JP5392633B2 - Target for ZnO-based transparent conductive film and method for producing the same - Google Patents

Target for ZnO-based transparent conductive film and method for producing the same Download PDF

Info

Publication number
JP5392633B2
JP5392633B2 JP2011523622A JP2011523622A JP5392633B2 JP 5392633 B2 JP5392633 B2 JP 5392633B2 JP 2011523622 A JP2011523622 A JP 2011523622A JP 2011523622 A JP2011523622 A JP 2011523622A JP 5392633 B2 JP5392633 B2 JP 5392633B2
Authority
JP
Japan
Prior art keywords
zno
powder
target
oxide
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011523622A
Other languages
Japanese (ja)
Other versions
JPWO2011010603A1 (en
Inventor
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011523622A priority Critical patent/JP5392633B2/en
Publication of JPWO2011010603A1 publication Critical patent/JPWO2011010603A1/en
Application granted granted Critical
Publication of JP5392633B2 publication Critical patent/JP5392633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、液晶ディスプレイや薄膜太陽電池などの製造に用いられるホウ素(B)およびバナジウム(V)を両方添加したZnO系透明導電膜用ターゲットおよびその製造方法に関するものである。   The present invention relates to a target for a ZnO-based transparent conductive film to which both boron (B) and vanadium (V) used for manufacturing liquid crystal displays and thin film solar cells are added, and a method for manufacturing the same.

液晶ディスプレイや薄膜太陽電池等には、導電性でかつ光に対して透明な電極(透明電極)が用いられている。こうした性質をもつ材料としては、例えば、In−SnO(以下、ITO)、ZnO−B(以下、BZO)、ZnO−Al(以下、AZO)、ZnO−Ga(以下GZO)等の酸化物材料が知られている。こうした材料は、スパッタリング法によって液晶ディスプレイや薄膜太陽電池上に薄膜として形成された後に、電極としてパターニングされ、透明電極となる。In liquid crystal displays, thin film solar cells, and the like, electrodes that are conductive and transparent to light (transparent electrodes) are used. Examples of materials having such properties include In 2 O 3 —SnO 2 (hereinafter referred to as ITO), ZnO—B 2 O 3 (hereinafter referred to as BZO), ZnO—Al 2 O 3 (hereinafter referred to as AZO), and ZnO—Ga. An oxide material such as 2 O 3 (hereinafter GZO) is known. Such a material is formed as a thin film on a liquid crystal display or thin film solar cell by sputtering, and then patterned as an electrode to become a transparent electrode.

スパッタリング法においては、スパッタリング装置中で、薄膜が形成される基板とスパッタリングターゲット(以下、ターゲット)とが対向させて配置される。これらの間でガス放電を発生させ、このガス放電によって発生したイオンがターゲットの表面にぶつかり、その衝撃によって放出された原子(粒子)を対向する基板に付着させて薄膜が形成される。このターゲットは透明電極となる材料で形成され、透明電極の特性は用いたターゲットの特性に反映される。   In the sputtering method, in a sputtering apparatus, a substrate on which a thin film is formed and a sputtering target (hereinafter, target) are arranged to face each other. A gas discharge is generated between them, ions generated by the gas discharge collide with the surface of the target, and atoms (particles) released by the impact are attached to the opposing substrate to form a thin film. This target is formed of a material that becomes a transparent electrode, and the characteristics of the transparent electrode are reflected in the characteristics of the target used.

また、一般にターゲットは非常に高価であり、その価格が液晶ディスプレイや太陽電池の製造コストに占める割合は大きい。このため、液晶ディスプレイや太陽電池の低コスト化のためには、ターゲットが安価であることも要求される。中でもBZOターゲットは、安価な原料であるZnO粉末とB粉末を用いて製造され、低コスト化には有望である。更に、BZOは、透明電極として用いられているITO、AZOに比較し、波長1000nm以上の透過率が高く、太陽光が有効活用できるという点から太陽電池用透明電極として有望である。しかし、ZnO粉末とB粉末を焼結してBZOターゲットを得ようとすると、Bが約600℃付近から液相が生成し始めるためにB同士による融着、粗大化が行われ、焼結体内に偏析が生じるといった問題、或いは、ぬれ性やBの蒸発の問題等により緻密な焼結体を得ることが難しいという問題が指摘されている。In general, the target is very expensive, and the price accounts for a large proportion of the manufacturing cost of the liquid crystal display and solar cell. For this reason, in order to reduce the cost of liquid crystal displays and solar cells, the target is also required to be inexpensive. Among them, the BZO target is manufactured using ZnO powder and B 2 O 3 powder, which are inexpensive raw materials, and is promising for cost reduction. Furthermore, BZO is promising as a transparent electrode for solar cells because it has a high transmittance of 1000 nm or more compared to ITO and AZO used as transparent electrodes, and sunlight can be used effectively. However, in order to obtain a BZO target by sintering ZnO powder and B 2 O 3 powder, fused by B 2 O 3 between B from 2 O 3 is around about 600 ° C. for the liquid phase begins to generate, It has been pointed out that it is difficult to obtain a dense sintered body due to problems such as coarsening and segregation in the sintered body, or wettability and problems of evaporation of B 2 O 3 .

この課題を解決するために、ZnO粉末とB粉末を仮焼きして得た複合粉末からなる原料を用いること、あるいは共沈法による水酸化物による粉末を仮焼きして得た複合粉末からなる原料を用いることが開示されている(特許文献1、特許文献2、特許文献3)。
このように、あらかじめ形成した複合粉末を用いることは、粗大なB相が存在しなくなるので、偏析を防ぎ緻密な焼結体を得る上で有効となる。
In order to solve this problem, a raw material comprising a composite powder obtained by calcining ZnO powder and B 2 O 3 powder is used, or a composite obtained by calcining a powder of hydroxide by a coprecipitation method. It is disclosed that a raw material made of powder is used (Patent Document 1, Patent Document 2, and Patent Document 3).
Thus, the use of the composite powder formed in advance is effective in preventing segregation and obtaining a dense sintered body because the coarse B 2 O 3 phase does not exist.

また、ZnOの耐薬品性を高める上で、CoやV添加が有効であることが開示されている(特許文献4)。
特許文献4によれば、ドナー不純物として使用される上記ホウ素が属するIII族元素等を添加したZnO系導電膜についてもCoやVの添加は有効であること、この様な導電膜の形成にスパッタリング法が適用され、そのための焼結体の開示もある。
In addition, it is disclosed that Co and V addition are effective in increasing the chemical resistance of ZnO (Patent Document 4).
According to Patent Document 4, it is effective to add Co and V to a ZnO-based conductive film to which the above-mentioned group III element to which boron belongs, which is used as a donor impurity, is added. Sputtering is used to form such a conductive film. The method is applied, and there is also a disclosure of a sintered body for that purpose.

特開平11−158607号公報Japanese Patent Laid-Open No. 11-158607 特開平11−171539号公報Japanese Patent Laid-Open No. 11-171539 特開平11−302835号公報JP-A-11-302835 特開2002−75062号公報JP 2002-75062 A

特許文献4に開示されるVは、耐薬品性を向上するという点では有利であるものの、特許文献4に具体的な記載があるVをバナジウム源とする場合、Vの毒性に対する慎重な取扱が必要である。
また、Vよりも毒性が低いV酸化物としてVが知られているが、Vの融点は、690℃と低温であるのに対して、Vの融点は1970℃と高く、ホウ素を含むZnO系焼結体を得る上での挙動が不明であった。
Although V disclosed in Patent Document 4 is advantageous in terms of improving chemical resistance, when V 2 O 5 specifically described in Patent Document 4 is used as a vanadium source, V 2 O 5 Careful handling of toxicity is required.
V 2 O 3 is known as a V oxide having lower toxicity than V 2 O 5 , but the melting point of V 2 O 5 is as low as 690 ° C., whereas V 2 O 3 has a low melting point. The melting point was as high as 1970 ° C., and the behavior for obtaining a ZnO-based sintered body containing boron was unknown.

また、ホウ素の添加は、特許文献1〜3のように複合酸化物を形成する方法が有効である。しかし、この様な複合酸化物を用いる製造技術においても、Vを添加する際の、原料酸化物のVの価数が、焼結性等に如何なる影響があるかは、全く未知であった。
本発明の目的は、高い焼結密度を有するホウ素(B)およびバナジウム(V)を両方添加したZnO系透明導電膜用ターゲットおよびその製造方法を提供することである。
In addition, for the addition of boron, a method of forming a composite oxide as in Patent Documents 1 to 3 is effective. However, even in the manufacturing technology using such a composite oxide, it has been completely unknown how the valence of V of the raw material oxide when adding V has an effect on the sinterability.
The objective of this invention is providing the target for ZnO type transparent conductive films which added both the boron (B) and vanadium (V) which have a high sintered density, and its manufacturing method.

本発明者は、Vがホウ素を含む焼結体を得る上で焼結密度の向上に寄与することを見いだし、本発明に到達した。
すなわち本発明は、ホウ素量が、B/(ZnO+B+V)×100とした酸化物換算で0.5〜10mass%、バナジウム量が、V/(ZnO+B+V)×100とした酸化物換算で0.05〜5mass%であり、その密度が相対密度で90%以上の酸化物焼結体であるZnO系透明導電膜用ターゲットである。
また、本発明は、アルミニウムおよび/またはガリウムを3価の酸化物として換算して、それぞれ2mass%以下添加することができる。
The present inventor has found that V 2 O 3 contributes to the improvement of the sintering density in obtaining a sintered body containing boron, and has reached the present invention.
That is, according to the present invention, the amount of boron is 0.5 to 10 mass% in terms of an oxide with B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, and the amount of vanadium is V 2 O 3 / (ZnO + B). in 2 O 3 + V 2 O 3 ) × 100 and the oxide equivalent was 0.05~5mass%, the density of ZnO-based transparent conductive film for the target is an oxide sintered body of 90% or more in relative density is there.
In the present invention, aluminum and / or gallium can be added in an amount of 2 mass% or less in terms of trivalent oxide.

また、本発明の製造方法は、ホウ素とバナジウムを含有し、ホウ素量が、B/(ZnO+B+V)×100とした酸化物換算で0.5〜10mass%、バナジウム量が、V/(ZnO+B+V)×100とした酸化物換算で0.05〜5mass%である酸化物焼結体からなるZnO系透明電極用ターゲットの製造方法であって、ホウ素源としてHBO粉末、バナジウム源としてV粉末を用いるZnO系透明導電膜用ターゲットの製造方法である。
また、本発明の製造方法における焼結温度は、700〜1050℃、焼結雰囲気は非還元性雰囲気とすることが好ましい。
また、本発明の製造方法において、HBO粉末と、ZnO粉末あるいは更にV粉末とを混合し、仮焼きして得た仮焼き粉末を焼結原料として焼結することが好ましい。
The manufacturing method of the present invention contains boron and vanadium, boron amount, B 2 O 3 / 0.5~10mass% in (ZnO + B 2 O 3 + V 2 O 3) × 100 and the oxide equivalent, Manufacture of a target for a ZnO-based transparent electrode comprising an oxide sintered body having a vanadium amount of 0.05 to 5 mass% in terms of an oxide of V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100 This is a method for producing a target for a ZnO-based transparent conductive film using H 3 BO 3 powder as a boron source and V 2 O 3 powder as a vanadium source.
The sintering temperature in the production method of the present invention is preferably 700 to 1050 ° C., and the sintering atmosphere is preferably a non-reducing atmosphere.
In the method of the present invention, the H 3 BO 3 powder, ZnO powder or further mixing a V 2 O 3 powder, it is preferable to sinter the calcined powder obtained by calcining a sintering raw material .

また、本発明で仮焼き粉末を使用する場合、仮焼き粉末の組成をB/(ZnO+B+V)×100とした酸化物換算で、0.8〜45mass%とし、該仮焼き粉末にZnO粉末あるいはVのいずれかまたは両方を混合、焼結して相対密度90%以上の焼結体を得ることが好ましい。
また、仮焼き温度は、100〜500℃とすることが好ましい。
Further, when the calcined powder is used in the present invention, the composition of the calcined powder is 0.8 to 45 mass% in terms of oxide in which the composition of the calcined powder is B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100. It is preferable to obtain a sintered body having a relative density of 90% or more by mixing and sintering either or both of ZnO powder and V 2 O 3 to the calcined powder.
Moreover, it is preferable that a calcination temperature shall be 100-500 degreeC.

本発明は、高い焼結密度を有するホウ素(B)およびバナジウム(V)を両方添加したZnO系透明導電膜用ターゲットであり、異常放電が少なく、液晶ディスプレイや薄膜太陽電池などの製造に好適である。また、本発明の製造方法は、安全かつ精度の高い製造ができるので上述したターゲットを得る上で重要な技術となる。   The present invention is a ZnO-based transparent conductive film target to which both boron (B) and vanadium (V) having a high sintered density are added, and is suitable for the production of liquid crystal displays, thin film solar cells, etc. with less abnormal discharge. is there. Further, the production method of the present invention is an important technique for obtaining the above-mentioned target because it can be produced safely and with high accuracy.

本発明のターゲットのミクロ組織及び対応する特定原子分布の一例を示す図である。It is a figure which shows an example of the microstructure of the target of this invention, and corresponding specific atom distribution. 比較例のターゲットのミクロ組織及び対応する特定原子分布の一例を示す図である。It is a figure which shows an example of the microstructure of the target of a comparative example, and corresponding specific atom distribution.

上述したように、本発明の重要な特徴は、Vがホウ素を含む焼結体を得る上で焼結密度の向上に寄与することを見いだし、高い焼結密度を有するホウ素およびバナジウムを両方添加したZnO系透明導電膜用ターゲットを実現したことにある。
本発明において、ホウ素量を、B/(ZnO+B+V)×100とした酸化物換算で0.5〜10mass%としたのは、ホウ素添加により、形成する導電膜の低抵抗性と透明性を確保する上で有効だからである。好ましくは、0.5〜5mass%である。
また、本発明において、バナジウム量を、V/(ZnO+B+V)×100とした酸化物換算で0.05mass%以上としたのは、0.05mass%未満では、焼結性向上の明確な効果が得られず、また製造時にターゲットにおける均一な分散をさせにくいためである。また、5mass%以下としたのは、安価で特定波長の透過率が高いというホウ素添加の作用を維持するためである。好ましくは、0.05〜2mass%である。
As described above, an important feature of the present invention is that V 2 O 3 has been found to contribute to the improvement of the sintering density in obtaining a sintered body containing boron, and boron and vanadium having a high sintering density have been found. That is to realize a ZnO-based transparent conductive film target to which both are added.
In the present invention, the amount of boron is set to 0.5 to 10 mass% in terms of an oxide of B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100. The conductive film formed by boron addition This is because it is effective in ensuring low resistance and transparency. Preferably, it is 0.5-5 mass%.
Further, in the present invention, the vanadium amount, was V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3) × 100 and the 0.05 mass% or more in terms of oxide, in less than 0.05 mass%, This is because a clear effect of improving the sinterability cannot be obtained, and it is difficult to uniformly disperse the target during production. The reason why it is set to 5 mass% or less is to maintain the effect of boron addition, which is inexpensive and has a high transmittance at a specific wavelength. Preferably, it is 0.05-2 mass%.

本発明においては、上記ホウ素の特徴を活かすため、ホウ素とバナジウム以外の導電性を付与する酸化物は必ずしも必要ではないが、添加することは可能である。典型的には、アルミニウム(Al)やガリウム(Ga)の酸化物の添加が可能である。これらの添加は、3価の酸化物として換算して、それぞれ2mass%以下とすることが望ましい。   In the present invention, an oxide that imparts conductivity other than boron and vanadium is not necessarily required in order to make use of the characteristics of boron, but it can be added. Typically, an oxide of aluminum (Al) or gallium (Ga) can be added. These additions are preferably 2 mass% or less in terms of trivalent oxide.

また、本発明のターゲットの相対密度は、90%以上とした。90%未満は、通常の焼結でも容易に到達できるため、V添加による焼結性向上の意味が少ないためである。好ましくは、95%以上とする。より好ましくは98%以上である。
なお、本発明でいう相対密度は、ターゲット組織中に、ZnO、B、Vの各相がそれぞれ独立して存在していると仮定して、計算される密度に対する相対密度である。
The relative density of the target of the present invention was 90% or more. If it is less than 90%, it can be easily reached even by ordinary sintering, and therefore there is little meaning of improving the sinterability by adding V 2 O 3 . Preferably, it is 95% or more. More preferably, it is 98% or more.
The relative density in the present invention, the relative density to the density of the target tissue, ZnO, assuming each phase of B 2 O 3, V 2 O 3 is present in each independently, is calculated It is.

次に、本発明の製造方法について詳細に説明する。
本発明の製造方法においては、上述した組成のターゲットを得るために、ホウ素源としてHBO粉末、バナジウム源としてV粉末を用いることに重要な特徴の一つがある。
通常ホウ素源として使用されるB粉末は、吸湿性が高く秤量誤差を起こしやすいという問題を確認している。一方、本発明で使用するHBO粉末は、水化物であり水分吸収の心配が無く、秤量誤差を起こしにくいものであり、成分調整の精度を高める上で有効である。
また、通常バナジウム源として使用されるVは、上述した通り毒性があり取扱上問題がある。一方、本発明が用いるVは、その様な問題がない。そして、重要なのは、Vが1970℃という高温の融点をもつにも拘わらず、焼結性を高めることに寄与するということを見いだしたことにある。
Next, the production method of the present invention will be described in detail.
In the production method of the present invention, in order to obtain a target having the above-described composition, there is one of important features in using H 3 BO 3 powder as a boron source and V 2 O 3 powder as a vanadium source.
B 2 O 3 powder, which is usually used as a boron source, has been confirmed to have a problem that it has high hygroscopicity and easily causes a weighing error. On the other hand, the H 3 BO 3 powder used in the present invention is a hydrate, has no concern of moisture absorption, is less prone to weighing errors, and is effective in increasing the accuracy of component adjustment.
Further, V 2 O 5 usually used as a vanadium source is toxic as described above and has a problem in handling. On the other hand, V 2 O 3 used in the present invention does not have such a problem. What is important is that it has been found that V 2 O 3 contributes to enhancing the sinterability despite having a high melting point of 1970 ° C.

本発明者の検討によれば、ターゲット組織に存在するZn−B−O相の組織が、V無添加では粒状の組織であるのに対して、Vの添加により柱状組織になるという現象を確認している。このことから添加したV粉末はターゲット組織に大きく影響を及ぼし、焼結性を向上させる因子となっていると推定される。
そして、この方法により、相対密度を90%、好ましくは95%以上、より好ましくは98%以上に高めることが可能となる。
According to the study of the present inventor, the structure of the Zn—B—O phase existing in the target structure is a granular structure when V 2 O 3 is not added, whereas a columnar structure is obtained by adding V 2 O 3. The phenomenon of becoming is confirmed. From this fact, it is presumed that the added V 2 O 3 powder has a great influence on the target structure and is a factor for improving the sinterability.
By this method, the relative density can be increased to 90%, preferably 95% or more, more preferably 98% or more.

本発明の製造方法における焼結温度は、700〜1050℃、焼結雰囲気は非還元性雰囲気とすることが好ましい。700℃未満の焼結温度では、焼結時間が掛かりすぎ、1050℃以上では、構成する酸化物の分解が進んで所定の焼結密度が得られないだけでなく、組成変動も大きくなる場合があるからである。
また、焼結雰囲気として非還元雰囲気を選択することで、構成する酸化物の分解を容易に抑えることができるという利点がある。この非還元性雰囲気としては、空気、窒素、不活性ガス等を使用することが可能である。
The sintering temperature in the production method of the present invention is preferably 700 to 1050 ° C., and the sintering atmosphere is preferably a non-reducing atmosphere. If the sintering temperature is less than 700 ° C., the sintering time is too long. If the sintering temperature is 1050 ° C. or more, the decomposition of the constituent oxide proceeds and a predetermined sintering density cannot be obtained. Because there is.
Further, by selecting a non-reducing atmosphere as the sintering atmosphere, there is an advantage that decomposition of the constituent oxide can be easily suppressed. As this non-reducing atmosphere, air, nitrogen, inert gas, or the like can be used.

本発明の製造方法において、HBO粉末の使用は、上述した通り組成制御にとって有効であるが、そのまま焼結原料とすると加熱により酸化ホウ素と水に分解されるため、酸化ホウ素をそのまま焼結原料とした場合と同様に焼結体内に大きな偏析が生じたり、緻密な焼結体を得られない場合がある。
そのため、ZnO粉末とHBO粉末を混合し、仮焼きして得た仮焼き粉末を製造しこれを焼結原料とすると、複合酸化物が形成されているため、偏析を防ぎ緻密な焼結体を得ることが可能となる。また、仮焼き工程は、焼結体としては不要な水分をあらかじめ除去しておくことができるので、水分存在による焼結体の変形、欠陥の形成を防ぐ上でも有効である。この時、V粉末も同時に混合しておき、仮焼き粉末を得ても良い。
In the production method of the present invention, the use of H 3 BO 3 powder is effective for controlling the composition as described above. However, if the sintering raw material is used as it is, it is decomposed into boron oxide and water by heating. As in the case of using the raw material for binding, large segregation may occur in the sintered body or a dense sintered body may not be obtained.
For this reason, when a calcined powder obtained by mixing ZnO powder and H 3 BO 3 powder and calcining is used as a sintering raw material, a complex oxide is formed. It becomes possible to obtain a ligation. Further, the calcining step can remove moisture unnecessary for the sintered body in advance, and is effective in preventing deformation of the sintered body and formation of defects due to the presence of moisture. At this time, V 2 O 3 powder may be mixed at the same time to obtain a calcined powder.

また、本発明の製造法において、仮焼き粉末のみを原料にして焼結しても良いが、仮焼き粉末に加えて他の酸化物粉末を混合して焼結しても良い。具体的には、仮焼き粉末の組成をB/(ZnO+B+V)×100とした酸化物換算で、0.5−45mass%に調整し、該仮焼き粉末にZnO粉末あるいはVのいずれかまたは両方を混合、焼結するのが望ましい。In the production method of the present invention, sintering may be performed using only the calcined powder as a raw material, but other oxide powder may be mixed and sintered in addition to the calcined powder. Specifically, the composition of the calcined powder is adjusted to 0.5-45 mass% in terms of oxide, which is B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, It is desirable to mix and sinter either ZnO powder or V 2 O 3 or both.

比を、0.5%以上としたのは、0.5%未満では電極としての特性を得ることが難しく、仮焼き粉末に加えて、他のホウ素源等を添加する必要が生じるためである。
一方、B比を45%以下としたのは、45%を超えて高くなって行くと、複合酸化物として存在する以外にB相として存在する量が多くなり、Bの分散性が悪くなる場合があるためである。実際の仮焼き粉末の組成は、使用するHBO粉末がBになった場合の量とZnO粉末のZnO量、あるいはV粉末のV量により調整することができる。
The reason why the B 2 O 3 ratio is 0.5% or more is that if it is less than 0.5%, it is difficult to obtain the characteristics as an electrode, and it is necessary to add another boron source in addition to the calcined powder. This is because it occurs.
On the other hand, the B 2 O 3 ratio is set to 45% or less because when it exceeds 45%, the amount existing as a B 2 O 3 phase increases in addition to the composite oxide. This is because dispersibility may deteriorate. The actual composition of the calcined powder, adjusting the amount and ZnO amount of ZnO powder, or V 2 O 3 amount of V 2 O 3 powder in the case of H 3 BO 3 powder used becomes B 2 O 3 Can do.

上記、仮焼き工程において、仮焼き温度は100℃以上500℃以下とするのが好適である。これは、100℃より低温であると、HBOからの水の分解除去が進みにくいためである。
一方、500℃より高温では、仮焼き粉末が大きく成長してしまい、焼結原料としては特別な粉砕処理等が必要となるためである。
In the calcining step, the calcining temperature is preferably 100 ° C. or more and 500 ° C. or less. This is because when the temperature is lower than 100 ° C., decomposition and removal of water from H 3 BO 3 is difficult to proceed.
On the other hand, when the temperature is higher than 500 ° C., the calcined powder grows greatly, and a special pulverization treatment or the like is required as a sintering raw material.

以下、本発明の実施例を説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。
本実施例で適用した製造工程は以下の通りである。
(工程A1)
比表面積4.5m/gのZnO粉末とHBO粉末を表1に示す所定のターゲット組成となるように秤量後、ボールミルにて混合し混合粉を作製した。
得られた混合粉を所定の温度にて仮焼きし仮焼き粉末を得た。得られた仮焼き粉末にV粉末を所定のターゲット組成となるように秤量後、ボールミルにて混合し混合粉を作製した。得られた混合粉にバインダーとしてポリビニルアルコールを0.5mass%添加し、すりつぶしながら混合した後、造粒した造粒粉を作製した。
なお、他の酸化物粉末を添加する場合は、Vと同様に添加した。
Examples of the present invention will be described below. However, the present invention is not limited to the examples described below.
The manufacturing process applied in this example is as follows.
(Process A1)
ZnO powder having a specific surface area of 4.5 m 2 / g and H 3 BO 3 powder were weighed so as to have a predetermined target composition shown in Table 1, and then mixed in a ball mill to prepare a mixed powder.
The obtained mixed powder was calcined at a predetermined temperature to obtain a calcined powder. The obtained calcined powder was weighed with a V 2 O 3 powder so as to have a predetermined target composition, and then mixed with a ball mill to prepare a mixed powder. After adding 0.5 mass% of polyvinyl alcohol as a binder to the obtained mixed powder and mixing while grinding, granulated granulated powder was prepared.
In the case of adding other oxide powder was added in the same manner as V 2 O 3.

(工程A2)
比表面積4.5m/gのZnO粉末とHBO粉末とV粉末を所定のターゲット組成となるように秤量後、ボールミルにて混合し混合粉を作製した。得られた混合粉を所定の温度にて仮焼きし仮焼き粉末を得た。得られた仮焼き粉末にバインダーとしてポリビニルアルコールを0.5mass%添加し、すりつぶしながら混合した後、造粒した造粒粉を作製した。
(工程A3)
比較例の工程として、比表面積4.5m/gのZnO粉末とHBO粉末を所定のターゲット組成となるように秤量後、ボールミルにて混合し混合粉を作製した。
得られた混合粉を所定の温度にて仮焼きし仮焼き粉末を得た。得られた仮焼き粉末にバインダーとしてポリビニルアルコールを0.5mass%添加し、すりつぶしながら混合した後、造粒した造粒粉を作製した。
(Process A2)
ZnO powder having a specific surface area of 4.5 m 2 / g, H 3 BO 3 powder, and V 2 O 3 powder were weighed so as to have a predetermined target composition, and then mixed by a ball mill to prepare a mixed powder. The obtained mixed powder was calcined at a predetermined temperature to obtain a calcined powder. After adding 0.5 mass% of polyvinyl alcohol as a binder to the obtained calcined powder and mixing while grinding, granulated granulated powder was prepared.
(Process A3)
As a process of the comparative example, ZnO powder having a specific surface area of 4.5 m 2 / g and H 3 BO 3 powder were weighed so as to have a predetermined target composition, and then mixed by a ball mill to prepare a mixed powder.
The obtained mixed powder was calcined at a predetermined temperature to obtain a calcined powder. After adding 0.5 mass% of polyvinyl alcohol as a binder to the obtained calcined powder and mixing while grinding, granulated granulated powder was prepared.

(工程B)
次に、A1〜A3のいずれかの工程で得られた造粒粉を冷間静水圧プレスにて3ton/cmの圧力で成形し、直径120mm、厚さ8mmの円盤状の成形体を得た。得られた成形体を、表1に示す所定の温度、雰囲気にて焼結し焼結体を作製した。得られた焼結体を直径100mm、厚さ5mmの円盤状に加工して、スパッタリング用ターゲットを作製した。
(Process B)
Next, the granulated powder obtained in any one of steps A1 to A3 is molded with a cold isostatic press at a pressure of 3 ton / cm 2 to obtain a disk-shaped molded body having a diameter of 120 mm and a thickness of 8 mm. It was. The obtained molded body was sintered at a predetermined temperature and atmosphere shown in Table 1 to produce a sintered body. The obtained sintered body was processed into a disk shape having a diameter of 100 mm and a thickness of 5 mm to produce a sputtering target.

(ターゲット評価)
製造過程で得られた焼結体の密度を水中置換法により測定し、焼結体を構成する成分が所定の酸化物として存在すると仮定して求めた理論密度で除した値を相対密度とした。焼結体の組成分析は、高周波誘導結合プラズマ発光分光分析法(ICP−AES)により、Zn量、B量、V量、Al量、Ga量を分析し、ZnO、B、V、Al、Gaの酸化物に換算し直して求めたが、狙い組成と一致していた。これらの結果を表1に示す。
得られた焼結体を走査型電子顕微鏡で観察するとともに、組織における元素分布をEPMAにてマッピングした。典型的な例として、図1に実施例2、図2に比較例2のターゲットのミクロ組織及び対応する特定原子分布を示す。
(Target evaluation)
The density of the sintered body obtained in the manufacturing process was measured by an underwater substitution method, and the value obtained by dividing by the theoretical density obtained on the assumption that the components constituting the sintered body existed as a predetermined oxide was taken as the relative density. . In the composition analysis of the sintered body, Zn amount, B amount, V amount, Al amount, and Ga amount are analyzed by high frequency inductively coupled plasma emission spectroscopy (ICP-AES), and ZnO, B 2 O 3 , V 2 are analyzed. O 3, was determined by Al 2 O 3, again in terms of the oxides of Ga 2 O 3, but was consistent with the aim composition. These results are shown in Table 1.
The obtained sintered body was observed with a scanning electron microscope, and the element distribution in the structure was mapped with EPMA. As a typical example, FIG. 1 shows the microstructure of the target of Example 2 and FIG. 2 shows the corresponding specific atom distribution of Comparative Example 2.

図1及び図2それぞれに示す4つの観察像は、左上が走査型顕微鏡による組織、右上が対応する視野におけるB原子分布、左下が対応する視野におけるV原子分布、右下が対応する視野におけるZn原子分布を示している。また、原子分布は黒色−白色−褐色の順で濃度が高いことを示している。
また、実施例及び比較例においてホウ素濃化部には、X線回折分析によりZn化合物が検出され、バナジウム濃化部には、Zn(VO化合物が検出された。
The four observation images shown in FIG. 1 and FIG. 2 respectively show the structure of the scanning microscope in the upper left, the B atom distribution in the corresponding visual field in the upper right, the V atom distribution in the corresponding visual field in the lower left, and the Zn in the corresponding visual field in the lower right. The atomic distribution is shown. In addition, the atomic distribution indicates that the concentration is high in the order of black-white-brown.
In Examples and Comparative Examples, a Zn 3 B 2 O 6 compound was detected by X-ray diffraction analysis in the boron enriched portion, and a Zn 3 (VO 4 ) 2 compound was detected in the vanadium enriched portion. .

(成膜評価)
製造したターゲットを用いてDCマグネトロンスパッタリング法によって膜厚200nmの成膜を行った。スパッタリング条件は、投入電力200W、Arガス圧0.7Paに固定した。そして実験開始から10時間経過後の10分間当たりに発生する異常放電回数、基板温度200℃時の膜の体積抵抗率と、1200nm波長域における透過率を測定した。さらに、基板温度200℃時の膜を温度60℃、湿度90%の環境下に暴露し、暴露時間1000時間後の体積抵抗率を測定し、暴露前の体積抵抗率に対する暴露後の体積抵抗率の変化を評価した。結果を表2に示す。
(Film formation evaluation)
Using the manufactured target, a film having a thickness of 200 nm was formed by DC magnetron sputtering. The sputtering conditions were fixed at an input power of 200 W and an Ar gas pressure of 0.7 Pa. Then, the number of abnormal discharges generated per 10 minutes after the start of the experiment, the volume resistivity of the film at a substrate temperature of 200 ° C., and the transmittance in the 1200 nm wavelength region were measured. Further, the film at a substrate temperature of 200 ° C. is exposed to an environment of a temperature of 60 ° C. and a humidity of 90%, the volume resistivity after 1000 hours of exposure is measured, and the volume resistivity after exposure to the volume resistivity before exposure. Was evaluated for changes. The results are shown in Table 2.

Figure 0005392633
Figure 0005392633

Figure 0005392633
Figure 0005392633

表1において、例えば実施例3と比較例1とを対比すると、同量のBに対してVの添加により、同一の焼結条件であっても顕著に相対密度が上昇していることがわかる。また実施例3と比較例2を対比すると、Vを添加しない場合、焼結温度を1000℃の高温として、ようやく近似した焼結密度が得られることがわかる。これらの結果は、ホウ素を含むZnO系焼結体を得る上で、Vの添加が焼結密度を高めるために有効に作用することを示している。
また、表2において、Vの添加により、体積抵抗率の変化が抑制できることがわかり、Vの添加が耐環境性を向上させることがわかる。また、所定のVの添加によっても1200nm透過率は大きく劣化しないことから、ホウ素を含むZnO系焼結体の特性を維持できるという点でも有効であることがわかる。
In Table 1, for example, when Example 3 and Comparative Example 1 are compared, the relative density increases remarkably even under the same sintering conditions by adding V 2 O 3 to the same amount of B 2 O 3 . You can see that Further, when Example 3 and Comparative Example 2 are compared, it can be seen that when V 2 O 3 is not added, an approximate sintered density is finally obtained at a sintering temperature as high as 1000 ° C. These results indicate that the addition of V 2 O 3 effectively acts to increase the sintered density in obtaining a ZnO-based sintered body containing boron.
In Table 2, the addition of V 2 O 3, notice that the change of the volume resistivity can be suppressed, the addition of V 2 O 3 it can be seen that to improve the environmental resistance. Further, the transmittance of 1200 nm is not greatly deteriorated even by the addition of the predetermined V 2 O 3 , so that it is effective in that the characteristics of the ZnO-based sintered body containing boron can be maintained.

Claims (8)

ホウ素量が、B/(ZnO+B+V)×100とした酸化物換算で0.5〜10mass%、バナジウム量が、V/(ZnO+B+V)×100とした酸化物換算で0.05〜5mass%であり、その密度が相対密度で90%以上の酸化物焼結体であることを特徴とするZnO系透明導電膜用ターゲット。The amount of boron is 0.5 to 10 mass% in terms of an oxide with B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, and the amount of vanadium is V 2 O 3 / (ZnO + B 2 O 3 + V 2. A target for a ZnO-based transparent conductive film, characterized in that it is an oxide sintered body having an O 3 ) × 100 oxide conversion of 0.05 to 5 mass% and a relative density of 90% or more. アルミニウムおよび/またはガリウムを3価の酸化物として換算して、それぞれ2mass%以下含むことを特徴とする請求項1に記載のZnO系透明導電膜用ターゲット。   2. The ZnO-based transparent conductive film target according to claim 1, wherein aluminum and / or gallium is converted into a trivalent oxide and each contains 2 mass% or less. ホウ素とバナジウムを含有し、ホウ素量が、B/(ZnO+B+V)×100とした酸化物換算で0.5〜10mass%、バナジウム量が、V/(ZnO+B+V)×100とした酸化物換算で0.05〜5mass%である酸化物焼結体からなるZnO系透明電極用ターゲットの製造方法であって、ホウ素源としてHBO粉末、バナジウム源としてV粉末を用いることを特徴とするZnO系透明導電膜用ターゲットの製造方法。It contains boron and vanadium, and the amount of boron is 0.5 to 10% by mass in terms of oxide with B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, and the amount of vanadium is V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100 A method for producing a ZnO-based transparent electrode target comprising an oxide sintered body having an oxide conversion of 0.05 to 5 mass% in terms of an oxide, wherein H is used as a boron source. 3 BO 3 powder, ZnO-based transparent conductive film target manufacturing method which comprises using a V 2 O 3 powder as a vanadium source. ZnO系透明電極用ターゲットは、アルミニウムおよび/またはガリウムを3価の酸化物として換算して、それぞれ2mass%以下含むことを特徴とする請求項3に記載のZnO系透明導電膜用ターゲットの製造方法。   The method for producing a target for a ZnO-based transparent conductive film according to claim 3, wherein the ZnO-based transparent electrode target contains 2 mass% or less of aluminum and / or gallium as a trivalent oxide. . 焼結温度は、700〜1050℃、焼結雰囲気は非還元性雰囲気であることを特徴とする請求項3または4に記載のZnO系透明導電膜用ターゲットの製造方法。   The method for producing a target for a ZnO-based transparent conductive film according to claim 3 or 4, wherein the sintering temperature is 700 to 1050 ° C, and the sintering atmosphere is a non-reducing atmosphere. BO粉末と、ZnO粉末あるいは更にV粉末とを混合し、仮焼きして得た仮焼き粉末を焼結原料として焼結することを特徴とする請求項3ないし5のいずれかに記載のZnO系透明導電膜用ターゲットの製造方法。6. The calcined powder obtained by mixing H 3 BO 3 powder with ZnO powder or further V 2 O 3 powder and calcining is sintered as a sintering raw material. 6. A method for producing a target for a ZnO-based transparent conductive film according to claim 1. 仮焼き粉末の組成をB/(ZnO+B+V)×100とした酸化物換算で、0.5〜45mass%とし、該仮焼き粉末にZnO粉末あるいはVのいずれかまたは両方を混合、焼結して、相対密度90%以上の焼結体を得ることを特徴とする請求項6に記載のZnO系透明導電膜用ターゲットの製造方法。The calcined powder has a composition of 0.5 to 45 mass% in terms of an oxide in which the composition of the calcined powder is B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, and the calcined powder has ZnO powder or V 2 O 3. A method for producing a target for a ZnO-based transparent conductive film according to claim 6, wherein either or both of the above are mixed and sintered to obtain a sintered body having a relative density of 90% or more. 仮焼き温度を100〜500℃とすることを特徴とする請求項6または7に記載のZnO系透明導電膜用ターゲットの製造方法。   The method for producing a target for a ZnO-based transparent conductive film according to claim 6 or 7, wherein the calcining temperature is 100 to 500 ° C.
JP2011523622A 2009-07-21 2010-07-15 Target for ZnO-based transparent conductive film and method for producing the same Active JP5392633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523622A JP5392633B2 (en) 2009-07-21 2010-07-15 Target for ZnO-based transparent conductive film and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009169759 2009-07-21
JP2009169759 2009-07-21
PCT/JP2010/061997 WO2011010603A1 (en) 2009-07-21 2010-07-15 TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME
JP2011523622A JP5392633B2 (en) 2009-07-21 2010-07-15 Target for ZnO-based transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2011010603A1 JPWO2011010603A1 (en) 2012-12-27
JP5392633B2 true JP5392633B2 (en) 2014-01-22

Family

ID=43499076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011523622A Active JP5392633B2 (en) 2009-07-21 2010-07-15 Target for ZnO-based transparent conductive film and method for producing the same

Country Status (4)

Country Link
JP (1) JP5392633B2 (en)
KR (1) KR101412319B1 (en)
CN (1) CN102549191B (en)
WO (1) WO2011010603A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888599B2 (en) * 2012-03-13 2016-03-22 三菱マテリアル株式会社 Sputtering target and high resistance transparent film manufacturing method
KR20150018728A (en) 2013-08-09 2015-02-24 삼성디스플레이 주식회사 Liquid crystal display device and method of fabricating the same
CN107254669A (en) * 2013-08-26 2017-10-17 捷客斯金属株式会社 Sintered body and amorphous film
WO2017187763A1 (en) * 2016-04-28 2017-11-02 リンテック株式会社 Transparent conductive film and method for producing transparent conductive film
CN109487223B (en) * 2018-12-26 2020-01-07 武汉大学 Preparation method of hydrated calcium silicate nano film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158607A (en) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd Zno sintered compact and its production
JPH11171539A (en) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd Zno-base sintered compact and its production
JPH11302835A (en) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd Production of zinc oxide base sintered compact
JPH11322413A (en) * 1998-02-16 1999-11-24 Japan Energy Corp Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film
JP2002075062A (en) * 2000-09-01 2002-03-15 Uchitsugu Minami Transparent conductive film
JP2009167515A (en) * 2008-01-15 2009-07-30 Kanazawa Inst Of Technology Sputtering target for producing transparent conductive film, and method for forming transparent conductive film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320155C (en) * 2001-06-26 2007-06-06 三井金属矿业株式会社 Sputtering target for high resistance transparent conductive membrane and mfg. method of high resistance transparent conductive membrane
CN100485081C (en) * 2005-06-16 2009-05-06 中国科学院物理研究所 Process for preparing boron-doped n-shape high-hardness transparent conductive zinc oxide film
JP5682112B2 (en) * 2007-12-19 2015-03-11 日立金属株式会社 Zinc oxide sintered body and manufacturing method thereof, sputtering target, and electrode formed using this sputtering target
JPWO2009078329A1 (en) * 2007-12-19 2011-04-28 日立金属株式会社 Zinc oxide sintered body and manufacturing method thereof, sputtering target, electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158607A (en) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd Zno sintered compact and its production
JPH11171539A (en) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd Zno-base sintered compact and its production
JPH11322413A (en) * 1998-02-16 1999-11-24 Japan Energy Corp Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film
JPH11302835A (en) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd Production of zinc oxide base sintered compact
JP2002075062A (en) * 2000-09-01 2002-03-15 Uchitsugu Minami Transparent conductive film
JP2009167515A (en) * 2008-01-15 2009-07-30 Kanazawa Inst Of Technology Sputtering target for producing transparent conductive film, and method for forming transparent conductive film

Also Published As

Publication number Publication date
WO2011010603A1 (en) 2011-01-27
KR101412319B1 (en) 2014-06-26
CN102549191A (en) 2012-07-04
KR20120039027A (en) 2012-04-24
JPWO2011010603A1 (en) 2012-12-27
CN102549191B (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP4933756B2 (en) Sputtering target
KR101590429B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
KR101738742B1 (en) Oxide sintered compact, sputtering target, thin film and method of producing oxide sintered compact
JP5764828B2 (en) Oxide sintered body and tablet processed the same
KR20120051656A (en) Oxide sinter, method for producing same, target and transparent conductive film
JP6767723B2 (en) Oxide thin film and oxide sintered body for sputtering target for producing the thin film
DE112011100972T5 (en) Transparent conductive film
JP5392633B2 (en) Target for ZnO-based transparent conductive film and method for producing the same
TWI564250B (en) Oxide sintered body, sputtering target and oxide film
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
KR101748017B1 (en) Oxide sintered compact, oxide sputtering target, conductive oxide thin film having high refractive index, and method for producing the oxide sintered compact
JP2010269984A (en) METHOD FOR MANUFACTURING ZnO-BASED SINTERED COMPACT CONTAINING BORON
WO2014021374A1 (en) Oxide sintered body and tablet obtained by processing same
JP2017014535A (en) Sputtering target and production method thereof
JP6027844B2 (en) Method for producing zinc oxide-based sintered body
KR101324830B1 (en) Sintered oxide and oxide semiconductor thin film
KR20130063010A (en) Oxide sintered body and oxide semiconductor thin film
TW201522689A (en) Sputtering target and method for producing same
WO2022149557A1 (en) Oxide sputtering target and method for producing oxide sputtering target
JP2010084177A (en) Zinc oxide-based sintered target and method for producing the same
JP2017014534A (en) Sputtering target and production method thereof
CN117396630A (en) Sputtering target and method for producing same
JP2013177261A (en) Oxide sintered body and method for manufacturing the same
JP2012031521A (en) Sputtering target and transparent conductive film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5392633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350