JP5394171B2 - 光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置 - Google Patents

光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置 Download PDF

Info

Publication number
JP5394171B2
JP5394171B2 JP2009203804A JP2009203804A JP5394171B2 JP 5394171 B2 JP5394171 B2 JP 5394171B2 JP 2009203804 A JP2009203804 A JP 2009203804A JP 2009203804 A JP2009203804 A JP 2009203804A JP 5394171 B2 JP5394171 B2 JP 5394171B2
Authority
JP
Japan
Prior art keywords
stress
optical fiber
grating
sensor
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009203804A
Other languages
English (en)
Other versions
JP2011053145A (ja
Inventor
正樹 国頭
信宏 笛木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009203804A priority Critical patent/JP5394171B2/ja
Priority to US12/873,812 priority patent/US8547534B2/en
Priority to DE102010040143.9A priority patent/DE102010040143B4/de
Priority to CN2010102723026A priority patent/CN102012289B/zh
Publication of JP2011053145A publication Critical patent/JP2011053145A/ja
Application granted granted Critical
Publication of JP5394171B2 publication Critical patent/JP5394171B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、特定波長の光を反射するグレーティングを配列した光ファイバを有する光ファイバセンサと、シート体に複数の光ファイバセンサを配置した分布型圧力センサと、分布型圧力センサから出力されたグレーティングでの反射光の波長のシフト量に基づいて光ファイバセンサが配置された箇所での応力を算出するセンサ信号処理装置とに関する。
従来より、光ファイバをセンサとしてシートに複数配置し、物体から前記シートに圧力(応力)が付与されたときの前記光ファイバの歪みを検出することにより、前記光ファイバが配置された箇所の圧力を検出する分布型圧力センサが知られている(特許文献1及び2参照)。
一方、垂直方向及び剪断方向に付与される圧力(垂直応力、剪断応力)を電気信号として検出するMEMS(Micro Electro Mechanical Systems)技術を利用した圧力センサも知られている(特許文献3参照)。
特許第3871874号公報 特開2002−71323号公報 特開2009−68988号公報
特許文献1〜3に開示されている圧力センサを、複雑な組立を行うFA(Factory Automation)用工作機械のエンドエフェクタに適用して、該エンドエフェクタでの物体の把持状態を検出すると共に、前記圧力センサが検出した圧力に基づいて前記エンドエフェクタに対するフィードバック制御を行う場合に、下記の課題が惹起されるおそれがある。
特許文献1及び2の分布型圧力センサをエンドエフェクタに適用した場合、シートに付与される圧力(応力)の大きさ及び方向を検出することは可能であるが、該応力を複数の方向の成分に分離して検出することは困難である。これにより、前記エンドエフェクタが把持した物体の状態が分からないため、該物体が前記エンドエフェクタから脱落してしまい、組立が完了したか否かを確認することができない。
また、特許文献3の圧力センサをエンドエフェクタに適用する場合、該圧力センサを構成する基板がSiウェーハからなるので、曲面を持つエンドエフェクタへの前記圧力センサの付設が困難である。さらに、過度の応力から前記Siウェーハを保護すると共に、応力から変換された電気信号を電磁波ノイズや各種サージ(例えば、人体や各種機械の静電気に起因した静電サージ)から電気的に保護するために、該Siウェーハをモールドする必要がある。さらにまた、応力を複数の方向の成分に分離して検出しようとすると、圧力センサの構造が複雑なものになると共に、前記電気信号に対する信号処理が煩雑になる。
従って、特許文献3の圧力センサは、その構造が複雑且つ大型化して、高価なものとなるので、エンドエフェクタに容易に付設することができない。仮に、前記エンドエフェクタに前記圧力センサを付設すると、該エンドエフェクタが全体的に大型化するおそれがある。
本発明は、前記の問題に鑑みなされたものであり、比較的簡単な構造で、物体から付与される応力を複数の方向(垂直方向、剪断方向)に分離して検出することが可能となる光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置を提供することを目的とする。
本発明に係る光ファイバセンサは、物体から受ける剪断応力の付与方向と平行で且つ前記物体から受ける垂直応力の付与方向と垂直な平面に沿って特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、前記垂直応力を前記平面に沿った方向の応力に変換して前記グレーティングに伝達する応力方向変換部とを備え、
前記応力検出センサ部は、第1のグレーティングが配列された第1の光ファイバと、前記第1の光ファイバの長手方向とは異なる方向に延在し且つ第2のグレーティングが配列された第2の光ファイバとを有することを特徴としている。
この構成によれば、前記剪断応力によって前記第1のグレーティングや前記第2のグレーティングに歪みが発生することにより、該各グレーティングで反射する光の波長(反射波長)が変化する。従って、前記各グレーティングでの反射波長のシフト量を検出することにより、前記物体から前記光ファイバセンサに付与された前記剪断応力を、前記第1の光ファイバの長手方向に沿った成分と、前記第2の光ファイバの長手方向に沿った成分とにそれぞれ分離して検出することが可能となる。
また、前記応力方向変換部は、前記物体から前記光ファイバセンサに付与された前記垂直応力を前記平面に沿った方向の応力に変換して前記各グレーティングに伝達する。この場合でも、前記変換後の応力によって前記第1のグレーティングや前記第2のグレーティングに歪みが発生することにより、該各グレーティングでの反射波長が変化する。従って、前記各光ファイバにおける反射波長のシフト量を検出して、前記変換後の応力を、前記第1の光ファイバの長手方向に沿った成分と、前記第2の光ファイバの長手方向に沿った成分とにそれぞれ分離して検出することにより、前記変換後の応力に基づく前記垂直応力(前記平面に垂直な方向に沿った応力の成分)を検出することが可能となる。
従って、本発明に係る光ファイバセンサによれば、比較的簡単な構造で、物体から付与される応力(垂直応力、剪断応力)を複数の方向(垂直方向、剪断方向)に分離して検出することが可能となる。
また、前記光ファイバセンサをマニピュレータ等のエンドエフェクタに搭載し、該エンドエフェクタが物体を把持する場合に、前記光ファイバセンサは、前記物体から前記エンドエフェクタに加えられる外力(垂直応力、剪断応力)を、複数の方向の成分に分離して検出するので、前記エンドエフェクタの空間座標内において前記外力がどのように作用しているのかを容易に把握することができる。
前記エンドエフェクタが前記物体を把持している最中に、該物体が滑り落ちることを確実に回避することが可能になる。また、前記光ファイバセンサを前記エンドエフェクタに付設することにより、従来は困難であった、組立作業のような、組立部品と被組立部品との間に外力が働くような工程での自動化に効果的である。
