃:LaB6
加速電圧:200kV
撮影倍率:1万〜50万倍
The sample obtained in this way is observed with a TEM to determine the suitability of catalyst reuse. Typical conditions for TEM observation are as follows.
(TEM measurement conditions)
Electron gun: LaB6
Accelerating voltage: 200kV
Shooting magnification: 10,000 to 500,000 times

触媒の再利用の適否は、触媒に含まれる活性金属の凝集物の有無、あるいは更に活性金属の凝集物の大きさに基づき判定することが好ましい。また、TEM観察の視野は、任意に選択された10視野以上とすることが好ましい。特に好ましくは、10視野についてTEM観察を行い、最大長さ100nm以上の活性金属の凝集物が見られない場合に「使用前の前記水素化処理用触媒との比較において、活性低下の幅が再使用に供するに際して許容される範囲内にある」との観点から「次の工程に置いて回収して再使用し得る」と判定し、一方、最大長さ100nm以上の活性金属の凝集物が見られた場合には、当該再生触媒が「使用前の前記水素化処理用触媒との比較において、活性低下の幅が再使用に供するに際して許容される範囲外にある」との観点から「次の工程に置いて回収して再使用し得ない」と判定する。   The suitability of catalyst reuse is preferably determined based on the presence or absence of active metal aggregates contained in the catalyst or the size of the active metal aggregates. Moreover, it is preferable that the visual field of TEM observation shall be 10 or more fields selected arbitrarily. Particularly preferably, TEM observation is performed for 10 fields of view, and when active metal aggregates having a maximum length of 100 nm or more are not observed, “in comparison with the hydrotreating catalyst before use, the range of decrease in activity is From the viewpoint that it is within the allowable range when it is used, it is determined that it can be recovered and reused in the next step. On the other hand, active metal aggregates having a maximum length of 100 nm or more are observed. In the case where the regenerated catalyst is used, from the viewpoint that “the range of the decrease in activity is out of the allowable range for use in reuse in comparison with the hydrotreating catalyst before use”, It is determined that it cannot be collected and reused in the process.

(触媒回収工程)
第2の工程において「活性低下の幅が再使用に供するに際して許容される範囲内にある」(すなわち「再利用が適」)と判定された再生触媒は、第3の工程において回収され、留出石油類の水素化処理設備に移送、充填される。一方、第2の工程において「活性低下の幅が再使用に供するに際して許容される範囲外にある」(すなわち「再利用が不適」)と判定された再生触媒は廃棄される。
(Catalyst recovery process)
In the second step, the regenerated catalyst determined that “the range of decrease in activity is within the allowable range for reuse” (that is, “reusability is suitable”) is recovered in the third step, Transported and filled into hydrotreating facilities for petroleum. On the other hand, the regenerated catalyst determined in the second step as “the range of the decrease in activity is out of the allowable range for use in reuse” (that is, “unsuitable for reuse”) is discarded.

なお、本発明の石油製品の製造方法における第4の工程は、本発明の再生水素化触媒の製造方法により、再生水素化処理用触媒を製造する工程であり、上記第1〜第3の工程を包含するものである。本発明の石油製品の製造方法における水素化処理用触媒、再生処理工程、分析・判定工程、触媒回収工程等の態様は上記と同様であるため、ここでは重複する説明を省略する。   In addition, the 4th process in the manufacturing method of the petroleum product of this invention is a process of manufacturing the catalyst for regenerated hydrogenation processes with the manufacturing method of the regenerated hydrogenation catalyst of this invention, The said 1st-3rd process Is included. Since aspects of the hydrotreating catalyst, the regeneration process, the analysis / judgment process, the catalyst recovery process, and the like in the method for producing a petroleum product of the present invention are the same as those described above, redundant descriptions are omitted here.

(水素化処理工程)
本発明の第5の工程である留出石油留分の水素化処理工程においては、水素化処理反応の前に、当該設備に充填された再生触媒を、予備硫化と呼ばれる硫黄化合物による触媒の処理により活性金属種を金属硫化物とすることが好ましい。
(Hydrogenation process)
In the hydrotreating step of the distillate petroleum fraction, which is the fifth step of the present invention, before the hydrotreating reaction, the regenerated catalyst charged in the equipment is treated with a sulfur compound called presulfidation. The active metal species is preferably a metal sulfide.

