JP5399953B2 - Semiconductor element, semiconductor device using the same, and method for manufacturing semiconductor device - Google Patents

Semiconductor element, semiconductor device using the same, and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP5399953B2
JP5399953B2 JP2010052747A JP2010052747A JP5399953B2 JP 5399953 B2 JP5399953 B2 JP 5399953B2 JP 2010052747 A JP2010052747 A JP 2010052747A JP 2010052747 A JP2010052747 A JP 2010052747A JP 5399953 B2 JP5399953 B2 JP 5399953B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor element
semiconductor device
semiconductor
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010052747A
Other languages
Japanese (ja)
Other versions
JP2011187782A (en
Inventor
健嗣 大津
晃 前田
朗 山田
丈晴 黒岩
政良 多留谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010052747A priority Critical patent/JP5399953B2/en
Publication of JP2011187782A publication Critical patent/JP2011187782A/en
Application granted granted Critical
Publication of JP5399953B2 publication Critical patent/JP5399953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

本発明は、すず基はんだを介して回路基板に接合する半導体素子の構成、および半導体装置とその製造方法に関する。   The present invention relates to a configuration of a semiconductor element bonded to a circuit board through a tin-based solder, a semiconductor device, and a method for manufacturing the same.

インバーターなどの電力用半導体装置に使用されるスイッチング素子(IGBT、MOSFET等)や整流素子では、電力損失を低減する必要があり、近年、例えば、炭化ケイ素(SiC)、窒化ガリウムのようなワイドバンドギャップ半導体の電力用半導体装置が開発されている。ワイドギャップ半導体の場合、素子自身の耐熱性が高く、大電流による高温動作が可能であるが、その特性を発揮するためには、半導体素子と基板との接合部が強固に接合されていなければならない。   In switching elements (IGBT, MOSFET, etc.) and rectifier elements used in power semiconductor devices such as inverters, it is necessary to reduce power loss. In recent years, for example, wide bands such as silicon carbide (SiC) and gallium nitride. Gap semiconductor power semiconductor devices have been developed. In the case of a wide gap semiconductor, the element itself has high heat resistance and can be operated at a high temperature with a large current. However, in order to exhibit its characteristics, the junction between the semiconductor element and the substrate must be firmly bonded. Don't be.

高温動作可能な接合材料として、鉛入り高融点はんだが使用されてきたが、安全性や環境への配慮から、すず(Sn)をベースとする鉛フリーはんだ材料(すず基はんだ)が使用されるようになってきた。しかし、すず基はんだを使用するためには、半導体素子の接合面にチタン層、ニッケル層、金層を順に積層する必要があった。しかし、チタン層で不動態被膜が形成されるのを抑制するためにニッケル層を厚く形成する必要があり、はんだ接合時の条件が厳密であることから、信頼性の高い接合をおこなうことが困難であった。   High melting point solder containing lead has been used as a bonding material that can operate at high temperatures, but lead-free solder material (tin-based solder) based on tin (Sn) is used for safety and environmental considerations. It has become like this. However, in order to use tin-based solder, it was necessary to sequentially laminate a titanium layer, a nickel layer, and a gold layer on the bonding surface of the semiconductor element. However, it is necessary to form a thick nickel layer in order to suppress the formation of a passive film on the titanium layer, and it is difficult to perform highly reliable bonding because the conditions during soldering are strict. Met.

そこで、半導体素子の接合面に、チタン等からなる金属層の上にすず合金層を設け、熱処理した際にすず合金層をすず基はんだ中に拡散させてチタン−すず合金層を形成し、接着性やオーミック接合性に優れた接合を実現できる半導体装置が提案されている(例えば特許文献1参照。)。   Therefore, a tin alloy layer is provided on a metal layer made of titanium or the like on the bonding surface of the semiconductor element, and when the heat treatment is performed, the tin alloy layer is diffused into the tin-based solder to form a titanium-tin alloy layer and bonded. A semiconductor device that can realize bonding excellent in reliability and ohmic bonding has been proposed (see, for example, Patent Document 1).

特開2006−108604号公報(段落0037、図1)JP 2006-108604 A (paragraph 0037, FIG. 1)

しかしながら、上記のような構成の半導体装置で製造時や動作時の熱履歴を模擬する熱サイクル試験を実施したところ、使用する合金層やすず基はんだの組成によって、または同じ材料の組み合わせであっても個体ごとに接合強度にばらつきが出て、信頼性の高い接合、ひいては寿命信頼性の高い半導体装置を得ることができなかった。   However, when a thermal cycle test that simulates the thermal history at the time of manufacture and operation is performed on the semiconductor device having the above-described configuration, the alloy layer used and the composition of the tin-based solder are used, or the same material is combined. However, the bonding strength varies from individual to individual, and it has not been possible to obtain a highly reliable bonding and consequently a semiconductor device with high lifetime reliability.

本発明は、上述のような課題を解決するためになされたもので、すず基はんだを用いて寿命信頼性の高い接合が可能な半導体素子および寿命信頼性の高い半導体装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a semiconductor element and a semiconductor device with high life reliability that can be bonded with high life reliability using a tin-based solder. To do.

本発明にかかる半導体素子は、すず基はんだを用いて導電部材と接合するための半導体素子であって、半導体材料からなる基材の前記導電部材との接合面に、シリサイド層と、チタンからなる第1の金属層と、アンチモンからなる第2の金属層と、ニッケル層、銅層、銅層上にニッケル層を積層した層、およびタンタル層上に銅層を積層した層、のいずれかからなる第3の金属層と、が前記基材側から順次積層されており、前記第2の金属層の厚みが50nm以上であることを特徴とするA semiconductor element according to the present invention is a semiconductor element for bonding to a conductive member using tin-based solder, and is formed of a silicide layer and titanium on a bonding surface of the base material made of a semiconductor material with the conductive member. One of the first metal layer, the second metal layer made of antimony, the nickel layer, the copper layer, the layer in which the nickel layer is laminated on the copper layer, and the layer in which the copper layer is laminated on the tantalum layer a third metal layer made, are sequentially stacked from the substrate side, the thickness of the second metal layer and wherein the at 50nm or more.

この発明によれば、強固な接合を得るためには、接合層中にアンチモンとチタンの合金を形成する必要があることを発見し、半導体素子にアンチモン層を設けるようにしたので、すず基はんだを用いて、接合強度の高いチタンとアンチモンの合金が安定して形成され、高温化でも接合強度を長期間持続する信頼性の高い半導体装置が得られる。   According to the present invention, in order to obtain a strong bond, it was found that an alloy of antimony and titanium must be formed in the bonding layer, and the antimony layer was provided in the semiconductor element. Thus, an alloy of titanium and antimony having a high bonding strength is stably formed, and a highly reliable semiconductor device that can maintain the bonding strength for a long time even at high temperatures can be obtained.

本発明の実施の形態1にかかる半導体素子の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the semiconductor element concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体素子および半導体装置の製造方法を説明するためのフローチャートである。4 is a flowchart for explaining a method for manufacturing the semiconductor element and the semiconductor device according to the first embodiment of the present invention; 本発明の実施の形態1にかかる半導体素子を導電部材に接合したときの状態を説明するための断面図である。It is sectional drawing for demonstrating a state when the semiconductor element concerning Embodiment 1 of this invention is joined to the electrically-conductive member. 従来の半導体素子を導電部材に接合したときの状態を説明するための断面図である。It is sectional drawing for demonstrating a state when the conventional semiconductor element is joined to the electrically-conductive member. 本発明の実施の形態3にかかる半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device concerning Embodiment 3 of this invention.

実施の形態1.
<接合強度ばらつきの原因発見>
本発明の実施の形態1にかかる半導体素子および半導体装置の構成を説明する前に、背景技術で説明した従来の半導体素子での接合強度のばらつき原因について説明する。半導体素子の接合面に第1金属層を設け、さらにその上にすず合金からなる第2金属層を設け、数種のすず基はんだを用いて銅板との接合体を形成した。その結果、高温動作時に安定して長時間接合し得る材料の組み合わせは、第1金属層にチタン(Ti)、すず基はんだにSn−Sb系はんだを用いたときであった。
Embodiment 1 FIG.
<Finding the cause of uneven bonding strength>
Before describing the configuration of the semiconductor element and the semiconductor device according to the first embodiment of the present invention, the cause of the variation in the bonding strength in the conventional semiconductor element described in the background art will be described. A first metal layer was provided on the joining surface of the semiconductor element, a second metal layer made of a tin alloy was further provided thereon, and a joined body with a copper plate was formed using several types of tin-based solders. As a result, the combination of materials that can be bonded stably for a long time during high-temperature operation was when titanium (Ti) was used for the first metal layer and Sn—Sb solder was used for the tin-based solder.

しかし、上記の材料を組み合わせても、接合強度が高い接合体とそうでない接合体があり、安定して信頼性の高い接合体を得ることができなかった。そこで、接合強度の高かった接合体とそうでない接合体の断面を分析したところ、接合強度の高い接合体では、第1金属層(Ti)―第2合金層(Sn)が、Ti−Sb−Snの3元合金層に変化し、接合強度の高くない接合体では、Ti−Sb−Snの3元合金層がまばらに形成されていることが分かった。つまり、上記の構成では、アンチモン(Sb)がはんだ材料を構成するSn−Sb系合金から供給されており、はんだ中のSbからTi層への拡散がばらつくために接合強度にばらつきが生じることが分かった。   However, even when the above materials are combined, there are a bonded body with high bonding strength and a bonded body with no bonding strength, and it has not been possible to obtain a bonded body stably and highly reliable. Then, when the cross section of the joined body with high joining strength and the joined body with no joining strength was analyzed, in the joined body with high joint strength, the first metal layer (Ti) —the second alloy layer (Sn) was Ti—Sb—. It turned out that the ternary alloy layer of Ti—Sb—Sn is formed sparsely in the joined body which is changed to the Sn ternary alloy layer and does not have high bonding strength. That is, in the above configuration, antimony (Sb) is supplied from the Sn—Sb-based alloy constituting the solder material, and the diffusion from Sb to the Ti layer in the solder varies, so that the bonding strength may vary. I understood.

そこで、本発明の実施の形態1にかかる半導体素子では、半導体素子の接合面に設けた複数の金属層のうち、チタン層の直上にアンチモン層を設けることにより、回路パターンに対してすず基はんだで接合したときに、Ti−Sb−Sn合金を形成し、安定した接合強度を有する半導体装置を得られるようにした。以下、詳細に説明する。   Therefore, in the semiconductor element according to the first embodiment of the present invention, a tin-based solder is formed on the circuit pattern by providing an antimony layer immediately above the titanium layer among the plurality of metal layers provided on the bonding surface of the semiconductor element. When joining with Ti, a Ti—Sb—Sn alloy was formed so that a semiconductor device having stable joining strength was obtained. Details will be described below.

図1〜図4は、本発明の実施の形態1にかかる半導体素子および半導体装置および半導体装置の製造方法を説明するための図である。図1は半導体素子の構成を説明するための工程ごとの断面を示す図、図2は半導体素子および半導体装置の製造方法を説明するためのフローチャート、図3は半導体素子を導電部材に接合する際の工程ごとの断面を示す図、図4は接合部の状態を説明するための従来の半導体素子を導電部材に接合するときの状態を説明する断面図である。   1 to 4 are diagrams for explaining a semiconductor element, a semiconductor device, and a method for manufacturing the semiconductor device according to the first embodiment of the present invention. FIG. 1 is a diagram showing a cross section for each process for explaining the configuration of a semiconductor element, FIG. 2 is a flowchart for explaining a method for manufacturing the semiconductor element and the semiconductor device, and FIG. 3 is a diagram when joining the semiconductor element to a conductive member The figure which shows the cross section for every process of this, FIG. 4: is sectional drawing explaining the state when joining the conventional semiconductor element for demonstrating the state of a junction part to a conductive member.

はじめに、半導体素子の構成について図1を用いて説明する。図1は本発明の実施の形態にかかる半導体素子の構成とその製造方法を説明するための断面模式図であり、図1(a)は半導体材料からなる基材1にニッケル層2を形成した状態、図1(b)は形成したニッケル層2がニッケルシリサイド化2Sした状態、図1(c)はさらに4つの金属層3、4、5、6を形成した状態を示す。図において、半導体素子1を構成する材料としてワイドバンドギャップ半導体材料である炭化ケイ素(SiC)からなる厚さ500μmの板状の基材1を用意した。この炭化ケイ素基材の少なくとも片面に、以降、ニッケル(Ni)、チタン(Ti)、アンチモン(Sb)、金(Au)といった複数の金属層をスパッタリングにより形成していく。なお、製造方法については図2に示すフローチャートのステップ番号(カッコ内)で説明する。   First, the structure of the semiconductor element will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view for explaining a configuration of a semiconductor element and a manufacturing method thereof according to an embodiment of the present invention. FIG. 1A shows a nickel layer 2 formed on a substrate 1 made of a semiconductor material. FIG. 1B shows a state in which the formed nickel layer 2 is nickel-silicidized 2S, and FIG. 1C shows a state in which four metal layers 3, 4, 5, and 6 are further formed. In the figure, a plate-like substrate 1 having a thickness of 500 μm made of silicon carbide (SiC), which is a wide band gap semiconductor material, was prepared as a material constituting the semiconductor element 1. Thereafter, a plurality of metal layers such as nickel (Ni), titanium (Ti), antimony (Sb), and gold (Au) are formed on at least one surface of the silicon carbide substrate by sputtering. The manufacturing method will be described with step numbers (in parentheses) in the flowchart shown in FIG.

はじめに(ステップS10)、図1(a)に示すように、炭化ケイ素基材1の接合面である片方の表面に、シリサイドを形成するための金属層として、厚さ50nmのニッケル層2を形成し(ステップS20)、ニッケル付与半導体基材10f1を得る。その後真空雰囲気下で800℃、1時間の熱処理を行う(ステップS30)ことにより、ニッケルが炭化ケイ素素基材1のシリコンと反応してシリサイド化する。シリサイド化が完了すると(ステップS40で「Y」)、図1(b)に示すように、ニッケル層2は、厚さ50nm程度のニッケルシリサイド層2Sとなり、接合面がシリサイド化された半導体基材10f2が得られる。つづいて、図1(c)に示すように、シリサイド層2S表面に、第1金属層である厚さ200nmのTi層3、Ti層3の表面に第2金属層である厚さ100nmのSb層4、Sb層4の表面に第3金属層である厚さ800nmのNi層5、Ni層5の表面に第4金属層である厚さ100nmのAu層6を順次形成する(ステップS50)。第1〜第4の金属層まで層形成が完了すると(ステップS60で「Y」)、ダイシングで7.0mm角サイズに切断し(ステップS70)、洗浄(ステップS80)すると、半導体装置に実装可能な半導体素子10が得られる(準備完了:ステップS90)。 First (step S10), as shown in FIG. 1A, a nickel layer 2 having a thickness of 50 nm is formed as a metal layer for forming silicide on one surface which is a bonding surface of the silicon carbide substrate 1. (Step S20) to obtain a nickel-added semiconductor substrate 10f1 . Thereafter, heat treatment is performed in a vacuum atmosphere at 800 ° C. for 1 hour (step S30), whereby nickel reacts with silicon of the silicon carbide base material 1 to be silicided. When the silicidation is completed (“Y” in step S40), as shown in FIG. 1B, the nickel layer 2 becomes a nickel silicide layer 2S having a thickness of about 50 nm, and the semiconductor substrate in which the junction surface is silicided 10 f2 is obtained. Subsequently, as shown in FIG. 1 (c), a 200 nm thick Ti layer 3 as a first metal layer is formed on the surface of the silicide layer 2S, and a 100 nm thick Sb as a second metal layer is formed on the surface of the Ti layer 3. The 800 nm thick Ni layer 5 that is the third metal layer is formed on the surface of the layer 4 and the Sb layer 4, and the 100 nm thick Au layer 6 that is the fourth metal layer is sequentially formed on the surface of the Ni layer 5 (step S50). . When layer formation is completed for the first to fourth metal layers (“Y” in step S60), cutting to 7.0 mm square size by dicing (step S70) and cleaning (step S80) enable mounting on a semiconductor device. Semiconductor device 10 is obtained (preparation completion: step S90).

つづいて、半導体素子と導電部材の接合体、つまり、半導体装置の構成と製造方法について図3および図2の続きを用いて説明する。図3は本発明の実施の形態にかかる半導体装置(接合体)の構成とその製造方法を説明するための断面模式図であり、図3(a)は回路基板の銅の回路パターン17上にSn基はんだ8を塗布した状態、図3(b)はSn基はんだ8が溶融し(溶融状態および溶融後に固化した状態を8Mと記す。)、Au層6がはんだ8M中に溶解した状態、図3(c)はNi層5がはんだ8M中のSnと反応して合金化5Aした状態、図3(d)はTi層3にSb層4のSb、はんだ8Mや合金化Ni層5A中のSnが拡散し、反応して3元合金層3Aを形成した状態を示す。なお、図では簡略化するために半導体装置の回路基板に設けられた回路パターン17のまさしく導電部材である銅材料部分のみを記載している。   Next, a bonded body of a semiconductor element and a conductive member, that is, a configuration of a semiconductor device and a manufacturing method will be described with reference to FIGS. FIG. 3 is a schematic cross-sectional view for explaining the configuration of the semiconductor device (bonded body) according to the embodiment of the present invention and the manufacturing method thereof, and FIG. 3 (a) is formed on the copper circuit pattern 17 of the circuit board. FIG. 3B shows a state in which the Sn-based solder 8 is applied, and FIG. 3B shows a state in which the Sn-based solder 8 is melted (the melted state and the solidified state after melting are described as 8M), and the Au layer 6 is dissolved in the solder 8M. FIG. 3C shows a state where the Ni layer 5 reacts with Sn in the solder 8M to form an alloy 5A. FIG. 3D shows the Ti layer 3 containing Sb of the Sb layer 4, the solder 8M and the alloyed Ni layer 5A. Shows a state in which Sn diffuses and reacts to form a ternary alloy layer 3A. For the sake of simplicity, only the copper material portion that is the conductive member of the circuit pattern 17 provided on the circuit board of the semiconductor device is shown in the figure.

半導体素子10の接合対象となる導電部材である銅の回路パターン17が上側に向くように回路基板を図示しない治具に設置し、接合を開始した(ステップS110)。回路パターン17の表面に、開口径が6mm角で、厚さ0.2mmのステンレスマスクを用いてマスキングをし(ステップS120)て、図3(a)に示すようにソルダーペースト8を回路パターン17の所定範囲に印刷し(ステップS130)、印刷したソルダーペースト8表面に、半導体素子10を搭載した(ステップS140)。ソルダーペースト8としては、Sbを10wt%含有したSn−Sb系はんだ(9014-374F:千住金属製(合金組成:90Sn−10Sb:融点約240℃))を用いた。これを、300℃に設定したホットプレ―ト上に40秒間保持する(ステップS150)ことにより、はんだが溶融して以下の合金化が完了すると(ステップS160で「Y」)、その後空冷させることにより(ステップS170)、半導体装置100(または接合体)を得ることができる。   The circuit board was placed on a jig (not shown) so that the copper circuit pattern 17 that is a conductive member to be bonded to the semiconductor element 10 was directed upward, and bonding was started (step S110). The surface of the circuit pattern 17 is masked with a stainless steel mask having an opening diameter of 6 mm square and a thickness of 0.2 mm (step S120), and the solder paste 8 is applied to the circuit pattern 17 as shown in FIG. (Step S130), and the semiconductor element 10 was mounted on the surface of the printed solder paste 8 (step S140). As the solder paste 8, Sn—Sb solder containing 10 wt% Sb (9014-374F: manufactured by Senju Metal (alloy composition: 90Sn-10Sb: melting point: about 240 ° C.)) was used. By holding this on a hot plate set at 300 ° C. for 40 seconds (step S150), when the solder is melted and the following alloying is completed (“Y” in step S160), air cooling is performed thereafter. (Step S170), the semiconductor device 100 (or joined body) can be obtained.

この熱処理の間の反応をさらに詳しく説明すると、以下のようになる。はんだ8が溶融すると、はじめに図3(b)に示すように、金層6がはんだ8M内に溶解し、つぎに、図3(c)に示すように、はんだ8M中のSn成分とNi層5との間で反応を生じ、Ni−Sn合金層5Aが形成される。そして、最後に図3(d)に示すように、Ti層3にSb層4のSbと、はんだ8MやNi−Sn合金層5A中のSnとが拡散していって合金化し、Ti−Sb−Snの3元合金層3Aが形成される。これにより、半導体素子10が銅の回路パターン17に強固に接合され、強固な接合体である半導体装置が得られる。   The reaction during this heat treatment will be described in more detail as follows. When the solder 8 is melted, the gold layer 6 is first dissolved in the solder 8M as shown in FIG. 3 (b). Next, as shown in FIG. 3 (c), the Sn component and the Ni layer in the solder 8M are dissolved. 5 reacts with Ni to form an Ni—Sn alloy layer 5A. Finally, as shown in FIG. 3D, Sb of the Sb layer 4 and Sn in the solder 8M and the Ni—Sn alloy layer 5A are diffused into the Ti layer 3 and alloyed to form Ti—Sb. A -Sn ternary alloy layer 3A is formed. Thereby, the semiconductor element 10 is firmly bonded to the copper circuit pattern 17, and a semiconductor device which is a strong bonded body is obtained.

<比較試験>
つぎに、本実施の形態にかかる半導体素子10をすず基はんだを用いて接合した時の接合強度を評価するため、比較試験を実施した。この比較試験では、接合および強度評価を容易にするため、実際の回路基板ではなく、回路基板上に形成された回路パターン17を模擬するものとして10mm角に切断した厚さ1.0mmの銅板7を用いた。そして、本実施の形態にかかる半導体素子10を銅板7に接合した接合体100MEと、比較対象となる半導体素子10CEを銅板7に接合した接合体100MCに対しさまざまな条件で評価試験を行った。
<Comparison test>
Next, a comparative test was performed to evaluate the bonding strength when the semiconductor element 10 according to the present embodiment was bonded using tin-based solder. In this comparative test, in order to facilitate bonding and strength evaluation, a copper plate 7 having a thickness of 1.0 mm cut into a 10 mm square as a simulation of the circuit pattern 17 formed on the circuit board, not an actual circuit board. Was used. And the evaluation test is carried out under various conditions for the joined body 100 ME in which the semiconductor element 10 according to this embodiment is joined to the copper plate 7 and the joined body 100 MC in which the semiconductor element 10 CE to be compared is joined to the copper plate 7. went.

比較サンプルとなる半導体素子10CEは、以下に示す方法で製作した。
図4(a)に示すように、厚さ500μmの半導体基材1の片方の表面に、半導体素子10を作成したときと同じ方法で、厚さ50nm程度のニッケルシリサイド層2Sを形成した。スパッタリング法を用いて、シリサイド層2S表面に、第1の金属層である厚さ200nmのTi層3を形成した。ここで第2の金属層であるSb層を省略して、Ti層3の表面に第3の金属層である厚さ800nmのNi層5、Ni層5の表面に第4の金属層である厚さ100nmのAu層6を順次形成した。この後、ダイシングで5.0mm角サイズに切断し、洗浄したものを、比較用半導体素子10CEとして用いた。つまり、比較用半導体素子10CEと半導体素子10との違いは、第2の金属層であるSb層4を有するか否かの違いである。そして、銅板7との接合、つまり実施例接合体100MEと比較例接合体100MCの製造は、半導体装置100を製造するときと同様の方法で行った。本実施例接合体100ME、比較例接合体100MCをそれぞれ3個使用した。
The semiconductor element 10 CE serving as a comparative sample was manufactured by the following method.
As shown in FIG. 4A, a nickel silicide layer 2S having a thickness of about 50 nm was formed on one surface of a semiconductor substrate 1 having a thickness of 500 μm by the same method as that for forming the semiconductor element 10. A Ti layer 3 having a thickness of 200 nm, which is a first metal layer, was formed on the surface of the silicide layer 2S by sputtering. Here, the Sb layer, which is the second metal layer, is omitted, and the Ni layer 5 having a thickness of 800 nm, which is the third metal layer, is formed on the surface of the Ti layer 3, and the fourth metal layer is formed on the surface of the Ni layer 5. An Au layer 6 having a thickness of 100 nm was sequentially formed. Thereafter, a 5.0 mm square size cut by dicing and washed was used as the comparative semiconductor element 10 CE . That is, the difference between the comparative semiconductor element 10 CE and the semiconductor element 10 is whether or not the Sb layer 4 that is the second metal layer is provided. Then, the bonding with the copper plate 7, that is, the manufacture of the example bonded body 100 ME and the comparative bonded body 100 MC was performed by the same method as that for manufacturing the semiconductor device 100. Three each of this example joined body 100 ME and comparative example joined body 100 MC were used.

このように構成された接合体100MEと100MCを、200℃の高温で2000時間保持し、100時間保持時、300時間保持時、500時間保持時、1000時間保持時、2000時間保持後の接合体の密着強度測定を行った。密着強度判定は、所定治具でサンプルを固定し、接合体の横方向からせん断方向に最高5kgf(約50N)まで印加(測定)可能なプッシュテスタ(ARF-05:アトニック(株)製デジタルフォースゲージ)を用いて測定した。この際、測定上限の5kgfでもはがれなかった場合を密着性異常なしとし、5kgf以下で剥離したものを強度低下有りとした。評価結果を表1に示す。 The joined bodies 100 ME and 100 MC configured as described above are held at a high temperature of 200 ° C. for 2000 hours, held for 100 hours, held for 300 hours, held for 500 hours, held for 1000 hours, and held for 2000 hours. The adhesion strength of the joined body was measured. Judgment strength is determined using a push tester (ARF-05: Digital Force manufactured by Atonic Co., Ltd.) that can apply (measure) up to 5 kgf (approx. 50 N) from the lateral direction to the shearing direction after fixing the sample with a predetermined jig. Measured using a gauge). At this time, the case where the upper limit of measurement was 5 kgf did not peel off, and the adhesion was not abnormal. The evaluation results are shown in Table 1.

Figure 0005399953
Figure 0005399953

表1に示すように、本発明にかかる実施例であるSb層4を備えた接合体100MEのサンプル(サンプル2−1,2−2,2−3)は、高温で2000時間保持する間に密着強度低下が見られなかったのに対し、比較例のSb層を備えていない接合体100MCのサンプル(サンプル1−1,1−2,1−3)は、100時間までは強度を保ったが、高温で300時間保持すると密着強度が低下することがわかった。 As shown in Table 1, the sample of the joined body 100 ME (Samples 2-1, 2-2, 2-3) provided with the Sb layer 4 which is an example according to the present invention was held at a high temperature for 2000 hours In contrast, the sample of the joined body 100 MC (samples 1-1, 1-2, 1-3) that does not include the Sb layer of the comparative example has a strength up to 100 hours. Although it was kept, it was found that the adhesion strength decreased when kept at a high temperature for 300 hours.

つぎに、密着強度試験後のサンプルを接合部分の断面が出るように切断・研磨し、波長分散型X線分析を用いて接合部断面の元素分析を行った。その結果、密着強度を保つことができた本発明の実施例の接合体100MEの場合はんだ8MとTi層3、Sb層4、Ni層5またはNi−Sn合金層5Aとの間で、熱拡散を生じ、図3(d)で説明したような、Ti−Sb−Snの3元合金層3AとNi−Sn合金層5Aからなる強固な接合部が形成されていることが確認された。このとき、3元合金層3A内において、Sbが均一に分布していた。一方、密着強度が低下した比較例の接合体100MEでは、図4(b)に示すように、はんだ8M中のSbの拡散により、部分的にはTi−Sb−Sn合金相が形成されているが、Ti相、あるいはTi−Sn合金化相の状態と不均一に分散しており、強固な接合体が均一に形成されていないことが確認できた。 Next, the sample after the adhesion strength test was cut and polished so that the cross section of the bonded portion appeared, and elemental analysis of the cross section of the bonded portion was performed using wavelength dispersion X-ray analysis. As a result, in the case of the joined body 100 ME according to the embodiment of the present invention that was able to maintain the adhesion strength, between the solder 8M and the Ti layer 3, the Sb layer 4, the Ni layer 5 or the Ni—Sn alloy layer 5A, As a result of diffusion, it was confirmed that a strong joint composed of the Ti—Sb—Sn ternary alloy layer 3A and the Ni—Sn alloy layer 5A as described with reference to FIG. 3D was formed. At this time, Sb was uniformly distributed in the ternary alloy layer 3A. On the other hand, as shown in FIG. 4B, in the joined body 100ME of the comparative example with reduced adhesion strength, a Ti—Sb—Sn alloy phase is partially formed by the diffusion of Sb in the solder 8M. However, the dispersion was unevenly distributed with the state of the Ti phase or Ti—Sn alloying phase, and it was confirmed that a strong bonded body was not uniformly formed.

<適応可能材料>
なお、本実施の形態においては、接合力の評価を目的として、素板状の炭化ケイ素基材を用いた例を示したが、裏面にパターン等が形成された炭化ケイ素基材を用いても同様である。また、炭化ケイ素基材の大きさも、特に限定されることはなく、製造する半導体素子の大きさに合わせて、適宜調整すればよい。
<Applicable materials>
In the present embodiment, for the purpose of evaluating the bonding force, an example in which a base-plate-like silicon carbide substrate is used is shown, but a silicon carbide substrate having a pattern or the like formed on the back surface may be used. It is the same. Further, the size of the silicon carbide base material is not particularly limited, and may be appropriately adjusted according to the size of the semiconductor element to be manufactured.

さらに、半導体素子としては、炭化ケイ素以外にケイ素も使用できる。また、炭化ケイ素と同じくワイドバンドギャップ半導体材料である、窒化ガリウム(GaN)、ガリウムヒ素(GaAs)、ダイヤモンドについても、表面に別途Si層を形成してシリサイド層を形成すれば、炭化ケイ素と同様に適用可能である。   Further, as the semiconductor element, silicon can be used in addition to silicon carbide. Similarly to silicon carbide, gallium nitride (GaN), gallium arsenide (GaAs), and diamond, which are wide bandgap semiconductor materials, are similar to silicon carbide if an additional Si layer is formed on the surface to form a silicide layer. It is applicable to.

また、第3の金属層5の材料としては、ニッケルが最適であるが、ニッケル以外に銅を使用することも可能である。ただし、銅を使用する場合は、下記に示すように銅単独(組合せA)以外に、第4の金属層4であるSb層との間にタンタル(Ta)層を挿入(組合せB)したり、最表面にNi層をかぶせたり(組合せC)することが望ましい。
組合せA:Sb/Cu
組合せB:Sb/Ta/Cu
組合せC:Sb/Cu/Ni
In addition, nickel is the most suitable material for the third metal layer 5, but copper can also be used in addition to nickel. However, when copper is used, a tantalum (Ta) layer is inserted between the Sb layer as the fourth metal layer 4 (combination B) in addition to copper alone (combination A) as shown below. It is desirable to cover the outermost surface with a Ni layer (combination C).
Combination A: Sb / Cu
Combination B: Sb / Ta / Cu
Combination C: Sb / Cu / Ni

これら、炭化ケイ素基材の接合面に形成する金属層2、3、4、5は、スパッタリングにより形成していったが、他の公知の方法によって形成してもよいことはいうまでもない。なお、形成される厚さは、金属種(層種)や半導体素子の大きさにより好適な範囲が異なるが、一般的に、10nmから2000nmの範囲である。   Although these metal layers 2, 3, 4, and 5 formed on the bonding surface of the silicon carbide base material have been formed by sputtering, it goes without saying that they may be formed by other known methods. In addition, although the suitable range changes with the magnitude | sizes of a metal seed | species (layer kind) and a semiconductor element, generally the thickness formed is the range of 10 nm to 2000 nm.

また、半導体素子10の接合対象である導電部材としては、銅以外にアルミニウムや、CIC(Cu:Invar:Cu)のような半導体基板用クラッド材でもよい。また、有機基板、AlSiCやSiN等のセラミック基板上に形成された導電部材に対しても、同様に接合できる。   In addition to copper, the conductive member to be joined to the semiconductor element 10 may be aluminum or a clad material for a semiconductor substrate such as CIC (Cu: Invar: Cu). Moreover, it can join similarly also to the electrically-conductive member formed on ceramic substrates, such as an organic substrate and AlSiC, SiN.

また、シリサイド層2Sを形成するための金属層2には、Ni以外にもシリコンとシリサイドを形成する高融点の遷移金属等を使用することができる。   For the metal layer 2 for forming the silicide layer 2S, a high melting point transition metal that forms silicide with silicon can be used in addition to Ni.

以上のように、本発明の実施の形態1にかかる半導体素子10によれば、すず基はんだ8を用いて導電部材7と接合するための半導体素子10であって、半導体材料からなる基材1の前記導電部材7との接合面に、シリサイド層2Sと、チタンからなる第1の金属層3と、アンチモンからなる第2の金属層4と、ニッケルおよび/または銅を有する第3の金属層5と、が基材1側から順次積層されている、ように構成したので、第2の金属層のSbがシリサイド層2Sとの接合性のよい第1の金属層3に取り込まれてTi−Sb−Snの3元合金層3となり、はんだ8との接合性のよい第3の金属層5がSnとの合金層5となり、Ti−Sb−Snの3元合金層3と合金層5が強固に接合するので、すず基はんだを用いて導電部材との寿命信頼性の高い接合が可能となる半導体素子が得られ、この半導体素子を用いてすず基はんだで接合すると、寿命信頼性の高い半導体装置を得ることができる。 As mentioned above, according to the semiconductor element 10 concerning Embodiment 1 of this invention, it is the semiconductor element 10 for joining to the electrically-conductive member 7 using the tin base solder 8, Comprising: The base material 1 which consists of semiconductor materials On the joint surface with the conductive member 7, a silicide layer 2S, a first metal layer 3 made of titanium, a second metal layer 4 made of antimony, and a third metal layer containing nickel and / or copper 5 are sequentially laminated from the substrate 1 side, so that Sb of the second metal layer is taken into the first metal layer 3 having good bonding property to the silicide layer 2S and Ti— The Sb—Sn ternary alloy layer 3 A is formed , and the third metal layer 5 having good bondability with the solder 8 is the Sn alloy layer 5 A , and the Ti—Sb—Sn ternary alloy layer 3 A and the alloy. Since the layer 5 A is firmly bonded, a conductive member using tin-based solder A semiconductor device that can be bonded with high life reliability is obtained, and a semiconductor device with high life reliability can be obtained by using this semiconductor element and bonding with tin base solder.

また、本発明の実施の形態1にかかる半導体素子10の製造方法によれば、シリコンを含有する半導体材料からなる基材1の場合は、接合面にニッケル層2を形成し、シリコンを含有しない半導体材料からなる基材の場合は、シリコン層を形成してからニッケル層2を形成する(ステップS20)。そして、熱処理を行い、シリサイド化(ステップS30〜40)し、シリサイド層2S表面に、第1金属層3、第2金属層4、第3金属層5を順次形成するように構成したので、すず基はんだで導電部材と強固に接合できる半導体素子を容易に得ることができる。   Moreover, according to the manufacturing method of the semiconductor element 10 concerning Embodiment 1 of this invention, in the case of the base material 1 which consists of a semiconductor material containing silicon, the nickel layer 2 is formed in a joint surface and it does not contain silicon. In the case of a substrate made of a semiconductor material, the nickel layer 2 is formed after the silicon layer is formed (step S20). Then, heat treatment is performed to form a silicide (steps S30 to S40), and the first metal layer 3, the second metal layer 4, and the third metal layer 5 are sequentially formed on the surface of the silicide layer 2S. A semiconductor element that can be firmly bonded to a conductive member with a base solder can be easily obtained.

実施の形態2.
本実施の形態2においては、実施の形態1で作成した半導体素子10の第2の金属層であるSb層4の厚みとすず基はんだ8の組成を変化させ、接合強度の評価を行った。実施の形態1で用いた図1を用いて説明する。半導体基材1と、ニッケルシリサイド層2Sを形成するためのニッケル層2の厚みおよび熱処理条件は実施の形態1と同様である。そして、ニッケルシリサイド層2S上に順次積層していく、第1金属層3、第2金属層4、第3金属層5、第4金属層6のうち、第2金属層であるSb層4の厚みを変化させた。また、銅板7との接合の際、マスキングや熱処理条件は実施の形態1と同様であるが、はんだの組成(Sb含有量)を変化させた。測定サンプル数は、同じ仕様のものをそれぞれ3個作成し、接合体の横方向からせん断方向に最高20kgf(約200N)まで印加(測定)可能なプッシュテスタ(ARF-20:アトニック(株)製デジタルフォースゲージ)を用いて測定し、剥離が生じた時の印加力を密着強度とした。測定した密着強度値はそれぞれの平均値を使用した。評価結果を表2に示す。
Embodiment 2. FIG.
In the second embodiment, the bonding strength was evaluated by changing the thickness of the Sb layer 4 as the second metal layer of the semiconductor element 10 created in the first embodiment and the composition of the tin-base solder 8. This will be described with reference to FIG. 1 used in the first embodiment. The thickness and heat treatment conditions of the semiconductor substrate 1 and the nickel layer 2 for forming the nickel silicide layer 2S are the same as those in the first embodiment. Of the first metal layer 3, the second metal layer 4, the third metal layer 5, and the fourth metal layer 6 that are sequentially stacked on the nickel silicide layer 2 </ b> S, the Sb layer 4 that is the second metal layer is formed. The thickness was changed. Further, in the joining with the copper plate 7, the masking and heat treatment conditions were the same as those in the first embodiment, but the solder composition (Sb content) was changed. Three test samples of the same specification were prepared for each, and a push tester (ARF-20: manufactured by Atonic Co., Ltd.) capable of applying (measuring) up to 20 kgf (about 200 N) in the shear direction from the lateral direction of the joined body. The force applied when peeling occurred was defined as the adhesion strength. The measured adhesion strength value used each average value. The evaluation results are shown in Table 2.

Figure 0005399953
Figure 0005399953

表2に示すように、サンプル3−1〜3−3の結果から、第1の金属層3(Ti層)に隣接して第2の金属層4としてSb層を形成すると、Sbを含まないはんだを使用しても接合体の密着強度は、2000時間まで5kgf以上を保ち、実施の形態1で示したSb層4のない接合体(1−1〜1−3)と比較して、大幅に接合強度に関する耐熱性が向上していることが確認された。つまり、Ti層3に隣接してSb層4を備えることにより、接合信頼性が向上することが示された。   As shown in Table 2, when the Sb layer is formed as the second metal layer 4 adjacent to the first metal layer 3 (Ti layer) from the results of the samples 3-1 to 3-3, Sb is not included. Even if the solder is used, the adhesion strength of the joined body is maintained at 5 kgf or more until 2000 hours, which is significantly larger than the joined body without the Sb layer 4 (1-1 to 1-3) shown in the first embodiment. It was confirmed that the heat resistance related to the bonding strength was improved. That is, it was shown that by providing the Sb layer 4 adjacent to the Ti layer 3, the bonding reliability is improved.

一方、Sb層4の層厚が50nm以上のサンプル3−2,3−3では、1000時間保持しても密着強度がほとんど低下していないが、Sb層4の層厚が5nmのサンプル3−1は、500時間後から密着強度の低下がみられる。このことから、はんだ組成によらず(はんだ中にSb成分がない場合でも)、信頼性の高い接合を得るには、第2の金属層であるSb層4の層厚を50nm以上とすることが望ましいことがわかった。   On the other hand, in Samples 3-2 and 3-3 in which the layer thickness of the Sb layer 4 is 50 nm or more, the adhesion strength is hardly lowered even after holding for 1000 hours, but the sample 3 in which the layer thickness of the Sb layer 4 is 5 nm. No. 1 shows a decrease in adhesion strength after 500 hours. Therefore, regardless of the solder composition (even when there is no Sb component in the solder), the layer thickness of the Sb layer 4 as the second metal layer should be 50 nm or more in order to obtain a highly reliable joint. Found it desirable.

また、Sb含有量が5wt%以上のはんだ中を用いて接合した、実施例5−1〜6−3については、Sb層4の厚みを50nmより薄い5nmにしたサンプル5−1,6−1でも、2000時間経過後に生じる強度低下はほんの僅かであり、はんだ8中のSb濃度を増大させることで接合信頼性がさらに向上していることがわかる。   Further, in Examples 5-1 to 6-3, which were joined using a solder having an Sb content of 5 wt% or more, Samples 5-1 and 6-1 in which the thickness of the Sb layer 4 was 5 nm, which was thinner than 50 nm. However, it can be seen that the decrease in strength that occurs after the lapse of 2000 hours is very small, and that the bonding reliability is further improved by increasing the Sb concentration in the solder 8.

さらにSb層4の層厚を50nm以上とする(サンプル5−2,5−3,6−2,6−3)ことにより、2000時間高温で保持しても、密着強度低下が生じないことが確認された。つまり、第2の金属層としてのSb層4の層厚を50nm以上とし、接合するはんだ8中のSb含有量を5wt%以上とすることにより、一層高信頼な接合が得られることが確認できた。   Furthermore, when the layer thickness of the Sb layer 4 is set to 50 nm or more (Samples 5-2, 5-3, 6-2, 6-3), adhesion strength does not decrease even when kept at a high temperature for 2000 hours. confirmed. That is, it can be confirmed that a more reliable bonding can be obtained by setting the thickness of the Sb layer 4 as the second metal layer to 50 nm or more and the Sb content in the solder 8 to be bonded to 5 wt% or more. It was.

以上のように、本実施の形態2にかかる半導体素子または、半導体素子と導電部材との接合体によれば、第2の金属層であるSb層4の層厚みを50nm以上にすることで、接合信頼性がより高くなった。さらに接合に用いるはんだ8中のSb濃度を5wt%以上にすることで、長時間高温で保持しても接合強度が低下しない信頼性の高い接合が得られた。   As described above, according to the semiconductor element according to the second embodiment or the joined body of the semiconductor element and the conductive member, by setting the layer thickness of the Sb layer 4 as the second metal layer to 50 nm or more, Bonding reliability is higher. Furthermore, by setting the Sb concentration in the solder 8 used for joining to 5 wt% or more, a highly reliable joint is obtained in which the joint strength does not decrease even when kept at a high temperature for a long time.

実施の形態3.
本発明の実施の形態3では、上述した半導体素子をすず基はんだを用いて接合した半導体装置について説明する。図5は実施の形態1または2で示した半導体素子をすず基はんだを用いて装着した半導体装置の構成を説明するためのもので、図5(a)は半導体装置の半導体素子を装着した部分の平面図、図5(b)は図5(a)のA−A線における切断面を示す断面図である。図において、電力用半導体装置100は、絶縁性の回路基板11上に複数の銅の回路パターンが形成され、そのうちのひとつの回路パターン17にドレイン電極側を接合したSiC基材を用いた半導体素子10が配置されている。
Embodiment 3 FIG.
In Embodiment 3 of the present invention, a semiconductor device in which the above-described semiconductor elements are joined using tin-based solder will be described. FIG. 5 is a diagram for explaining a configuration of a semiconductor device in which the semiconductor element described in the first or second embodiment is mounted using tin-based solder, and FIG. 5A is a portion of the semiconductor device in which the semiconductor element is mounted. FIG. 5B is a cross-sectional view showing a cut surface taken along the line AA of FIG. In the figure, a power semiconductor device 100 includes a semiconductor element using a SiC base material in which a plurality of copper circuit patterns are formed on an insulating circuit board 11 and a drain electrode side is joined to one of the circuit patterns 17. 10 is arranged.

この回路パターン17への半導体素子10の接合を上述したすず基はんだ8を用いて行った。図1に示すように、半導体素子10のドレイン電極側の接合面にはシリサイド層2S、第1〜第4の金属層3〜6が順次形成されている。半導体素子10の基材には、上述した炭化ケイ素以外にも、シリコンやいわゆるワイドバンドギャップ半導体材料である、ガリウム−ヒ素、窒化ガリウム、ダイヤモンドなどにシリコン層を形成しシリサイド化した材料が用いられる。また、半導体素子10と対向する導電部材である回路パターン17は銅からなり、その接合面にも1μm厚程度の金、銀、パラジウム、白金などの図示しない貴金属めっき層を形成している。そして、半導体素子10を回路パターン17に接合する方法については、実施の形態1で説明した図2のステップS110〜S180に示すとおりであり、説明を省略する。   The semiconductor element 10 was joined to the circuit pattern 17 using the tin-based solder 8 described above. As shown in FIG. 1, a silicide layer 2S and first to fourth metal layers 3 to 6 are sequentially formed on the junction surface of the semiconductor element 10 on the drain electrode side. In addition to the above-mentioned silicon carbide, a material obtained by forming a silicon layer on silicon or a so-called wide band gap semiconductor material such as gallium-arsenic, gallium nitride, diamond, or the like is used for the base material of the semiconductor element 10. . Further, the circuit pattern 17 which is a conductive member facing the semiconductor element 10 is made of copper, and a noble metal plating layer (not shown) such as gold, silver, palladium, platinum or the like having a thickness of about 1 μm is formed on the bonding surface. The method for bonding the semiconductor element 10 to the circuit pattern 17 is as shown in steps S110 to S180 of FIG. 2 described in the first embodiment, and a description thereof is omitted.

ただし、熱処理(ステップS150)のとき、図示しない治具または組立装置により半導体素子10に対して所定の荷重を印加した状態で行っても良い。このようにして回路パターン17上に半導体素子10やその他の部材を実装した半導体装置または半導体モジュールが製造できる。これらの半導体装置100は、特に接合部において優れた電気伝導性、熱伝導性、耐熱サイクル寿命を有するため、高温動作環境に対応でき、熱ストレスに優れる。特に、大電流を扱う電力用半導体装置は高温で使用されるので、更に効果が顕著となる。   However, the heat treatment (step S150) may be performed in a state where a predetermined load is applied to the semiconductor element 10 by a jig or an assembly apparatus (not shown). In this way, a semiconductor device or a semiconductor module in which the semiconductor element 10 and other members are mounted on the circuit pattern 17 can be manufactured. Since these semiconductor devices 100 have excellent electrical conductivity, thermal conductivity, and heat-resistant cycle life, particularly at the junction, they can cope with a high-temperature operating environment and are excellent in thermal stress. In particular, since the power semiconductor device that handles a large current is used at a high temperature, the effect becomes more remarkable.

上記のように回路基板11に実装された半導体素子10に対して、例えば、半導体素子10と銅端子18間を銅製のインナーフレーム16によって電気的に接続し、半導体素子10と図示しない外部電極とを電気接続する。こういった接続を繰り返し、半導体装置100が形成されていく。なお、半導体素子10の上面には厳密にはゲートパッドやソース電極が形成されているが、図では簡略化して上面全体にソース電極が形成されているものとして記載している。また、半導体素子10のソース電極の表面には、接続を良くするための図示しない厚さ数μmの薄いアルミニウムの下地(電極)が形成されている。   For example, the semiconductor element 10 and the copper terminal 18 are electrically connected by the copper inner frame 16 to the semiconductor element 10 mounted on the circuit board 11 as described above. Electrically connect. Such connection is repeated to form the semiconductor device 100. Strictly speaking, a gate pad and a source electrode are formed on the upper surface of the semiconductor element 10, but in the drawing, it is simplified and described as having a source electrode formed on the entire upper surface. Further, on the surface of the source electrode of the semiconductor element 10, a thin aluminum base (electrode) having a thickness of several μm (not shown) is formed to improve the connection.

上記半導体素子100を動作させると、動作温度が200℃以上に上昇し、一時的には数百度まで上昇することがある。しかし、本実施の形態のようなTi層3に隣接してSb層4を備えた半導体素子10をすず基はんだ8を用いて接合すると、接合部に強固なTi−Sb−Sn3元合金層が形成され、高温でも強固な接合強度を維持することができる。   When the semiconductor element 100 is operated, the operating temperature rises to 200 ° C. or higher and may temporarily rise to several hundred degrees. However, when the semiconductor element 10 having the Sb layer 4 adjacent to the Ti layer 3 as in the present embodiment is joined using the tin-based solder 8, a strong Ti—Sb—Sn ternary alloy layer is formed at the joint. It is formed and can maintain strong bonding strength even at high temperatures.

ここで、たとえば、スイッチング素子や整流素子として機能する半導体素子に、炭化ケイ素や、窒化ガリウム系材料又はダイヤモンドを用いた場合、従来から用いられてきたケイ素で形成された素子よりも電力損失が低いため、電力用半導体装置の高効率化が可能となる。また、耐電圧性が高く、許容電流密度も高いため、電力用半導体装置の小型化が可能となる。さらにワイドバンドギャップ半導体素子は、耐熱性が高いので、高温動作が可能であり、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力用半導体装置の一層の小型化が可能になる。   Here, for example, when silicon carbide, a gallium nitride-based material, or diamond is used for a semiconductor element that functions as a switching element or a rectifying element, power loss is lower than that of a conventionally formed element made of silicon. Therefore, the efficiency of the power semiconductor device can be increased. Further, since the withstand voltage is high and the allowable current density is also high, the power semiconductor device can be downsized. In addition, wide band gap semiconductor elements have high heat resistance, so they can operate at high temperatures, and the heat sink fins can be downsized and the water cooling section can be air cooled. Is possible.

一方、ワイドバンドギャップ半導体素子の性能を発揮するには、半導体素子に電流が流れるときの電気抵抗を下げるとともに、半導体素子で発生した熱を効率よく放熱する必要がある。そのため、本発明の実施の形態に記載した半導体素子をすず基はんだで接合すれば、放熱特性、電気伝導性にも優れるとともに、製造時や駆動時の熱サイクル下でも強固な接合を維持できるので、信頼性の高い半導体装置や半導体モジュールを得ることができる。   On the other hand, in order to exhibit the performance of the wide band gap semiconductor element, it is necessary to reduce the electrical resistance when current flows through the semiconductor element and to efficiently dissipate the heat generated in the semiconductor element. Therefore, if the semiconductor element described in the embodiment of the present invention is joined with tin-base solder, it has excellent heat dissipation characteristics and electrical conductivity, and can maintain a strong joint even under a thermal cycle during manufacturing or driving. A highly reliable semiconductor device or semiconductor module can be obtained.

以上のように、本実施の形態にかかる半導体装置によれば、回路パターン17が形成された回路基板11と、回路パターン17上に実装された上記半導体素子10とを備え、半導体素子10と回路パターン11との接合に、すず基はんだを用いるようにしたので、製造時や駆動時の熱サイクル下でも強固な接合を維持し、信頼性の高い半導体装置を得ることができる。   As described above, the semiconductor device according to the present embodiment includes the circuit board 11 on which the circuit pattern 17 is formed and the semiconductor element 10 mounted on the circuit pattern 17. Since tin-based solder is used for bonding to the pattern 11, it is possible to maintain a strong bonding even under a thermal cycle during manufacturing or driving, and to obtain a highly reliable semiconductor device.

また、本実施の形態にかかる半導体装置の製造方法によれば、回路パターン17上にすず基はんだ8のペーストを所定範囲に塗布し(ステップS120、S130)、すず基はんだ8のペーストを塗布した部分に上述した半導体素子10を設置し(ステップS140)、すず基はんだ8を溶融するように加熱する(ステップS150〜S160)、ようにしたので、製造時や駆動時の熱サイクル下でも強固な接合を維持し、信頼性の高い半導体装置100を得ることができる。   Further, according to the method of manufacturing a semiconductor device according to the present embodiment, the paste of tin base solder 8 is applied to the predetermined range on the circuit pattern 17 (steps S120 and S130), and the paste of tin base solder 8 is applied. Since the semiconductor element 10 described above is installed in the portion (step S140) and the tin-base solder 8 is heated so as to melt (steps S150 to S160), it is strong even under the thermal cycle during manufacturing and driving. A highly reliable semiconductor device 100 can be obtained while maintaining bonding.

とくに、前記すず基はんだ8にはSb含有量が5wt%以上のものを用いたので、さらに信頼性の高い半導体装置100が得られる。   In particular, since the tin-based solder 8 having an Sb content of 5 wt% or more is used, the semiconductor device 100 with higher reliability can be obtained.

1 半導体基材、 2 シリサイドを形成するための金属層(2S:シリサイド層)、
3 Ti層(第1金属層)(3:Ti−Sb−Sn3元合金化層)、 4 Sb層(第2金属層)、 5 第3金属層(5:Ni−Sn合金化層)、 6 Au層(第4金属層)、 7 銅板(導電部材)、 8 すず基はんだ(8M:溶融後)
11 回路基板、 17 回路パターン(導電部材)、 100 半導体装置

1 semiconductor substrate, 2 metal layer for forming silicide (2S: silicide layer),
3 Ti layer (first metal layer) (3 A : Ti—Sb—Sn ternary alloyed layer), 4 Sb layer (second metal layer), 5 Third metal layer (5 A : Ni—Sn alloyed layer) , 6 Au layer (4th metal layer), 7 Copper plate (conductive member), 8 Tin-based solder (8M: after melting)
11 Circuit board, 17 Circuit pattern (conductive member), 100 Semiconductor device .

Claims (6)

すず基はんだを用いて導電部材と接合するための半導体素子であって、
半導体材料からなる基材の前記導電部材との接合面に、
シリサイド層と、
チタンからなる第1の金属層と、
アンチモンからなる第2の金属層と、
ニッケル層、銅層、銅層上にニッケル層を積層した層、およびタンタル層上に銅層を積層した層、のいずれかからなる第3の金属層と、が
前記基材側から順次積層されており、
前記第2の金属層の厚みが50nm以上であることを特徴とする半導体素子。
A semiconductor element for joining to a conductive member using tin-based solder,
On the joint surface with the conductive member of the base material made of a semiconductor material,
A silicide layer;
A first metal layer made of titanium;
A second metal layer made of antimony;
A third metal layer comprising any one of a nickel layer, a copper layer, a layer obtained by laminating a nickel layer on the copper layer, and a layer obtained by laminating a copper layer on the tantalum layer is sequentially laminated from the base material side. and,
A semiconductor element, wherein the thickness of the second metal layer is 50 nm or more .
前記半導体材料がワイドバンドギャップ半導体材料であることを特徴とする請求項1に記載の半導体素子。 The semiconductor device according to claim 1 , wherein the semiconductor material is a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム、ガリウムヒ素、またはダイヤモンドのうちのいずれかであることを特徴とする請求項2に記載の半導体素子。 3. The semiconductor device according to claim 2 , wherein the wide band gap semiconductor material is any one of silicon carbide, gallium nitride, gallium arsenide, and diamond. 回路パターンが形成された回路基板と、
前記回路パターン上に実装された請求項1ないし3のいずれか1項に記載の半導体素子と、を備え
前記半導体素子の前記回路パターンへの接合に、すず基はんだを用いたことを特徴とする半導体装置。
A circuit board on which a circuit pattern is formed;
A semiconductor element according to any one of claims 1 to 3 mounted on the circuit pattern, wherein a tin-based solder is used for joining the semiconductor element to the circuit pattern. Semiconductor device.
前記すず基はんだにはアンチモンが5wt%以上含有されていることを特徴とする請求項4に記載の半導体装置。 The semiconductor device according to claim 4 , wherein the tin-based solder contains 5 wt% or more of antimony. 半導体装置を構成する回路基板の回路パターン上の所定範囲に、すず基はんだのペーストを塗布し、
前記すず基はんだのペーストを塗布した部分に請求項1ないし3のいずれか1項に記載の半導体素子を設置し、
前記すず基はんだが溶融するように加熱する、
ことを特徴とする半導体装置の製造方法。
Apply tin-based solder paste to a predetermined area on the circuit pattern of the circuit board constituting the semiconductor device,
The semiconductor element according to any one of claims 1 to 3 is installed in a portion where the tin-based solder paste is applied,
Heating so that the tin-based solder melts;
A method for manufacturing a semiconductor device.
JP2010052747A 2010-03-10 2010-03-10 Semiconductor element, semiconductor device using the same, and method for manufacturing semiconductor device Active JP5399953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052747A JP5399953B2 (en) 2010-03-10 2010-03-10 Semiconductor element, semiconductor device using the same, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052747A JP5399953B2 (en) 2010-03-10 2010-03-10 Semiconductor element, semiconductor device using the same, and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2011187782A JP2011187782A (en) 2011-09-22
JP5399953B2 true JP5399953B2 (en) 2014-01-29

Family

ID=44793692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052747A Active JP5399953B2 (en) 2010-03-10 2010-03-10 Semiconductor element, semiconductor device using the same, and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP5399953B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722933B2 (en) * 2013-02-04 2015-05-27 株式会社豊田中央研究所 Laminated electrode
JP6046010B2 (en) * 2013-09-09 2016-12-14 株式会社東芝 Semiconductor device and manufacturing method thereof
KR102311677B1 (en) 2014-08-13 2021-10-12 삼성전자주식회사 Semiconductor device and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360537A (en) * 1986-09-01 1988-03-16 Toyota Central Res & Dev Lab Inc Metallic laminate and manufacture thereof
JPH0423361A (en) * 1990-05-15 1992-01-27 Nippondenso Co Ltd Ohmic electrode structure of semiconductor device
JPH06252091A (en) * 1993-02-24 1994-09-09 Hitachi Ltd Semiconductor device and its manufacture
JP2000353709A (en) * 1999-06-14 2000-12-19 Hitachi Ltd Semiconductor device and electronic component using the same
JP4453612B2 (en) * 2004-06-24 2010-04-21 住友金属鉱山株式会社 Lead-free solder alloy

Also Published As

Publication number Publication date
JP2011187782A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP6632686B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5160201B2 (en) Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP5426188B2 (en) Thermoelectric conversion module and thermoelectric semiconductor element
CN108475647B (en) Power semiconductor device and method for manufacturing power semiconductor device
JP5120653B2 (en) Solder layer, device bonding substrate using the same, and method for manufacturing the device bonding substrate
KR102154369B1 (en) Power module
JP5490258B2 (en) Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device
US8421246B2 (en) Joint structure and electronic component
Hagler et al. SiC Die Attach Metallurgy and Processes for Applications up to 500$^{\circ}{\rm C} $
TWI312647B (en)
JP5399953B2 (en) Semiconductor element, semiconductor device using the same, and method for manufacturing semiconductor device
CN1316605C (en) Substrate for use in joining element
JPWO2014030659A1 (en) Insulating substrate, multilayer ceramic insulating substrate, joined structure of power semiconductor device and insulating substrate, and power semiconductor module
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
EP1939929A1 (en) Solder layer, heat sink using such solder layer and method for manufacturing such heat sink
JP2005032834A (en) Joining method of semiconductor chip and substrate
JP2002064169A (en) Heat radiating structure
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JP6259625B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP5120917B2 (en) Semiconductor device and manufacturing method thereof
JP6116857B2 (en) Au-based solder die attachment semiconductor device and manufacturing method thereof
JP2004327732A (en) Ceramic circuit board and electrical circuit module
JP2014147966A (en) Joining material, joining method, joining structure, and semiconductor device
TWI476883B (en) Solder, contact structure and method of fabricating contact structure
JP2020006403A (en) Conjugate, and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R151 Written notification of patent or utility model registration

Ref document number: 5399953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250