また、光ファイバを利用して応力を検出するので、前記光ファイバセンサが電磁波ノイズや各種サージ等に曝されても何ら影響を受けることがない。そのため、工場や屋外等の劣悪な環境下で使用しても、上記の各ノイズの影響を回避することが可能である。
ここで、前記第1の光ファイバ及び前記第2の光ファイバは、前記垂直応力の付与方向に沿った互いに異なる高さにおいて、平面視で、前記第1のグレーティングと前記第2のグレーティングとが直交するようにそれぞれ配置されていることが好ましい。
これにより、前記第1の光ファイバ及び前記第2の光ファイバのうち、一方の光ファイバの長手方向をx方向とし、他方の光ファイバの長手方向をy方向とし、前記垂直応力の付与方向(前記平面に垂直な方向)をz方向とすれば、前記光ファイバセンサが配置された箇所での応力をx方向、y方向及びz方向の各成分に分離して検出することが可能となる。
また、前記応力方向変換部は、前記平面に沿った方向に延在する平坦部と、前記平坦部から前記第1の光ファイバに橋架された第1の応力伝達部と、前記平坦部から前記第2の光ファイバに橋架された第2の応力伝達部とを有する。
これにより、前記垂直応力を効率よく前記平面に沿った方向の応力に変換して前記各グレーティングに伝達することが可能となる。
この場合、前記応力方向変換部が弾性体であれば、前記物体から前記光ファイバセンサに前記垂直応力が付与されたときに、前記弾性体の作用によって、前記各グレーティングの格子間隔を、前記光ファイバの長手方向に沿って、前記変換後の応力に応じた長さだけ容易に変化させることができるので、前記変換後の応力を精度よく検出することが可能となる。
なお、前記弾性体としては、ゴム又は樹脂系の材料であることが好ましい。
本発明に係る分布型圧力センサは、
可撓性を有するシート体と、
前記シート体に接触した物体から受ける剪断応力の付与方向と平行で且つ前記物体から受ける垂直応力の付与方向と垂直な前記シート体の表面に沿って特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、前記垂直応力を前記シート体の表面に沿った方向の応力に変換して前記グレーティングに伝達する応力方向変換部とを備える光ファイバセンサと、
を有し、
前記シート体に前記光ファイバセンサが複数配置され、
前記応力検出センサ部は、第1のグレーティングが配列された第1の光ファイバと、前記第1の光ファイバの長手方向とは異なる方向に延在し且つ前記第2のグレーティングが配列された第2の光ファイバとを有することを特徴としている。
この構成によれば、前記光ファイバセンサを前記シート体に複数配置することにより、前記各光ファイバセンサが配置された箇所に付与された前記各剪断応力を、前記第1の光ファイバの長手方向に沿った成分と、前記第2の光ファイバの長手方向に沿った成分とに、それぞれ分離して検出することができる。
また、前記各光ファイバセンサが配置された箇所に付与された前記各垂直応力についても、前記変換後の各応力を、前記第1の光ファイバの長手方向に沿った成分と、前記第2の光ファイバの長手方向に沿った成分とに、それぞれ分離して検出することにより、前記変換後の各応力に応じた前記各垂直応力(前記シート体に垂直な方向に沿った応力の成分)を検出することが可能となる。
従って、本発明に係る分布型圧力センサによれば、比較的簡単な構造で、物体から各光ファイバセンサが配置された箇所に付与された各応力(垂直応力、剪断応力)を複数の方向(垂直方向、剪断方向)にそれぞれ分離して検出することが可能となる。
また、前記分布型圧力センサをマニピュレータ等のエンドエフェクタに搭載すれば、前記物体から前記エンドエフェクタに加えられる外力(垂直応力、剪断応力)が該エンドエフェクタの空間座標内においてどのように作用しているのかを容易に把握することができ、前記エンドエフェクタが前記物体を把持している最中に、該物体が滑り落ちることを確実に回避することが可能になる。また、前記分布型圧力センサを前記エンドエフェクタに付設することにより、従来は困難であった、組立作業のような、組立部品と被組立部品との間に外力が働くような工程での自動化に効果的である。
さらに、前記分布型圧力センサは、前記光ファイバセンサを搭載しているので、電磁波ノイズや各種サージ等に曝されても何ら影響を受けることがなく、従って、工場や屋外等の劣悪な環境下で使用しても、上記の各ノイズの影響を回避することが可能である。
ここで、前記各光ファイバセンサの第1の光ファイバ及び第2の光ファイバは、格子間隔の互いに異なる複数のグレーティングが形成された1本の光ファイバケーブルを前記シート体に配置することによりそれぞれ構成されることが好ましい。
前記1本の光ファイバケーブルを用いることにより前記シート体に全てのグレーティングが配置されるので、前記各グレーティングに光を供給する光源の個数が1つになり、装置全体のコストを低廉なものとすることができる。また、前記格子間隔が互いに異なるので、反射波長が互いに異なるものとなり、この結果、前記反射波長の誤検出を確実に防止することが可能となる。
本発明に係るセンサ信号処理装置は、
物体から受ける剪断応力の付与方向と平行で且つ前記物体から受ける垂直応力の付与方向と垂直な平面に沿って特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、前記垂直応力を前記平面に沿った方向の応力に変換して前記グレーティングに伝達する応力方向変換部とを備える光ファイバセンサと、
前記物体から前記光ファイバセンサへの前記剪断応力及び/又は前記垂直応力の付与により前記グレーティングに発生した歪みに起因する反射光の波長の変化に基づいて、前記剪断応力及び/又は前記垂直応力を算出する信号処理部と、
を有し、
前記応力検出センサ部は、第1のグレーティングが配列された第1の光ファイバと、前記第1の光ファイバの長手方向とは異なる方向に延在し且つ前記第2のグレーティングが配列された第2の光ファイバとを有し、
前記信号処理部は、前記第1のグレーティングにおける反射光の波長のシフト量と、前記第2のグレーティングにおける反射光の波長のシフト量とが略一致する場合に、前記物体から前記光ファイバセンサへの前記剪断応力の付与がないものと判定し、前記各シフト量に基づいて前記垂直応力を算出することを特徴としている。
この構成によれば、前記光ファイバセンサにより応力を検出するので、前記光ファイバセンサが配置された箇所に付与された応力を、前記第1の光ファイバの長手方向に沿った成分及び前記第2の光ファイバの長手方向に沿った成分(剪断応力)と、前記平面に垂直な方向に沿った成分(垂直応力)とにそれぞれ分離して検出することが可能となる。
また、前記信号処理部は、前記第1のグレーティングにおける反射光の波長のシフト量と、前記第2のグレーティングにおける反射光の波長のシフト量とが略一致する場合に、前記物体から前記光ファイバセンサへの前記剪断応力の付与がないと判定するので、前記物体から前記光ファイバセンサに現在付与されている応力が前記剪断応力及び/又は前記垂直応力であるか否かを容易に判定することができると共に、現在付与されている応力の誤検出を回避することができる。
従って、本発明に係るセンサ信号出力装置によれば、比較的簡単な構造で、光ファイバセンサが配置された箇所に付与された応力(垂直応力、剪断応力)を複数の方向(垂直方向、剪断方向)にそれぞれ分離して検出することが可能になると共に、物体から光ファイバセンサに現在付与されている応力が剪断応力及び/又は垂直応力であるか否かを容易に判定することができる。
ここで、前記センサ信号処理装置は、
前記物体が接触し且つ可撓性を有するシート体の表面に沿って前記光ファイバセンサが複数配置された分布型圧力センサをさらに有し、
前記信号処理部は、前記各光ファイバについて、前記第1のグレーティングにおける反射光の波長のシフト量と前記第2のグレーティングにおける反射光の波長のシフト量とが略一致した場合に、前記物体から前記各光ファイバセンサへの前記剪断応力の付与がないものと判定し、前記各シフト量に基づいて前記各光ファイバが配置された箇所の前記垂直応力をそれぞれ算出する。
これにより、前記各光ファイバセンサが配置された箇所に付与された各応力が剪断応力及び/又は垂直応力であるか否かを、前記各光ファイバセンサ毎に判定することができる。
この場合、前記各第1の光ファイバは、互いに同じ方向に配列されると共に、前記各第2の光ファイバは、互いに同じ方向に配列され、
前記信号処理部は、