予備硫化の条件としては特に限定されないが、留出石油留分の水素化処理に使用する原料油に硫黄化合物を添加し、これを温度200〜380℃、LHSV1〜2h−1、圧力は水素化処理運転時と同一、処理時間48時間以上の条件にて、前記再生触媒に連続的に接触せしめることが好ましい。前記原料油に添加する硫黄化合物としては限定されないが、ジメチルジスルフィド(DMDS)、硫化水素等が好ましく、これらを原料油に対して原料油の質量基準で1質量%程度添加することが好ましい。 Although it does not specifically limit as conditions for preliminary sulfidation, a sulfur compound is added to the feed oil used for the hydrotreating of the distillate petroleum fraction, this is temperature 200-380 degreeC, LHSV1-2h- 1 and a pressure is hydrogenation. It is preferable to continuously contact the regenerated catalyst under the same conditions as in the treatment operation and for a treatment time of 48 hours or longer. Although it does not limit as a sulfur compound added to the said raw material oil, Dimethyl disulfide (DMDS), hydrogen sulfide, etc. are preferable, and it is preferable to add these about 1 mass% with respect to the mass of a raw material oil with respect to raw material oil.

前記第5の工程である留出石油留分の水素化処理工程における運転条件は特に限定されないが、触媒の活性金属種が硫化物である状態を維持する目的で、DMDS等の硫黄化合物を原料油に少量添加してもよいが、通常は原料油中に既に含有される硫黄化合物により硫化物である状態を維持することが可能であるので、硫黄化合物は特に添加しないことが好ましい。   The operating conditions in the hydrotreating step of the distillate petroleum fraction that is the fifth step are not particularly limited, but for the purpose of maintaining a state where the active metal species of the catalyst is a sulfide, a sulfur compound such as DMDS is used as a raw material. Although a small amount may be added to the oil, it is usually preferable not to add a sulfur compound because it is possible to maintain a sulfide state by the sulfur compound already contained in the raw material oil.

前記水素化処理工程における反応器入口における水素分圧は好ましくは3〜13MPa、より好ましくは3.5〜12MPa、特に好ましくは4〜11MPaである。水素分圧が3MPa未満の場合は触媒上のコーク生成が激しくなり触媒寿命が短くなる傾向にある。一方、水素分圧が13MPaを超える場合は反応器や周辺機器等の建設費が上昇し、経済性が失われる懸念がある。 The hydrogen partial pressure at the reactor inlet in the hydrotreating step is preferably 3 to 13 MPa, more preferably 3.5 to 12 MPa, and particularly preferably 4 to 11 MPa. When the hydrogen partial pressure is less than 3 MPa, coke formation on the catalyst becomes intense and the catalyst life tends to be shortened. On the other hand, when the hydrogen partial pressure exceeds 13 MPa, there is a concern that the construction cost of the reactor, peripheral equipment, and the like will increase and the economy will be lost.

前記水素化処理工程におけるLHSVは、好ましくは0.05〜5h−1、より好ましくは0.1〜4.5h−1、特に好ましくは0.2〜4h−1の範囲で行うことができる。LHSVが0.05h−1未満である場合には、反応器の建設費が過大となり経済性が失われる懸念がある。一方、LHSVが5h−1を超える場合には原料油の水素化処理が十分に達成されない懸念がある。 LHSV in the hydrotreatment step is preferably 0.05~5H -1, more preferably 0.1~4.5H -1, particularly preferably may be in the range of 0.2~4h -1. When LHSV is less than 0.05 h −1 , there is a concern that the construction cost of the reactor becomes excessive and the economic efficiency is lost. On the other hand, when LHSV exceeds 5h- 1 , there is a concern that the hydrogenation treatment of the raw material oil is not sufficiently achieved.

