JP5395608B2 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
JP5395608B2
JP5395608B2 JP2009234717A JP2009234717A JP5395608B2 JP 5395608 B2 JP5395608 B2 JP 5395608B2 JP 2009234717 A JP2009234717 A JP 2009234717A JP 2009234717 A JP2009234717 A JP 2009234717A JP 5395608 B2 JP5395608 B2 JP 5395608B2
Authority
JP
Japan
Prior art keywords
impedance
converter
switch
resistor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009234717A
Other languages
English (en)
Other versions
JP2011082879A (ja
Inventor
卓司 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2009234717A priority Critical patent/JP5395608B2/ja
Priority to US12/900,074 priority patent/US8319677B2/en
Publication of JP2011082879A publication Critical patent/JP2011082879A/ja
Application granted granted Critical
Publication of JP5395608B2 publication Critical patent/JP5395608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

本発明は、A/D(Analog/Digital)変換器の変換精度の向上化技術に関し、特に、複数のA/D変換器を搭載した半導体集積回路装置における変換誤差の低減に有効な技術に関する。
半導体集積回路装置には、A/D変換器を搭載したものが広く用いられている。たとえば、自動車の制御用などに用いられる半導体集積回路装置では、該半導体集積回路装置に接続されるセンサの数が増加する傾向にあり、複数のA/D変換器の搭載が望まれている。
一方、この種の半導体集積回路装置においては、コスト削減などの要求から、外部端子数の削減が求められている。本発明者が検討したところによれば、複数のA/D変換器を搭載した半導体集積回路装置の外部端子数を削減するには、A/D変換器に電源電圧やリファレンス電圧などを供給する電源端子(AVCC、AVSS、REFH、REFL)を共通化する技術が有効となる。
たとえば、2つのA/D変換器を搭載する場合には、上記した電源端子を共通化しないとそれぞれ4本ずつ、計8本の外部端子が必要となるが、該電源端子を共通化すると4本の外部端子に削減することができる。さらに、A/D変換器を3つ搭載した際には、上記した電源端子を共通化しないと12本の外部端子が必要となってしまうことになる。
ところが、上記のような複数のA/D変換器を搭載した半導体集積回路装置における外部端子の削減技術では、次のような問題点があることが本発明者により見い出された。
すなわち、複数のA/D変換器を搭載した場合、すべてのA/D変換器がノイズ発生源となると共に、すべてのA/D変換器が、そのノイズの影響を受けてしまう側にもなってしまう。
ノイズ発生源として考えた場合、A/D変換器は、該A/D変換器を構成する内部アンプの動作時と内部D/A(Digital/Analog)変換器の動作時に大きなパルス状のノイズを電源端子AVCC,AVSS、およびリファレンス端子REFH,REFLに発生させる。
また、ノイズの影響を受ける側としてA/D変換器は、サンプリング終了時、コンパレータによる比較時に電源端子、リファレンス端子にノイズを受けると変換誤差の原因となってしまう。
たとえば、2つのA/D変換器を搭載した場合、一方のA/D変換器の動作のノイズが、他方のA/D変換器の変換誤差となり、精度の高いA/D変換ができなくなってしまう恐れがある。
本発明の目的は、A/D変換器に用いられる外部端子数を大幅に削減しながら、高精度にA/D変換を行うことのできる技術を提供することにある。
本発明の前記ならびにそのほかの目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
本発明は、入力信号のサンプリングと逐次比較とを行い、アナログ信号をデジタル信号に変換する逐次比較型のA/D変換器を備えた半導体集積回路装置であって、該A/D変換器は、一方の接続部が、A/D変換用のアナログ信号が入力される入力部に接続された第1のスイッチと、一方の接続部が、該第1のスイッチの他方の接続部に接続されたサンプリング容量と、変換用アナログ信号を出力するD/A変換器と、該D/A変換器の出力部、および第1のスイッチとサンプリング容量との間に接続された第2のスイッチと、第1の入力部に、サンプリング容量の他方の接続部が接続され、第2の入力部に静電容量素子の一方の接続部が接続され、差電圧の増幅を行う差動増幅器と、任意のインピーダンスが付加された比較用基準電圧を静電容量素子を介して差動増幅器の第2の入力部に供給するインピーダンス適合部とを有するものである。
また、本発明は、前記インピーダンス適合部が、サンプリング時に差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1のインピーダンス部と、逐次比較時に差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第2のインピーダンス部とを有し、サンプリング時には、第1のインピーダンス部を介して比較用基準電圧が供給され、逐次比較時には、第2のインピーダンス部を介して比較用基準電圧が供給されるものである。
さらに、本発明は、前記第1のインピーダンス部が、サンプリング時に差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1の抵抗と、サンプリング時に、第1の抵抗のインピーダンスが付加された比較用基準電圧を静電容量素子を介して第2の入力部に供給する第3のスイッチとを備え、前記第2のインピーダンス部は、サンプリング時に、第2の抵抗のインピーダンスが付加された比較用基準電圧を静電容量素子を介して第2の入力部に供給する第4のスイッチとを備えたものである。
また、本発明は、前記第1の抵抗、および前記第3のスイッチが、A/D変換器に外部接続されたアナログ信号を出力する複数のセンサと同じ数がそれぞれ備えられ、それら複数の第3のスイッチを制御するコントローラを備え、複数の第1の抵抗は、サンプリング時において、センサ毎に最適となるインピーダンスをそれぞれ有しており、該コントローラは、複数のセンサのうち、任意に選択されているセンサを検出し、複数の第1の抵抗のうち、選択されているセンサに見合った最適となるインピーダンスを有した第1の抵抗が選択されるように任意の前記第3のスイッチを動作させるものである。