前記各光ファイバについて、前記第1のグレーティングにおける反射光の波長のシフト量と前記第2のグレーティングにおける反射光の波長のシフト量とが一致しない場合に、前記物体から前記各光ファイバセンサに前記剪断応力及び前記垂直応力がそれぞれ付与されていると判定し、
隣接する2つの光ファイバセンサの第1のグレーティング間での反射光の波長の間隔と第2のグレーティング間での反射光の波長の間隔とに基づいて、前記2つの光ファイバセンサに付与される剪断応力を算出し、
前記第1のグレーティング間での反射光の波長の間隔と前記第1のグレーティングにおける反射光の波長のシフト量、又は、前記第2のグレーティング間での反射光の波長の間隔と前記第2のグレーティングにおける反射光の波長のシフト量に基づいて、前記光ファイバセンサに付与される垂直応力を算出する。
これにより、前記2つの光ファイバセンサの間に付与された応力を、複数の方向の成分(垂直応力、剪断応力)にそれぞれ分離して検出(算出)することが可能になる。
本発明によれば、比較的簡単な構造で、物体から光ファイバセンサに付与される応力を複数の方向(垂直方向、剪断方向)に分離して検出することが可能となる。
図1Aは、FBGセンサの概略説明図であり、図1Bは、FBGセンサに入射される光の波長と強度との関係を示す説明図であり、図1Cは、グレーティングによって反射される光の波長と強度との関係を示す説明図であり、図1Dは、グレーティングが伸張されたFBGセンサの概略説明図である。 本実施形態に係るFBGセンサをシート体に複数配置した分布型圧力センサの斜視図である。 図2のFBGセンサの拡大斜視図である。 図3のFBGセンサの概略説明図である。 図2及び図3のFBGセンサによる垂直応力の検出原理の説明図である。 グレーティングによって反射される光の波長と強度との関係を示す説明図である。 図2の複数のFBGセンサの拡大平面図である。 図2の2つのFBGセンサ間での垂直応力及び剪断応力の検出原理の説明図である。 図2の2つのFBGセンサ間での垂直応力及び剪断応力の検出原理の説明図である。 図8及び図9のFBGセンサのグレーティングによって反射される光の波長と強度との関係を示す説明図である。 図2の分布型圧力センサが適用されるロボットシステムの構成図である。 図11のロボットシステムのブロック図である。 図12の演算処理部での処理を説明するためのフローチャートである。
本発明に係る光ファイバセンサ、該光ファイバセンサを有する分布型圧力センサ、及び、該分布型圧力センサを有するセンサ信号処理装置の好適な実施形態について、図1〜図13を参照しながら説明する。
本実施形態の説明に先立ち、光ファイバセンサとしてのFBGセンサ(Fiber Bragg Grating Sensor)を利用した応力検出の概要について、図1A〜図1Dを参照しながら説明する。
FBGセンサは、光ファイバ10におけるGeが添加されたコア12の一部に、紫外線を照射してグレーティング14を形成することにより構成される。図1Aにおいて、グレーティング14の周期(格子間隔)をΔAとする。
光ファイバ10に応力が付与されていない状態で、図1Bに示す波長及び強度の光がコア12に入射された場合、グレーティング14は、図1Bの波長λのうち、特定波長λAの光(反射光)を反射する(図1C参照)。
一方、光ファイバ10に応力が付与されて、図1Dに示すように、格子間隔がΔAからΔB(ΔA<ΔB)に変化すると、反射光の波長(反射波長)はλAからλBにシフトする(図1C参照)。
ここで、応力が付与される前の反射波長λA、及び、応力が付与されたときの反射波長λBは、コア12の有効屈折率をneffとすると、下記の(1)式及び(2)式で表わされる。
λA=2×neff×ΔA (1)
λB=2×neff×ΔB (2)
このように、反射波長λA、λBは格子間隔ΔA、ΔBによって決定される。また、応力付与前の初期の格子間隔ΔAは、用途やシステムに応じて任意に設定される。
従って、FBGセンサを利用することで、λAからλBへの反射波長のシフト量(λB−λA)に基づいて、光ファイバ10に付与された応力を検出し、あるいは、応力の有無を判断することができる。
次に、本実施形態に係る分布型圧力センサ16と、該分布型圧力センサ16に組み込まれたFBGセンサ22とについて、図2〜図10を参照しながら説明する。
分布型圧力センサ16は、図2に示すように、可撓性を有するシート体18の内部に、1本の光ファイバケーブル20がシート体18の表面方向(x−y方向)に沿って埋設され、この光ファイバケーブル20に沿って複数のFBGセンサ22がマトリックス状に配置(配列)されてアドレス化することにより構成される。
すなわち、光ファイバケーブル20は、y方向に向かって蛇行することにより長手方向がx方向とされた光ファイバ(第1の光ファイバ)20xと、x方向に向かって蛇行することにより長手方向がy方向とされた光ファイバ(第2の光ファイバ)20yとから構成されている。この場合、光ファイバ20xと光ファイバ20yとは、互いに異なる高さにおいて蛇行しているが(図2〜図4参照)、一方において、平面視で、光ファイバ20xと光ファイバ20yとが直交する箇所にFBGセンサ22が設けられている(図7参照)。従って、光ファイバケーブル20とFBGセンサ22とを、プラスチックや樹脂等の可撓性を有する材料でモールドすることによりシート体18が形成される。
なお、図2は、3×3のマトリックス状に9個のFBGセンサ22が配置されてアドレス化された場合を図示しているが、シート体18に埋設されるFBGセンサ22の個数は、9個に限定されることはなく、増やしてもよいし、あるいは、少なくしてもよい。いずれにしても、本実施形態では、シート体18の内部において、シート体18の表面方向(x−y方向)に沿ってマトリックス状に各FBGセンサ22が並行に配置されていればよい。
また、図2〜図4では、光ファイバ20xの下方に光ファイバ20yが配置される場合を図示しているが、光ファイバ20xの上方に光ファイバ20yが配置してもよいことは勿論である。
図2〜図4及び図7に示すように、光ファイバ20xと光ファイバ20yとが直交する箇所では、光ファイバケーブル20のx方向のコア24xにグレーティング(第1のグレーティング)26xが形成され、一方で、y方向のコア24yにグレーティング(第2のグレーティング)26yが形成されている。この場合、全てのグレーティング26x、26yは、互いに異なる格子間隔と反射波長とを有する。
すなわち、1本の光ファイバケーブル20のコア24x、24yには、互いに異なる格子間隔と反射波長とを有する複数のグレーティング26x、26yが形成されており、本実施形態では、FBGセンサ22が配置される箇所において、1つのグレーティング26xと1つのグレーティング26yとが平面視で交差するように、シート体18の内部に光ファイバケーブル20が埋設されている。
ここで、本実施形態に係るFBGセンサ22について、図2〜図4を参照しながら詳細に説明する。
FBGセンサ22は、グレーティング26xが形成された光ファイバ20xと、グレーティング26yが形成された光ファイバ20yとからなる応力検出センサ部27と、z方向に付与される応力(垂直応力)をx方向及びy方向に沿った方向の応力(成分)に変換して光ファイバ20x、20yに伝達する応力方向変換部29とを備えている。
この場合、応力方向変換部29は、ゴムや樹脂等の弾性体からなり、x−y方向に沿って平行に延在する矩形状の平坦部28と、該平坦部28の対向する二辺からグレーティング26xの各端部に橋架された応力伝達部30xと、平坦部28の対向する他の二辺からグレーティング26yの各端部に橋架された応力伝達部30yとを有する。
互いに対向するように形成された2つの応力伝達部30xは、平坦部28に連なると共に光ファイバ20xに向かって傾斜した傾斜部32xと、該傾斜部32xに連なると共に光ファイバ20xの外周面の一部を囲繞する接合部34xとをそれぞれ有する。この場合、図4及び図5に示すように、各傾斜部32xと各接合部34xとのなす角度は互いに等しく設定されている。
一方、互いに対向するように形成された2つの応力伝達部30yも、応力伝達部30xと同様に、平坦部28に連なると共に光ファイバ20yに向かって傾斜した傾斜部32yと、該傾斜部32yに連なると共に光ファイバ20yの外周面の一部を囲繞する接合部34yとをそれぞれ有し、各傾斜部32yと各接合部34yとのなす角度は互いに等しく設定されている。
なお、前述したように、シート体18の内部において、光ファイバ20yは、光ファイバ20xよりも低い位置に埋設されているので(図2〜図4参照)、接合部34yの上面は、接合部34xの上面よりも低い位置に設定されている。
次に、FBGセンサ22上方のシート体18の表面に物体40が接触して、該物体40からグレーティング26x、26yに垂直応力(z方向に沿った応力)が付与されたときの該垂直応力の検出と、前記垂直応力のみ付与され、剪断応力(x−y方向に沿った応力)が付与されていないことを判定するための方法とについて、図5〜図7を参照しながら説明する。
物体40からシート体18にz方向に沿った垂直応力Fが付与されたときに、応力伝達部30xのz方向に沿った応力F´が付与される。
ここで、1つのFBGセンサ22には、4つの応力伝達部30x、30yが存在するので、1つの応力伝達部30x、30yに付与される応力F´は、理想的に、下記の(3)式で表わされる。
F´=F/4 (3)
応力F´の傾斜部32xに沿った方向の成分(力)F´´は、z方向(応力F´)と傾斜部32xとの成す角度をφとすると、下記の(4)式で表わされる。
F´´=F´cosφ=(F/4)×cosφ (4)
また、力F´´と光ファイバ20xの長手方向(x方向)との成す角度は、(90°−φ)であるので、光ファイバ20x及び接合部34xに付与される力F´´´は、下記の(5)式で表わされる。
F´´´=F´´cos(90°−φ)=F´´sinφ
=(F/4)×cosφ×sinφ (5)
この力F´´´が光ファイバ20xに付与されることで、グレーティング26xがx方向に歪んで(伸張して)、該グレーティング26xの格子間隔が変化(増加)する。
ここで、力F´´´の付与によりx方向に沿って発生するグレーティング26xの歪みεは、該グレーティング26xにおける図5の左側の歪みε´と、図5の右側の歪みε´´とを足した値となる(ε=ε´+ε´´)。
図5において、FBGセンサ22が左右対称の構造であるため、グレーティング26xの左右両側には同じ力F´´´が作用するので、ε´=ε´´となる。
また、光ファイバ20xのコア24xのヤング率をEとすれば、歪みε、ε´、ε´´は、それぞれ、下記の(6)式〜(8)式で表わすことができる。
ε´=(1/E)×F´´´=1/(4×)}×Fcosφ×sinφ
(6)
ε´´=ε´=(1/E)×F´´´
={1/(4×E)}×Fcosφ×sinφ (7)
ε=ε´+ε´´={1/(2×E)}×Fcosφ×sinφ (8)
さらに、グレーティング26xの格子数を仮にNとしたときに、垂直応力Fの付与によるグレーティング26xの格子間隔の増加分Δは、下記の(9)式で表わされる。
Δ=ε/(N−1)
=(F×cosφ×sinφ)/{2×E×(N−1)} (9)
一方、垂直応力Fが付与される前のグレーティング26xの格子間隔をΔ0axとすれば、Fの付与前における反射波長λax0(図6参照)は、(1)式に基づき、下記の(10)式で表わされる。なお、添字のaは、当該記号が図7に示すFBGセンサ22Aに関する記号であることを表わしている。
λax0=2×neff×Δ0ax (10)
また、垂直応力Fの付与後のグレーティング26xにおける反射波長λaxは、(9)式の増加分Δを考慮すれば、下記の(11)式で表わされる。
λax=2×neff×(Δ+Δ0ax
=2×neff×[(F×cosφ×sinφ)/
{2×E×(N−1)}+Δ0ax] (11)
従って、垂直応力Fの付与の前後における、グレーティング26xでの反射波長のピークの変化分Δλaxは、下記の(12)式で表わされる。
Δλax=λax−λax0
=2×neff×[(F×cosφ×sinφ)/
{2×E×(N−1)}+Δ0ax]−2×neff×Δ0ax
=neff×[(F×cosφ×sinφ)/{E×(N−1)}]
(12)
(12)式と同様にして、y方向のグレーティング26yでの反射波長のピークの変化分Δλay(図6参照)は、下記の(13)式で表わされる。なお、(13)式中、添字のyは、当該記号がy方向に関わる記号(グレーティング26yに関わる記号)であることを表わしている。
Δλay=λay−λay0
=2×neff×[(F×cosφ×sinφ)/
{2×E×(N−1)}+Δ0ay ]−2×neff×Δ0ay
=neff×[(F×cosφ×sinφ)/{E×(N−1)}]
(13)
従って、シート体18の表面に沿った剪断方向の応力(x方向及びy方向に沿って付与される剪断応力)が発生せず、垂直応力Fのみが付与された場合には、1つのFBGセンサ22において、グレーティング26xの反射波長のピークの変化分Δλaxと、グレーティング26yの反射波長のピークの変化分Δλayとは、上記の(12)式及び(13)式より、次の(14)式に示すように、互いに等しくなる。
Δλax=Δλay (14)
さらに、図6及び図7に示すように、例えば、隣り合う4つのFBGセンサ22A〜22Dにおいて、剪断応力が発生せず、且つ、垂直応力Fのみが付与されると、他のFBGセンサ22B〜22Dについても、(14)式と同様に、下記の(15)式〜(17)式の関係が成り立つ。なお、b〜dの添字は、当該記号がFBGセンサ22B〜22Dに関わる記号であることを表わしている。
Δλbx=Δλby (15)
Δλcx=Δλcy (16)
Δλdx=Δλdy (17)
従って、(14)式〜(17)式が成立すれば、反射波長のシフト量(変化分)Δλax、Δλay、Δλbx、Δλby、Δλcx、Δλcy、Δλdx、Δλdyに基づいて、FBGセンサ22A〜22Dに付与された垂直応力を検出(算出)することが可能となる。
具体的に、剪断応力が付与されない場合に、各FBGセンサ22A〜22Dのグレーティング26x、26yの歪みの比例定数をそれぞれK、L、M、Nとすれば、各FBGセンサ22A〜22Dに付与される垂直応力FA、FB、FC、FDは、下記の(18)式〜(21)式で表わされる。
A=K×Δλax=K×Δλay (18)
B=L×Δλbx=L×Δλby (19)
C=M×Δλcx×Δλcy (20)
D=N×Δλdx=N×Δλdy (21)
次に、1つのFBGセンサ22上方のシート体18の表面に物体50が接触して、該物体50からグレーティング26x、26yに剪断応力(x方向及びy方向に沿った応力)のみが付与されたときの検出原理について、図7〜図10を参照しながら説明する。すなわち、各グレーティング26x、26yに剪断応力が付与される一方で、垂直応力が付与されない場合について説明する。
先ず、4つのFBGセンサ22A〜22Dについて、(14)式〜(17)式が成立しなければ、x−y平面上(シート体18の表面方向)に剪断応力が発生したと判別することができる。この場合、剪断応力の検出は、隣接する2つのFBGセンサを用いて行う。すなわち、剪断応力を検出するために必要な最小限の空間分解能は、2つのFBGセンサ分の面積となる。
ここで、図8及び図9に示すように、物体50がFBGセンサ22Aの右側とFBGセンサ22Cの左側とを跨ぐようにしてシート体18の表面に接触している場合、該物体50は、x方向に沿った剪断応力をFBGセンサ22Aの右側の応力伝達部30xと、FBGセンサ22Cの左側の応力伝達部30xとに対して付与することになる。なお、図9では、x方向に向かう剪断応力(+x方向への剪断応力)を付与した場合を図示している。
この場合、FBGセンサ22Aの右側の応力伝達部30xに付与される剪断応力は、該FBGセンサ22Aのグレーティング26xの格子間隔をx方向に伸張させる力として作用する。一方、FBGセンサ22Cの左側の応力伝達部30xに付与される剪断応力は、該FBGセンサ22Cのグレーティング26xの格子間隔をx方向に縮める力として作用する。
なお、図9には、剪断応力の付与前の応力伝達部30xの位置(一点鎖線)と、剪断応力の付与後の応力伝達部30xの位置(実線)とを併せて図示すると共に、剪断応力の付与後の各グレーティング26xの格子間隔を模式的に図示している。
ここで、剪断応力が付与される前のFBGセンサ22Aのグレーティング26xの反射波長λax0は、前述したように(10)式で表わされ、一方で、FBGセンサ22Cのグレーティング26xの反射波長λcx0は、(10)式と同様にして、下記の(22)式で表わされる。
λcx0=2×neff×Δ0cx (22)
従って、図10に示すように、λax0とλcx0との間隔Δλ0acxは、一意的に(23)式で表わされる。
Δλ0acx=λcx0−λax0=2×neff×(Δ0cx−Δ0ax) (23)
そして、図9に示す剪断応力がx方向に付与された後のFBGセンサ22Aのグレーティング26xの反射波長λaxは、前述の(11)式と同様に表わされ、一方で、剪断応力の付与後のFBGセンサ22Cのグレーティング26xの反射波長λcxは、(11)式と同様にして、下記の(24)式で表わされる。
λcx=2×neff×(−Δ+Δ0cx
=2×neff×[−(Fcosφ×sinφ)/
{2×E×(N−1)}+Δ0cx] (24)
なお、(24)式中、Δに付けられたマイナスの符号は、剪断応力の付与によってFBGセンサ22Cのグレーティング26xの格子間隔が縮むことを意味している。
このように、剪断応力の付与後の反射波長は、付与される剪断応力に対して線形に変化する。従って、図10に示すλaxとλcxとの間隔Δλacxも剪断応力に対して線形に変化し、下記の(25)式のように表わされる。
Δλacx=λcx−λax
=2×neff×{(−Δ+Δ0cx)−(Δ+Δ0ax)}(25)
(25)式より、FBGセンサ22A、22Cに付与される剪断応力の値Facxは、該剪断応力の付与前後における反射波長の間隔Δλ0acx、Δλacxの差分に比例する。また、その差分の符号は、剪断応力の方向を示す。
ここで、剪断応力によるx方向での歪みの比例定数をOとすると、FBGセンサ22A、22Cにおいて検出されるx方向の剪断応力Facxは、下記の(26)式で表わされる。
acx=O(Δλ0acx−Δλacx) (26)
但し、(26)式において、+x方向(FBGセンサ22AからFBGセンサ22Cに向かう方向)に剪断応力が付与される場合には、Facx>0であり、一方で、−x方向(FBGセンサ22CからFBGセンサ22Aに向かう方向)に剪断応力が付与される場合には、Facx<0となる。
上記の説明では、2つのFBGセンサ22A、22C間での剪断応力の検出について説明したが、FBGセンサ22B、22D間でのx方向の剪断応力、FBGセンサ22A、22B間でのy方向の剪断応力、及び、FBGセンサ22C、22D間でのy方向の剪断応力も、同様にして検出することができる。
すなわち、FBGセンサ22B、22D間での剪断応力によるx方向の歪みの比例乗数をPとし、FBGセンサ22A、22B間での剪断応力によるy方向の歪みの比例乗数をQとし、FBGセンサ22C、22D間での剪断応力によるy方向の歪みの比例乗数をRとした場合、FBGセンサ22B、22Dにおいて検出されるx方向の剪断応力Fbdx、FBGセンサ22A、22Bにおいて検出されるy方向の剪断応力Faby、及び、FBGセンサ22C、22Dにおいて検出されるy方向の剪断応力Fcdyは、(26)式と同様にして、それぞれ、(27)式〜(29)式で表わされる。
bdx=P(Δλ0bdx−Δλbdx) (27)
aby=Q(Δλ0aby−Δλaby) (28)
cdy=R(Δλ0cdy−Δλcdy) (29)
なお、(27)式〜(29)式において、添字bd、ab、cdは、当該記号が各FBGセンサに関わる記号であることを表わし、添字x、yは、当該記号がx方向、y方向に関わる記号であることを表わしている。また、(27)式〜(29)式でも、+x方向又は+y方向に剪断応力が付与される場合に、剪断応力の大きさは正の値となり、一方で、−x方向又は−y方向に剪断応力が付与される場合に、剪断応力の大きさは負の値となる。
次に、剪断応力と垂直応力との双方が付与される場合での垂直応力の検出について説明する。ここでは、x方向に付加される剪断応力からFBGセンサ22Aに付加される垂直応力を検出する方法について説明する。
図10において、破線が応力(剪断応力及び垂直応力)付与前の反射波長を示し、実線が剪断応力付与後の反射波長を示している場合に、垂直応力も併せて付与されると、反射波長は、実線の特性から一点鎖線の特性にシフトする。
すなわち、FBGセンサ22A、22Cに応力が付与されているときに、2つの一点鎖線の特性は、FBGセンサ22Aにおける垂直応力の寄与分を考慮した場合の反射波長(左側の一点鎖線)と、FBGセンサ22Cにおける垂直応力の寄与分を考慮した場合の反射波長(右側の一点鎖線)とをそれぞれ図示している。
ここで、剪断応力及び垂直応力の双方が付与されている場合に、付与されている全応力のうち、剪断応力の寄与分は、FBGセンサ22Aについては、(26)式を用いて、下記の(30)式で表わすことができる。
Δλ0acx−Δλacx (30)
また、FBGセンサ22Aのグレーティング26xが伸張した長さ(伸び分)と、FBGセンサ22Cのグレーティング26xが縮んだ長さ(縮み分)とは略等しいので、各FBGセンサ22A、22Cについて、剪断応力の寄与分は、(30)式を用いると、下記の(31)式で表わすことができる。
Δλ0acx−Δλacx)/2 (31)
一方、FBGセンサ22Aのグレーティング26xにおいて、応力の付与前後の反射波長の差分は、図10のΔλaxとして求めることができる。
そして、この差分Δλaxから(31)式に示す剪断応力への寄与分を差し引いた値は、FBGセンサ22Aに付与される垂直応力の反射波長への寄与分になる。
この寄与分は、応力に対して線形に変化する値となるので、FBGセンサ22Aに付与される垂直応力Fazは、該垂直応力Fazによるz方向の歪みの比例定数をSとすれば、下記の(32)式で表わすことができる。
az=S[Δλax−(Δλ0acx−Δλacx)/2] (32)
一方、FBGセンサ22Aとは対照的に、FBGセンサ22Cでは、Δλcxに剪断応力の寄与分を付加した値が垂直成分の反射波長への寄与分になる。
従って、FBGセンサ22Cに付与される垂直応力Fczは、該垂直応力Fczによるz方向の歪みの比例定数をUとすれば、下記の(33)式で表わすことができる。
cz=U[Δλcx+(Δλ0acx−Δλacx)/2] (33)
FBGセンサ22B、22Dに付加される垂直応力Fbz、Fdzについても、FBGセンサ22B、22Dにx方向に付与される剪断応力から求めることが可能である。
具体的に、垂直応力Fbz、Fdzは、該垂直応力Fbz、Fdzによるz方向の歪みの比例定数をT、Vとすれば、下記の(34)式及び(35)式で表わすことができる。
bz=T[Δλbx−(Δλ0bdx−Δλbdx)/2] (34)
dz=V[Δλdx+(Δλ0bdx−Δλbdx)/2] (35)
なお、(34)式及び(35)式において、添字b、dは、当該記号が各FBGセンサに関わる記号であることを表わし、添字xは、当該記号がx方向に関わる記号であることを表わしている。
また、上記の説明では、x方向に付加される剪断応力からz方向の垂直応力を求める場合について説明したが、y方向に付加される剪断応力からz方向の垂直応力を求めることも可能である。
この場合、y方向に沿った2つのFBGセンサ22A、22Bのペアと、FBGセンサ22C、22Dのペアとについて、上記の(32)式〜(35)式と同様にして、垂直応力を求めることができる。具体的には、下記の(36)式〜(39)式により垂直応力Faz、Fbz、Fcz、Fdzが求められる。
az=S[Δλay−(Δλ0aby−Δλaby)/2] (36)
bz=T[Δλby+(Δλ0aby−Δλaby)/2] (37)
cz=U[Δλcy−(Δλ0cdy−Δλcdy)/2] (38)
dz=V[Δλdx+(Δλ0cdy−Δλcdy)/2] (39)
次に、本実施形態に係る分布型圧力センサ16が付設されるロボットシステム(センサ信号処理装置)60について、図11及び図12を参照しながら説明する。
このロボットシステム60は、物体62を把持して所定の処理を行うマニピュレータ64と、マニピュレータ64のハンド部66a、66bに配設され、物体62に接触した状態で、ハンド部66a、66bによる物体62の把持状態を検出する分布型圧力センサ16a、16bと、該分布型圧力センサ16a、16bを制御し、物体62の把持状態に係る情報である剪断応力及び/又は垂直応力を取得するセンサコントローラ68と、センサコントローラ68によって取得した剪断応力及び/又は垂直応力に基づき、マニピュレータ64を制御するマニピュレータコントローラ70とを備える。
この場合、物体62を把持する際に分布型圧力センサ16a、16bが検出した剪断応力に基づき、ハンド部66a、66bに対する物体62の滑り状態を検知することができる。また、物体62を把持する際に分布型圧力センサ16a、16bが検出した垂直応力に基づき、ハンド部66a、66bによる物体62の把持力を検知することができる。従って、剪断応力及び/又は垂直応力に従ってハンド部66a、66bを制御することにより、物体62を脱落させることなく、適切な把持力で把持して所望の位置に移動させる等の作業を遂行することができる。
また、図12に示すように、ロボットシステム60において、光源72から出力された光は、光サーキュレータ74により分布型圧力センサ16a、16bの光ファイバケーブル20に供給される。
光ファイバケーブル20の一端部から入射した光は、一部の光が各グレーティング26x、26yにより反射される一方、残りの光がグレーティング26x、26yを透過した後、透過光終端器76に導かれる。
各グレーティング26x、26yにより反射された光は、光サーキュレータ74からセンサコントローラ68の光検出器78に導かれ、該光検出器78は、反射波長のピーク値を電気信号に変換して出力する。前述したように、各グレーティング26x、26yは、格子間隔及び反射波長が互いに異なるので、センサコントローラ68では、複数のグレーティング26x、26yからの反射光を光検出器78で受光しても、どのグレーティング26x、26yからの光であるのかを判別することが可能である。
センサコントローラ68内の演算処理部(信号処理部)80は、コンピュータのCPUによって構成され、剪断応力判定部82と、剪断応力演算部84と、垂直応力演算部86とを有する。
図13は、演算処理部80において行われる処理の流れを示すフローチャートである。
ステップS1において、剪断応力判定部82は、光検出器78からの電気信号に基づき、反射波長のピークの変化分について、(14)式〜(17)式が成立するか否か、すなわち、各FBGセンサ22が配置されている箇所において、応力のx方向成分とy方向成分とが等しいか否かを判定する。
ステップS1において、(14)式〜(17)式が成立すると剪断応力判定部82が判定した場合(ステップS1:YES)、ステップS2において、剪断応力演算部84は、各FBGセンサ22における剪断応力の値を0として出力し、一方で、垂直応力演算部86は、(18)式〜(21)式を用いて各FBGセンサ22における垂直応力の値を算出する。
また、ステップS1において、(14)式〜(17)式が成立しないと剪断応力判定部82が判定した場合(ステップS1:NO)、ステップS3において、剪断応力演算部84は、(26)式〜(29)式を用いて2つのFBGセンサ22に付与される剪断応力の値を算出する。また、垂直応力演算部86は、(32)式〜(35)式(ステップS4)、あるいは、(36)式〜(39)式(ステップS5)を用いて、各FBGセンサ22に付与される垂直応力の値を算出する。
このように、剪断応力の値を算出することで、x−y平面における物体62の滑り状態を検出することができる。また、垂直応力の値を算出することで、z方向に対する物体62の把持力を検出することができる。
以上説明したように、本実施形態に係るFBGセンサ22、22A〜22D、分布型圧力センサ16、16a、16b及びロボットシステム60によれば、剪断応力によってグレーティング26x、26yに歪みが発生することにより、該各グレーティング26x、26yの反射波長が変化するので、各グレーティング26x、26yでの反射波長のシフト量を検出することにより、物体40、50、62からFBGセンサ22、22A〜22Dに付与された剪断応力を、光ファイバ20x、20yの長手方向に沿った各成分にそれぞれ分離して検出することが可能となる。
また、応力方向変換部29は、物体40、50、62からFBGセンサ22、22A〜22Dに付与された垂直応力をx方向及びy方向に沿った応力に変換して各グレーティング26x、26yに伝達するので、変換後の応力によって各グレーティング26x、26yに歪みが発生することにより、該各グレーティング26x、26yでの反射波長が変化する。従って、各光ファイバ20x、20yにおける反射波長のシフト量を検出して、変換後の応力を各光ファイバ20x、20yの長手方向に沿った各成分にそれぞれ分離して検出することにより、変換後の応力に基づく垂直応力を検出することが可能となる。
従って、本実施形態によれば、比較的簡単な構造で、物体40、50、62から付与される応力(垂直応力、剪断応力)を複数の方向(垂直方向、剪断方向)に分離して検出することが可能となる。
また、FBGセンサ22、22A〜22Dを含む分布型圧力センサ16、16a、16bをマニピュレータ64等のエンドエフェクタ(ハンド部66a、66b)に搭載し、該ハンド部66a、66bが物体62を把持する場合に、各FBGセンサ22、22A〜22Dは、物体62からハンド部66a、66bに加えられる外力(垂直応力、剪断応力)を、複数の方向の成分に分離して検出するので、ハンド部66a、66bの空間座標内において外力がどのように作用しているのかを容易に把握することができる。
これにより、ハンド部66a、66bが物体62を把持している最中に、該物体62が滑り落ちることを確実に回避することが可能になる。また、分布型圧力センサ16、16a、16bをハンド部66a、66bに付設することにより、従来は困難であった、組立作業のような、組立部品と被組立部品との間に外力が働くような工程での自動化に効果的である。
また、光ファイバ20x、20yを利用して応力を検出するので、FBGセンサ22、22A〜22Dが電磁波ノイズや各種サージ等に曝されても何ら影響を受けることがない。そのため、工場や屋外等の劣悪な環境下で使用しても、上記の各ノイズの影響を回避することが可能である。
さらに、光ファイバ20x、20yの長手方向がそれぞれx方向及びy方向とし、シート体18の表面に垂直な方向がz方向であれば、FBGセンサ22、22A〜22Dが配置された箇所での応力をx方向、y方向及びz方向の各成分に分離して検出することが可能となる。
また、平坦部28と応力伝達部30x、30yとで応力方向変換部29を構成することにより、垂直応力を効率よくシート体18の表面方向に沿った応力に変換して各グレーティング26x、26yに伝達することが可能となる。
この場合、応力方向変換部29がゴム又は樹脂等の弾性体であれば、物体62からFBGセンサ22、22A〜22Dに垂直応力が付与されたときに、弾性体の作用によって、各グレーティング26x、26yの格子間隔を、光ファイバ20x、20yの長手方向に沿って、変換後の応力に応じた長さだけ容易に変化させることができるので、変換後の応力を精度よく検出することが可能となる。
さらに、1本の光ファイバケーブル20を用いることによりシート体18に全てのグレーティング26x、26yが配置されるので、各グレーティング26x、26yに光を供給する光源72の個数が1つになり、装置全体のコストを低廉なものとすることができる。また、格子間隔が互いに異なるので、反射波長が互いに異なるものとなり、この結果、センサコントローラ68における反射波長の誤検出を確実に防止することが可能となる。
また、演算処理部80の剪断応力判定部82は、(14)式〜(17)式に基づいて、物体40、50、62から各FBGセンサ22、22A〜22Dへの剪断応力の付与の有無を判定するので、物体40、50、62から各FBGセンサ22、22A〜22Dに現在付与されている応力が剪断応力及び/又は垂直応力であるか否かを各FBGセンサ22、22A〜22D毎に容易に判定することができると共に、現在付与されている応力の誤検出を回避することができる。
さらに、垂直応力演算部86では、(18)式〜(21)式を用いて各FBGセンサ22、22A〜22Dにおける垂直応力の値を算出するか、あるいは、(32)式〜(35)式又は(36)式〜(39)式を用いて各FBGセンサ22、22A〜22Dに付与される垂直応力の値を算出する。また、剪断応力演算部84は、(26)式〜(29)式を用いて2つのFBGセンサ22、22A〜22Dに付与される剪断応力の値を算出する。
これにより、2つのFBGセンサ22、22A〜22Dに付与された応力を、複数の方向の成分(垂直応力、剪断応力)にそれぞれ分離して算出することが可能になる。
なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。
16、16a、16b…分布型圧力センサ
18…シート体 20…光ファイバケーブル
20x、20y…光ファイバ 22、22A〜22D…FBGセンサ
26x、26y…グレーティング 27…応力検出センサ部
28…平坦部 29…応力方向変換部
30x、30y…応力伝達部 40、50、62…物体
60…ロボットシステム 80…演算処理部
82…剪断応力判定部 84…剪断応力演算部
86…垂直応力演算部

Claims (8)

  1. 物体から受ける剪断応力の付与方向と平行で、且つ、前記物体から受ける垂直応力の付与方向と垂直な平面に沿って、特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、
    前記垂直応力を前記平面に沿った方向の応力に変換して前記グレーティングに伝達する応力方向変換部と、
    を備え、
    前記応力検出センサ部は、第1のグレーティングが配列された第1の光ファイバと、前記第1の光ファイバの長手方向とは異なる方向に延在し且つ第2のグレーティングが配列された第2の光ファイバとを有し、
    前記応力方向変換部は、前記平面に沿った方向に延在する平坦部と、前記平坦部から前記第1の光ファイバに橋架された第1の応力伝達部と、前記平坦部から前記第2の光ファイバに橋架された第2の応力伝達部とを有することを特徴とする光ファイバセンサ。
  2. 請求項1記載のセンサにおいて、
    前記第1の光ファイバ及び前記第2の光ファイバは、前記垂直応力の付与方向に沿った互いに異なる高さにおいて、平面視で、前記第1のグレーティングと前記第2のグレーティングとが直交するようにそれぞれ配置されていることを特徴とする光ファイバセンサ。
  3. 請求項1又は2記載のセンサにおいて、
    前記応力方向変換部は、弾性体からなることを特徴とする光ファイバセンサ。
  4. 可撓性を有するシート体と、
    前記シート体に接触した物体から受ける剪断応力の付与方向と平行で、且つ、前記物体から受ける垂直応力の付与方向と垂直な前記シート体の表面に沿って、特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、前記垂直応力を前記シート体の表面に沿った方向の応力に変換して前記グレーティングに伝達する応力方向変換部とを備える光ファイバセンサと、
    を有し、
    前記シート体に前記光ファイバセンサが複数配置され、
    前記応力検出センサ部は、第1のグレーティングが配列された第1の光ファイバと、前記第1の光ファイバの長手方向とは異なる方向に延在し且つ第2のグレーティングが配列された第2の光ファイバとを有し、
    前記応力方向変換部は、前記表面に沿った方向に延在する平坦部と、前記平坦部から前記第1の光ファイバに橋架された第1の応力伝達部と、前記平坦部から前記第2の光ファイバに橋架された第2の応力伝達部とを有することを特徴とする分布型圧力センサ。
  5. 請求項記載のセンサにおいて、
    前記各光ファイバセンサの第1の光ファイバ及び第2の光ファイバは、格子間隔の互いに異なる複数のグレーティングが形成された1本の光ファイバケーブルを前記シート体に配置することによりそれぞれ構成されることを特徴とする分布型圧力センサ。
  6. 物体から受ける剪断応力の付与方向と平行で、且つ、前記物体から受ける垂直応力の付与方向と垂直な平面に沿って、特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、前記垂直応力を前記平面に沿った方向の応力に変換して前記グレーティングに伝達する応力方向変換部とを備える光ファイバセンサと、
    前記物体から前記光ファイバセンサへの前記剪断応力及び/又は前記垂直応力の付与により前記グレーティングに発生した歪みに起因する反射光の波長の変化に基づいて、前記剪断応力及び/又は前記垂直応力を算出する信号処理部と、
    を有し、
    前記応力検出センサ部は、第1のグレーティングが配列された第1の光ファイバと、前記第1の光ファイバの長手方向とは異なる方向に延在し且つ第2のグレーティングが配列された第2の光ファイバとを有し、
    前記応力方向変換部は、前記平面に沿った方向に延在する平坦部と、前記平坦部から前記第1の光ファイバに橋架された第1の応力伝達部と、前記平坦部から前記第2の光ファイバに橋架された第2の応力伝達部とを有し、
    前記信号処理部は、前記第1のグレーティングにおける反射光の波長のシフト量と、前記第2のグレーティングにおける反射光の波長のシフト量とが略一致する場合に、前記物体から前記光ファイバセンサへの前記剪断応力の付与がないものと判定し、前記各シフト量に基づいて前記垂直応力を算出することを特徴とするセンサ信号処理装置。
  7. 請求項記載の装置において、
    前記物体が接触し且つ可撓性を有するシート体の表面に沿って前記光ファイバセンサが複数配置された分布型圧力センサをさらに有し、
    前記信号処理部は、前記各光ファイバについて、前記第1のグレーティングにおける反射光の波長のシフト量と前記第2のグレーティングにおける反射光の波長のシフト量とが略一致した場合に、前記物体から前記各光ファイバセンサへの前記剪断応力の付与がないものと判定し、前記各シフト量に基づいて前記各光ファイバが配置された箇所の前記垂直応力をそれぞれ算出することを特徴とするセンサ信号処理装置。
  8. 請求項記載の装置において、
    前記各第1の光ファイバは、互いに同じ方向に配列されると共に、前記各第2の光ファイバは、互いに同じ方向に配列され、
    前記信号処理部は、
    前記各光ファイバについて、前記第1のグレーティングにおける反射光の波長のシフト量と前記第2のグレーティングにおける反射光の波長のシフト量とが一致しない場合に、前記物体から前記各光ファイバセンサに前記剪断応力及び前記垂直応力がそれぞれ付与されていると判定し、
    隣接する2つの光ファイバセンサの第1のグレーティング間での反射光の波長の間隔と第2のグレーティング間での反射光の波長の間隔とに基づいて、前記2つの光ファイバセンサに付与される剪断応力を算出し、
    前記第1のグレーティング間での反射光の波長の間隔と前記第1のグレーティングにおける反射光の波長のシフト量、又は、前記第2のグレーティング間での反射光の波長の間隔と前記第2のグレーティングにおける反射光の波長のシフト量に基づいて、前記光ファイバセンサに付与される垂直応力を算出することを特徴とするセンサ信号処理装置。
JP2009203804A 2009-09-03 2009-09-03 光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置 Expired - Fee Related JP5394171B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009203804A JP5394171B2 (ja) 2009-09-03 2009-09-03 光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置
US12/873,812 US8547534B2 (en) 2009-09-03 2010-09-01 Optical fiber sensor, pressure sensor, end effector and sensor signal processor
DE102010040143.9A DE102010040143B4 (de) 2009-09-03 2010-09-02 Lichtwellenleiter-Sensor, Drucksensor, Greiforgan und Sensor-Signalprozessor
CN2010102723026A CN102012289B (zh) 2009-09-03 2010-09-02 光纤传感器、压力传感器、末端执行器及传感器信号处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203804A JP5394171B2 (ja) 2009-09-03 2009-09-03 光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置

Publications (2)

Publication Number Publication Date
JP2011053145A JP2011053145A (ja) 2011-03-17
JP5394171B2 true JP5394171B2 (ja) 2014-01-22

Family

ID=43942303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203804A Expired - Fee Related JP5394171B2 (ja) 2009-09-03 2009-09-03 光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置

Country Status (1)

Country Link
JP (1) JP5394171B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481814B1 (ko) * 2013-12-30 2015-01-21 주식회사 지엔큐 변위 측정 광섬유 센서

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028456A (ja) * 1998-07-13 2000-01-28 Furukawa Electric Co Ltd:The 圧力検知ユニット
GB9824756D0 (en) * 1998-11-11 1999-01-06 Europ Economic Community A strain sensor and strain sensing apparatus
JP4786808B2 (ja) * 2001-03-02 2011-10-05 株式会社東横エルメス 光ファイバひずみ検出装置
US7295724B2 (en) * 2004-03-01 2007-11-13 University Of Washington Polymer based distributive waveguide sensor for pressure and shear measurement
JP2009162601A (ja) * 2007-12-28 2009-07-23 Fuji Seiko:Kk 光ひずみゲージ

Also Published As

Publication number Publication date
JP2011053145A (ja) 2011-03-17

Similar Documents

Publication Publication Date Title
US8547534B2 (en) Optical fiber sensor, pressure sensor, end effector and sensor signal processor
Park et al. Force sensing robot fingers using embedded fiber Bragg grating sensors and shape deposition manufacturing
Feng et al. Slip and roughness detection of robotic fingertip based on FBG
US20090285521A1 (en) Optical fiber sensor
Al-Mai et al. Design, development and calibration of a lightweight, compliant six-axis optical force/torque sensor
US20070297712A1 (en) Optical fiber sensor and method
JP5430877B2 (ja) 触覚センサ
US20110102766A1 (en) Optical fiber sensor, pressure sensor, end effector and stress detecting method using the same
Biazi-Neto et al. FBG-embedded robotic manipulator tool for structural integrity monitoring from critical strain-stress pair estimation
JP5394171B2 (ja) 光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置
Barino et al. 3d-printed force sensitive structure using embedded long-period fiber grating
Heo et al. Tactile sensors using the distributed optical fiber sensors
Kim et al. Force sensitive robotic end-effector using embedded fiber optics and deep learning characterization for dexterous remote manipulation
CN213422490U (zh) 一种基于光衰减的柔性触觉传感器及阵列
EP3173758B1 (en) System and method for tactile sensing using thin film optical sensing networks
Wang et al. Polyimide sensing layer for bending shape measurement in soft surgical manipulators
JP2011163942A (ja) 光ファイバセンサ、圧力センサ及びエンドエフェクタ
Zhang et al. A flexible dual-core optical waveguide sensor for simultaneous and continuous measurement of contact force and position
JP5394198B2 (ja) 光ファイバセンサ及び圧力センサ
JP2011163943A (ja) 光ファイバセンサ、圧力センサ及びエンドエフェクタ
Frishman et al. A Multi-Axis FBG-Based Tactile Sensor for Gripping in Space
JP5525237B2 (ja) 光ファイバセンサ及び圧力センサ
JP2010054359A (ja) 光ファイバセンサ
JP5394199B2 (ja) 光ファイバセンサ、圧力センサ及びエンドエフェクタ
US20230072012A1 (en) Multi-axis fiber bragg grating sensors and systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees