JP2011163943A - 光ファイバセンサ、圧力センサ及びエンドエフェクタ - Google Patents

光ファイバセンサ、圧力センサ及びエンドエフェクタ Download PDF

Info

Publication number
JP2011163943A
JP2011163943A JP2010027303A JP2010027303A JP2011163943A JP 2011163943 A JP2011163943 A JP 2011163943A JP 2010027303 A JP2010027303 A JP 2010027303A JP 2010027303 A JP2010027303 A JP 2010027303A JP 2011163943 A JP2011163943 A JP 2011163943A
Authority
JP
Japan
Prior art keywords
stress
optical fiber
sensor
flat portion
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010027303A
Other languages
English (en)
Inventor
Masaki Kunito
正樹 国頭
Nobuhiro Fueki
信宏 笛木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010027303A priority Critical patent/JP2011163943A/ja
Priority to US12/873,812 priority patent/US8547534B2/en
Priority to US12/874,098 priority patent/US8654317B2/en
Priority to DE102010040143.9A priority patent/DE102010040143B4/de
Priority to CN2010102721711A priority patent/CN102052980B/zh
Priority to CN2010102723026A priority patent/CN102012289B/zh
Publication of JP2011163943A publication Critical patent/JP2011163943A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】物体から付与される垂直応力の検出感度を容易に向上することを可能とする。
【解決手段】FBGセンサ22Aにおいて、応力方向変換部30は、光ファイバケーブル20の長手方向(X方向)に対して平行な方向に延在し且つ異なる方向(Z方向)に応力が付与される平坦部32と、該平坦部32から光ファイバケーブル20に橋架された応力伝達部34a、34bとを有する。この場合、平坦部32には、突起部44が形成されている。
【選択図】図5

Description

本発明は、特定波長の光を反射するグレーティングを配列した光ファイバを有する光ファイバセンサと、シート体に前記光ファイバセンサを配置した圧力センサと、前記圧力センサを備えたエンドエフェクタとに関する。
例えば、マニピュレータの先端部に装着されたエンドエフェクタにより物体を把持して所定の作業を遂行する場合、物体に過剰な把持力が付与されると、該物体を損傷させてしまうおそれがある。一方、物体に十分な把持力が付与されないと、該物体がエンドエフェクタから脱落してしまうおそれがある。
そこで、エンドエフェクタに物体の把持状態を検知することのできるセンサを付設することが試みられている。この種のセンサとして、例えば、特許文献1及び2に開示されているように、光ファイバをセンサとしてシートに配置し、前記物体から前記シートに圧力(応力)が付与されたときの前記光ファイバの歪みを検出することにより、前記光ファイバが配置された箇所の圧力を検出することが想起される。
特許第3871874号公報 特開2002−71323号公報
上述した圧力が物体からエンドエフェクタに付与される垂直応力である場合、前記エンドエフェクタに付設されるセンサが前記垂直応力を高感度に検出できれば、上記の問題を解決することが可能となる。
しかしながら、特許文献1及び2の圧力センサは、シートに付与される圧力(応力)の大きさ及び方向を検出することは可能であるが、垂直応力の感度を向上するための構成とはされていない。そのため、前記圧力センサをエンドエフェクタに搭載しても、物体から前記エンドエフェクタに付与される垂直応力の検出感度を向上することは困難である。
本発明は、前記の問題に鑑みなされたものであり、物体から付与される垂直応力の検出感度を容易に向上することが可能となる光ファイバセンサ、圧力センサ及びエンドエフェクタを提供することを目的とする。
本発明に係る光ファイバセンサは、特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、前記光ファイバの長手方向とは異なる方向に付与された応力を前記長手方向と平行な方向の応力に変換して前記グレーティングに伝達する応力方向変換部とを備え、
前記応力方向変換部は、前記長手方向に対して平行な方向に延在し且つ前記異なる方向に応力が付与される平坦部と、該平坦部から前記光ファイバに橋架された応力伝達部とを有し、
前記平坦部には、突起及び/又は溝が形成されていることを特徴としている。
また、本発明に係る圧力センサは、可撓性を有するシート体と、特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部、及び、前記シート体に接触した物体から前記光ファイバの長手方向とは異なる方向に付与された応力を前記長手方向と平行な方向の応力に変換して前記グレーティングに伝達する応力方向変換部を備える光ファイバセンサとを有し、
前記応力方向変換部は、前記長手方向に対して平行な方向に延在し且つ前記異なる方向に応力が付与される平坦部と、該平坦部から前記光ファイバに橋架された応力伝達部とを有し、
前記平坦部には、突起及び/又は溝が形成されていることを特徴としている。
さらに、本発明に係るエンドエフェクタは、可撓性を有するシート体と、特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部、及び、前記シート体に接触した物体から前記光ファイバの長手方向とは異なる方向に付与された応力を前記長手方向と平行な方向の応力に変換して前記グレーティングに伝達する応力方向変換部を備える光ファイバセンサとを有する圧力センサと、前記物体を把持する把持部とを備え、
前記把持部における前記物体との接触箇所に前記圧力センサを配置し、
前記応力方向変換部は、前記長手方向に対して平行な方向に延在し且つ前記異なる方向に応力が付与される平坦部と、該平坦部から前記光ファイバに橋架された応力伝達部とを有し、
前記平坦部には、突起及び/又は溝が形成されていることを特徴としている。
これらの発明によれば、光ファイバの長手方向とは異なる方向の応力(垂直応力)が物体から応力方向変換部に付与された場合、該垂直応力は、前記平坦部と、該平坦部に形成された突起及び/又は溝とにそれぞれ付与される。そのため、前記応力方向変換部は、前記突起及び/又は前記溝に付与された垂直応力と、前記平坦部に付与された垂直応力とによって、全体的に、大きく変形させられる。
また、前記平坦部と前記突起及び/又は前記溝とにそれぞれ付与された垂直応力は、前記応力方向変換部により前記長手方向と平行な方向の応力に変換され、変換後の応力は、応力伝達部を介してグレーティングに伝達される。
これにより、前記グレーティングに大きな歪みが発生し、該グレーティングで反射する光の波長(反射波長)が大幅に変化するので、前記グレーティングでの前記反射波長のシフト量を検出することにより、前記垂直応力を容易に検出することが可能となる。
このように、本発明では、前記突起及び/又は前記溝を前記平坦部に形成したことにより、前記突起及び/前記溝がない場合と比較して、前記応力方向変換部の変形量を大きくすることができると共に、前記グレーティングにおける歪みも大きくすることができる。この結果、前記反射波長のシフト量を大幅に増加させて、前記垂直応力の検出感度を容易に向上させることが可能となる。
ここで、前記突起及び/又は前記溝は、前記平坦部に複数設けられていてもよい。また、前記突起の先端部及び/又は前記溝の最深部は、鋭角状に形成されていてもよい。
このような構成又は形状とすることにより、前記応力方向変換部の変形量や前記グレーティングの歪みを一層大きくすることが可能となるので、前記垂直応力の検出感度のさらなる向上を図ることができる。
本発明によれば、応力方向変換部の平坦部に突起及び/又は溝を形成することにより、前記突起及び/前記溝がない場合と比較して、物体から付与される垂直応力の検出感度を容易に向上することが可能となる。
図1Aは、FBGセンサの概略説明図であり、図1Bは、FBGセンサに入射される光の波長と波長強度との関係を示す説明図であり、図1Cは、グレーティングによって反射される光(反射光)の波長と波長強度との関係を示す説明図であり、図1Dは、グレーティングが伸張されたFBGセンサの概略説明図である。 第1〜第5実施形態の前提となるFBGセンサをシート体に配置した圧力センサの斜視図である。 図2のFBGセンサの概略説明図である。 図2及び図3のFBGセンサによる垂直応力の検出原理の説明図である。 第1実施形態に係るFBGセンサをシート体に配置した圧力センサの斜視図である。 図5の圧力センサの平面図である。 図5のFBGセンサの概略説明図である。 図5〜図7のFBGセンサによる垂直応力の検出原理の説明図である。 図5〜図8の圧力センサが適用されるロボットシステムの構成図である。 図9のロボットシステムのブロック図である。 第2実施形態に係るFBGセンサをシート体に配置した圧力センサの斜視図である。 第3実施形態に係るFBGセンサをシート体に配置した圧力センサの斜視図である。 第4実施形態に係るFBGセンサをシート体に配置した圧力センサの斜視図である。 第5実施形態に係るFBGセンサをシート体に配置した圧力センサの斜視図である。
本発明に係る光ファイバセンサ、該光ファイバセンサを有する圧力センサ、及び、該圧力センサを備えたエンドエフェクタの好適な実施形態について、図1A〜図14を参照しながら説明する。
第1〜第5実施形態の説明に先立ち、光ファイバセンサとしてのFBGセンサ(Fiber Bragg Grating Sensor)を利用した応力検出の概要について、図1A〜図1Dを参照しながら説明する。また、第1〜第5実施形態の前提となるFBGセンサを利用した応力検出の概要についても、図2〜図4を参照しながら説明する。
図1Aに示すように、FBGセンサは、光ファイバ10において、Geが添加されたコア12の一部に紫外線を照射してグレーティング14を形成することにより構成される。なお、図1Aにおいて、グレーティング14の周期(格子間隔)をΔAとする。
光ファイバ10に応力が付与されていない状態で、図1Bに示す波長及び波長強度の光(入射光)がコア12に入射された場合、グレーティング14は、図1Bの波長λのうち、特定波長λAの光(反射光)を反射する(図1C参照)。
一方、光ファイバ10に応力が付与されて、図1Dに示すように、格子間隔がΔAからΔB(ΔA<ΔB)に変化すると、反射光の波長(反射波長)はλAからλBにシフトする(図1C参照)。
ここで、応力が付与される前の反射波長λA、及び、応力が付与されたときの反射波長λBは、コア12の有効屈折率をneffとすると、下記の(1)式及び(2)式で表わされる。
λA=2×neff×ΔA (1)
λB=2×neff×ΔB (2)
このように、反射波長λA、λBは、格子間隔ΔA、ΔBによって決定される。また、応力付与前の初期の格子間隔ΔAは、用途やシステムに応じて任意に設定される。
従って、FBGセンサを利用することにより、λAからλBへの反射波長のシフト量(λB−λA)に基づいて、光ファイバ10に付与された応力を検出し、あるいは、応力の有無を判断することができる。
次に、第1〜第5実施形態の前提となる圧力センサ16と、該圧力センサ16に組み込まれたFBGセンサ22とについて、図2〜図4を参照しながら説明する。
圧力センサ16は、図2に示すように、可撓性を有するシート体18の内部に、X方向を長手方向とした1本の光ファイバケーブル20が埋設され、この光ファイバケーブル20にFBGセンサ22を形成することにより構成される。すなわち、プラスチックや樹脂等の可撓性を有する材料でFBGセンサ22をモールドすることによりシート体18が形成される。この場合、シート体18は、FBGセンサ22を該シート体18の内部に固定すると共に、外部から付与される過度の応力や熱等からFBGセンサ22を保護するために形成される。
なお、図2は、シート体18に1個のFBGセンサ22を配置した場合を図示しているが、シート体18に埋設されるFBGセンサ22の個数は、1個に限定されることはない。例えば、FBGセンサ22をX方向及びY方向(シート体18の表面方向)に沿ってマトリックス状に複数配置してアドレス化してもよい。また、光ファイバケーブル20の長手方向についても、X方向に限定されることはなく、Y方向であってもよい。いずれにしても、シート体18の内部において、少なくとも1つのFBGセンサ22が配置されていればよい。
FBGセンサ22は、シート体18の内部における略中央部に配置され、グレーティング26が形成された光ファイバケーブル20を含む応力検出センサ部28と、外部からシート体18に付与された応力を該シート体18を介して受け、受けた前記応力をグレーティング26が配列された方向(光ファイバケーブル20の長手方向であるX方向)に沿った方向の応力に変換して光ファイバケーブル20に伝達する応力方向変換部30とを備えている。
この場合、外部からの応力に対する受感部材としての応力方向変換部30は、ゴムや樹脂等の弾性体からなり、X−Y方向に沿ってグレーティング26と略平行に延在する矩形状の平坦部32と、該平坦部32におけるX方向に沿った対向する二辺からグレーティング26の各端部に向かって橋架された応力伝達部34a、34bとを有する。
応力方向変換部30は、応力が付与されていない状態では、図3に示すグレーティング26を中心にして、左右対称の構造とされている。すなわち、応力伝達部34a、34bは、平坦部32に連なると共に光ファイバケーブル20(におけるグレーティング26の両端部側の近傍)に向かって傾斜した傾斜部36a、36bと、該傾斜部36a、36bに連なると共に光ファイバケーブル20の外周面の一部を囲繞する接合部38a、38bとをそれぞれ有する。また、平坦部32と各傾斜部36a、36bとのなす角度は互いに等しく設定されていると共に、各傾斜部36a、36bと各接合部38a、38bとのなす角度も互いに等しく設定されている。
なお、図2に示すように、シート体18においてX方向に沿って対向する2つの側面には、光の入射又は出射が可能な光ファイバケーブル20の入出力端42a、42bが外部にそれぞれ露呈している。
次に、FBGセンサ22上方のシート体18の表面に図示しない物体が接触し、該物体からグレーティング26に垂直応力(Z方向に沿った応力)が付与されたときの該垂直応力の検出について、図4を参照しながら説明する。
前述したように、応力付与前の応力方向変換部30の形状は、グレーティング26を中心として左右対称の構造であるため(図3参照)、前記物体からシート体18にZ方向に沿った垂直応力Fが付与されて、応力方向変換部30の平坦部32が該垂直応力Fを受けたときに、各応力伝達部34a、34bには、理想的に、Z方向に沿った応力F/2がそれぞれ付与される。この結果、応力付与後の応力方向変換部30の形状は、応力付与前の形状(図3の形状及び図4の一点鎖線に示す形状)と比較して、応力F/2によって左右対称に変形した形状となる(図4の実線に示す形状)。
この場合、応力F/2の傾斜部36a、36bに沿った方向の成分(力)が接合部38a、38bに伝達されることにより、光ファイバケーブル20及び接合部38a、38bの各接合部分には、該応力F/2に基づく力F´(傾斜部36a、36bに沿った方向の力のX方向に沿った成分)がそれぞれ付与される。従って、前記各接合部分に付与される力F´がグレーティング26にかかることで、グレーティング26がX方向に歪んで(伸張して)、該グレーティング26の格子間隔が変化(増加)する。
そのため、垂直応力Fが付与されていない状態では、グレーティング26は、入射光に対して反射波長(例えば、図1CのλA)の反射光を反射し、この反射光を入出力端42a又は入出力端42bから外部に出射させる。これに対して、垂直応力Fが付与された場合には、グレーティング26の格子間隔が増加して反射波長がλBにシフトするので、該グレーティング26は、入射光に対して波長λBの反射光を反射し、この反射光を入出力端42a又は入出力端42bから外部に出射させる。
従って、FBGセンサ22及び圧力センサ16では、λAからλBへの反射波長のシフト量(λB−λA)に基づいて、シート体18に付与された垂直応力Fを検出することができる。
ここで、矢印Z方向に沿った直線40と応力付与前の傾斜部36bとの成す角度をθとし、直線40と応力付与後の傾斜部36bとの成す角度をθ´とすれば、垂直応力Fの付与による角度の増分Δθは、下記の(3)式で表わされる。
Δθ=θ´−θ (3)
また、傾斜部36a、36bの長さをlとすれば、角度の増分Δθが与えるFBGセンサ22のX方向への変形量は、下記の(4)式で表わされる。
2×l×sin(Δθ) (4)
さらに、グレーティング26の格子数をNとすれば、λAからλBへの反射波長のシフト量Δλは、下記の(5)式で表わされる。
Δλ=λB−λA=2×neff×{2×l×sin(Δθ)/N} (5)
次に、第1実施形態に係る圧力センサ16A及びFBGセンサ22Aについて、図5〜図8を参照しながら説明する。
なお、第1〜第5実施形態の前提となる圧力センサ16及びFBGセンサ22(図2〜図4参照)と同じ構成要素については、同じ参照符号を付けて、その詳細な説明を省略し、以下同様とする。
第1実施形態に係る圧力センサ16A及びFBGセンサ22Aは、平坦部32に突起部44が設けられている点で、第1〜第5実施形態の前提となる圧力センサ16及びFBGセンサ22とは異なる。
突起部44は、平坦部32における矢印X方向に沿った中央部分に設けられた凸状の形状を有し、矢印Z方向に沿って平坦部32よりも高い位置に形成された頂上部46と、該頂上部46と平坦部32の傾斜部36a側とを橋架する傾斜部48aと、頂上部46と平坦部32の傾斜部36b側とを橋架する傾斜部48bとから構成されている。
次に、FBGセンサ22A上方のシート体18の表面に図示しない物体が接触し、該物体からグレーティング26に垂直応力(Z方向に沿った応力)が付与されたときの該垂直応力の検出について、図8を参照しながら説明する。
図5〜図8に示すように、応力付与前の応力方向変換部30の形状は、突起部44も含め、グレーティング26を中心とした左右対称の構造であるため、前記物体からシート体18にZ方向に沿った垂直応力Fが付与されたときに、応力方向変換部30の平坦部32及び突起部44の頂上部46は、垂直応力Fをそれぞれ受けることになる。
これにより、傾斜部48a、48bには、頂上部46に付与された垂直応力Fに起因して、理想的に、Z方向に沿った応力F/2が付与される。この結果、応力付与後の突起部44の形状は、応力付与前の形状(図7の形状及び図8の一点鎖線に示す形状)と比較して、応力F/2によって左右対称に変形した形状となる(図8の実線に示す形状)。そして、応力F/2の傾斜部48a、48bに沿った方向の成分(力)は、平坦部32の傾斜部36a、36b側にそれぞれ伝達される。
また、平坦部32にも垂直応力Fが付与されるので、各応力伝達部34a、34bには、該平坦部32に付与された垂直応力Fに起因するZ方向に沿った応力F/2と、傾斜部48a、48bに沿った方向の力に起因するZ方向に沿った応力F/2とがそれぞれ付与される。つまり、各応力伝達部34a、34bには、理想的に、Z方向に沿った応力F(=F/2+F/2)がそれぞれ付与される。
このように、突起部44を設けたことで、応力付与後の応力方向変換部30の形状は、応力付与前の形状(図7の形状及び図8の一点鎖線に示す形状)と比較して、平坦部32に付与された垂直応力Fに起因する応力F/2と、頂上部46に付与された垂直応力Fに起因する応力F/2とによる応力Fが応力方向変換部30に作用することにより、左右対称に大きく変形した形状となる(図8の実線に示す形状)。すなわち、第1実施形態に係るFBGセンサ22Aでは、第1〜第5実施形態の前提となるFBGセンサ22と比較して、平坦部32に突起部44を設けたことにより、各応力伝達部34a、34bに付与されるZ方向に沿った応力が、理想的に、F/2からFへと2倍増加するので、応力方向変換部30を全体的に大きく変形させることができる。
Z方向に沿った応力Fの傾斜部36a、36bに沿った方向の成分(力)が接合部38a、38bに伝達されることにより、光ファイバケーブル20及び接合部38a、38bの各接合部分には、該応力Fに基づく力F´´(傾斜部36a、36bに沿った方向の力のX方向に沿った成分)がそれぞれ付与される。従って、前記各接合部分に付与される力F´´がグレーティング26にかかることで、グレーティング26がX方向に大きく歪み(伸張して)、該グレーティング26の格子間隔が大幅に増加する。
従って、第1実施形態に係る圧力センサ16A及びFBGセンサ22Aでは、第1〜第5実施形態の前提となる圧力センサ16及びFBGセンサ22と比較して、グレーティング26におけるλAからλBへの反射波長のシフト量を確実に大きくすることができる。
ここで、第1実施形態におけるシフト量の増加について、数式を用いて具体的に説明する。
矢印Z方向に沿った直線40と応力付与前の傾斜部48bとの成す角度をφとし、直線40と応力付与後の傾斜部48bとの成す角度をφ´とすれば、頂上部46への垂直応力Fの付与による角度の増分Δφは、下記の(6)式で表わされる。
Δφ=φ´−φ (6)
また、傾斜部48a、48bの長さをl´とすれば、角度の増分Δφが与えるFBGセンサ22AのX方向への変形量は、下記の(7)式で表わされる。
2×l´×sin(Δφ) (7)
さらに、グレーティング26の格子数をNとすれば、角度の増分ΔφによるλAからλBへの反射波長のシフト量の増分Δλ´は、下記の(8)式で表わされる。
Δλ´=λB−λA
=2×neff×{2×l´×sin(Δφ)/N} (8)
従って、第1実施形態において、λAからλBへの反射波長のシフト量は、突起部44を設けたことにより、下記の(9)式で表わされる。
Δλ+Δλ´ (9)
すなわち、突起部44を設けることにより、グレーティング26のシフト量は、Δλ´だけ増加するので、垂直応力Fに対する検出感度を向上することができる。
次に、第1実施形態に係る圧力センサ16Aが付設されるロボットシステム50について、図9及び図10を参照しながら説明する。
このロボットシステム50は、物体52を把持して所定の処理を行うマニピュレータ54と、マニピュレータ54のハンド部(エンドエフェクタ)56a、56bに配設され、物体52に接触した状態で、ハンド部56a、56bによる物体52の把持状態を検出する圧力センサ16a、16b(16A)と、該圧力センサ16a、16bを制御し、物体52の把持状態に係る情報である垂直応力Fを取得するセンサコントローラ58と、センサコントローラ58によって取得した垂直応力Fに基づき、マニピュレータ54を制御するマニピュレータコントローラ60とを備える。
この場合、物体52を把持する際に圧力センサ16a、16bが検出した垂直応力Fに基づき、ハンド部56a、56bによる物体52の把持力を検知することができるので、垂直応力Fに従ってハンド部56a、56bを制御することにより、物体52を脱落させることなく、適切な把持力で把持して所望の位置に移動させる等の作業を遂行することができる。
また、図10に示すように、ロボットシステム50において、光源62から出力された光(入射光)は、光サーキュレータ64により圧力センサ16a、16bの光ファイバケーブル20(図5〜図8参照)に供給される。
光ファイバケーブル20の入出力端42bから入射した入射光は、一部の光がグレーティング26により反射される一方、残りの光がグレーティング26を透過した後、入出力端42aから透過光終端器66に導かれる。
グレーティング26により反射された光(反射光)は、光サーキュレータ64からセンサコントローラ58の光検出器68に導かれ、該光検出器68は、反射波長及び反射波長強度のピーク値を電気信号に変換して出力する。
センサコントローラ58内の演算処理部70は、コンピュータのCPUによって構成され、垂直応力演算部74を有する。垂直応力演算部74は、光検出器68からの垂直応力Fに応じた信号に基づいて、FBGセンサ22に付与される垂直応力Fの値を算出する。垂直応力Fの値を算出することで、Z方向に対する物体52の把持力を検出することができる。
以上説明したように、第1実施形態に係る圧力センサ16A、16a、16b、FBGセンサ22A及びエンドエフェクタ(ハンド部56a、56b)によれば、光ファイバケーブル20の長手方向(X方向)とは異なる方向の応力(Z方向に付与される垂直応力F)が物体52から応力方向変換部30に付与された場合、該垂直応力Fは、平坦部32と、該平坦部32に形成された突起部44とにそれぞれ付与される。そのため、応力方向変換部30は、突起部44に付与された垂直応力Fと、平坦部32に付与された垂直応力Fとによって、全体的に、大きく変形させられる。
また、平坦部32と突起部44(の頂上部46)とにそれぞれ付与された垂直応力Fは、応力方向変換部30によりX方向の応力に変換され、変換後の応力(力F´´)は、応力伝達部34a、34bを介してグレーティング26に伝達される。
これにより、グレーティング26に大きな歪みが発生し、該グレーティング26で反射する光の波長(反射波長)が大幅に変化するので、グレーティング26での反射波長のシフト量を検出することにより、垂直応力Fを容易に検出することが可能となる。
このように、第1実施形態では、突起部44を平坦部32に形成したことにより、突起部44がない場合(図2〜図4参照)と比較して、応力方向変換部30の変形量を大きくすることができると共に、グレーティング26における歪みも大きくすることができる。この結果、反射波長のシフト量を大幅に増加させて、垂直応力Fの検出感度を容易に向上させることが可能となる。
次に、第2〜第5実施形態に係る圧力センサ16B〜16E及びFBGセンサ22B〜22Eについて、図11〜図14を参照しながら説明する。
第2実施形態に係る圧力センサ16B及びFBGセンサ22Bは、図11に示すように、平坦部32の上面に突起部44を複数配置した点で、第1実施形態に係る圧力センサ16A及びFBGセンサ22A(図5〜図8参照)とは異なる。なお、図11において、各突起部44は、矢印X方向に沿って所定間隔で配置されると共に、矢印Y方向に沿って延在している。
第3実施形態に係る圧力センサ16C及びFBGセンサ22Cは、図12に示すように、平坦部32の中央部分にグレーティング26に指向する溝部47が形成されている点で、第1実施形態に係る圧力センサ16A及びFBGセンサ22Aとは異なる。なお、図12において、溝部47は、矢印Y方向に沿って延在する。また、参照数字の49は、最深部である。
第4実施形態に係る圧力センサ16D及びFBGセンサ22Dは、図13に示すように、突起部44が鋭角状に形成されることにより、頂上部46が稜線状(尾根状)となっている点で、第1実施形態に係る圧力センサ16A及びFBGセンサ22Aとは異なる。
第5実施形態に係る圧力センサ16E及びFBGセンサ22Eは、図14に示すように、溝部47が鋭角状に形成されることにより、最深部49が稜線状(尾根状)となっている点で、第3実施形態に係る圧力センサ16C及びFBGセンサ22C(図12参照)とは異なる。
第2〜第5実施形態では、突起部44又は溝部47を上述した構成又は形状とすることにより、応力方向変換部30の変形量やグレーティング26の歪みを一層大きくすることが可能となるので、垂直応力Fの検出感度のさらなる向上を図ることができる。
なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。
16A〜16E…圧力センサ 18…シート体
20…光ファイバケーブル 22A〜22E…FBGセンサ
26…グレーティング 28…応力検出センサ部
30…応力方向変換部 32…平坦部
34a、34b…応力伝達部 36a、36b、48a、48b…傾斜部
38a、38b…接合部 44…突起部
46…頂上部 47…溝部
49…最深部

Claims (5)

  1. 特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部と、
    前記光ファイバの長手方向とは異なる方向に付与された応力を前記長手方向と平行な方向の応力に変換して前記グレーティングに伝達する応力方向変換部と、
    を備え、
    前記応力方向変換部は、前記長手方向に対して平行な方向に延在し且つ前記異なる方向に応力が付与される平坦部と、該平坦部から前記光ファイバに橋架された応力伝達部とを有し、
    前記平坦部には、突起及び/又は溝が形成されていることを特徴とする光ファイバセンサ。
  2. 請求項1記載のセンサにおいて、
    前記突起及び/又は前記溝は、前記平坦部に複数設けられていることを特徴とする光ファイバセンサ。
  3. 請求項1又は2記載のセンサにおいて、
    前記突起の先端部及び/又は前記溝の最深部は、鋭角状に形成されていることを特徴とする光ファイバセンサ。
  4. 可撓性を有するシート体と、
    特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部、及び、前記シート体に接触した物体から前記光ファイバの長手方向とは異なる方向に付与された応力を前記長手方向と平行な方向の応力に変換して前記グレーティングに伝達する応力方向変換部を備える光ファイバセンサと、
    を有し、
    前記応力方向変換部は、前記長手方向に対して平行な方向に延在し且つ前記異なる方向に応力が付与される平坦部と、該平坦部から前記光ファイバに橋架された応力伝達部とを有し、
    前記平坦部には、突起及び/又は溝が形成されていることを特徴とする圧力センサ。
  5. 可撓性を有するシート体と、特定波長の光を反射するグレーティングを配列した光ファイバからなる応力検出センサ部、及び、前記シート体に接触した物体から前記光ファイバの長手方向とは異なる方向に付与された応力を前記長手方向と平行な方向の応力に変換して前記グレーティングに伝達する応力方向変換部を備える光ファイバセンサとを有する圧力センサと、
    前記物体を把持する把持部と、
    を備え、
    前記把持部における前記物体との接触箇所に前記圧力センサを配置し、
    前記応力方向変換部は、前記長手方向に対して平行な方向に延在し且つ前記異なる方向に応力が付与される平坦部と、該平坦部から前記光ファイバに橋架された応力伝達部とを有し、
    前記平坦部には、突起及び/又は溝が形成されていることを特徴とするエンドエフェクタ。
JP2010027303A 2009-09-03 2010-02-10 光ファイバセンサ、圧力センサ及びエンドエフェクタ Withdrawn JP2011163943A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010027303A JP2011163943A (ja) 2010-02-10 2010-02-10 光ファイバセンサ、圧力センサ及びエンドエフェクタ
US12/873,812 US8547534B2 (en) 2009-09-03 2010-09-01 Optical fiber sensor, pressure sensor, end effector and sensor signal processor
US12/874,098 US8654317B2 (en) 2009-11-02 2010-09-01 Optical fiber sensor, pressure sensor, end effector and stress detecting method using the same
DE102010040143.9A DE102010040143B4 (de) 2009-09-03 2010-09-02 Lichtwellenleiter-Sensor, Drucksensor, Greiforgan und Sensor-Signalprozessor
CN2010102721711A CN102052980B (zh) 2009-11-02 2010-09-02 光纤传感器、压力传感器、末端执行器以及应力检测方法
CN2010102723026A CN102012289B (zh) 2009-09-03 2010-09-02 光纤传感器、压力传感器、末端执行器及传感器信号处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027303A JP2011163943A (ja) 2010-02-10 2010-02-10 光ファイバセンサ、圧力センサ及びエンドエフェクタ

Publications (1)

Publication Number Publication Date
JP2011163943A true JP2011163943A (ja) 2011-08-25

Family

ID=44594793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027303A Withdrawn JP2011163943A (ja) 2009-09-03 2010-02-10 光ファイバセンサ、圧力センサ及びエンドエフェクタ

Country Status (1)

Country Link
JP (1) JP2011163943A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2515116C1 (ru) * 2012-11-23 2014-05-10 Кирилл Рудольфович Карлов Волоконно-оптический датчик давления
WO2016055787A1 (en) * 2014-10-08 2016-04-14 Optasense Holdings Limited Fibre optic cable with tuned transverse sensitivity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2515116C1 (ru) * 2012-11-23 2014-05-10 Кирилл Рудольфович Карлов Волоконно-оптический датчик давления
RU2515116C9 (ru) * 2012-11-23 2014-08-10 Кирилл Рудольфович Карлов Волоконно-оптический датчик давления
WO2016055787A1 (en) * 2014-10-08 2016-04-14 Optasense Holdings Limited Fibre optic cable with tuned transverse sensitivity
US10837805B2 (en) 2014-10-08 2020-11-17 Optasense Holdings Limited Fibre optic cable with tuned transverse sensitivity

Similar Documents

Publication Publication Date Title
US8547534B2 (en) Optical fiber sensor, pressure sensor, end effector and sensor signal processor
US20090285521A1 (en) Optical fiber sensor
KR20020073479A (ko) 가요성 섬유 광학 마이크로벤드 장치, 센서, 및 사용방법
CA2338409A1 (en) Patch type optical fiber sensor
JP4921533B2 (ja) 腱張力センサー
JP5430877B2 (ja) 触覚センサ
CN109855780B (zh) 一种用于机器人关节扭矩测量的温度补偿光纤光栅传感器
US20110102766A1 (en) Optical fiber sensor, pressure sensor, end effector and stress detecting method using the same
US9857250B2 (en) Strain sensor and method for installing strain sensor
JP5984527B2 (ja) 導光路センサ、導光路センサを形成する方法
JP2011163943A (ja) 光ファイバセンサ、圧力センサ及びエンドエフェクタ
CN106546354B (zh) 一种基于fbg的超高温传感器
JP2005134199A (ja) ファイバ型センサ及びそれを用いたセンシングシステム
JP5394198B2 (ja) 光ファイバセンサ及び圧力センサ
KR100666379B1 (ko) 광섬유격자 구조체 및 이를 적용한 구조물 변형 측정 장치 및 방법
JP5394199B2 (ja) 光ファイバセンサ、圧力センサ及びエンドエフェクタ
JP5394171B2 (ja) 光ファイバセンサ、分布型圧力センサ及びセンサ信号処理装置
JP2005351663A (ja) Fbg湿度センサ及びfbg湿度センサを用いた湿度測定方法
JP5525237B2 (ja) 光ファイバセンサ及び圧力センサ
Zhang et al. A flexible dual-core optical waveguide sensor for simultaneous and continuous measurement of contact force and position
WO2007043716A1 (en) Optical fiber bragg grating unit and apparatus and method of measuring deformation of structure having the same
WO2016186054A1 (ja) 歪みセンサ及び歪みセンサの取付治具
JP2010054359A (ja) 光ファイバセンサ
JP2011180026A (ja) 光ファイバセンサ
JP2022107207A (ja) トルクセンサ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507