さらに、本発明は、A/D変換用電源電圧が接続される1つの外部電源電圧端子と、A/D変換用基準電位が接続される1つの外部基準電位端子とを備え、該A/D変換器が、2以上備えられ、2以上のA/D変換器は、外部電源電圧端子、および外部基準電位端子にそれぞれ共通接続されているものである。
さらに、本願のその他の発明の概要を簡単に示す。
本発明は、入力信号のサンプリングと逐次比較とを行い、アナログ信号をデジタル信号に変換する逐次比較型のA/D変換器を備えた半導体集積回路装置であって、該A/D変換器は、一方の接続部が、A/D変換用のアナログ信号が入力される入力部に接続された第1のスイッチと、入力されたA/D変換用のアナログ信号をサンプル/ホールドするとともに、変換用アナログ信号を出力する電荷再配分型D/A変換器と、第1の入力部に、電荷再配分型D/A変換器の出力部が接続され、第2の入力部に静電容量素子の一方の接続部が接続され、差電圧の増幅を行う差動増幅器と、任意のインピーダンスが付加された比較用基準電圧を静電容量素子を介して差動増幅器の第2の入力部に供給するインピーダンス適合部とを有するものである。
また、本発明は、前記インピーダンス適合部が、サンプリング時に差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1のインピーダンス部と、逐次比較時時に差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第2のインピーダンス部とを有し、サンプリング時には、第1のインピーダンス部を介して比較用基準電圧が供給され、逐次比較時には、第2のインピーダンス部を介して比較用基準電圧が供給されるものである。
さらに、本発明は、前記第1のインピーダンス部が、サンプリング時に差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1の抵抗と、サンプリング時に、第1の抵抗のインピーダンスが付加された比較用基準電圧を静電容量素子を介して第2の入力部に供給する第3のスイッチとを備え、前記第2のインピーダンス部は、サンプリング時に、第2の抵抗のインピーダンスが付加された比較用基準電圧を静電容量素子を介して第2の入力部に供給する第4のスイッチとを備えたものである。
また、本発明は、前記第1の抵抗、および前記第3のスイッチが、A/D変換器に外部接続されたアナログ信号を出力する複数のセンサと同じ数がそれぞれ備えられ、複数の第3のスイッチを制御するコントローラを備え、それら複数の第1の抵抗は、サンプリング時において、センサ毎に最適となるインピーダンスをそれぞれ有しており、該コントローラは、複数のセンサのうち、任意に選択されているセンサを検出し、複数の第1の抵抗のうち、選択されているセンサに見合った最適となるインピーダンスを有した第1の抵抗が選択されるように任意の前記第3のスイッチを動作させるものである。
さらに、本発明は、A/D変換用電源電圧が接続される1つの外部電源電圧端子と、A/D変換用基準電位が接続される1つの外部基準電位端子とを備え、該A/D変換器が、2以上備えられ、2以上のA/D変換器は、外部電源電圧端子、および外部基準電位端子にそれぞれ共通接続されているものである。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
(1)サンプリング時、および逐次比較時に最適なインピーダンスをそれぞれ設定することができるので、ノイズキャンセル効果を最大限に得ることができ、ノイズなどの影響を大幅に低減することができる。
(2)上記(1)により、A/D変換器における変換誤差を大幅に低減することができ、高い変換精度を実現することができる。
本発明の実施の形態1による半導体集積回路装置の一例を示すブロック図である。 図1の半導体集積回路装置に設けられたA/D変換器の一例を示す説明図である。 本発明者が検討した一般的なA/D変換器の一例を示す説明図である。 図3のA/D変換器における動作の一例を示すタイミングチャートである。 図2のA/D変換器における動作の一例を示すタイミングチャートである。 本発明の実施の形態2によるA/D変換器における一例を示す説明図である。 図6のA/D変換器の一部分におけるレイアウトの一例を示す説明図である。 本発明の実施の形態2によるA/D変換器における他の例を示す説明図である。 本発明の実施の形態3によるA/D変換器の構成の一例を示す説明図である。 図9のA/D変換器における動作の一例を示すタイミングチャートである。 本発明の実施の形態4によるA/D変換器の構成の一例を示す説明図である。 本発明の実施の形態5による半導体集積回路装置の構成の一例を示すブロック図である。 本発明の実施の形態6によるA/D変換器における構成の一例を示す説明図である。 図13のA/D変換器における動作の一例を示すタイミングチャートである。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
図1は、本発明の実施の形態1による半導体集積回路装置の一例を示すブロック図、図2は、図1の半導体集積回路装置に設けられたA/D変換器の一例を示す説明図、図3は、本発明者が検討した一般的なA/D変換器の一例を示す説明図、図4は、図3のA/D変換器における動作の一例を示すタイミングチャート、図5は、図2のA/D変換器における動作の一例を示すタイミングチャートである。
本実施の形態1において、半導体集積回路装置1は、たとえば、自動車などに搭載され、エンジン制御、エアバッグ制御、およびエアコン制御などの様々なシステムを制御する。半導体集積回路装置1は、図1に示すように、RAM2、不揮発性メモリ3、CPU4、コントローラ5、A/D変換器6,7、および入力セレクタ8,9などから構成されている。
RAM2は、揮発性半導体メモリなどであり、データの一時的な保存に用いられる。不揮発性メモリ3は、フラッシュメモリなどに例示されるメモリであり、たとえば、半導体集積回路装置1における動作プログラムなどが格納されている。
CPU4は、半導体集積回路装置1におけるすべての制御を司る。コントローラ5は、CPU4の制御に基づいて、入力セレクタ8,9などの制御を行う。A/D変換器6には、複数のセンサ101 〜10N が接続されており、A/D変換器7には、複数のセンサ111 〜11N が接続されている。
A/D変換器6は、センサ101 〜10N から出力されるアナログ信号をデジタル信号に変換し、A/D変換器7は、センサ111 〜11N から出力されるアナログ信号をデジタル信号に変換する。
センサ101 〜10N ,111 〜11N は、たとえば、ノックセンサなどのエンジン制御用、エアバック制御、ブレーキ制御用、およびバッテリ制御用などの各種センサからなる。
入力セレクタ8は、コントローラ5から出力される制御信号に基づいて、センサ101 〜10N のうち、任意の1つのセンサから出力されるアナログ信号がA/D変換器6に入力されるように切り換える。
入力セレクタ9は、コントローラ5から出力される制御信号に基づいて、センサ111 〜11N のうち、任意の1つのセンサから出力されるアナログ信号がA/D変換器6に入力されるように切り換える。
また、半導体集積回路装置1には、外部端子である電源用端子TAVCC,TAVSS,TREFH,TREFLがそれぞれ設けられている。外部電源電圧端子である電源用端子TAVCCは、A/D変換器6,7の動作電圧となる電源電圧AVCCを供給する端子であり、外部基準電位端子である電源用端子TAVSSは、A/D変換器6,7の基準電位AVSSを供給する端子である。
電源用端子TREFHは、A/D変換器6,7にHi側基準電圧REFHを供給する端子であり、電源用端子TREFLは、A/D変換器6,7に比較用基準電圧となるLo側基準電圧REFLを供給する端子である。
図2は、図1の半導体集積回路装置1に設けられたA/D変換器6の一例を示した説明図である。この図2では、A/D変換器6について示しているが、A/D変換器7もA/D変換器6と同様の構成となっている。
A/D変換器6は、図示するように、D/A変換器12、アンプ13、コンパレータ14、静電容量素子15,16、抵抗19、抵抗20、およびスイッチ21〜26から構成されている。
また、これら第1の抵抗となる抵抗19、第2の抵抗となる抵抗20、第3のスイッチとなるスイッチ25、および第4のスイッチとなるスイッチ26により、インピーダンス適合部が構成されており、抵抗19とスイッチ25とにより、第1のインピーダンス部が、そして、抵抗20とスイッチ26とにより、第2のインピーダンス部がそれぞれ構成されている。
ここで、図中の抵抗R1は、A/D変換器6に接続されるセンサ(センサ101 〜10N のいずれか)のインピーダンス、および入力セレクタ8のインピーダンスを示しており、抵抗R2は、D/A変換器12の出力インピーダンスを示している。
変換用アナログ信号となる変換用電圧を出力するD/A変換器12の出力部には、第2のスイッチであるスイッチ24の一方の接続部が接続されており、これらD/A変換器12の出力部とスイッチ24の一方の接続部との間には、抵抗R2のインピーダンスを有している。
A/D変換器6の入力部AD_inには、第1のスイッチであるスイッチ23の一方の接続部が接続されており、これら入力部AD_inとスイッチ23の一方の接続部との間には、抵抗R1のインピーダンスを有する構成となっている。このスイッチ23の他方の接続部には、スイッチ24の他方の接続部、および静電容量素子15の一方の接続部がそれぞれ接続されている。
静電容量素子15の他方の接続部には、差動アンプであるアンプ13の一方の入力部、ならびにスイッチ21の一方の接続部がそれぞれ接続されている。アンプ13の一方の出力部には、スイッチ21の他方の接続部、およびコンパレータ14の一方の入力部がそれぞれ接続されている。
抵抗19の一方の接続部、および抵抗20の一方の接続部には、Lo側基準電圧REFLがそれぞれ接続されている。抵抗19の他方の接続部には、スイッチ25の一方の接続部が接続されており、抵抗20の他方の接続部には、スイッチ26の一方の接続部が接続されている。
スイッチ25,26の他方の接続部には、静電容量素子16の一方の接続部がそれぞれ接続されており、該静電容量素子16の他方の接続部には、アンプ13の他方の入力部、ならびにスイッチ22の一方の接続部がそれぞれ接続されている。
アンプ13の他方の出力部には、スイッチ22の他方の接続部、ならびにコンパレータ14の他方の入力部がそれぞれ接続されている。そして、コンパレータ14の出力部結果により逐次比較を行い、最終的にデジタル信号に変換された信号がA/D変換器6の変換結果として出力される。
ここで、本発明者が検討した一般的なA/D変換器50について、図3を用いて説明する。
A/D変換器50は、図示するように、D/A変換器51、アンプ52、コンパレータ53、静電容量素子54,55、抵抗56〜58、およびスイッチ59〜62から構成されている。
なお、図中の抵抗56は、接続されたセンサのインピーダンスや入力セレクタのインピーダンスの合計値であり、抵抗57は、D/A変換器51の出力インピーダンスを示している。
D/A変換器51の出力部には、スイッチ61の一方の接続部が接続されている。A/D変換器50の入力部AD_inには、スイッチ62の一方の接続部が接続されている。このスイッチ62の他方の接続部には、スイッチ61の他方の接続部、および静電容量素子54の一方の接続部がそれぞれ接続されている。静電容量素子54の他方の接続部には、差動アンプであるアンプ52の一方の入力部、ならびにスイッチ59の一方の接続部がそれぞれ接続されている。
アンプ52の一方の出力部には、スイッチ59の他方の接続部、およびコンパレータ53の一方の入力部がそれぞれ接続されている。抵抗58の一方の接続部には、基準電位VSSが接続されている。
この抵抗58の他方の接続部には、静電容量素子55の一方の接続部が接続されており、該静電容量素子55の他方の接続部には、スイッチ60の一方の接続部、およびアンプ52の他方の入力部がそれぞれ接続されている。
アンプ52の他方の出力部には、スイッチ60の他方の接続部、ならびにコンパレータ53の他方の入力部がそれぞれ接続されている。また、アンプ52、ならびにコンパレータ53には、動作電圧として電源電圧AVCCと基準電位AVSSがそれぞれ供給されている。そして、コンパレータ53の出力部結果により逐次比較を行う。
次に、A/D変換器50の動作について、図4のタイミングチャートを用いて説明する。図4において、上方から下方にかけては、スイッチ59,60、スイッチ62、ならびにスイッチ61の動作タイミングについてそれぞれ示している。
まず、A/D変換器50において、サンプリングが開始されると、スイッチ59,60、およびスイッチ62がON(導通状態)となり、スイッチ61がOFF(非導通状態)となる。
これにより、入力部AD_inから入力された電圧と、ノードA(図3)の電圧との差電圧に相当する電荷がサンプリング容量である静電容量素子54に充電される。差動の反対側の静電容量素子55にも同様に、ノードB(図3)と基準電位VSSとの差電圧に相当する電荷が充電される。
そして、サンプリング終了時には、スイッチ59,60,62がそれぞれOFFとなり、入力部AD_inから入力された電圧とノードAの電圧との差電圧に相当する静電容量素子54に保存される。
このとき、サンプリングからホールドに移行する瞬間にノイズがのり、ノードA、ノードBでノイズの収束性が異なると差動成分としてノイズもサンプリングされ変換誤差となる。
ノイズの影響を最小限に抑えるためには、アンプ52のノードAから入力を見たインピーダンスとノードBから入力を見たインピーダンスをそろえる必要がある。
続いて、逐次比較時においては、入力部AD_inからの経路はスイッチ62によって切り離され、スイッチ61がONすることによりD/A変換器51が接続される。D/A変換器51からは、比較用電圧がアンプ52に順に出力され、コンパレータ53にて比較が行われる。
この逐次比較時も同様に、ノードAから見たインピーダンスとノードBからみたインピーダンスをそろえる必要がある。
サンプリング時において、抵抗58の最適抵抗値は、抵抗58=抵抗56+スイッチ62のインピーダンスである。ここで、抵抗58は接続されたセンサのインピーダンスや入力セレクタのインピーダンスの合計値であり比較的大きな値となる。
一方、逐次比較時において、抵抗58の最適抵抗値は抵抗58=抵抗57+スイッチ61のインピーダンスである。抵抗57は、D/A変換器51の出力インピーダンスであり、A/D変換の高速化のためには抵抗5の抵抗値は小さな値が好ましい。
このように、サンプリング時に最適な抵抗値と比較時に最適な抵抗値は大きく異なるものとなる。したがって、サンプリング時に最適なインピーダンスに抵抗58を固定した場合は、比較時にスピード不足による変換誤差を生じ、一方、比較時に最適なインピーダンスに抵抗58を固定した場合は、サンプリング時にインピーダンスの違いによるノイズの収束波形の差による変換誤差を生じてしまうことになる。
次に、本実施の形態によるA/D変換器6における作用について説明する。
まず、図2に示すA/D変換器6において、抵抗19は、サンプリング時に最適な抵抗値となっており、抵抗20は、逐次比較時に最適な抵抗値に設定されている。
ここで、抵抗19の抵抗値は、スイッチ23とスイッチ25とのインピーダンスが等しい場合、入力部AD_inからサンプリング容量である静電容量素子15の左端にいたる経路のインピーダンス(抵抗R1)から、スイッチ23のインピーダンスを差し引いた値が最適値となる。
また、抵抗20の抵抗値は、スイッチ24とスイッチ26とのインピーダンスが等しい場合、D/A変換器12側の出力抵抗(抵抗R2)を含み、スイッチ24のインピーダンスを除いたD/A変換器12からサンプリング容量である静電容量素子15の左端にいたる経路のインピーダンスとなる。
図5は、A/D変換器6における動作の一例を示すタイミングチャートである。この図5において、上方から下方にかけては、スイッチ21,22、スイッチ23、スイッチ24、スイッチ25、ならびにスイッチ26の動作タイミングについてそれぞれ示している。
まず、サンプリング時には、スイッチ21,22、スイッチ23、およびスイッチ25をONにし、スイッチ24とスイッチ26とをOFFにする。
このとき、前述したように抵抗19は、サンプリング時に最適な抵抗値に設定されているので、図2のノードAから左側を見たインピーダンスと図2のノードBから左側を見たインピーダンスとが略一致することにより、サンプリング時のノイズキャンセル効果が最大限に得られる。
続いて、逐次比較時には、スイッチ21,22、スイッチ23、およびスイッチ25をそれぞれOFFにし、スイッチ24とスイッチ26とをそれぞれONにする。このとき、抵抗20は、前述したように逐次比較時に最適な抵抗値に設定されているので図2のノードAから左側を見たインピーダンスと図2のノードBから左側を見たインピーダンスとが略一致することになり、逐次比較時のノイズキャンセル効果が最大限に得られることになる。
それにより、サンプリング時にはサンプリング時に最適なインピーダンス(抵抗19の抵抗値)に、そして、逐次比較時には逐次比較時に最適なインピーダンス(抵抗20の抵抗値)となるように、スイッチ25,26を切り替えることにより、外部ノイズや電源ノイズの影響がノードA、およびノードBにそれぞれ与える影響を同一にし、ノイズキャンセル効果を最大限に得ることができ、A/D変換器6における変換誤差を低減することができる。
(実施の形態2)
図6は、本発明の実施の形態2によるA/D変換器における一例を示す説明図、図7は、図6のA/D変換器の一部分におけるレイアウトの一例を示す説明図である。
本実施の形態2においては、前記実施の形態1におけるA/D変換器6(,7)が電荷再配分型の容量D/A変換器12aを搭載し、サンプリング容量D/A変換器の容量を共用にした場合の構成の一例を示す。
A/D変換器6は、図6に示すように、容量D/A変換器12a、アンプ13、コンパレータ14、静電容量素子16、抵抗19,20、抵抗29,30、およびスイッチ21,22,25,26から構成されている。この図6では、A/D変換器6について示しているが、A/D変換器7もA/D変換器6と同様の構成となっている。
アンプ13、コンパレータ14、静電容量素子16、抵抗19,20、およびスイッチ21,22,25,26の接続構成については、前記実施の形態1の図2と同様であるので説明は省略する。
また、容量D/A変換器12aは、スイッチ271 〜27N 、および静電容量素子281 〜28N から構成されている。抵抗29の一方の接続部には、Hi側基準電圧REFHが供給されており、抵抗30の一方の接続部には、Lo側基準電圧REFLが供給されている。
静電容量素子281 〜28N の一方の接続部は、アンプ13の一方の入力部がそれぞれ接続されており、これら静電容量素子281 〜28N の他方の接続部には、スイッチ271 〜27N の一方の接続部がそれぞれ接続されている。
スイッチ271 〜27N の他方の接続部には、第1〜第3の接続部が設けられた構成からなり、スイッチ271 〜27N における第1の接続部には、抵抗30の他方の接続部が接続されている。
また、スイッチ271 〜27N の第2の接続部には、入力部AD_inがそれぞれ接続されており、スイッチ271 〜27N の第3の接続部には、抵抗29の他方の接続部がそれぞれ接続されている。
スイッチ271 〜27N は、静電容量素子281 〜28N の他方の接続部の接続先を抵抗30、入力部AD_in、または抵抗29のいずれかに接続されるように切り替えを行う。
ここで、容量D/A変換器12aの動作について説明する。
まず、サンプリング時にはスイッチ271 〜27N のすべてが入力部AD_inに接続されるように切り替えられ、入力電圧を静電容量素子281 〜28N に充電する。これら静電容量素子281 〜28N への入力電圧の充電が完了すると、スイッチ271 〜27N の接続が入力部AD_inから切り離され、比較が完了するまでこの電荷を保持する。このように電荷再配分型の容量D/A変換器12aはサンプリングと保持の機能を有するものとなっている。
そして、比較時には、スイッチ271 〜27N を順にHi側基準電圧REFHとLo側基準電圧REFLに切り替え、入力電圧をHi側基準電圧REFH、Lo側基準電圧REFLとで比較し、MSB(Most Significant Bit)から順にビットを決めていく。
たとえば、MSBの比較電圧がフルスケールの1/2の場合は、静電容量素子281 〜28N の容量の半分が入力電圧とHi側基準電圧REFHに、残りがLo側基準電圧REFLに接続される。
この場合、出力インピーダンスとは、Hi側基準電圧REFH、Lo側基準電圧REFLに挿入されている電流制限抵抗となる抵抗29,30、スイッチ271 〜27N などのON抵抗、Hi側基準電圧REFHが供給される電源用端子TREFH、Lo側基準電圧REFLが供給される電源用端子TREFLからの配線抵抗などが考えられる。
したがって、比較時に最適な抵抗値はこれらをすべて足した値となる。ただし、図2のスイッチ25のサイズと、図6のスイッチ271 〜27N の合計サイズとを等しくした場合は、スイッチ271 〜27N のインピーダンスは考えなくてもよい。
次に、本実施の形態2におけるA/D変換器6における動作について説明する。
まず、サンプリング時には、前述したように、容量D/A変換器12aのスイッチ271 〜27N が入力部AD_inに接続され、スイッチ21,22、およびスイッチ25がONとなり、スイッチ26がOFFとなる。
これにより、サンプリング容量となる静電容量素子281 〜28N ,16に入力電圧がサンプリングされる。これにより、サンプリングに最適な抵抗値に設定されている抵抗19が接続されるので、サンプリングに最適なインピーダンスとなる。
続いて、比較時には、前述したように、容量D/A変換器12aのスイッチ271 〜27N が、Hi側基準電圧REFH、またはLo側基準電圧REFLに接続され、スイッチ21,22、およびスイッチ25がそれぞれOFFとなり、スイッチ26がONとなる。
これにより、抵抗20が接続され、逐次比較時には、逐次比較に最適なインピーダンスが設定されることになる。
図7は、図6のA/D変換器6の一部分におけるレイアウトの一例を示す説明図である。
図7において、左上方には、抵抗29がレイアウトされており、該抵抗29の下方には、抵抗30がレイアウトされている。これら抵抗29,30の右側には、容量D/A変換器12aが配置されている。
容量D/A変換器12aは、左から右にかけて、複数のスイッチ27の列、複数の静電容量素子28の列、同じく複数の静電容量素子28の列、および複数のスイッチ27の列となるようにそれぞれが直線状に配列されており、この配列パターンが繰り返すようにレイアウトされている。
また、容量D/A変換器12aの左側下方には、抵抗19がレイアウトされており、該抵抗19の下方には、抵抗20がレイアウトされている。抵抗19,20の右側には、静電容量素子16がレイアウトされている。そして、容量D/A変換器12a、ならびに静電容量素子16の右側には、アンプ13がレイアウトされている。
レイアウト的な特徴は、図示するように、差動側容量である静電容量素子16が抵抗19,20を介してLo側基準電圧REFLに接続され、かつスイッチ25,26にて抵抗値を切り替えるところである。静電容量素子16は、アンプ13からみて容量D/A変換器12aと対象に配置される。
それにより、本実施の形態2においても、前記実施の形態1と同様に、サンプリング時には、サンプリングに最適なインピーダンスとなる抵抗19に、逐次比較時には、逐次比較に最適なインピーダンスとなる抵抗20にスイッチ25,26を用いて切り換えることにより、外部ノイズや電源ノイズの影響がノードA,B(図6)に与える影響を同一にし、ノイズキャンセル効果を最大限に得ることができ、A/D変換誤差を低減することができる。
また、本実施の形態2では、A/D変換器6(,7)が容量D/A変換器12aを搭載した例について記載したが、たとえば、抵抗D/A変換器によって構成するようにしてもよい。
この場合、抵抗D/A変換器12bは、図8に示すように、抵抗31〜40、およびスイッチ41〜44から構成されている。
抵抗31,32の一方の接続部には、抵抗37の一方の接続部がそれぞれ接続されており、抵抗37の他方の接続部には、抵抗38の一方の接続部、および抵抗33の一方の接続部がそれぞれ接続されている。抵抗38の他方の接続部には、抵抗39の一方の接続部、および抵抗34の一方の接続部がそれぞれ接続されており、抵抗39の他方の接続部には、抵抗40の一方の接続部、および抵抗35の一方の接続部がそれぞれ接続されている。
また、抵抗40の他方の接続部には、抵抗36の一方の接続部が接続されており、この接続部が抵抗D/A変換器12bの出力部となる。抵抗33〜36の他方の接続部には、スイッチ41〜44の一方の接続部が接続されている。
スイッチ41〜44の他方の接続部には、第1、および第2の接続部からなる2つの接続部を有している。そして、抵抗31の他方の接続部、およびスイッチ41〜44の第1の接続部には、Hi側基準電圧REFHがそれぞれ接続されており、抵抗32の他方の接続部、およびスイッチ41〜44の第2の接続部には、Lo側基準電圧REFLがそれぞれ接続されている。
また、この抵抗D/A変換器12bにおいて、抵抗31〜36と抵抗37〜40との抵抗値の関係は、R:2Rとなっている。この場合の出力抵抗値はRとなる。
(実施の形態3)
図9は、本発明の実施の形態3によるA/D変換器の構成の一例を示す説明図、図10は、図9のA/D変換器6における動作の一例を示すタイミングチャートである。
本実施の形態3においては、A/D変換器6は、図9に示すように、D/A変換器12、アンプ13、コンパレータ14、静電容量素子15,16、抵抗19,20、およびスイッチ21〜26から構成されている。
この構成は、前記実施の形態1の図2と同様であり、異なるところは、スイッチ25,26、抵抗19,20の接続である。この場合、静電容量素子16の他方の接続部には、スイッチ25の一方の接続部、および抵抗19の一方の接続部がそれぞれ接続されている。
スイッチ25の他方の接続部と抵抗19の他方の接続部とには、スイッチ26の一方の接続部、および抵抗20の一方の接続部がそれぞれ接続されており、これらスイッチ26の他方の接続部、および抵抗20の他方の接続部には、Lo側基準電圧REFLがそれぞれ接続されている。
ここでも、抵抗19は、サンプリング時に最適な抵抗値となっており、抵抗20は逐次比較時に最適な抵抗値となっている。
また、図10は、図9のA/D変換器6の動作の一例を示すタイミングチャートである。図10において、上方から下方にかけては、スイッチ21,22、スイッチ23、スイッチ24、スイッチ25、ならびにスイッチ26の動作タイミングについてそれぞれ示している。
まず、サンプリング時においては、スイッチ21,22,23,26がそれぞれONとなり、スイッチ24,25がそれぞれOFFとなる。このとき、スイッチ25がOFFされ、スイッチ26がONされているので、抵抗19が有効となるので、図9のノードAから左を見たインピーダンスと図9のノードBから左を見たインピーダンスとが一致することになり、サンプリング時のノイズキャンセル効果を最大限に得ることができる。
続いて、逐次比較時には、スイッチ21,22,23,26がOFFとなり、スイッチ24,25がONとなる。
このとき、スイッチ25がONされ、スイッチ26がOFFされているので、抵抗20が有効となり、図9のノードAから左を見たインピーダンスと図9のノードBから左を見たインピーダンスとを一致させることができ、逐次比較時のノイズキャンセル効果を最大限に得ることができる。
それにより、本実施の形態3においても、前記実施の形態1,2と同様に、A/D変換器6におけるノイズキャンセル効果を大幅に向上させることができるので、A/D変換誤差を低減することができる。
(実施の形態4)
図11は、本発明の実施の形態4によるA/D変換器の構成の一例を示す説明図である。
本実施の形態4においては、前記実施の形態1の図2と同様の接続構成からなるA/D変換器6に1つのセンサが接続されている場合の例を示したものである。
この場合、図11に示すように、A/D変換器6は、前記実施の形態1の図2と同様にD/A変換器12、アンプ13、コンパレータ14、静電容量素子15,16、抵抗19,20、およびスイッチ21〜26からなり、該A/D変換器6の入力部AD_inには、センサ10が接続されている。
このセンサ10は、入力に抵抗45のインピーダンスを有しており、サンプリング時に最適な抵抗19の抵抗値は、スイッチ23とスイッチ25とのインピーダンスが等しい場合、センサ10の抵抗値と配線抵抗(抵抗R1)とを合計したものである。
また、逐次比較時に最適な抵抗20の抵抗値は、スイッチ24とスイッチ26とのインピーダンスが等しい場合、D/A変換器12の出力抵抗と配線抵抗を合計したもの(抵抗R2)である。
それにより、本実施の形態4でも、前記実施の形態1,2と同様に、A/D変換器6におけるノイズキャンセル効果を大幅に向上させることができるので、A/D変換誤差を低減することができる。
(実施の形態5)
図12は、本発明の実施の形態5による半導体集積回路装置の構成の一例を示すブロック図である。
前記実施の形態1の図2では、A/D変換器6が、サンプリング時に最適な抵抗値となる抵抗19と、逐次比較時に最適な抵抗値にとなる抵抗20とがそれぞれ設けられた構成としたが、本実施の形態5では、複数のセンサにそれぞれ対応する複数の抵抗をA/D変換器に設けた構成とする。
この場合、半導体集積回路装置1は、図12に示すように、RAM2、不揮発性メモリ3、CPU4、コントローラ5、A/D変換器6、および入力セレクタ8などから構成されており、前記実施の形態1の図と異なるところは、A/D変換器7と入力セレクタ9とが設けられていない点である。
また、図12の半導体集積回路装置1に設けられたA/D変換器6は、D/A変換器12、アンプ13、コンパレータ14、静電容量素子15,16、抵抗20、およびスイッチ21〜24,26からなる前記実施の形態1の図2と同様の構成(図示せず)に、抵抗191 〜19N とスイッチ251 〜25N とが新たに設けられた構成となっている。
スイッチ251 〜25N の一方の接続部には、静電容量素子16の一方の接続部が接続されており、これらスイッチ251 〜25N の他方の接続部には、抵抗191 〜19N の一方の接続部がそれぞれ接続されている。抵抗191 〜19N の他方の接続部には、Lo側基準電圧REFLがそれぞれ接続されている。
抵抗191 は、サンプリングにおいてセンサ101 に最適な抵抗値に設定されている。同様に、抵抗192 〜19N は、サンプリングにおいてセンサ102 〜10N にそれぞれ最適な抵抗値に設定されている。
たとえば、抵抗191 が入力セレクタ8によって選択接続された場合には、サンプリング時において、スイッチ251 がONすることになる。また、逐次比較時には、前記実施の形態1と同様に、スイッチ26がONして抵抗20が接続される。
スイッチ251 〜25N の動作制御は、たとえば、コントローラ5によって行われる。コントローラ5は、たとえば、センサ101 〜10N のうち、どのセンサを選択しているかを検出し、その結果に基づいて、任意のスイッチ251 〜25N のいずれかの動作制御を行う。
それにより、本実施の形態5では、サンプリング時にセンサ101 〜10N のインピーダンスに応じて抵抗191 〜19N を選択して切り換えるので、よりノイズキャンセル効果を向上させることができ、一層、A/D変換誤差を減少させることができる。
図12のA/D変換器の構成で図1と同様に入力セレクタを加えて複数のA/D変換器を搭載することも可能である。
(実施の形態6)
図13は、本発明の実施の形態6によるA/D変換器における構成の一例を示す説明図、図14は、図13のA/D変換器における動作の一例を示すタイミングチャートである。
本実施の形態6においては、A/D変換器6が、rail to rail動作を行うアンプのアシストによってサンプリングを行う例について記載する。
A/D変換器6は、図13に示すように、D/A変換器12、アンプ13、コンパレータ14、静電容量素子15,16、抵抗19,20、およびスイッチ21〜26からなる前記実施の形態3の図9の構成に、rail to rail動作を行うアンプ46とスイッチ47とが新たに追加されている。
スイッチ47の一方の接続部、およびアンプ46の入力部には、A/D変換器6の入力部AD_inがそれぞれ接続されている。スイッチ47の他方の接続部、ならびにアンプ46の出力部には、スイッチ23の他方の接続部がそれぞれ接続されている。
図14は、図13のA/D変換器6における動作の一例を示すタイミングチャートである。この図14において、上方から下方にかけては、スイッチ21,22、スイッチ23、スイッチ24、スイッチ25、スイッチ26、スイッチ47、ならびにアンプ46の動作タイミングについてそれぞれ示している。
まず、サンプリング期間の前半において、アンプ46がON(動作)、およびスイッチ21,22,23,26がそれぞれONとなり、スイッチ24,25,47がOFFとなり、アンプ46のアシストによって、A/D変換器6の入力部AD_inからの入力電圧で静電容量素子15の充電を行う。
続いて、サンプリング期間の後半では、アンプ46のオフセット分を調整するために、該アンプ46がOFF、スイッチがONとなり、アンプ46が動作していない状態でスイッチ47,23を介して静電容量素子15の充電を行う。
したがって、サンプリング時に最適な抵抗19の抵抗値は、スイッチ23,47のON抵抗と配線抵抗とを合計したものである。また、逐次比較時に最適な抵抗20の抵抗値は、スイッチ24のON抵抗、D/A変換器12の出力抵抗、および配線抵抗を合計したものである。
それにより、本実施の形態6においても、ノイズキャンセル効果を向上させることができるので、A/D変換器6における変換精度を大幅に向上させることができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
本発明は、複数のA/D変換器を備えた半導体集積回路装置における高精度なA/D変換技術に適している。
1 半導体集積回路装置
2 RAM
3 不揮発性メモリ
4 CPU
5 コントローラ
6 A/D変換器
7 A/D変換器
8 入力セレクタ
9 入力セレクタ
10 センサ
101 〜10N センサ
111 〜11N センサ
12 D/A変換器
12a 容量D/A変換器
12b 抵抗D/A変換器
13 アンプ
14 コンパレータ
15 静電容量素子
16 静電容量素子
19 抵抗
20 抵抗
21〜26 スイッチ
271 〜27N スイッチ
281 〜28N 静電容量素子
29〜40 抵抗
41〜44 スイッチ
45 抵抗
46 アンプ
47 スイッチ
50 A/D変換器
51 D/A変換器
52 アンプ
53 コンパレータ
54 静電容量素子
55 静電容量素子
56〜58 抵抗
59〜62 スイッチ

Claims (6)

  1. 入力信号のサンプリングと逐次比較とを行い、アナログ信号をデジタル信号に変換する逐次比較型のA/D変換器を備えた半導体集積回路装置であって、
    前記A/D変換器は、
    一方の接続部が、A/D変換用のアナログ信号が入力される入力部に接続された第1のスイッチと、
    一方の接続部が、前記第1のスイッチの他方の接続部に接続されたサンプリング容量と、
    変換用アナログ信号を出力するD/A変換器と、
    前記D/A変換器の出力部、および前記第1のスイッチと前記サンプリング容量との間に接続された第2のスイッチと、
    第1の入力部に、前記サンプリング容量の他方の接続部が接続され、第2の入力部に静電容量素子の一方の接続部が接続され、差電圧の増幅を行う差動増幅器と、
    任意のインピーダンスが付加された比較用基準電圧を前記静電容量素子を介して前記差動増幅器の第2の入力部に供給するインピーダンス適合部とを有し
    前記インピーダンス適合部は、
    サンプリング時に前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1のインピーダンス部と、
    逐次比較時に前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第2のインピーダンス部とを有し、
    サンプリング時には、前記第1のインピーダンス部を介して比較用基準電圧が供給され、逐次比較時には、前記第2のインピーダンス部を介して比較用基準電圧が供給され、
    前記第1のインピーダンス部は、
    サンプリング時に前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1の抵抗と、
    サンプリング時に、前記第1の抵抗のインピーダンスが付加された比較用基準電圧を前記静電容量素子を介して前記第2の入力部に供給する第3のスイッチとを備え、
    前記第2のインピーダンス部は、
    逐次比較時に、前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第2の抵抗と、
    逐次比較時に、前記第2の抵抗のインピーダンスが付加された比較用基準電圧を前記静電容量素子を介して前記第2の入力部に供給する第4のスイッチとを備えたことを特徴とする半導体集積回路装置。
  2. 請求項記載の半導体集積回路装置において、
    前記第1の抵抗、および前記第3のスイッチは、
    前記A/D変換器に外部接続されたアナログ信号を出力する複数のセンサと同じ数がそれぞれ備えられ、
    前記複数の第3のスイッチを制御するコントローラを備え、
    前記複数の第1の抵抗は、
    サンプリング時において、前記センサ毎に最適となるインピーダンスをそれぞれ有しており、
    前記コントローラは、前記複数のセンサのうち、任意に選択されているセンサを検出し、前記複数の第1の抵抗のうち、選択されている前記センサに見合った最適となるインピーダンスを有した第1の抵抗が選択されるように任意の前記第3のスイッチを動作させることを特徴とする半導体集積回路装置。
  3. 請求項1または2記載の半導体集積回路装置において、
    A/D変換用電源電圧が接続される1つの外部電源電圧端子と、
    A/D変換用基準電位が接続される1つの外部基準電位端子とを備え、
    前記A/D変換器が、2以上備えられ、
    前記2以上のA/D変換器は、
    前記外部電源電圧端子、および前記外部基準電位端子にそれぞれ共通接続されて電源が供給されていることを特徴とする半導体集積回路装置。
  4. 入力信号のサンプリングと逐次比較とを行い、アナログ信号をデジタル信号に変換する逐次比較型のA/D変換器を備えた半導体集積回路装置であって、
    前記A/D変換器は、
    一方の接続部が、A/D変換用のアナログ信号が入力される入力部に接続された第1のスイッチと、
    入力されたA/D変換用のアナログ信号をサンプル/ホールドするとともに、変換用アナログ信号を出力する電荷再配分型D/A変換器と、
    第1の入力部に、前記電荷再配分型D/A変換器の出力部が接続され、第2の入力部に静電容量素子の一方の接続部が接続され、差電圧の増幅を行う差動増幅器と、
    任意のインピーダンスが付加された比較用基準電圧を前記静電容量素子を介して前記差動増幅器の第2の入力部に供給するインピーダンス適合部とを有し、
    前記インピーダンス適合部は、
    サンプリング時に前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1のインピーダンス部と、
    逐次比較時に前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第2のインピーダンス部とを有し、
    サンプリング時には、前記第1のインピーダンス部を介して比較用基準電圧が供給され、逐次比較時には、前記第2のインピーダンス部を介して比較用基準電圧が供給され、
    前記第1のインピーダンス部は、
    サンプリング時に、前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第1の抵抗と、
    サンプリング時に、前記第1の抵抗のインピーダンスが付加された比較用基準電圧を前記静電容量素子を介して前記第2の入力部に供給する第3のスイッチとを備え、
    前記第2のインピーダンス部は、
    逐次比較時に、前記差動増幅器における第2の入力部のノードが最適となるインピーダンスを有した第2の抵抗と、
    逐次比較時に、前記第2の抵抗のインピーダンスが付加された比較用基準電圧を前記静電容量素子を介して前記第2の入力部に供給する第4のスイッチとを備えたことを特徴とする半導体集積回路装置。
  5. 請求項記載の半導体集積回路装置において、
    前記第1の抵抗、および前記第3のスイッチは、
    前記A/D変換器に外部接続されたアナログ信号を出力する複数のセンサと同じ数がそれぞれ備えられ、
    前記複数の第3のスイッチを制御するコントローラを備え、
    前記複数の第1の抵抗は、
    サンプリング時において、前記センサ毎に最適となるインピーダンスをそれぞれ有しており、
    前記コントローラは、前記複数のセンサのうち、任意に選択されているセンサを検出し、前記複数の第1の抵抗のうち、選択されている前記センサに見合った最適となるインピーダンスを有した第1の抵抗が選択されるように任意の前記第3のスイッチを動作させることを特徴とする半導体集積回路装置。
  6. 請求項記載の半導体集積回路装置において、
    A/D変換用電源電圧が接続される1つの外部電源電圧端子と、
    A/D変換用基準電位が接続される1つの外部基準電位端子とを備え、
    前記A/D変換器が、2以上備えられ、
    前記2以上のA/D変換器は、
    前記外部電源電圧端子、および前記外部基準電位端子にそれぞれ共通接続されて電源が供給されていることを特徴とする半導体集積回路装置。
JP2009234717A 2009-10-09 2009-10-09 半導体集積回路装置 Active JP5395608B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009234717A JP5395608B2 (ja) 2009-10-09 2009-10-09 半導体集積回路装置
US12/900,074 US8319677B2 (en) 2009-10-09 2010-10-07 Semiconductor integrated circuit device having A/D converter with impedance matching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234717A JP5395608B2 (ja) 2009-10-09 2009-10-09 半導体集積回路装置

Publications (2)

Publication Number Publication Date
JP2011082879A JP2011082879A (ja) 2011-04-21
JP5395608B2 true JP5395608B2 (ja) 2014-01-22

Family

ID=43854429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234717A Active JP5395608B2 (ja) 2009-10-09 2009-10-09 半導体集積回路装置

Country Status (2)

Country Link
US (1) US8319677B2 (ja)
JP (1) JP5395608B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482158B2 (ja) * 2009-12-04 2014-04-23 ヤマハ株式会社 逐次比較a/d変換器
JP5865791B2 (ja) * 2012-07-03 2016-02-17 ルネサスエレクトロニクス株式会社 A/d変換器、半導体装置
CN104885373B (zh) * 2012-12-26 2017-09-08 株式会社村田制作所 开关模块
JP2017192099A (ja) * 2016-04-15 2017-10-19 ローム株式会社 逐次比較型a/dコンバータ
WO2018173196A1 (ja) * 2017-03-23 2018-09-27 オリンパス株式会社 シングルエンド型ad変換器、ad変換回路、およびイメージセンサ
JP7200476B2 (ja) * 2017-12-28 2023-01-10 セイコーエプソン株式会社 回路装置、振動デバイス、電子機器及び移動体
CN108303919A (zh) * 2018-02-27 2018-07-20 南京理工大学 基于stm32单片机的冲击波信号采集存储装置
CN110324043B (zh) * 2019-04-24 2023-06-30 矽力杰半导体技术(杭州)有限公司 伪差分模数转换器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513796C1 (de) * 1995-04-11 1996-08-08 Siemens Ag Analog-Digital-Umsetzer
JPH10293999A (ja) * 1997-04-21 1998-11-04 Nec Shizuoka Ltd サンプルホールド回路
JP2001036359A (ja) * 1999-07-22 2001-02-09 Advantest Corp アナログ信号処理回路およびad変換装置
US6856195B2 (en) * 2002-06-24 2005-02-15 Texas Instruments Incorporated Preamplifier system with selectable input impedance
JP4236519B2 (ja) 2003-06-16 2009-03-11 株式会社ルネサステクノロジ A/d変換器
JP3839027B2 (ja) * 2004-04-09 2006-11-01 Necエレクトロニクス株式会社 Ad変換器
JP4751667B2 (ja) * 2005-08-12 2011-08-17 富士通セミコンダクター株式会社 逐次比較型ad変換器。
US8035622B2 (en) * 2008-03-27 2011-10-11 Apple Inc. SAR ADC with dynamic input scaling and offset adjustment
TWI382670B (zh) * 2009-10-08 2013-01-11 Holtek Semiconductor Inc 逐漸逼近類比數位轉換器及其方法

Also Published As

Publication number Publication date
JP2011082879A (ja) 2011-04-21
US8319677B2 (en) 2012-11-27
US20110084862A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5395608B2 (ja) 半導体集積回路装置
JP5554675B2 (ja) 逐次比較a/d変換器
US7307572B2 (en) Programmable dual input switched-capacitor gain stage
JP4900065B2 (ja) マルチチャネルサンプルホールド回路およびマルチチャネルa/d変換器
US8912940B2 (en) String DAC charge boost system and method
US8860600B1 (en) Successive-approximation-register analog-to-digital converter for programmably amplifying amplitude of input signal and method thereof
JP2014007527A (ja) 固体撮像装置
KR20090084854A (ko) 직렬 연결 셀 전압을 측정하는 시스템과 방법
KR101253224B1 (ko) 아날로그 디지털 변환기
JP4738510B2 (ja) デジタル−アナログ変換器、及びこれを含む逐次比較型アナログ−デジタル変換器
JP2011205190A (ja) A/d変換器
US6229472B1 (en) A/D converter
US7154423B2 (en) Successive approximation A/D converter comparing analog input voltage to reference voltages and a comparator for use therein
JP6650788B2 (ja) 半導体装置
US7764214B2 (en) Analog-to-digital converter for converting input analog signal into digital signal through multiple conversion processings
US7830159B1 (en) Capacitor mismatch measurement method for switched capacitor circuits
JP2007036580A (ja) 巡回型a/d変換器
JP4140528B2 (ja) A/d変換装置
US20130002469A1 (en) Configuring an analog-digital converter
US5880690A (en) Pipeline ADC common-mode tracking circuit
JP2011015248A (ja) 差動チョッパ型コンパレータ及びそれを備えたa/d変換回路
US7477179B2 (en) Successive approximation A/D converter comparing analog input voltage to reference voltages
JP5865791B2 (ja) A/d変換器、半導体装置
JP4104835B2 (ja) D/a変換回路
JP2020107985A (ja) アナログデジタル変換回路及びその信号変換方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Ref document number: 5395608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350