前記水素化処理工程における水素化反応温度は、好ましくは200℃〜410℃、より好ましくは220℃〜400℃、特に好ましくは250℃〜395℃である。反応温度が200℃を下回る場合には、原料油の水素化処理が十分に達成されない傾向にある。一方、反応温度が410℃を上回る場合には、副生成物であるガス分の発生が増加するため、目的とする精製油の収率が低下することとなり望ましくない。   The hydrogenation reaction temperature in the hydrotreating step is preferably 200 ° C to 410 ° C, more preferably 220 ° C to 400 ° C, and particularly preferably 250 ° C to 395 ° C. When the reaction temperature is lower than 200 ° C., the hydrogenation treatment of the raw material oil tends not to be sufficiently achieved. On the other hand, when the reaction temperature exceeds 410 ° C., the generation of a gas component as a by-product increases, which is not desirable because the yield of the target refined oil decreases.

前記水素化処理工程における水素/油比は、好ましくは100〜8000SCF/BBL、より好ましくは120〜7000SCF/BBL、特に好ましくは150〜6000SCF/BBLの範囲で行うことができる。水素/油比が100SCF/BBL未満の場合には、リアクター出口での触媒上のコーク生成が進行し、触媒寿命が短くなる傾向にある。一方、水素/油比が8000SCF/BBLを超える場合には、リサイクルコンプレッサーの建設費が過大になり、経済性が失われる懸念がある。   The hydrogen / oil ratio in the hydrotreating step is preferably 100 to 8000 SCF / BBL, more preferably 120 to 7000 SCF / BBL, and particularly preferably 150 to 6000 SCF / BBL. When the hydrogen / oil ratio is less than 100 SCF / BBL, coke formation on the catalyst proceeds at the reactor outlet, and the catalyst life tends to be shortened. On the other hand, when the hydrogen / oil ratio exceeds 8000 SCF / BBL, there is a concern that the construction cost of the recycle compressor becomes excessive and the economic efficiency is lost.

前記水素化処理工程における反応形式は特に限定されないが、通常は、固定床、移動床等の種々のプロセスから選ぶことができるが、固定床が好ましい。また反応器は塔状であることが好ましい。   The reaction type in the hydrotreating step is not particularly limited, but usually, it can be selected from various processes such as a fixed bed and a moving bed, but a fixed bed is preferable. The reactor is preferably tower-shaped.

本発明の留出石油留分の水素化処理に供される原料油としては、蒸留試験による留出温度が好ましくは130〜700℃、さらに好ましくは140〜680℃、特に好ましくは150〜660℃の範囲のものが使用される。留出温度が130℃を下回る原料油を用いた場合には水素化処理反応が気相での反応となり、上記の触媒では性能が充分に発揮されない傾向にある。一方、留出温度が700℃を上回る原料油を用いた場合には、原料油中に含まれる重金属などの触媒に対する被毒物の含有量が大きくなり、上記触媒の寿命が大きく低下する。原料油として用いる留出石油留分のその他の性状としては特に限定されないが、代表的な性状としては、比重(15/4℃)0.8200〜0.9700、 硫黄分含有量1.0〜4.0質量%である。   As the feedstock to be subjected to the hydrotreating of the distillate petroleum fraction of the present invention, the distillation temperature by distillation test is preferably 130 to 700 ° C, more preferably 140 to 680 ° C, and particularly preferably 150 to 660 ° C. Those in the range are used. When a feed oil having a distillation temperature lower than 130 ° C. is used, the hydrotreating reaction becomes a reaction in the gas phase, and the above-mentioned catalyst tends not to exhibit sufficient performance. On the other hand, when a feedstock having a distillation temperature exceeding 700 ° C. is used, the content of poisonous substances with respect to the catalyst such as heavy metals contained in the feedstock is increased, and the life of the catalyst is greatly reduced. The other properties of the distillate petroleum fraction used as the feedstock are not particularly limited, but typical properties include specific gravity (15/4 ° C.) 0.8200 to 0.9700, sulfur content 1.0 to It is 4.0 mass%.

