JP2011200797A - Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst - Google Patents

Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst Download PDF

Info

Publication number
JP2011200797A
JP2011200797A JP2010070553A JP2010070553A JP2011200797A JP 2011200797 A JP2011200797 A JP 2011200797A JP 2010070553 A JP2010070553 A JP 2010070553A JP 2010070553 A JP2010070553 A JP 2010070553A JP 2011200797 A JP2011200797 A JP 2011200797A
Authority
JP
Japan
Prior art keywords
catalyst
hydrotreating
regenerated
distribution curve
hydrotreating catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070553A
Other languages
Japanese (ja)
Inventor
Mutsunaga Iwanami
睦修 岩波
Tomohiro Konishi
友弘 小西
Makoto Nakamura
誠 中村
Soichiro Konno
聡一郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010070553A priority Critical patent/JP2011200797A/en
Publication of JP2011200797A publication Critical patent/JP2011200797A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of selecting regeneration conditions for a hydrotreating catalyst which enables production of a regenerated hydrotreating catalyst having a stably high activity from a used hydrotreating catalyst.SOLUTION: A hydrotreating catalyst which consists of cobalt supported by an inorganic support containing an aluminum oxide and is to be used in hydrotreating is subjected to an XAFS analysis to obtain a radial distribution curve from an EXAFS spectrum of the CoK absorption edge, and an intensity Iof the peak assigned to the Co-O bond in the radial distribution curve. Then, a catalyst after use in hydrotreating is regenerated under specified regeneration conditions, and the catalyst after the regeneration is subjected to an XAFS analysis to obtain a radial distribution curve from an EXAFS spectrum of the CoK absorption edge, and an intensity I of the peak assigned to the Co-O bond in the radial distribution curve. Based on a predetermined correlation of I/Iwith the activity of the catalyst, the quality of the regeneration conditions is determined.

Description

本発明は、水素化処理用触媒の再生条件の選別方法及び再生水素化処理用触媒の製造方法に関する。   The present invention relates to a method for selecting a regeneration condition for a hydrotreating catalyst and a method for producing a regenerated hydrotreating catalyst.

原油には含硫黄化合物、含窒素化合物、含酸素化合物等が不純物として含まれ、原油を分留して得られる各留出石油留分中にもこれら不純物が含まれる。これら留出石油留分中の前記不純物は、水素の存在下に水素化活性を有する触媒に接触せしめる水素化処理と呼ばれる工程により、その含有量を低減することが行われている。特に含硫黄化合物の含有量を低減する脱硫がよく知られている。最近は環境負荷低減の観点から、石油製品中の含硫黄化合物をはじめとする前記不純物の含有量に対する規制、低減の要求が一層厳しくなっており、所謂「サルファー・フリー」と呼ばれる石油製品が多く生産されている。   Crude oil contains sulfur-containing compounds, nitrogen-containing compounds, oxygen-containing compounds and the like as impurities, and these impurities are also contained in each distillate petroleum fraction obtained by fractionating crude oil. The content of the impurities in these distillate petroleum fractions is reduced by a process called hydrotreatment in which the impurities are brought into contact with a catalyst having hydrogenation activity in the presence of hydrogen. In particular, desulfurization for reducing the content of sulfur-containing compounds is well known. Recently, from the viewpoint of reducing environmental impact, regulations on the content of impurities, including sulfur-containing compounds in petroleum products, and demands for reduction have become more stringent, and there are many so-called “sulfur-free” petroleum products. Has been produced.

前記留出石油留分の水素化処理に使用する水素化処理用触媒は、一定の期間使用されるとコークや硫黄分の沈着等により活性が低下することから、交換が行われる。特に上記「サルファー・フリー」が求められるようになり、灯油、軽油、減圧軽油といった留分の水素化処理設備において、高い水素化処理能力が求められている。その結果、触媒交換頻度が増大し、結果として触媒コストの上昇や触媒廃棄量の増加をもたらしている。   The hydrotreating catalyst used for the hydrotreating of the distillate petroleum fraction is exchanged because its activity decreases due to the deposition of coke and sulfur when used for a certain period of time. In particular, the above-mentioned “sulfur-free” has been demanded, and high hydrotreating capacity is demanded in hydrotreating equipment for fractions such as kerosene, light oil and vacuum gas oil. As a result, the frequency of catalyst replacement increases, resulting in an increase in catalyst cost and an increase in the amount of catalyst discarded.

この対策として、これらの設備においては使用済みの水素化処理用触媒を再生処理した再生触媒(再生水素化処理用触媒)の使用が一部行われている(例えば、特許文献1、2を参照。)。   As a countermeasure, a part of the regenerated catalyst (regenerated hydrotreating catalyst) obtained by regenerating a spent hydrotreating catalyst is used in these facilities (for example, see Patent Documents 1 and 2). .)

特開昭52−68890号公報JP 52-68890 A 特開平5−123586号公報JP-A-5-123586

再生水素化処理用触媒の使用に当って、水素化処理と再生処理とを複数回繰り返しても水素化処理用触媒の活性を維持することができれば、再生した水素化処理用触媒(以下、「再生水素化処理用触媒」又は単に「再生触媒」という。)の使用のメリットは一層大きなものとなる。   In using the regenerated hydrotreating catalyst, if the activity of the hydrotreating catalyst can be maintained even if the hydrotreating and regenerating treatment are repeated a plurality of times, the regenerated hydrotreating catalyst (hereinafter referred to as “ The advantage of using “regenerated hydrotreating catalyst” or simply “regenerated catalyst”) is even greater.

ここで、従来の再生処理においては、水素化処理用触媒の使用中に生じる活性低下の主原因がコークあるいは硫黄の沈着にあるため、再生処理条件はこれらの沈着物を除去できるか否かという観点から再生処理条件を選別するのが一般的であった。例えば、従来の再生処理においては、処理温度をなるべく高温とするのがよいと考えられていた。   Here, in the conventional regeneration treatment, the main cause of the decrease in activity that occurs during the use of the catalyst for hydrotreating is the deposition of coke or sulfur. Therefore, the regeneration treatment condition is whether or not these deposits can be removed. In general, the regeneration processing conditions are selected from the viewpoint. For example, in conventional regeneration processing, it has been considered that the processing temperature should be as high as possible.

しかし、本発明者の検討によれば、沈着したコークあるいは硫黄の除去の問題とは別に、再生処理自体が、触媒上に担持された活性金属の構造(活性金属と酸素原子の配位形態等)を変化せしめる等して、触媒活性を低下させてしまうことがあることが判明した。   However, according to the study of the present inventor, apart from the problem of removing the deposited coke or sulfur, the regeneration process itself has a structure of active metal supported on the catalyst (coordination form of active metal and oxygen atoms, etc.). It has been found that the catalytic activity may be reduced by, for example, changing.

そのため、触媒の再生前の使用履歴、再生処理方法等によって再生後の触媒活性は異なり、再生触媒、特に複数回再生後の再生触媒は安定して充分な活性を有するとは限らない。また、使用済み触媒の履歴等によって、異なる再生処理条件を選択することが必要な場合もある。そして、再生処理した触媒を水素化処理設備に充填し、水素化処理運転を開始した後にその活性が低いことが判明した場合には、原料油の処理速度の低減等が必要となり、大きな問題となる。   For this reason, the catalyst activity after regeneration differs depending on the use history before regeneration of the catalyst, the regeneration treatment method, etc., and the regeneration catalyst, particularly the regeneration catalyst after regeneration a plurality of times, does not always have a stable and sufficient activity. Further, it may be necessary to select different regeneration treatment conditions depending on the history of the used catalyst. Then, when the regenerated catalyst is filled in the hydrotreating facility and the hydrotreating operation is started and it is found that its activity is low, it is necessary to reduce the processing speed of the raw oil, which is a big problem. Become.

上記のような理由により、水素化処理設備において、必ずしも再生触媒が充分に採用されていないのが実情である。そのため、水素化処理用触媒の再生における活性低下が抑制され、安定して高い活性を有する再生触媒が供給されることが強く要望されている。   For the reasons described above, the actual situation is that the regenerated catalyst is not sufficiently employed in the hydrotreating equipment. Therefore, there is a strong demand to supply a regenerated catalyst that stably suppresses the decrease in activity during the regeneration of the hydrotreating catalyst and has a high activity.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、使用済みの水素化処理用触媒から、安定して高い活性を有する再生水素化処理用触媒を製造することを可能とする、水素化処理用触媒の再生処理条件の選別方法及び再生水素化処理用触媒の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to make it possible to produce a regenerated hydrotreating catalyst having high activity stably from a used hydrotreating catalyst. Another object of the present invention is to provide a method for selecting a regeneration treatment condition for a hydrotreating catalyst and a method for producing a regeneration hydrotreating catalyst.

上記課題を解決するために、本発明は、下記(1)に記載の水素化処理用触媒の再生条件の選別方法、並びに下記(2)、(3)に記載の再生水素化処理用触媒の製造方法を提供する。
(1)留出石油留分を処理するための水素化処理用触媒を再生処理するに際し、再生処理条件を選別する方法であって、
アルミニウム酸化物を含む無機担体及び該無機担体に担持されたコバルトを含有する水素化処理用触媒であって水素化処理に用いられる前の触媒について、X線吸収微細構造分析を行い、Co K吸収端の広域X線吸収微細構造スペクトルから動径分布曲線を得、該動径分布曲線においてCo−O結合に帰属されるピークの強度Iを求める第1の工程と、
水素化処理後の上記水素化処理用触媒について所定の条件で再生処理を行い、再生処理後の該触媒についてX線吸収微細構造分析を行い、Co K吸収端の広域X線吸収微細構造スペクトルから動径分布曲線を得、該動径分布曲線においてCo−O結合に帰属されるピークの強度Iを求める第2の工程と、
第1の工程で得られたIに対する第2の工程で得られたIの比I/Iを求め、予め得られているピーク強度の比I/Iと触媒活性との相関に基づいて第2の工程における再生処理の条件の良否を判定する第3の工程と、
を備える、水素化処理用触媒の再生処理条件の選別方法。
(2)アルミニウム酸化物を含む無機担体及び該無機担体に担持されたコバルトを含有する水素化処理用触媒であって留出石油留分を処理するための水素化処理に使用された後の触媒を、(1)に記載の方法により選別された条件で再生処理する工程を備える、再生水素化処理用触媒の製造方法。
(3)選別された上記条件が、下記式(1)で表される条件を満たすものである、(2)に記載の方法。
1.22≦I/I≦1.35 (1)
[式(1)中、Iは、水素化処理に用いられる前の前記水素化処理用触媒の動径分布曲線における、Co−O結合に帰属されるピークの強度を示し、Iは、水素化処理及び再生処理を経た後の前記水素化処理用触媒の動径分布曲線における、Co−O結合に帰属されるピークの強度を示す。]
In order to solve the above-described problems, the present invention provides a method for selecting a regeneration condition for a hydrotreating catalyst described in (1) below, and a regenerated hydrotreating catalyst described in (2) and (3) below. A manufacturing method is provided.
(1) When regenerating a hydrotreating catalyst for treating a distillate petroleum fraction, a method for selecting regeneration treatment conditions,
An inorganic carrier containing aluminum oxide and a catalyst for hydrotreating containing cobalt supported on the inorganic carrier and before being used for hydrotreating are subjected to X-ray absorption fine structure analysis to obtain Co K absorption. A first step of obtaining a radial distribution curve from the broad X-ray absorption fine structure spectrum at the end, and obtaining an intensity I 0 of a peak attributed to a Co—O bond in the radial distribution curve;
The hydrotreating catalyst after the hydrotreating is regenerated under predetermined conditions, the regenerated catalyst is subjected to X-ray absorption fine structure analysis, and from the wide X-ray absorption fine structure spectrum of the Co K absorption edge. A second step of obtaining a radial distribution curve and obtaining an intensity I of a peak attributed to a Co-O bond in the radial distribution curve;
The ratio I / I 0 of I obtained in the second step with respect to I 0 obtained in the first step is obtained, and based on the correlation between the peak intensity ratio I / I 0 obtained in advance and the catalyst activity A third step of determining whether or not the conditions of the regeneration process in the second step are good,
A method for selecting a regeneration treatment condition for a hydrotreating catalyst.
(2) An inorganic carrier containing an aluminum oxide and a catalyst for hydrotreatment containing cobalt supported on the inorganic carrier, and the catalyst after being used for hydrotreatment for treating a distillate petroleum fraction A method for producing a regenerated hydrotreating catalyst, comprising a step of regenerating the catalyst under the conditions selected by the method according to (1).
(3) The method according to (2), wherein the selected condition satisfies the condition represented by the following formula (1).
1.22 ≦ I / I 0 ≦ 1.35 (1)
[In the formula (1), I 0 represents the intensity of a peak attributed to a Co—O bond in the radial distribution curve of the hydrotreating catalyst before being used for hydrotreating, and I represents hydrogen The intensity | strength of the peak which belongs to the Co-O bond in the radial distribution curve of the said catalyst for hydrogenation treatment after passing through a hydrogenation process and a regeneration process is shown. ]

本発明によれば、使用済みの水素化処理用触媒から、安定して高い活性を有する再生水素化処理用触媒を製造することを可能とする、水素化処理用触媒の再生条件の選別方法及び再生水素化処理用触媒の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the selection method of the regeneration conditions of the hydrotreating catalyst which makes it possible to manufacture the regenerated hydrotreating catalyst which has a stable high activity from the used hydrotreating catalyst, and A method for producing a regenerated hydrotreating catalyst is provided.

Co K吸収端のEXAFS(X−ray Absorption Fine Structure)スペクトルの一例を示すグラフである。It is a graph which shows an example of the EXAFS (X-ray Absorption Fine Structure) spectrum of a CoK absorption edge. 動径分布曲線の一例を示すグラフである。It is a graph which shows an example of a radial distribution curve. 実施例1〜5及び比較例2、3で得られた、ピーク強度比I/Iと比活性との相関を示すグラフである。Obtained in Examples 1 to 5 and Comparative Examples 2 and 3, is a graph showing the correlation between the peak intensity ratio I / I 0 and specific activity. 実施例6〜8及び比較例4で得られた、ピーク強度比I/Iと比活性との相関を示すグラフである。Obtained in Example 6-8 and Comparative Example 4 is a graph showing the correlation between the peak intensity ratio I / I 0 and specific activity.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

(水素化処理用触媒)
本実施形態における水素化処理用触媒は、アルミニウム酸化物を含む無機担体及び該無機担体に担持されたコバルトを含有する。
(Hydroprocessing catalyst)
The hydrotreating catalyst in the present embodiment contains an inorganic carrier containing aluminum oxide and cobalt supported on the inorganic carrier.

アルミニウム酸化物を含む無機担体の好ましい例としては、アルミナ、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタニア、あるいは各種ゼオライト、セビオライト、モンモリロナイト等の各種粘土鉱物などの多孔性無機化合物をアルミナに添加した担体などを挙げることができ、中でもアルミナが特に好ましい。   Preferred examples of the inorganic carrier containing aluminum oxide include alumina, alumina-silica, alumina-boria, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-silica-zirconia, alumina-silica-titania, or various zeolites. And a carrier obtained by adding a porous inorganic compound such as various clay minerals such as ceviolite and montmorillonite to alumina, among which alumina is particularly preferable.

本実施形態に係る水素化処理用触媒において、コバルトの担持量は、コバルト酸化物として、0.5〜10質量%であることが好ましく、1〜7質量%がより好ましい。   In the hydrotreating catalyst according to the present embodiment, the supported amount of cobalt is preferably 0.5 to 10% by mass, more preferably 1 to 7% by mass as cobalt oxide.

また、上記の無機担体上には、コバルト以外に、周期表第8〜10族金属及びモリブデンから選択される1種又は2種以上の活性金属がさらに担持されていてもよい。コバルト以外の周期表第8〜10族金属としては、鉄、ニッケルが好ましく、ニッケルがより好ましい。本実施形態における活性金属の組み合わせとして、具体的にはコバルト−モリブデン、コバルト−モリブデン−ニッケルなどが好ましく用いられる。なお、ここで周期表とは、国際純正・応用化学連合(IUPAC)により規定された長周期型の周期表をいう。コバルト以外の活性金属の担持量は、活性金属の酸化物として、0.5〜40質量%であることが好ましく、1〜30質量%がより好ましい。   Moreover, on the said inorganic support | carrier, 1 type, or 2 or more types of active metals selected from the periodic table group 8-10 metal and molybdenum other than cobalt may further be carry | supported. As Group 8-10 metals of the periodic table other than cobalt, iron and nickel are preferable, and nickel is more preferable. Specifically, cobalt-molybdenum, cobalt-molybdenum-nickel, or the like is preferably used as the active metal combination in the present embodiment. Here, the periodic table is a long-period type periodic table defined by the International Union of Pure and Applied Chemistry (IUPAC). The supported amount of the active metal other than cobalt is preferably 0.5 to 40% by mass, more preferably 1 to 30% by mass as an oxide of the active metal.

上記水素化処理用触媒であって未使用のもの(未使用触媒)の好適な態様としては、アルミニウム酸化物を含む無機担体に、触媒の全質量を基準として、コバルトを酸化物として1〜7質量%、モリブデンを酸化物として10〜30質量%、それぞれ担持させて得られる触媒が挙げられる。   As a preferred embodiment of the above-mentioned hydrotreating catalyst which is unused (unused catalyst), an inorganic carrier containing aluminum oxide is used in an amount of 1 to 7 with cobalt as an oxide based on the total mass of the catalyst. Examples thereof include catalysts obtained by supporting 10% by mass and 10% by mass of molybdenum as an oxide.

コバルト及び必要に応じて用いられるその他の活性金属を前記無機担体に担持する際に用いる活性金属種の前駆体は限定されないが、各金属の無機塩、有機金属化合物等が使用され、水溶性の無機塩が好ましく使用される。担持工程においては、これら活性金属前駆体の溶液、好ましくは水溶液を用いて担持を行うことが好ましい。担持操作としては、例えば、浸漬法、含浸法、共沈法等の公知の方法が好ましく採用される。   The precursor of the active metal species used when cobalt and other active metals used as necessary are supported on the inorganic carrier is not limited, but inorganic salts of each metal, organometallic compounds, etc. are used, and water-soluble Inorganic salts are preferably used. In the supporting step, it is preferable to support using a solution of these active metal precursors, preferably an aqueous solution. As the supporting operation, for example, a known method such as an immersion method, an impregnation method, a coprecipitation method, or the like is preferably employed.

活性金属前駆体が担持された担体は、乾燥後、好ましくは酸素の存在下に焼成され、活性金属種は一旦酸化物とされることが好ましい。さらに留出石油留分の水素化処理を行う前に、予備硫化と呼ばれる硫化処理により、活性金属を硫化物とすることが好ましく行われる。   The carrier on which the active metal precursor is supported is preferably dried and then calcined in the presence of oxygen, and the active metal species is once converted to an oxide. Further, before the hydrotreating of the distillate petroleum fraction, the active metal is preferably converted into a sulfide by a sulfiding treatment called presulfiding.

(水素化処理工程)
留出石油留分の水素化処理工程においては、水素化処理反応の前に、当該設備に充填された触媒を、予備硫化と呼ばれる硫黄化合物による触媒の処理により活性金属種を金属硫化物とすることが好ましい。
(Hydrogenation process)
In the hydrotreating process of the distillate petroleum fraction, before the hydrotreating reaction, the catalyst charged in the facility is converted into a metal sulfide by treating the catalyst with a sulfur compound called presulfurization. It is preferable.

予備硫化の条件としては特に限定されないが、留出石油留分の水素化処理に使用する原料油に硫黄化合物を添加し、これを温度200〜380℃、LHSV 1〜2h−1、圧力は水素化処理運転時と同一、処理時間48時間以上の条件にて、前記再生水素化処理用触媒に連続的に接触せしめることが好ましい。前記原料油に添加する硫黄化合物としては限定されないが、ジメチルジスルフィド(DMDS)、硫化水素等が好ましく、これらを原料油に対して原料油の質量基準で1質量%程度添加することが好ましい。 Although it does not specifically limit as conditions for preliminary sulfidation, a sulfur compound is added to the feedstock used for the hydrogenation process of the distillate petroleum fraction, this is temperature 200-380 degreeC, LHSV 1-2h- 1 , Pressure is hydrogen. It is preferable to continuously contact the regenerated hydrotreating catalyst under the same conditions as in the hydrotreating operation and for a treating time of 48 hours or longer. Although it does not limit as a sulfur compound added to the said raw material oil, Dimethyl disulfide (DMDS), hydrogen sulfide, etc. are preferable, and it is preferable to add these about 1 mass% with respect to the mass of a raw material oil with respect to raw material oil.

留出石油留分の水素化処理工程における運転条件は特に限定されず、触媒の活性金属種が硫化物である状態を維持する目的で、DMDS等の硫黄化合物を原料油に少量添加してもよいが、通常は原料油中に既に含有される硫黄化合物により硫化物である状態を維持することが可能であるので、硫黄化合物は特に添加しないことが好ましい。   The operating conditions in the hydrotreating process of the distillate petroleum fraction are not particularly limited, and a small amount of a sulfur compound such as DMDS may be added to the feedstock for the purpose of maintaining a state where the active metal species of the catalyst is sulfide. Although it is good, it is usually preferable not to add a sulfur compound because it is possible to maintain a sulfide state by the sulfur compound already contained in the feedstock.

水素化処理工程における反応器入口における水素分圧は好ましくは3〜13MPa、より好ましくは3.5〜12MPa、特に好ましくは4〜11MPaである。水素分圧が3MPa未満の場合は触媒上のコーク生成が激しくなり触媒寿命が短くなる傾向にある。一方、水素分圧が13MPaを超える場合は反応器や周辺機器等の建設費が上昇し、経済性が失われる懸念がある。   The hydrogen partial pressure at the reactor inlet in the hydrotreating step is preferably 3 to 13 MPa, more preferably 3.5 to 12 MPa, and particularly preferably 4 to 11 MPa. When the hydrogen partial pressure is less than 3 MPa, coke formation on the catalyst becomes intense and the catalyst life tends to be shortened. On the other hand, when the hydrogen partial pressure exceeds 13 MPa, there is a concern that the construction cost of the reactor, peripheral equipment, and the like will increase and the economy will be lost.

水素化処理工程におけるLHSVは、好ましくは0.05〜5h−1、より好ましくは0.1〜4.5h−1、特に好ましくは0.2〜4h−1の範囲で行うことができる。LHSVが0.05h−1未満である場合には、反応器の建設費が過大となり経済性が失われる懸念がある。一方、LHSVが5h−1を超える場合には原料油の水素化処理が十分に達成されない懸念がある。 LHSV in the hydrogenation process is preferably 0.05~5H -1, more preferably 0.1~4.5H -1, particularly preferably may be in the range of 0.2~4h -1. When LHSV is less than 0.05 h −1 , there is a concern that the construction cost of the reactor becomes excessive and the economic efficiency is lost. On the other hand, when LHSV exceeds 5h- 1 , there is a concern that the hydrogenation treatment of the raw material oil is not sufficiently achieved.

水素化処理工程における水素化反応温度は、好ましくは200℃〜410℃、より好ましくは220℃〜400℃、特に好ましくは250℃〜395℃である。反応温度が200℃を下回る場合には、原料油の水素化処理が十分に達成されない傾向にある。一方、反応温度が410℃を上回る場合には、副生成物であるガス分の発生が増加するため、目的とする精製油の収率が低下することとなり望ましくない。   The hydrogenation reaction temperature in the hydrotreating step is preferably 200 ° C to 410 ° C, more preferably 220 ° C to 400 ° C, and particularly preferably 250 ° C to 395 ° C. When the reaction temperature is lower than 200 ° C., the hydrogenation treatment of the raw material oil tends not to be sufficiently achieved. On the other hand, when the reaction temperature exceeds 410 ° C., the generation of a gas component as a by-product increases, which is not desirable because the yield of the target refined oil decreases.

前記水素化処理工程における水素/油比は、好ましくは100〜8000SCF/BBL、より好ましくは120〜7000SCF/BBL、特に好ましくは150〜6000SCF/BBLの範囲で行うことができる。水素/油比が100SCF/BBL未満の場合には、リアクター出口での触媒上のコーク生成が進行し、触媒寿命が短くなる傾向にある。一方、水素/油比が8000SCF/BBLを超える場合には、リサイクルコンプレッサーの建設費が過大になり、経済性が失われる懸念がある。   The hydrogen / oil ratio in the hydrotreating step is preferably 100 to 8000 SCF / BBL, more preferably 120 to 7000 SCF / BBL, and particularly preferably 150 to 6000 SCF / BBL. When the hydrogen / oil ratio is less than 100 SCF / BBL, coke formation on the catalyst proceeds at the reactor outlet, and the catalyst life tends to be shortened. On the other hand, when the hydrogen / oil ratio exceeds 8000 SCF / BBL, there is a concern that the construction cost of the recycle compressor becomes excessive and the economic efficiency is lost.

前記水素化処理工程における反応形式は特に限定されないが、通常は、固定床、移動床等の種々のプロセスから選ぶことができるが、固定床が好ましい。また反応器は塔状であることが好ましい。   The reaction type in the hydrotreating step is not particularly limited, but usually, it can be selected from various processes such as a fixed bed and a moving bed, but a fixed bed is preferable. The reactor is preferably tower-shaped.

留出石油留分の水素化処理に供される原料油としては、蒸留試験による留出温度が好ましくは130〜700℃、さらに好ましくは140〜680℃、特に好ましくは150〜660℃の範囲のものが使用される。留出温度が130℃を下回る原料油を用いた場合には水素化処理反応が気相での反応となり、上記の触媒では性能が充分に発揮されない傾向にある。一方、留出温度が700℃を上回る原料油を用いた場合には、原料油中に含まれる重金属などの触媒に対する被毒物の含有量が大きくなり、上記触媒の寿命が大きく低下する。原料油として用いる留出石油留分のその他の性状としては特に限定されないが、代表的な性状としては、15℃における密度が0.8200〜0.9700g/cm、硫黄含有量1.0〜4.0質量%である。 As the feedstock to be subjected to the hydrotreating of the distillate petroleum fraction, the distillation temperature by distillation test is preferably 130 to 700 ° C, more preferably 140 to 680 ° C, particularly preferably 150 to 660 ° C. Things are used. When a feed oil having a distillation temperature lower than 130 ° C. is used, the hydrotreating reaction becomes a reaction in the gas phase, and the above-mentioned catalyst tends not to exhibit sufficient performance. On the other hand, when a feedstock having a distillation temperature exceeding 700 ° C. is used, the content of poisonous substances with respect to the catalyst such as heavy metals contained in the feedstock is increased, and the life of the catalyst is greatly reduced. Other properties of the distillate petroleum fraction used as the feedstock are not particularly limited, but typical properties include a density at 15 ° C. of 0.8200 to 0.9700 g / cm 3 and a sulfur content of 1.0 to It is 4.0 mass%.

硫黄含有量とは、JIS K 2541―1992に規定する「原油及び石油製品―硫黄分試験方法」の「放射線式励起法」に準拠して測定される硫黄含有量を意味する。また、蒸留試験とは、JIS K 2254に規定する「石油製品―蒸留試験方法」の「減圧法蒸留試験方法」または「ガスクロマトグラフ法蒸留試験方法」に準拠して行われるものを意味する。15℃における密度と、JIS K2249に規定する「原油及び石油製品−密度試験方法及び密度・質量・容量換算表」の「振動式密度試験方法」に準拠して行われるものを意味する。   The sulfur content means a sulfur content measured in accordance with “Radiation Excitation Method” of “Crude Oil and Petroleum Products—Sulfur Content Test Method” defined in JIS K2541-1992. Further, the distillation test means a test conducted in accordance with “Petroleum product-distillation test method” “depressurization method distillation test method” or “gas chromatographic method distillation test method” defined in JIS K 2254. It means what is performed in accordance with the density at 15 ° C. and “vibration density test method” of “crude oil and petroleum products—density test method and density / mass / capacity conversion table” defined in JIS K2249.

(再生処理条件の選別方法)
本実施形態に係る再生処理条件の選別方法は、以下の工程を備える。
工程(1):アルミニウム酸化物を含む無機担体及び該無機担体に担持されたコバルトを含有する水素化処理用触媒であって水素化処理に用いられる前の触媒について、X線吸収微細構造分析を行い、Co K吸収端の広域X線吸収微細構造スペクトルから動径分布曲線を得、該動径分布曲線においてCo−O結合に帰属されるピークの強度Iを求める。
工程(2):水素化処理後の上記水素化処理用触媒について所定の条件で再生処理を行い、再生処理後の該触媒についてX線吸収微細構造分析を行い、Co K吸収端の広域X線吸収微細構造スペクトルから動径分布曲線を得、該動径分布曲線においてCo−O結合に帰属されるピークの強度Iを求める。
工程(3):工程(1)で得られたIに対する工程(2)で得られたIの比I/Iを求め、予め得られているピーク強度の比I/Iと触媒活性との相関に基づいて第2の工程における再生処理の条件の良否を判定する。
(Selection method of regeneration processing conditions)
The selection method of the regeneration processing conditions according to this embodiment includes the following steps.
Step (1): X-ray absorption fine structure analysis of an inorganic carrier containing aluminum oxide and a catalyst for hydrotreatment containing cobalt supported on the inorganic carrier before being used for hydrotreatment Then, a radial distribution curve is obtained from the wide-area X-ray absorption fine structure spectrum at the Co K absorption edge, and the peak intensity I 0 attributed to the Co—O bond in the radial distribution curve is obtained.
Step (2): The hydrotreating catalyst after the hydrotreating is regenerated under predetermined conditions, the regenerated catalyst is subjected to X-ray absorption fine structure analysis, and the broad X-ray at the Co K absorption edge. A radial distribution curve is obtained from the absorption fine structure spectrum, and a peak intensity I attributed to the Co—O bond in the radial distribution curve is obtained.
Step (3): The ratio I / I 0 of I obtained in Step (2) to I 0 obtained in Step (1) is determined, and the ratio I / I 0 of the peak intensity obtained in advance and the catalytic activity are obtained. Whether or not the conditions of the reproduction process in the second step are good is determined based on the correlation with the above.

工程(1)、(2)におけるXAFS(X−ray Absorption Fine Structure)分析は、電子加速器で発生する放射光に含まれるX線、あるいはこれに相当するX線を、エネルギーを変化させて分析対象物質に照射し、該物質のX線吸収率をX線エネルギーに対してプロットした吸収スペクトル(XAFSスペクトル)により該物質の構造を分析する手法である。EXAFSスペクトルは、XAFSスペクトルのうち、照射X線エネルギーに対してX線吸収率が急激に変化する領域(吸収端、本実施形態においてはCo K吸収端)よりも高エネルギー側の領域のスペクトルである。このEXAFSスペクトルをフーリエ変換することにより、図2に示す動径分布曲線を得ることができる。   The X-AFS (X-ray Absorption Fine Structure) analysis in the steps (1) and (2) is performed by changing the energy of the X-rays included in the emitted light generated by the electron accelerator or the X-rays corresponding thereto. This is a method of irradiating a substance and analyzing the structure of the substance by an absorption spectrum (XAFS spectrum) in which the X-ray absorption rate of the substance is plotted against the X-ray energy. The EXAFS spectrum is a spectrum in a region on the higher energy side than the region (absorption edge, CoK absorption edge in the present embodiment) in which the X-ray absorption rate rapidly changes with respect to the irradiation X-ray energy. is there. A radial distribution curve shown in FIG. 2 can be obtained by Fourier transforming the EXAFS spectrum.

このようにしれ得られる動径分布曲線から、測定対象原子の周囲の構造に関する情報を得ることができる。本実施形態においては、動径分布関数においてCo−O結合に帰属されるピーク(通常、原子間距離0.16nm±0.02nmの範囲にあるピーク)に着目し、工程(1)、(2)ではピークの強度I、Iを求める。 Information on the structure around the measurement target atom can be obtained from the radial distribution curve obtained in this way. In the present embodiment, focusing on a peak (usually a peak having an interatomic distance of 0.16 nm ± 0.02 nm) attributed to the Co—O bond in the radial distribution function, the steps (1), (2 ), Peak intensities I 0 and I are obtained.

本発明におけるXAFS分析は、以下の方法により実施される(後述する実施例においても同様である。)。
X線源:連続X線
分光結晶:Si(111)
ビームサイズ:1mm×2mm
検出器:電離箱
測定雰囲気:大気
Dwell time:1sec
測定範囲:Co K吸収端(7200〜8800eV)
データ解析(フーリエ変換)プログラム:REX2000(リガク製)
The XAFS analysis in the present invention is performed by the following method (the same applies to the examples described later).
X-ray source: Continuous X-ray spectroscopic crystal: Si (111)
Beam size: 1mm x 2mm
Detector: Ionization chamber Measurement atmosphere: Air Dwell time: 1 sec
Measurement range: Co K absorption edge (7200-8800 eV)
Data analysis (Fourier transform) program: REX2000 (manufactured by Rigaku)

また、EXAFSスペクトルを抽出する際のベースラインの取り方等、データ解析の詳細については、「X線吸収分光法 ―XAFSとその応用― 太田俊明編、アイピーシー発行(2002)、57〜61ページ」に記載されている方法に従ってXAFS解析統合ソフトウェアREX2000(リガク)を用いて行うことができる。後述する実施例においてもこの手法を採用した。   For details on data analysis, such as taking a baseline when extracting EXAFS spectra, see "X-ray absorption spectroscopy-XAFS and its applications-Toshiaki Ota, published by IPC (2002), pages 57-61. Can be performed using the XAFS analysis integration software REX2000 (Rigaku). This technique was also adopted in the examples described later.

工程(3)では、工程(1)で得られたIに対する工程(2)で得られたIの比I/Iを求め、予め得られているピーク強度の比I/Iと触媒活性との相関に基づいて第2の工程における再生処理の条件の良否を判定する。 In step (3), the ratio I / I 0 of I obtained in step (2) to I 0 obtained in step (1) is determined, and the peak intensity ratio I / I 0 obtained in advance and the catalyst are obtained. Based on the correlation with the activity, the quality of the condition of the regeneration process in the second step is determined.

本実施形態において、工程(3)で用いるピーク強度比I/Iと触媒活性との相関は、異なる再生処理条件で再生処理した複数の再生水素化処理用触媒について、それぞれ上記の工程(2)を行い、その一方で、これらの再生水素化処理用触媒の触媒活性を評価することによって、予め求めておくことができる。再生処理条件としては、処理温度、処理時間、処理雰囲気などが挙げられる。また、評価する触媒活性としては、脱硫活性などが挙げられる。 In this embodiment, the correlation between the peak intensity ratio I / I 0 used in the step (3) and the catalyst activity is the same as that in the step (2) for a plurality of regenerated hydrotreating catalysts regenerated under different regeneration conditions. On the other hand, the catalytic activity of these regenerated hydrotreating catalysts can be evaluated in advance. Examples of the regeneration processing conditions include processing temperature, processing time, processing atmosphere, and the like. Moreover, desulfurization activity etc. are mentioned as catalyst activity to evaluate.

例えば、未使用触媒について上記の工程(1)を行う。また、使用済みの水素化処理用触媒について処理温度を変化させ、それ以外の再生処理条件を固定した再生処理を行うことにより複数の再生水素化処理用触媒を得、それらの再生水素化処理用触媒について、それぞれ上記の工程(2)を行う。その一方で、未使用触媒及び再生水素化処理用触媒のそれぞれについて脱硫活性を評価し、得られるI/Iと脱硫活性との相関を予め求めておく。なお、未使用触媒(新触媒)の活性はその製造者、製造単位等によりそれぞれ異なるため、水素化処理用触媒を使用した後再生処理して得られる再生水素化処理用触媒の活性は、相当する未使用の触媒の活性基準での相対的な活性により評価することが妥当と考えられる。そこで、下記の式により定義される比活性により再生水素化処理用触媒の活性を評価する。
比活性=再生水素化処理用触媒の脱硫速度定数/未使用の水素化処理用触媒の脱硫速度定数
For example, the above step (1) is performed on the unused catalyst. In addition, a plurality of regenerated hydrotreating catalysts are obtained by changing the treatment temperature of the used hydrotreating catalyst and performing a regenerating process in which other regeneration conditions are fixed. The above step (2) is performed for each catalyst. On the other hand, the desulfurization activity is evaluated for each of the unused catalyst and the regenerated hydrotreating catalyst, and the correlation between the obtained I / I 0 and the desulfurization activity is obtained in advance. Since the activity of the unused catalyst (new catalyst) differs depending on the manufacturer, production unit, etc., the activity of the regenerated hydrotreating catalyst obtained by regenerating after using the hydrotreating catalyst is considerable. It is considered appropriate to evaluate the relative activity based on the activity standard of the unused catalyst. Therefore, the activity of the regenerated hydrotreating catalyst is evaluated based on the specific activity defined by the following equation.
Specific activity = desulfurization rate constant of regenerated hydrotreating catalyst / desulfurization rate constant of unused hydrotreating catalyst

このようにして得られるピーク強度比I/Iと触媒活性との相関に基づいて、第2の工程における再生処理の条件の良否を判定することによって、使用済みの水素化処理用触媒から、安定して高い活性を有する再生水素化処理用触媒を製造するための再生処理条件を精度よく選別することができる。 Based on the correlation between the peak intensity ratio I / I 0 thus obtained and the catalyst activity, by determining whether the conditions of the regeneration treatment in the second step are good or not, from the used hydrotreating catalyst, Regeneration conditions for producing a regenerated hydrotreating catalyst having high activity stably can be accurately selected.

(再生水素化処理用触媒の製造方法)
本実施形態に係る再生水素化触媒の製造方法は、上記の方法により選別された再生処理条件下、アルミニウム酸化物を含む無機担体及び該無機担体に担持されたコバルトを含有する水素化処理用触媒であって、留出石油留分を処理するための水素化処理に使用された後の触媒を再生処理する工程を備える。
(Method for producing regenerated hydrotreating catalyst)
The method for producing a regenerated hydrogenation catalyst according to the present embodiment includes an inorganic carrier containing aluminum oxide and a cobalt hydrotreating catalyst containing cobalt supported on the inorganic carrier under the regeneration treatment conditions selected by the above method. The method comprises a step of regenerating the catalyst after it has been used for hydroprocessing to treat a distillate petroleum fraction.

再生処理工程に用いられる設備は特に限定されないが、留出石油留分の水素化処理設備とは異なる設備で行われることが好ましい。すなわち、留出石油留分の水素化処理設備の反応器に触媒を充填したままの状態で再生処理を行うのではなく、反応器より触媒を抜き出し、抜き出された触媒を再生処理のための設備に移動させて、該設備により再生処理を行うことが好ましい。   Although the equipment used for the regeneration treatment process is not particularly limited, it is preferably carried out in equipment different from the hydrotreating equipment for the distillate petroleum fraction. That is, instead of performing the regeneration process with the catalyst in the reactor of the hydrotreating equipment of the distillate petroleum fraction, the catalyst is extracted from the reactor, and the extracted catalyst is used for the regeneration process. It is preferable to move to an equipment and perform a regeneration process using the equipment.

使用済み触媒の再生処理を行うための形態は限定されないが、使用済み触媒から微粉化した触媒、場合により触媒以外の充填材等を篩い分けにより除去する工程、使用済み触媒に付着した油分を除去する工程(脱油工程)、使用済み触媒に沈着したコーク、硫黄分等を除去する工程(再生工程)からこの順に構成されるものであることが好ましい。   The form for regenerating the used catalyst is not limited, but the process of removing the finely divided catalyst from the used catalyst, and in some cases, the filler other than the catalyst by sieving, removing the oil adhering to the used catalyst It is preferable that the step is constituted in this order from the step of performing (deoiling step), the step of removing coke deposited on the used catalyst, the sulfur content, etc. (regeneration step).

このうち、脱油工程には、酸素が実質的に存在しない雰囲気、例えば窒素雰囲気下に、使用済み触媒を200〜400℃程度の温度に加熱することにより油分を揮散せしめる方法などが好ましく採用される。また、脱油工程は、軽質の炭化水素類にて油分を洗浄する方法、あるいはスチーミングによる油分の除去等の方法によるものであってもよい。   Among these, in the deoiling step, a method of volatilizing the oil by heating the used catalyst to a temperature of about 200 to 400 ° C. in an atmosphere where oxygen is not substantially present, for example, a nitrogen atmosphere is preferably employed. The The deoiling step may be performed by a method of washing oil with light hydrocarbons or a method of removing oil by steaming.

再生工程における再生処理条件としては、上記の再生処理条件の選別方法において「良」と判定されたものを採用する。例えば、選別された上記条件が、下記式(1)で表される条件を満たすものであると、再生処理後の水素化処理用触媒に十分な触媒活性を付与することができ、好ましい。
1.22≦I/I≦1.35 (1)
[式(1)中、Iは、水素化処理に用いられる前の前記水素化処理用触媒の動径分布曲線における、Co−O結合に帰属されるピークの強度を示し、Iは、水素化処理及び再生処理を経た後の前記水素化処理用触媒の動径分布曲線における、Co−O結合に帰属されるピークの強度を示す。]
As the regeneration process conditions in the regeneration process, those determined as “good” in the above-described regeneration process condition selection method are adopted. For example, it is preferable that the selected conditions satisfy the condition represented by the following formula (1) because sufficient catalyst activity can be imparted to the hydrotreating catalyst after the regeneration treatment.
1.22 ≦ I / I 0 ≦ 1.35 (1)
[In the formula (1), I 0 represents the intensity of a peak attributed to a Co—O bond in the radial distribution curve of the hydrotreating catalyst before being used for hydrotreating, and I represents hydrogen The intensity | strength of the peak which belongs to the Co-O bond in the radial distribution curve of the said catalyst for hydrogenation treatment after passing through a hydrogenation process and a regeneration process is shown. ]

また、本実施形態における再生処理の処理雰囲気、処理温度及び処理時間は、以下のようにすることができる。但し、以下の記載は、処理雰囲気、処理温度及び処理時間が各要件を満たせば必ず再生水素化処理用触媒に十分な触媒活性を付与できることを意味するものではなく、本実施形態における再生処理の処理雰囲気、処理温度及び処理時間は、再生処理条件の選別方法の工程(3)において「良」と判定されるように適宜選定されるものであることは言うまでもない。   In addition, the processing atmosphere, processing temperature, and processing time of the regeneration processing in the present embodiment can be as follows. However, the following description does not mean that sufficient catalytic activity can be imparted to the regenerated hydrotreating catalyst as long as the processing atmosphere, the processing temperature, and the processing time satisfy the respective requirements. It goes without saying that the processing atmosphere, the processing temperature, and the processing time are appropriately selected so as to be determined as “good” in the step (3) of the regeneration processing condition selection method.

再生工程における処理雰囲気は、分子状酸素が存在する雰囲気、例えば空気中、特には空気流中とすることが好ましい。   The treatment atmosphere in the regeneration step is preferably an atmosphere in which molecular oxygen exists, for example, in the air, particularly in an air stream.

また、再生工程の処理温度は、再生水素化処理用触媒の履歴等に応じて異なるが、好ましくは250〜380℃、より好ましくは260〜350℃、さらに好ましくは280〜320℃の範囲で選択される。沈着したコーク、硫黄分等を酸化して除去する方法が好ましく採用される。加熱温度が前記下限温度を下回る場合には、コーク、硫黄分等の触媒活性を低下せしめた物質の除去が効率的に進行しない等の傾向にある。一方、加熱温度が前記上限温度を超える場合には、触媒中の活性金属が複合金属酸化物を形成する、凝集を起こす等して、得られる再生水素化処理用触媒の活性が低下する傾向にある。   The treatment temperature in the regeneration step varies depending on the history of the regenerative hydrotreating catalyst, but is preferably 250 to 380 ° C, more preferably 260 to 350 ° C, and even more preferably 280 to 320 ° C. Is done. A method of oxidizing and removing deposited coke and sulfur is preferably employed. When the heating temperature is lower than the lower limit temperature, there is a tendency that the removal of substances having reduced catalytic activity such as coke and sulfur content does not proceed efficiently. On the other hand, when the heating temperature exceeds the upper limit temperature, the active metal in the catalyst tends to decrease the activity of the resulting regenerated hydrotreating catalyst by forming a composite metal oxide or causing aggregation. is there.

前記再生処理の時間は、好ましくは0.5時間以上、より好ましくは2時間以上、さらに好ましくは2.5時間以上、特に好ましくは3時間以上である。処理時間が0.5時間未満の場合には、コーク、硫黄分等の触媒活性を低下せしめた物質の除去が効率的に進行しない傾向にある。   The regeneration treatment time is preferably 0.5 hours or more, more preferably 2 hours or more, further preferably 2.5 hours or more, and particularly preferably 3 hours or more. When the treatment time is less than 0.5 hours, the removal of substances having reduced catalytic activity such as coke and sulfur content tends not to proceed efficiently.

(再生水素化処理用触媒)
上記の製造方法によって得られた再生水素化処理用触媒は、工程(3)におけるピーク強度比I/Iが1.22〜1.35の範囲内のものであることが好ましく、より好ましくは1.25〜1.34、さらに好ましくは1.27〜1.33である。ピーク強度比I/Iが上記の範囲内であると、コバルトの酸化物の構造変化に起因する触媒活性の低下を十分に抑制することができる。
(Regenerative hydrogenation catalyst)
The regenerated hydrotreating catalyst obtained by the above production method preferably has a peak intensity ratio I / I 0 in step (3) within the range of 1.22-1.35, more preferably It is 1.25 to 1.34, more preferably 1.27 to 1.33. When the peak intensity ratio I / I 0 is within the above range, it is possible to sufficiently suppress the decrease in the catalytic activity due to the structural change of the cobalt oxide.

また、再生水素化処理用触媒に含まれる残留カーボン量は、再生水素化処理用触媒の質量基準で、好ましくは0.15質量%以上、さらに好ましくは0.4質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは3.0質量%以下、さらに好ましくは2.5質量%以下、特に好ましくは2.0質量%以下である。0.15質量%を下回ると、再生工程における熱履歴を受けて活性金属の凝集等が起こり、再生水素化処理用触媒の活性が低下する傾向にある。一方、3.0質量%を超える場合には、カーボンが触媒の活性点を塞いでしまうことにより再生水素化処理用触媒の活性が低下する傾向にある。なお、本発明において「残留カーボン」とは、使用済みの水素化処理用触媒を再生処理した後に該再生水素化処理用触媒中に残留するカーボン(コーク)をいい、再生水素化処理用触媒中の残留カーボン量は、JIS M 8819に規定する「石炭類及びコークス類−機器分析装置による元素分析方法」に準拠して測定を行う。   The amount of residual carbon contained in the regenerated hydrotreating catalyst is preferably 0.15% by mass or more, more preferably 0.4% by mass or more, particularly preferably 0, based on the mass of the regenerated hydrotreating catalyst. 0.5 mass% or more, preferably 3.0 mass% or less, more preferably 2.5 mass% or less, and particularly preferably 2.0 mass% or less. When the amount is less than 0.15% by mass, active metal aggregation occurs due to the thermal history in the regeneration step, and the activity of the regenerated hydrotreating catalyst tends to decrease. On the other hand, when it exceeds 3.0% by mass, the activity of the regenerated hydrotreating catalyst tends to decrease due to the carbon blocking the active sites of the catalyst. In the present invention, “residual carbon” refers to carbon (coke) remaining in the regenerated hydrotreating catalyst after regenerating the used hydrotreating catalyst, and in the regenerated hydrotreating catalyst. The amount of residual carbon is measured in accordance with “Coal and cokes—elemental analysis method using equipment analyzer” defined in JIS M 8819.

(再生水素化処理用触媒の使用法)
本実施形態に係る再生水素化処理用触媒は、上述の留出石油留分の水素化処理工程の触媒として単独で使用してもよく、未使用触媒と積層して使用してもよい。未使用触媒と積層して使用する場合、再生水素化処理用触媒の割合は特に限定されるものではないが、触媒廃棄量の削減、触媒交換時における触媒の分離し易さ等の観点で未使用触媒100に対して80以上(質量比)が好ましく、120以上(質量比)がより好ましい。
(Usage of regenerated hydrogenation catalyst)
The regenerated hydrotreating catalyst according to this embodiment may be used alone as a catalyst for the hydrotreating process of the above-mentioned distillate petroleum fraction, or may be used in a layered manner with an unused catalyst. In the case of stacking with an unused catalyst, the ratio of the regenerated hydrotreating catalyst is not particularly limited, but it is not used from the viewpoint of reducing the amount of catalyst waste and ease of separating the catalyst when replacing the catalyst. 80 or more (mass ratio) is preferable with respect to the catalyst 100 used, and 120 or more (mass ratio) is more preferable.

次に実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples.

[実施例1〜4、比較例1、2]
(未使用触媒および再生触媒)
まず、活性金属としてコバルト及びモリブデンをアルミナ担体に担持した触媒(未使用触媒、コバルト担持量:2.5質量%、モリブデン担持量:22.9質量%)を用意した。次に、上記の触媒の一部を、灯油の水素化処理設備において2年間使用し、使用済み触媒を得た。
[Examples 1 to 4, Comparative Examples 1 and 2]
(Unused catalyst and regenerated catalyst)
First, a catalyst in which cobalt and molybdenum as active metals were supported on an alumina carrier (unused catalyst, cobalt supported amount: 2.5 mass%, molybdenum supported amount: 22.9 mass%) was prepared. Next, a part of the catalyst was used in a kerosene hydrotreating facility for 2 years to obtain a used catalyst.

(再生処理)
次に、上記の使用済み触媒について、空気流中、表1に示す処理温度で5時間の再生処理を行った。このようにして得られた実施例1〜4及び比較例2の再生触媒(1回再生触媒)について、以下のXAFS分析及び触媒活性の評価を行った。また、比較例1では、上記の未使用触媒をそのまま用いて、XAFS分析及び触媒活性の評価を行った。
(Reproduction processing)
Next, the spent catalyst was subjected to a regeneration treatment for 5 hours at a treatment temperature shown in Table 1 in an air stream. The following XAFS analysis and evaluation of catalytic activity were performed on the regenerated catalysts of Examples 1 to 4 and Comparative Example 2 (single regenerated catalyst) thus obtained. In Comparative Example 1, the above-mentioned unused catalyst was used as it was, and XAFS analysis and catalytic activity were evaluated.

(XAFS分析)
比較例1の未使用触媒並びに実施例1〜4及び比較例2の各再生触媒についてXAFS分析を行い、各触媒のCo K吸収端のEXAFSスペクトルから動径分布曲線を得、該動径分布曲線におけるCo−O結合に帰属されるピーク(原子間距離0.16nm±0.02nmの範囲にある主ピーク)の強度I又はIを求めた。XAFS分析の手順の詳細は実施形態において説明した通りである。実施例1〜4及び比較例1、2で得られたピーク強度比I/Iを表1に示す。
(XAFS analysis)
XAFS analysis was performed on the unused catalyst of Comparative Example 1 and each of the regenerated catalysts of Examples 1 to 4 and Comparative Example 2, and a radial distribution curve was obtained from the EXAFS spectrum of the Co K absorption edge of each catalyst. The intensity I 0 or I of the peak attributed to the Co—O bond in (the main peak in the range of the interatomic distance of 0.16 nm ± 0.02 nm) was determined. Details of the procedure of the XAFS analysis are as described in the embodiment. Table 1 shows the peak intensity ratios I / I 0 obtained in Examples 1 to 4 and Comparative Examples 1 and 2.

(触媒活性の評価)
未使用触媒又は複数の再生触媒のそれぞれについて、以下のようにして触媒活性を評価した。
まず、固定床連続流通式反応装置に触媒を充填し、触媒の予備硫化を行った。具体的には、灯油留分に、該留分の質量基準で1質量%のDMDSを添加し、これを48時間前記触媒に対して連続的に供給した。そしてその後、上記の灯油留分(DMDS未添加のもの)を原料油として、水素分圧3MPa、LHSV1h−1、水素/油比200NL/L、反応温度300℃で水素化処理反応を行った。生成油中の硫黄分含有量から、脱硫速度定数を求めた。また、再生触媒1に対応する未使用の触媒を用いて同様の反応を行って脱硫速度定数を求め、これらから再生触媒1の比活性を算出した。結果を表1に示す。
(Evaluation of catalytic activity)
For each of the unused catalyst or the plurality of regenerated catalysts, the catalytic activity was evaluated as follows.
First, the fixed bed continuous flow reactor was filled with the catalyst, and the catalyst was presulfided. Specifically, 1% by mass of DMDS was added to the kerosene fraction based on the mass of the fraction, and this was continuously supplied to the catalyst for 48 hours. Then, the above-mentioned kerosene fraction (without DMDS added) was used as a raw material oil, and a hydrogenation reaction was performed at a hydrogen partial pressure of 3 MPa, LHSV1h −1 , a hydrogen / oil ratio of 200 NL / L, and a reaction temperature of 300 ° C. The desulfurization rate constant was determined from the sulfur content in the product oil. In addition, the same reaction was performed using an unused catalyst corresponding to the regenerated catalyst 1 to obtain a desulfurization rate constant, and the specific activity of the regenerated catalyst 1 was calculated from these. The results are shown in Table 1.

Figure 2011200797
Figure 2011200797

表1に示した結果から、ピーク強度比I/Iが1.24〜1.32の範囲内であれば、1回再生触媒の未使用触媒に対する比活性を0.90以上となると予測できる。 From the results shown in Table 1, when the peak intensity ratio I / I 0 is in the range of 1.24 to 1.32, it can be predicted that the specific activity of the once-regenerated catalyst with respect to the unused catalyst is 0.90 or more. .

[実施例5、比較例3]
実施例5及び比較例3においては、それぞれ再生処理温度を200℃又は450℃としたこと以外は上記と同様にして、再生処理及びXAFS分析を行った。実施例5及び比較例3で得られたピーク強度比I/Iを表2に示す。
また、実施例1〜4及び比較例1、2で得られたピーク強度比I/Iと触媒活性との相関に基づいて、実施例5の再生処理条件によれば、1回再生触媒の未使用触媒に対する比活性は0.90以上になると予測した。一方、比較例3の再生処理条件によれば、1回再生触媒の未使用触媒に対する比活性は0.90未満になると予測した。
[Example 5, Comparative Example 3]
In Example 5 and Comparative Example 3, regeneration treatment and XAFS analysis were performed in the same manner as described above except that the regeneration treatment temperature was 200 ° C. or 450 ° C., respectively. Table 2 shows the peak intensity ratios I / I 0 obtained in Example 5 and Comparative Example 3.
Further, based on the correlation between the peak intensity ratio I / I 0 and the catalyst activity obtained in Examples 1 to 4 and Comparative Examples 1 and 2, according to the regeneration treatment conditions of Example 5, The specific activity relative to the unused catalyst was predicted to be 0.90 or higher. On the other hand, according to the regeneration treatment conditions of Comparative Example 3, it was predicted that the specific activity of the once regenerated catalyst with respect to the unused catalyst would be less than 0.90.

次に、実施例5及び比較例3の各再生触媒について、上記と同様にして触媒活性の評価を行った。得られた比活性を表2に示す。
表2に示したように、実施例5及び比較例3のいずれの場合も、ピーク強度比I/Iから予測した触媒活性と、実際に評価した触媒活性とが良好な相関を示した。
Next, the catalytic activity of each regenerated catalyst of Example 5 and Comparative Example 3 was evaluated in the same manner as described above. The specific activity obtained is shown in Table 2.
As shown in Table 2, in both cases of Example 5 and Comparative Example 3, there was a good correlation between the catalytic activity predicted from the peak intensity ratio I / I 0 and the actually evaluated catalytic activity.

Figure 2011200797
Figure 2011200797

さらに、実施例1〜5及び比較例2、3で得られたピーク強度I/Iと比活性との相関を図3に示す。図3に示した結果から、ピーク強度比I/Iが1.22〜1.35の範囲内であれば、1回再生触媒の未使用触媒に対する比活性は0.90以上となると予測できる。 Furthermore, the correlation between the peak intensity I / I 0 and the specific activity obtained in Examples 1 to 5 and Comparative Examples 2 and 3 is shown in FIG. From the results shown in FIG. 3, when the peak intensity ratio I / I 0 is in the range of 1.22 to 1.35, the specific activity of the once regenerated catalyst with respect to the unused catalyst can be predicted to be 0.90 or more. .

[実施例6、7、比較例4]
上記の実施例4の再生触媒の一部を、灯油の水素化処理設備において2年間使用し、使用済み触媒を得た。
この使用済み触媒について、空気流中、表3に示す処理温度で5時間の再生処理を行った。このようにして得られた実施例6、7及び比較例4の再生触媒(2回再生触媒)について、上記と同様にしてXAFS分析及び触媒活性の評価を行った。得られたピーク強度比I/I及び比活性を3に示す。なお、表3に示すピーク強度I/I及び比活性は、それぞれ比較例1の未使用触媒を基準とするものである。
[Examples 6 and 7, Comparative Example 4]
A part of the regenerated catalyst of Example 4 was used in a kerosene hydrotreating facility for 2 years to obtain a used catalyst.
This spent catalyst was regenerated for 5 hours in the air stream at the treatment temperature shown in Table 3. The thus-obtained regenerated catalysts of Examples 6 and 7 and Comparative Example 4 (twice regenerated catalyst) were subjected to XAFS analysis and evaluation of catalytic activity in the same manner as described above. The obtained peak intensity ratio I / I 0 and specific activity are shown in 3. The peak intensity I / I 0 and specific activity shown in Table 3 are based on the unused catalyst of Comparative Example 1, respectively.

Figure 2011200797
Figure 2011200797

表3に示した結果から、ピーク強度比I/Iが1.23〜1.31の範囲内であれば、2回再生触媒の未使用触媒に対する比活性は0.80以上となると予測できる。 From the results shown in Table 3, if the peak intensity ratio I / I 0 is within the range of 1.23 to 1.31, it can be predicted that the specific activity of the twice-regenerated catalyst with respect to the unused catalyst will be 0.80 or more. .

[実施例8]
実施例8においては、再生処理温度を400℃としたこと以外は上記と同様にして、再生処理及びXAFS分析を行った。実施例8で得られたピーク強度比I/Iを表4に示す。
ここで、実施例6、7及び比較例4で得られたピーク強度比I/Iと触媒活性との相関に基づいて、実施例8の再生処理条件によれば、2回再生触媒の未使用触媒に対する比活性は0.80以上となると予測した。
[Example 8]
In Example 8, regeneration treatment and XAFS analysis were performed in the same manner as described above except that the regeneration treatment temperature was 400 ° C. The peak intensity ratio I / I 0 obtained in Example 8 is shown in Table 4.
Here, based on the correlation between the peak intensity ratio I / I 0 obtained in Examples 6 and 7 and Comparative Example 4 and the catalyst activity, according to the regeneration treatment condition of Example 8, the unreacted catalyst of the twice-regenerated catalyst The specific activity relative to the catalyst used was predicted to be 0.80 or more.

次に、実施例8の再生触媒について、上記と同様にして触媒活性の評価を行った。得られた比活性を表4に示す。
表4に示したように、実施例8においては、ピーク強度比I/Iから予測した触媒活性と、実際に評価した触媒活性とが良好な相関を示した。
Next, the catalyst activity of the regenerated catalyst of Example 8 was evaluated in the same manner as described above. The specific activity obtained is shown in Table 4.
As shown in Table 4, in Example 8, the catalyst activity predicted from the peak intensity ratio I / I 0 and the actually evaluated catalyst activity showed a good correlation.

Figure 2011200797
Figure 2011200797

さらに、実施例6〜8及び比較例4で得られたピーク強度I/Iと比活性との相関を図4に示す。図4に示した結果から、ピーク強度比I/Iが1.22〜1.35の範囲内であれば、2回再生触媒の比活性を0.80以上となると予測できる。 Furthermore, the correlation between the peak intensity I / I 0 and the specific activity obtained in Examples 6 to 8 and Comparative Example 4 is shown in FIG. From the results shown in FIG. 4, if the peak intensity ratio I / I 0 is in the range of 1.22-1.35, the specific activity of the twice-regenerated catalyst can be predicted to be 0.80 or more.

Claims (3)

留出石油留分を処理するための水素化処理用触媒を再生処理するに際し、再生処理条件を選別する方法であって、
アルミニウム酸化物を含む無機担体及び該無機担体に担持されたコバルトを含有する水素化処理用触媒であって水素化処理に用いられる前の触媒について、X線吸収微細構造分析を行い、Co K吸収端の広域X線吸収微細構造スペクトルから動径分布曲線を得、該動径分布曲線においてCo−O結合に帰属されるピークの強度Iを求める第1の工程と、
水素化処理後の上記水素化処理用触媒について所定の条件で再生処理を行い、再生処理後の該触媒についてX線吸収微細構造分析を行い、Co K吸収端の広域X線吸収微細構造スペクトルから動径分布曲線を得、該動径分布曲線においてCo−O結合に帰属されるピークの強度Iを求める第2の工程と、
前記第1の工程で得られたIに対する前記第2の工程で得られたIの比I/Iを求め、予め得られているピーク強度の比I/Iと触媒活性との相関に基づいて前記第2の工程における再生処理の条件の良否を判定する第3の工程と、
を備える、水素化処理用触媒の再生処理条件の選別方法。
A method of selecting a regeneration treatment condition when regenerating a hydrotreating catalyst for treating a distillate petroleum fraction,
An inorganic carrier containing aluminum oxide and a catalyst for hydrotreating containing cobalt supported on the inorganic carrier and before being used for hydrotreating are subjected to X-ray absorption fine structure analysis to obtain Co K absorption. A first step of obtaining a radial distribution curve from the broad X-ray absorption fine structure spectrum at the end, and obtaining an intensity I 0 of a peak attributed to a Co—O bond in the radial distribution curve;
The hydrotreating catalyst after the hydrotreating is regenerated under predetermined conditions, the regenerated catalyst is subjected to X-ray absorption fine structure analysis, and from the wide X-ray absorption fine structure spectrum of the Co K absorption edge. A second step of obtaining a radial distribution curve and obtaining an intensity I of a peak attributed to a Co-O bond in the radial distribution curve;
A ratio I / I 0 of I obtained in the second step with respect to I 0 obtained in the first step is determined, and a correlation between the peak intensity ratio I / I 0 obtained in advance and the catalyst activity is obtained. A third step of determining whether the conditions of the regeneration process in the second step are good or not based on:
A method for selecting a regeneration treatment condition for a hydrotreating catalyst.
アルミニウム酸化物を含む無機担体及び該無機担体に担持されたコバルトを含有する水素化処理用触媒であって留出石油留分を処理するための水素化処理に使用された後の触媒を、請求項1に記載の方法により選別された条件で再生処理する工程を備える、再生水素化処理用触媒の製造方法。   An inorganic carrier containing aluminum oxide and a hydrotreating catalyst containing cobalt supported on the inorganic carrier after being used for hydrotreating to treat a distillate petroleum fraction, A method for producing a regenerated hydrotreating catalyst, comprising a step of regenerating under the conditions selected by the method according to Item 1. 選別された前記条件が、下記式(1)で表される条件を満たすものである、請求項2に記載の方法。
1.22≦I/I≦1.35 (1)
[式(1)中、Iは、水素化処理に用いられる前の前記水素化処理用触媒の動径分布曲線における、Co−O結合に帰属されるピークの強度を示し、Iは、水素化処理及び再生処理を経た後の前記水素化処理用触媒の動径分布曲線における、Co−O結合に帰属されるピークの強度を示す。]
The method according to claim 2, wherein the selected condition satisfies a condition represented by the following formula (1).
1.22 ≦ I / I 0 ≦ 1.35 (1)
[In the formula (1), I 0 represents the intensity of a peak attributed to a Co—O bond in the radial distribution curve of the hydrotreating catalyst before being used for hydrotreating, and I represents hydrogen The intensity | strength of the peak which belongs to the Co-O bond in the radial distribution curve of the said catalyst for hydrogenation treatment after passing through a hydrogenation process and a regeneration process is shown. ]
JP2010070553A 2010-03-25 2010-03-25 Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst Pending JP2011200797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070553A JP2011200797A (en) 2010-03-25 2010-03-25 Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070553A JP2011200797A (en) 2010-03-25 2010-03-25 Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst

Publications (1)

Publication Number Publication Date
JP2011200797A true JP2011200797A (en) 2011-10-13

Family

ID=44878103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070553A Pending JP2011200797A (en) 2010-03-25 2010-03-25 Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP2011200797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086198A (en) * 2010-10-22 2012-05-10 Jx Nippon Oil & Energy Corp Method of producing regenerated hydrotreating catalyst and method of producing petroleum product
JP2013121566A (en) * 2011-12-09 2013-06-20 Jx Nippon Oil & Energy Corp Method for manufacturing preliminary sulfurized regenerated hydrotreatment catalyst, method for manufacturing regenerated hydrotreatment catalyst, method for selecting regeneration treatment condition of hydrotreatment catalyst and method of manufacturing petroleum product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267149A (en) * 1990-03-14 1991-11-28 Suehiko Yoshitomi Catalyst for hydrogenation and production thereof
JPH0912484A (en) * 1995-06-23 1997-01-14 Mitsubishi Chem Corp Production of cycloolefin
JP2000000470A (en) * 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd Hydrogenation catalyst and method for hydrogenating heavy oil
JP2004066234A (en) * 2002-08-01 2004-03-04 Inst Fr Petrole Catalyst based on group vi metal and group viii metal present at least partially in form of hetero polyanion in oxide precursor
JP2006035186A (en) * 2004-07-30 2006-02-09 Toyota Central Res & Dev Lab Inc Electrode catalyst and its production method
JP2009183891A (en) * 2008-02-07 2009-08-20 Nippon Oil Corp Method for manufacturing regenerated hydrotreatment catalyst and method for producing petroleum product
JP2010036111A (en) * 2008-08-05 2010-02-18 Nippon Oil Corp Method for manufacturing regenerable hydrogen treatment catalyst and method for producing petroleum product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267149A (en) * 1990-03-14 1991-11-28 Suehiko Yoshitomi Catalyst for hydrogenation and production thereof
JPH0912484A (en) * 1995-06-23 1997-01-14 Mitsubishi Chem Corp Production of cycloolefin
JP2000000470A (en) * 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd Hydrogenation catalyst and method for hydrogenating heavy oil
JP2004066234A (en) * 2002-08-01 2004-03-04 Inst Fr Petrole Catalyst based on group vi metal and group viii metal present at least partially in form of hetero polyanion in oxide precursor
JP2006035186A (en) * 2004-07-30 2006-02-09 Toyota Central Res & Dev Lab Inc Electrode catalyst and its production method
JP2009183891A (en) * 2008-02-07 2009-08-20 Nippon Oil Corp Method for manufacturing regenerated hydrotreatment catalyst and method for producing petroleum product
JP2010036111A (en) * 2008-08-05 2010-02-18 Nippon Oil Corp Method for manufacturing regenerable hydrogen treatment catalyst and method for producing petroleum product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013064889; MILLER, J.T. et al: '(Co)MoS2/Alumina Hydrotreating Catalysts: An EXAFS Study of the Chemisorption and Partial Oxidation' Journal of Catalysis Vol.202, No.1, 20010815, p.89-99 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086198A (en) * 2010-10-22 2012-05-10 Jx Nippon Oil & Energy Corp Method of producing regenerated hydrotreating catalyst and method of producing petroleum product
JP2013121566A (en) * 2011-12-09 2013-06-20 Jx Nippon Oil & Energy Corp Method for manufacturing preliminary sulfurized regenerated hydrotreatment catalyst, method for manufacturing regenerated hydrotreatment catalyst, method for selecting regeneration treatment condition of hydrotreatment catalyst and method of manufacturing petroleum product

Similar Documents

Publication Publication Date Title
JP4610664B1 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP4887433B2 (en) Regenerated hydrotreating catalyst
KR101230809B1 (en) Process for hydrorefining heavy hydrocarbon oil
JP4891934B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP5268484B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP2011200797A (en) Method of selecting regeneration condition for hydrotreating catalyst and method of producing regenerated hydrotreating catalyst
JP5537222B2 (en) Method for producing hydrogenated HAR oil
TW201542800A (en) Method for regenerating and utilizing heavy-oil desulfurization catalyst
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
JP5411475B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
KR20100072262A (en) Process for producing gasoline base and gasoline
JP5613524B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP4891937B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP3957122B2 (en) Method for hydrotreating heavy hydrocarbon oils
WO2019085777A1 (en) Phosphorus-containing molecular sieve, preparation method therefor, and application thereof
JP5695548B2 (en) Method for producing pre-sulfided regenerated hydrotreating catalyst, method for producing regenerated hydrotreating catalyst, method for selecting regenerating treatment conditions for hydrotreating catalyst, and method for producing petroleum product
Valavarasu et al. Recent Advances in Hydrotreating/Hydrodesulfurization Catalysts: Part II—Catalyst Additives, Preparation Methods, Activation, Deactivation, and Regeneration
JP2010069466A (en) Hydrogenation catalyst
JPH11335676A (en) Hydrogenation and denitrification of heavy oil
JP2008143917A (en) Hydrocarbon oil hydroforming process
JP2015085307A (en) Method for producing hydrotreating catalyst and method for producing hydrocarbon oil
JP2005015782A (en) Production method for low-sulfur catalytically cracked gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630