なお、本発明における硫黄含有量とは、JIS K 2541―1992に規定する「原油及び石油製品―硫黄分試験方法」の「6.放射線式励起法」に準拠して測定される硫黄含有量を意味する。また、本願における蒸留試験とは、JIS K 2254に規定する「石油製品―蒸留試験方法」の「6.減圧法蒸留試験方法」に準拠して行われるものを意味する。   The sulfur content in the present invention is the sulfur content measured in accordance with “6. Radiation excitation method” of “Crude oil and petroleum products—Sulfur content test method” prescribed in JIS K2541-1992. means. Moreover, the distillation test in this application means what is performed based on "6. Vacuum distillation test method" of "Petroleum product-Distillation test method" prescribed | regulated to JISK2254.

また、再生触媒の水素化処理活性を直接評価する手段として、同一運転条件での脱硫速度定数があげられる。脱硫速度定数とは下記の式により定義される。
脱硫速度定数=LHSV×(1/生成油硫黄含有量−1/原料油硫黄含有量)
Further, as a means for directly evaluating the hydrotreating activity of the regenerated catalyst, a desulfurization rate constant under the same operating conditions can be given. The desulfurization rate constant is defined by the following equation.
Desulfurization rate constant = LHSV × (1 / produced oil sulfur content−1 / raw oil sulfur content)

ただし、新触媒の活性はその製造者、製造単位等によりそれぞれ異なるため、水素化処理用触媒を使用した後再生処理して得られる再生触媒の活性は、相当する新触媒の活性基準での相対的な活性により評価することが妥当と考えられる。そこで、下記の式により定義される比活性により再生触媒の活性を評価する。
比活性=再生触媒の脱硫速度定数/新触媒の脱硫速度定数
However, since the activity of the new catalyst differs depending on the manufacturer, production unit, etc., the activity of the regenerated catalyst obtained by regenerating after using the hydrotreating catalyst is relative to the activity standard of the corresponding new catalyst. It is considered appropriate to evaluate based on specific activity. Therefore, the activity of the regenerated catalyst is evaluated based on the specific activity defined by the following equation.
Specific activity = desulfurization rate constant of regenerated catalyst / desulfurization rate constant of new catalyst

次に実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、以下の実施例及び比較例において、「中心部位」とは、触媒粒子の重心を中心として、触媒の全体積に対する割合が2体積%となるように相似縮小した仮想粒子(前述の仮想粒子B)の内部に位置する領域を意味する。また、「表面部位」とは、触媒粒子の表面と、触媒粒子の重心を中心として、触媒の全体積に対する割合が42体積%となるように相似縮小した仮想粒子(前述の仮想粒子C)との間の領域(触媒粒子全体積に対して58体積%を占める領域)を意味する。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples. In the following examples and comparative examples, the “center part” means a virtual particle (similar to the above-mentioned virtual particle) with the center of gravity of the catalyst particle being reduced and the ratio to the total volume of the catalyst being 2% by volume. It means the region located inside B). In addition, the “surface portion” refers to virtual particles (the virtual particles C described above) that are reduced in size so that the ratio to the total volume of the catalyst is 42% by volume centering on the surface of the catalyst particles and the center of gravity of the catalyst particles. (Area occupying 58% by volume with respect to the total volume of the catalyst particles).

[実施例1]
(再生水素化処理用触媒)
活性金属としてモリブデン及びコバルトをアルミナ担体に担持した触媒であって、表1記載の通り、灯油の水素化処理設備において2年間使用された水素化処理用触媒を再生処理した再生触媒1を使用した。
[Example 1]
(Regenerative hydrogenation catalyst)
A catalyst in which molybdenum and cobalt are supported on an alumina carrier as active metals, and a regenerated catalyst 1 obtained by regenerating a hydrotreating catalyst used for two years in a kerosene hydrotreating facility as shown in Table 1 was used. .

(再生水素化処理用触媒のTEM観察)
次に、再生触媒1について、FIBを用いて上述の粗加工及び仕上げ加工を行い、TEM観察に供する試料(厚み:100nm)を作製した。試料の採取位置は中心部位及び表面部位の2箇所とした。FIBの条件を以下に示す。
イオン源:Ga
加速電圧:粗加工 40kV、仕上げ加工 10kV
デポジット:タングステン
(TEM observation of regenerated hydrotreating catalyst)
Next, the regenerated catalyst 1 was subjected to the above-described roughing and finishing using FIB, and a sample (thickness: 100 nm) for TEM observation was produced. The sample was collected at two locations, a central region and a surface region. The FIB conditions are shown below.
Ion source: Ga
Accelerating voltage: Roughing 40kV, Finishing 10kV
Deposit: Tungsten

次に、中心部位及び表面部位から採取したTEM観察用試料のそれぞれについて、10視野でTEM観察を行い、活性金属の凝集物の有無を判定した。TEM観察の条件を以下に示す。本実施例においては、中心部位及び表面部位から採取した試料のいずれにおいても、100nm以上の金属の凝集物は検出されなかった。
(TEM測定条件)
電子銃:LaB6
加速電圧:200kV
撮影倍率:1万〜50万倍
Next, each of the TEM observation samples collected from the central portion and the surface portion was subjected to TEM observation in 10 visual fields to determine the presence or absence of active metal aggregates. The conditions for TEM observation are shown below. In this example, no metal aggregates of 100 nm or more were detected in any of the samples collected from the central part and the surface part.
(TEM measurement conditions)
Electron gun: LaB6
Accelerating voltage: 200kV
Shooting magnification: 10,000 to 500,000 times

(水素化処理反応)
固定床連続流通式反応装置に前記再生触媒1を充填し、触媒の予備硫化を行った。表1記載の性状を有する灯油相当の留分に、該留分の質量基準で1質量%のDMDSを添加し、これを48時間前記触媒に対して連続的に供給した。そしてその後、表1記載の性状を有する灯油相当の留分を原料油として、表1記載の条件にて水素化処理反応を行った。生成油中の硫黄分含有量から、脱硫速度定数を求めた。また、再生触媒1に相当する新触媒を用いて同様の反応を行って脱硫速度定数を求め、これらから再生触媒1の比活性を算出した。結果を表1に示す。
(Hydrogenation reaction)
The filled with regenerated catalyst 1 in a fixed bed continuous flow reactor, it was pre-sulfurization of the catalyst. To a fraction corresponding to kerosene having the properties shown in Table 1, 1% by mass of DMDS was added based on the mass of the fraction, and this was continuously fed to the catalyst for 48 hours. Then, hydrotreating reaction was performed under the conditions described in Table 1, using a fraction corresponding to kerosene having the properties described in Table 1 as a raw material oil. The desulfurization rate constant was determined from the sulfur content in the product oil. In addition, the same reaction was performed using a new catalyst corresponding to the regenerated catalyst 1 to obtain a desulfurization rate constant, and the specific activity of the regenerated catalyst 1 was calculated therefrom. The results are shown in Table 1.

[実施例2]
(再生水素化処理用触媒)
活性金属としてモリブデン及びコバルトをアルミナ担体に担持した触媒であって、表1記載の通り、軽油の水素化処理設備において2年間使用された水素化処理用触媒を再生処理した再生触媒2を使用した。
[Example 2]
(Regenerative hydrogenation catalyst)
A catalyst in which molybdenum and cobalt as active metals are supported on an alumina carrier, as shown in Table 1, a regenerated catalyst 2 was used which was regenerated from a hydrotreating catalyst used for 2 years in a gas oil hydrotreating facility. .

(再生水素化処理触媒のTEM観察)
再生触媒2について実施例1と同様にTEM観察を行った結果、金属の凝集物は検出されなかった。
(TEM observation of regenerated hydrotreating catalyst)
As a result of TEM observation of the regenerated catalyst 2 in the same manner as in Example 1, no metal aggregates were detected.

(水素化処理反応)
原料油として表1記載の性状を有する軽油相当の留分を用い、表1記載の条件とした以外は実施例1と同様の操作により、水素化処理反応を行った。比活性の結果を表1に示す。
(Hydrogenation reaction)
A hydrotreating reaction was carried out in the same manner as in Example 1 except that a fraction corresponding to light oil having the properties shown in Table 1 was used as the raw material oil and the conditions shown in Table 1 were used. The results of specific activity are shown in Table 1.

[実施例3]
(再生水素化処理用触媒)
活性金属としてモリブデン及びコバルトをアルミナ担体に担持した触媒であって、表1記載の通り、減圧軽油の水素化処理設備において1年間使用された水素化処理用触媒を再生処理した再生触媒3を使用した。
[Example 3]
(Regenerative hydrogenation catalyst)
A catalyst in which molybdenum and cobalt as active metals are supported on an alumina carrier, as shown in Table 1, using a regenerated catalyst 3 that has been regenerated from a hydrotreating catalyst that has been used for one year in a vacuum gas oil hydrotreating facility. did.

(再生水素化処理触媒のTEM観察)
前記再生触媒3について実施例1と同様にTEM観察を行った結果、金属の凝集物は検出されなかった。
(TEM observation of regenerated hydrotreating catalyst)
As a result of TEM observation of the regenerated catalyst 3 in the same manner as in Example 1, no metal aggregates were detected.

(水素化処理反応)
原料油として表1記載の性状を有する減圧軽油相当の留分を用い、表1記載の条件とした以外は実施例1と同様の操作により、水素化処理反応を行った。比活性の結果を表1に示す。
(Hydrogenation reaction)
A hydrotreating reaction was carried out in the same manner as in Example 1 except that the fraction corresponding to the vacuum gas oil having the properties shown in Table 1 was used as the raw material oil and the conditions shown in Table 1 were used. The results of specific activity are shown in Table 1.

[比較例1〜3]
(再生水素化処理用触媒)
活性金属としてモリブデン及びコバルトをアルミナ担体に担持した触媒であって、それぞれ表1記載の履歴の再生触媒4〜6を使用した。
[Comparative Examples 1-3]
(Regenerative hydrogenation catalyst)
Catalysts having molybdenum and cobalt as active metals supported on an alumina carrier, each having a history of regenerated catalysts 4 to 6 shown in Table 1, were used.

(再生水素化処理触媒のTEM観察)
それぞれ、再生触媒4〜6を実施例1と同様にTEM観察を行った結果、いずれも100nm以上の金属の凝集物が検出された。
(TEM observation of regenerated hydrotreating catalyst)
As a result of TEM observation of each of the regenerated catalysts 4 to 6 in the same manner as in Example 1, a metal aggregate of 100 nm or more was detected.

(水素化処理反応)
原料油として表1記載の性状を有する各留分を用い、表1記載の条件とした以外は実施例1と同様の操作により、水素化処理反応を行った。比活性の結果を表1に示す。
(Hydrogenation reaction)
A hydrotreating reaction was performed in the same manner as in Example 1 except that each fraction having the properties shown in Table 1 was used as the raw material oil and the conditions shown in Table 1 were used. The results of specific activity are shown in Table 1.

Figure 0004891937
Figure 0004891937

表1の結果から、本発明の方法に従い、再生触媒の活性について簡便なTEM観察により判定し、「活性低下の幅が再使用に供するに際して許容される範囲内にある」(すなわち「再利用が適」)と判定された再生触媒を回収して使用することにより、新触媒対比で約93%以上の活性を維持していることが判る(実施例1〜3)。一方、比較例はそれぞれ実施例1〜3に対応する留分の原料油を水素化処理しているが、いずれの場合も新触媒対比での活性が約89%以下となり、活性低下が大きい。
From the results of Table 1, according to the method of the present invention, the activity of the regenerated catalyst was determined by simple TEM observation, and “the range of the decrease in activity is within the allowable range for reuse” (that is, “recycling is It can be seen that by recovering and using the regenerated catalyst determined to be “appropriate”), an activity of about 93% or more in comparison with the new catalyst is maintained (Examples 1 to 3). On the other hand, in Comparative Examples 1 to 3, the raw material oil corresponding to Examples 1 to 3 was hydrotreated, but in either case, the activity relative to the new catalyst was about 89% or less, and the activity decreased. Is big.

Claims (8)

周期表第6族金属及び第8〜10族金属からなる群より選択される少なくとも1種を含有する、使用済みの水素化処理用触媒を再生処理する第1の工程と、
前記第1の工程により得られた再生処理後の触媒について透過型電子顕微鏡による観察を行い、触媒の再利用の適否を判定する第2の工程と、
前記第2の工程により再利用が適と判定された触媒を回収する第3の工程と、
を備える留出石油留分を処理するための再生水素化処理用触媒の製造方法。
A first step of regenerating a spent hydrotreating catalyst containing at least one selected from the group consisting of Group 6 metals and Groups 8-10 metals of the periodic table;
A second step of observing the regenerated catalyst obtained in the first step with a transmission electron microscope and determining whether the catalyst is reused;
A third step of recovering the catalyst determined to be suitable for reuse in the second step;
A method for producing a regenerated hydrotreating catalyst for treating a distillate petroleum fraction.
前記第2の工程において、透過型電子顕微鏡による観察を行い、100nm以上の金属の凝集物が見られない場合に、触媒の再利用が適と判定することを特徴とする、請求項1記載の再生水素化処理用触媒の製造方法。   2. The catalyst according to claim 1, wherein in the second step, observation with a transmission electron microscope is performed, and when a metal aggregate of 100 nm or more is not seen, it is determined that reuse of the catalyst is appropriate. A method for producing a catalyst for regenerated hydrogenation. 前記第2の工程において、集束イオンビームを用い、前記第1の工程により得られた再生処理後の触媒から厚み30nm〜200nmの試料を作製し、該試料について透過型電子顕微鏡による観察を行うことを特徴とする、請求項1または2に記載の再生水素化処理用触媒の製造方法。   In the second step, using a focused ion beam, a sample having a thickness of 30 nm to 200 nm is prepared from the regenerated catalyst obtained in the first step, and the sample is observed with a transmission electron microscope. The method for producing a regenerative hydrotreating catalyst according to claim 1, wherein: 前記水素化処理用触媒が、アルミニウム酸化物を含む無機担体に、全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種10〜30質量%と、周期表第8〜10族金属から選択される少なくとも1種1〜7質量%とを担持させて得られる触媒であることを特徴とする、請求項1〜3のいずれか1項に記載の再生水素化処理用触媒の製造方法。   The hydrotreating catalyst is an inorganic carrier containing aluminum oxide, 10 to 30% by mass selected from Group 6 metals of the periodic table based on the total catalyst mass, and 8 to 10 of the periodic table. The catalyst for regenerated hydroprocessing according to any one of claims 1 to 3, wherein the catalyst is obtained by supporting 1 to 7% by mass of at least one selected from group metals. Production method. 前記水素化処理用触媒において、前記周期表第6族金属から選ばれる少なくとも1種がモリブデンであり、前記周期表第8〜10族金属から選ばれる少なくとも1種がコバルト及び/又はニッケルであることを特徴とする、請求項1〜4のいずれか1項に記載の再生水素化処理用触媒の製造方法。   In the hydrotreating catalyst, at least one selected from Group 6 metals of the periodic table is molybdenum, and at least one selected from Group 8 to 10 metals of the periodic table is cobalt and / or nickel. The method for producing a regenerated hydrotreating catalyst according to any one of claims 1 to 4, wherein: 請求項1〜5のいずれか1項に記載の再生水素化処理用触媒の製造方法により、再生水素化処理用触媒を製造する第4の工程と、
前記第4の工程で得られた再生水素化処理用触媒を用いて留出石油留分の水素化処理を行う第5の工程と、
を備えることを特徴とする石油製品の製造方法。
A fourth step of producing a regenerated hydrotreating catalyst by the method for producing a regenerated hydrotreating catalyst according to any one of claims 1 to 5,
A fifth step of hydrotreating a distillate petroleum fraction using the regenerated hydrotreating catalyst obtained in the fourth step;
A method for producing a petroleum product, comprising:
前記第5の工程の運転条件が、水素分圧3〜13MPa、LHSV0.05〜5h−1、反応温度200℃〜410℃、水素/油比100〜8000SCF/BBLであることを特徴とする、請求項6に記載の石油製品の製造方法。 The operating conditions of the fifth step are: hydrogen partial pressure 3-13 MPa, LHSV 0.05-5 h −1 , reaction temperature 200 ° C.-410 ° C., hydrogen / oil ratio 100-8000 SCF / BBL, The method for producing a petroleum product according to claim 6. 前記留出石油留分は、その蒸留試験による留出温度が130〜700℃であることを特徴とする、請求項6または7に記載の石油製品の製造方法。   The method for producing a petroleum product according to claim 6 or 7, wherein the distillation petroleum fraction has a distillation temperature of 130 to 700 ° C according to a distillation test thereof.
JP2008048165A 2008-02-28 2008-02-28 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product Expired - Fee Related JP4891937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008048165A JP4891937B2 (en) 2008-02-28 2008-02-28 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008048165A JP4891937B2 (en) 2008-02-28 2008-02-28 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Publications (2)

Publication Number Publication Date
JP2009202119A JP2009202119A (en) 2009-09-10
JP4891937B2 true JP4891937B2 (en) 2012-03-07

Family

ID=41144917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008048165A Expired - Fee Related JP4891937B2 (en) 2008-02-28 2008-02-28 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Country Status (1)

Country Link
JP (1) JP4891937B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043936A2 (en) * 2009-10-05 2011-04-14 Exxonmobil Research And Engineering Company Stacking of low activity or regenerated catalyst above higher activity catalyst
JP5613524B2 (en) * 2010-10-22 2014-10-22 Jx日鉱日石エネルギー株式会社 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268890A (en) * 1975-12-05 1977-06-08 Chiyoda Chem Eng & Constr Co Ltd Method of producing catalyst for hydrogenating hydrocarbons
JP3110525B2 (en) * 1991-11-05 2000-11-20 出光興産株式会社 Method for regenerating hydrocarbon oil hydrotreating catalyst
JP2004161786A (en) * 2002-11-08 2004-06-10 Idemitsu Kosan Co Ltd Method for regenerating hydrogenation treatment catalyst for heavy oil
JP4472556B2 (en) * 2004-03-26 2010-06-02 コスモ石油株式会社 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2006306974A (en) * 2005-04-27 2006-11-09 Petroleum Energy Center Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil

Also Published As

Publication number Publication date
JP2009202119A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4610664B1 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
RU2376059C2 (en) Method and catalyst for hydroconversion of heavy hydrocarbon starting material
US4888316A (en) Preparation of hydrotreating catalyst from spent catalyst
CN101173202B (en) Waste lubricant oil recovery utilization method
WO1999065604A1 (en) Hydrogenation catalyst and method of hydrogenating heavy oil
Marafi et al. Refinery waste: the spent hydroprocessing catalyst and its recycling options
JP4891934B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
WO2011086750A1 (en) Regenerated hydrotreatment catalyst
JP4891937B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
Yunusov et al. Effect of protective bed composition on deactivation of a hydrotreating catalyst
CN110201694A (en) A kind of regeneration method of residual hydrogenation decaying catalyst
KR102297022B1 (en) Method for regenerating and utilizing heavy-oil desulfurization catalyst
JP5268484B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
CN111375397B (en) Heavy oil hydrogenation catalyst carrier, catalyst and preparation method thereof
JP6420961B2 (en) Recycling method of heavy oil desulfurization catalyst
US3553106A (en) Catalytic removal of vanadium and nickel from oils
CN115945199A (en) Activation method of metal deposition deactivated catalyst and carbon-containing hydrogenation catalyst
JP3957122B2 (en) Method for hydrotreating heavy hydrocarbon oils
CN112439462B (en) Method for recycling waste hydrogenation catalyst
CN111826194B (en) Residual oil hydrotreating method
JP2004148139A (en) Regenerated catalyst for hydrogenating heavy oil and method for hydrotreating heavy oil by using the same
JP5411475B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP2011200797A (en) Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst
RU2758845C1 (en) Method for reactivating a diesel fuel hydrotreatment catalyst
WO2022209410A1 (en) Hydrotreatment catalyst for hydrocarbon oil and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

R150 Certificate of patent or registration of utility model

Ref document number: 4891937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees