JP2010084177A - Zinc oxide-based sintered target and method for producing the same - Google Patents

Zinc oxide-based sintered target and method for producing the same Download PDF

Info

Publication number
JP2010084177A
JP2010084177A JP2008253303A JP2008253303A JP2010084177A JP 2010084177 A JP2010084177 A JP 2010084177A JP 2008253303 A JP2008253303 A JP 2008253303A JP 2008253303 A JP2008253303 A JP 2008253303A JP 2010084177 A JP2010084177 A JP 2010084177A
Authority
JP
Japan
Prior art keywords
target
aluminum
zinc oxide
sintered
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008253303A
Other languages
Japanese (ja)
Inventor
Takeshi Kuboi
健 久保井
Takuya Ishikawa
卓也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008253303A priority Critical patent/JP2010084177A/en
Publication of JP2010084177A publication Critical patent/JP2010084177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc oxide-based sintered target which can stably form a thin film with low resistance, and to provide a method for producing the same. <P>SOLUTION: The zinc oxide-based sintered target contains 0.2 to 3 mass% aluminum, sintered density is ≥5.5 g/cm<SP>3</SP>, and also, ≥8 atomic% of the aluminum is present in a solid-soluted form. The target can be produced by regulating zinc oxide powder with the average grain size of ≤1 μm and the composite oxide powder of zinc and aluminum with the average grain size of ≤1.5 μm in such a manner that the aluminum is comprised by 0.2 to 3 mass% so as to be mixed, thereafter press-molding the mixture, and then performing sintering at 1,200 to 1,500°C in a nitrogen gas flow with an oxygen concentration of ≤1 ppm so as to obtain a sintered compact in which sintered density is ≥5.5 g/cm<SP>3</SP>, and ≥8 atomic% of the aluminum is present in a solid-soluted form. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透明導電膜をスパッタリング法で形成するための酸化亜鉛系焼結ターゲット及びその製造方法に関するものである。   The present invention relates to a zinc oxide based sintered target for forming a transparent conductive film by a sputtering method and a method for producing the same.

液晶ディスプレイなどのフラットパネルディスプレイ、太陽電池、タッチパネルなどには、透明導電膜が必要とされる。例えば、液晶ディスプレイでは液晶の前後に透明導電膜が形成されており、透明導電膜から電場を付加することによって液晶の配勾性を制御し、バックライトからの光の透過量を調整することによって表示を行う。このために、液晶ディスプレイ用透明導電膜には、可視光域での平均透過率が90%以上、かつ抵抗率が10−4Ωcm台であることが求められる。このような条件を満たす透明導電膜として、現在は錫を添加した酸化インジウム(以下、ITO)が一般的に利用されている。 A transparent conductive film is required for flat panel displays such as liquid crystal displays, solar cells, touch panels, and the like. For example, in a liquid crystal display, a transparent conductive film is formed before and after the liquid crystal. By applying an electric field from the transparent conductive film, the gradient of the liquid crystal is controlled, and the amount of light transmitted from the backlight is adjusted. Display. For this reason, the transparent conductive film for liquid crystal displays is required to have an average transmittance of 90% or more in the visible light region and a resistivity on the order of 10 −4 Ωcm. Currently, indium oxide to which tin is added (hereinafter referred to as ITO) is generally used as a transparent conductive film that satisfies such conditions.

フラットパネルディスプレイの分野において、ITOは可視光域での平均透過率が高く、かつ低抵抗の薄膜が形成できる。しかし、主成分であるインジウムが高価であるために、最近では低コストで資源的な問題もない酸化亜鉛(以下、ZnO)系透明導電膜がITOの代替として注目されている。また、近赤外光も吸収できる薄膜Si系やCIS系太陽電池において、近赤外光域の透過率を高くすることができるZnO系透明導電膜が使用されている。   In the field of flat panel displays, ITO has a high average transmittance in the visible light region and can form a low-resistance thin film. However, since indium, which is a main component, is expensive, a zinc oxide (hereinafter referred to as ZnO) transparent conductive film that is low in cost and has no resource problems has recently attracted attention as an alternative to ITO. In addition, in thin-film Si-based and CIS-based solar cells that can also absorb near-infrared light, a ZnO-based transparent conductive film that can increase the transmittance in the near-infrared light region is used.

このZnO系導電膜を形成する方法の一つに、低抵抗特性を付与する添加元素としてAl、Ga、Ti、Ge、Mg等を含有するターゲットを用いるスパッタリング法があり、種々の研究がなされている。
スパッタリング法に用いるターゲットは通常焼結法で製造され、ターゲット自体にも、低抵抗性が要求される。この低抵抗性を確保する方法として、比較的高い温度で焼結するか、不活性ガス中若しくは真空中で焼結する方法が有効とされている(特許文献1等参照)。
また、ターゲットの製造過程で空孔が発生するのを防ぐ手段として、亜鉛(以下、Zn)とアルミニウム(以下、Al)の複合酸化物粉末をあらかじめ形成しておき、これをZnO粉末と混合して成形し、次いで焼結する方法も提案されている(特許文献2参照)。
特開平2−149459号公報 特開2008−63214号公報
One of the methods for forming this ZnO-based conductive film is a sputtering method using a target containing Al, Ga, Ti, Ge, Mg or the like as an additive element imparting low resistance characteristics, and various studies have been made. Yes.
A target used in the sputtering method is usually manufactured by a sintering method, and the target itself is required to have low resistance. As a method of ensuring this low resistance, a method of sintering at a relatively high temperature, or a method of sintering in an inert gas or vacuum is effective (see Patent Document 1).
Further, as a means for preventing the generation of vacancies in the process of manufacturing the target, a composite oxide powder of zinc (hereinafter referred to as Zn) and aluminum (hereinafter referred to as Al) is formed in advance, and this is mixed with the ZnO powder. There is also proposed a method of forming and then sintering (see Patent Document 2).
JP-A-2-14959 JP 2008-63214 A

上述したとおりZnOに対する添加元素は、導電性薄膜の実用化にとってきわめて重要な役割をもたらすものであるが、様々な研究があるにもかかわらず、その効果を最大に発揮することが可能なターゲットについての研究は完成されたものとは言えないのが現状である。
本発明の目的は、添加元素の効果を最大限に発揮でき、低抵抗の薄膜の形成が安定して可能なZnO系焼結ターゲットおよびその製造方法を提供することである。
As described above, the additive element to ZnO plays an extremely important role in the practical application of the conductive thin film. However, despite various studies, there is a target that can exert its effect to the maximum. The current state of research is not complete.
An object of the present invention is to provide a ZnO-based sintered target capable of maximizing the effects of additive elements and stably forming a low-resistance thin film, and a method for producing the same.

本発明者らは、ZnOに対してAlを添加しようとする場合、ターゲット組織におけるAlの存在状態をできるだけ組織中に固溶した形態を達成することが、優れた薄膜を得るために有効であり、これを実現できることを見いだし、本発明に到達した。   In order to obtain an excellent thin film, it is effective for the present inventors to achieve a form in which the presence state of Al in the target structure is dissolved in the structure as much as possible when adding Al to ZnO. The inventors have found that this can be realized and have reached the present invention.

すなわち本発明は、Alを0.2〜3質量%含有するZnO系ターゲットであって、焼結密度5.5g/cm以上、且つAlの内の8原子%以上が、固溶した形態で存在しているZnO系焼結ターゲットである。 That is, the present invention is a ZnO-based target containing 0.2 to 3% by mass of Al, in which the sintered density is 5.5 g / cm 3 or more, and 8 atomic% or more of Al is in a solid solution form. It is an existing ZnO-based sintered target.

本発明のターゲットは、平均粒径1μm以下のZnO粉末と、平均粒径1.5μm以下のZnとAlの複合酸化物粉末とをAlを0.2〜3質量%含有するように調整し混合した後、プレス成形し、次いで酸素濃度1ppm以下の窒素気流中で、1200℃から1500℃の温度で焼結を行い、焼結密度5.5g/cm以上、Alの内の8原子%以上を固溶した形態で存在させた焼結体を得ることにより、製造することができる。 The target of the present invention is prepared by mixing ZnO powder having an average particle diameter of 1 μm or less and Zn-Al composite oxide powder having an average particle diameter of 1.5 μm or less so as to contain 0.2 to 3 mass% of Al. After that, press molding is performed, and then sintering is performed at a temperature of 1200 ° C. to 1500 ° C. in a nitrogen stream having an oxygen concentration of 1 ppm or less. The sintered density is 5.5 g / cm 3 or more, and 8 atomic% or more of Al. It can manufacture by obtaining the sintered compact which was made to exist in the form which dissolved in solid solution.

本発明によれば、スパッタリング法により、高品質のZnO系導電膜を提供することが可能であるので、工業的に非常に重要である。   According to the present invention, a high-quality ZnO-based conductive film can be provided by a sputtering method, which is very important industrially.

本発明の重要な特徴は、ターゲット組織におけるAlの存在状態をできるだけ組織中に固溶した形態を達成したことにある。以下、詳しく説明する。
まず、本発明は、Alを0.2〜3質量%含有するZnO系ターゲットを対象とした。スパッタリング法においては、ターゲットの組成は、薄膜の組成とほぼ一致するものとなるため、基本的な導電性を付与するAl量は、薄膜に要求される電気特性に関係する。
Al量が0.2質量%未満では、薄膜に導電性が十分に付与されず、Alが3質量%を超えると近赤外線の透過率が低く、かつ導電性も高くなり始める。よって、本発明においては上記範囲とした。
An important feature of the present invention lies in achieving a form in which the presence state of Al in the target structure is dissolved in the structure as much as possible. This will be described in detail below.
First, the present invention is directed to a ZnO-based target containing 0.2 to 3% by mass of Al. In the sputtering method, the composition of the target is substantially the same as the composition of the thin film, and therefore the Al amount imparting basic conductivity is related to the electrical characteristics required for the thin film.
When the amount of Al is less than 0.2% by mass, the thin film is not sufficiently conductive, and when the amount of Al exceeds 3% by mass, the near-infrared transmittance is low and the conductivity starts to increase. Therefore, it was set as the said range in this invention.

本発明のターゲットにおいては、上記の基本組成を満たした上で、Alの内の8原子%以上を、固溶した形態で存在させる必要がある。
固溶した状態とは、AlあるいはZnAlといった結晶構造をとるのではなく、Al原子がZnO結晶などに置換型で固溶した形態にあることをいう。つまりこの形態とすることで、ターゲット自身の抵抗率を低減することができる。
ターゲット自身の抵抗率を低下できると、低い電圧で成膜することが可能になる。これによって、酸素イオンを基板方向へ加速させる電圧が低くなり酸素イオンの衝突エネルギーも低下し、薄膜へのダメージが軽減され、薄膜の抵抗率が低くすることができる。
また、ターゲット中の固溶Alを増加させることによって、ターゲット中のAlの分布を均一にできる。Alの分布が均一なターゲットを使用してスパッタを行うと、薄膜でのAlの分布も均一することができる。薄膜では全てのAlがZnO中に固溶するが、薄膜でAlの分布が不均一の場合は、局所的にAl密度が高い所ではイオン不純物散乱の影響が強くなり抵抗率が高くなる。これによって、薄膜全体としても抵抗率が高くなるという問題がある。
本発明では、Alの内の8原子%以上を、固溶した形態としたことで、低抵抗の薄膜を効率良く製造することが可能となるものである。
In the target of this invention, after satisfy | filling said basic composition, it is necessary to make 8 atomic% or more of Al exist in a solid solution form.
The solid solution state does not take a crystal structure such as Al 2 O 3 or ZnAl 2 O 4 but means that Al atoms are in a solid solution form in substitutional form in ZnO crystal or the like. That is, the resistivity of the target itself can be reduced by adopting this form.
If the resistivity of the target itself can be reduced, the film can be formed at a low voltage. As a result, the voltage for accelerating oxygen ions toward the substrate is lowered, the collision energy of oxygen ions is reduced, damage to the thin film is reduced, and the resistivity of the thin film can be lowered.
Further, by increasing the solid solution Al in the target, the distribution of Al in the target can be made uniform. When sputtering is performed using a target having a uniform Al distribution, the Al distribution in the thin film can also be made uniform. In the thin film, all Al is dissolved in ZnO, but when the Al distribution is non-uniform in the thin film, the influence of ionic impurity scattering becomes strong and the resistivity increases at a location where the Al density is locally high. As a result, there is a problem that the resistivity of the entire thin film is increased.
In the present invention, it is possible to efficiently produce a low-resistance thin film by forming a solid solution of 8 atomic% or more of Al.

ターゲット中の固溶Al量の分析には核磁気共鳴法(NMR)を用いることができる。NMRの結果において、化学シフト0ppm付近の6配位のZnAlと60ppm付近の4配位のZnAlが検出される。
一方、本発明者の検討によれば、Al添加ZnOターゲットにおいては、約180ppmにピークが確認される。この180ppm付近にピークをもつAlの化合物は報告されておらず、このピークを固溶Alのピークとして定量化することができる。
また、ターゲットしての焼結密度が低いとターゲットの機械加工時に割れる。あるいは成膜時に異物が発生する原因になるなどの種々の問題が生じたので、本発明においては5.5g/cm以上と規定した。この密度以上にすることによって、機械加工が容易になるなど、ターゲットの生産性と薄膜の生産性の両方を向上することができる。
Nuclear magnetic resonance (NMR) can be used for analysis of the amount of solute Al in the target. In the results of NMR, chemical shifts 0ppm hexacoordinate near ZnAl 2 O 4 and ZnAl 2 O 4 tetracoordinate around 60ppm is detected.
On the other hand, according to the study of the present inventors, a peak is confirmed at about 180 ppm in the Al-added ZnO target. No Al compound having a peak in the vicinity of 180 ppm has been reported, and this peak can be quantified as a solid solution Al peak.
Moreover, if the sintered density as a target is low, it will break during machining of the target. Or, various problems such as generation of foreign matters occurred during film formation, so in the present invention, it is defined as 5.5 g / cm 3 or more. By making it higher than this density, both the productivity of the target and the productivity of the thin film can be improved, such as easy machining.

本発明の製造方法においては、Alを多量に固溶するために、原料と焼結条件の管理が重要である。
本発明の製造方法において、原料となるZnO粉末の平均粒径を1μm以下、ZnとAlの複合酸化物の平均粒径を1.5μm以下と規定した。ZnO粉末や複合酸化物の平均粒径が規定値より大きくなると、焼結前の状態でAlを含む複合酸化物の偏析が顕著になる。このような状態になると、焼結時にAlを拡散させる時間が長くなる。すなわち、固溶Al量を増加させるための処理時間が長くなり生産効率が低下しないように、Zn粉末の平均粒径を1μm、複合酸化物粉末の粒径を1.5μm以下とした。これらの粉末を、上述したターゲットの基本組成となるよう調整し混合を行ない、プレス成形する。
In the production method of the present invention, it is important to manage raw materials and sintering conditions in order to dissolve Al in a large amount.
In the production method of the present invention, the average particle size of ZnO powder as a raw material was defined as 1 μm or less, and the average particle size of the complex oxide of Zn and Al was defined as 1.5 μm or less. When the average particle diameter of the ZnO powder or the composite oxide is larger than the specified value, segregation of the composite oxide containing Al becomes remarkable in the state before sintering. In such a state, the time for diffusing Al during sintering becomes longer. That is, the average particle size of the Zn powder was set to 1 μm and the particle size of the composite oxide powder was set to 1.5 μm or less so that the processing time for increasing the amount of solute Al was not increased and the production efficiency was not lowered. These powders are adjusted so as to have the basic composition of the target described above, mixed, and press-molded.

焼結は、酸素濃度1ppm以下の窒素ガスを供給しながら窒素気流中で1200℃から1500℃で行う必要がある。酸素濃度を極力制限した窒素雰囲気で焼結することによって、Alの固溶を著しく促進する効果がある。
ここで窒素雰囲気中1200℃以上で焼結すると、成形体の酸素が除去されながら焼結が進み密度を高めることができる。また、1500℃を超える温度となると焼結時の質量減少が著しくなり、生産歩留や焼結炉の保全に問題が生じるので1500℃以下の温度で焼結を実施する必要がある。
上記製法により、焼結密度5.5g/cm以上、Alの内の8原子%以上を固溶した形態で存在させた焼結体を得ることができる。
Sintering needs to be performed at 1200 to 1500 ° C. in a nitrogen stream while supplying nitrogen gas with an oxygen concentration of 1 ppm or less. Sintering in a nitrogen atmosphere in which the oxygen concentration is limited as much as possible has the effect of significantly promoting the solid solution of Al.
When sintering is performed at 1200 ° C. or higher in a nitrogen atmosphere, the sintering proceeds and the density can be increased while removing oxygen from the molded body. Further, if the temperature exceeds 1500 ° C., the mass decrease during sintering becomes significant, causing problems in production yield and maintenance of the sintering furnace. Therefore, it is necessary to perform sintering at a temperature of 1500 ° C. or lower.
By the said manufacturing method, the sintered compact made to exist in the form which the sintered density of 5.5 g / cm < 3 > or more and 8 atomic% or more of Al was made into a solid solution can be obtained.

以下の実施例で本発明を更に詳しく説明する。ただし、これらの実施例により本発明が限定されるものではない。
まず、平均粒径0.3μmのZnO粉末と平均粒径0.3μmの酸化アルミニウム(Al)粉末を準備した。
このZnO粉末とAl粉末をモル比で1:1として純水を加えてボールミルで20時間混合し、乾燥後大気中で1000℃×2時間の焼結、再度ボールミルで粉砕してZnとAlの複合酸化物を作製した。この複合酸化物の平均粒径は、0.9μmであった。
The following examples further illustrate the present invention. However, the present invention is not limited to these examples.
First, ZnO powder having an average particle diameter of 0.3 μm and aluminum oxide (Al 2 O 3 ) powder having an average particle diameter of 0.3 μm were prepared.
The ZnO powder and Al 2 O 3 powder were mixed at a molar ratio of 1: 1 and pure water was added and mixed in a ball mill for 20 hours. After drying, the powder was sintered in the atmosphere at 1000 ° C. for 2 hours, and pulverized again in a ball mill. A composite oxide of Al and Al was prepared. The average particle size of this composite oxide was 0.9 μm.

平均粒径0.3μmのZnO粉末と得られたZnとAlの複合酸化物粉末とを原料粉末として、Al含有量が1質量%になるようにこれらの粉末を計量し、これに純水を加えてボールミルで20時間混合し、続いて乾燥・粉砕を行った。次に、分級して500μm以上の粗大粒を除去した粉末を型に入れて圧力100MPaでプレス成形を行い、続いて圧力300MPaの冷間等方圧プレス(CIP)を行って成形体を得た。この成形体を酸素含有量0.1ppmの窒素ガスを流しながら1400℃×2時間で本焼結し、ターゲットを得た。得られた本発明のターゲット(TG1)は、焼結密度は5.6g/cmであった。 Using ZnO powder with an average particle size of 0.3 μm and the obtained composite oxide powder of Zn and Al as raw material powders, these powders were weighed so that the Al content would be 1% by mass, and pure water was added to them. In addition, the mixture was mixed with a ball mill for 20 hours, followed by drying and pulverization. Next, powder obtained by classifying and removing coarse particles of 500 μm or more was put into a mold, and press molding was performed at a pressure of 100 MPa, followed by cold isostatic pressing (CIP) at a pressure of 300 MPa to obtain a compact. . This compact was subjected to main sintering at 1400 ° C. for 2 hours while flowing nitrogen gas having an oxygen content of 0.1 ppm to obtain a target. The obtained target (TG1) of the present invention had a sintered density of 5.6 g / cm 3 .

次に比較例として、本発明例と同様の工程で成形体を得た後、本焼結を大気中1400℃×2時間で焼結を行ない、さらにAr雰囲気中の1200℃×1時間で、100MPaの熱間静水圧プレス(HIP)で焼結を行い、比較例のターゲットTG2を得た。ターゲットTG2の密度は、本発明のターゲットTG1と同様の5.6g/cmであった。なお、HIP前の密度は5.5g/cmであった。
また別の比較として、複合酸化物に替えて、平均粒径0.3μmのAl粉末を原料粉末として用い、比較例のTG2と同様の工程を適用して、比較例のターゲットTG3を得た。ターゲットTG3の密度も5.6g/cmであった。
Next, as a comparative example, after obtaining a molded body in the same process as the present invention example, the main sintering was performed in the atmosphere at 1400 ° C. for 2 hours, and further in an Ar atmosphere at 1200 ° C. for 1 hour. Sintering was performed with a hot isostatic press (HIP) of 100 MPa to obtain a target TG2 of a comparative example. The density of the target TG2 was 5.6 g / cm 3 similar to the target TG1 of the present invention. The density before HIP was 5.5 g / cm 3 .
As another comparison, instead of the composite oxide, Al 2 O 3 powder having an average particle size of 0.3 μm is used as a raw material powder, and the same process as that of TG2 of the comparative example is applied to set the target TG3 of the comparative example. Obtained. The density of the target TG3 was also 5.6 g / cm 3 .

これらのターゲットについて、酸素含有量を不活性ガス融解赤外線吸収法で分析し、Alの状態をChemagnetics社製CMX−300 装置を用いた核磁気共鳴(NMR)法で分析し、ターゲットの抵抗率を直流4端子法で測定した。さらに、これらのターゲットを直流マグネトロンスパッタで成膜し、薄膜の抵抗率をファン・デル・パウ法で測定した。直流マグネトロンスパッタの条件は、スパッタガス=Ar、スパッタガス圧=0.4Pa、スパッタ電力=200W、公称膜厚=200nm、基板温度=室温である。   For these targets, the oxygen content was analyzed by an inert gas melting infrared absorption method, the state of Al was analyzed by a nuclear magnetic resonance (NMR) method using a CMX-300 apparatus manufactured by Chemanetics, and the resistivity of the target was determined. The measurement was performed by the direct current four-terminal method. Further, these targets were formed by direct current magnetron sputtering, and the resistivity of the thin film was measured by the van der Pau method. The conditions of DC magnetron sputtering are: sputtering gas = Ar, sputtering gas pressure = 0.4 Pa, sputtering power = 200 W, nominal film thickness = 200 nm, and substrate temperature = room temperature.

表1に評価結果のまとめを示す。
本発明のターゲットTG1は、固溶Alが10.4%と非常に高くなっており、薄膜の抵抗率は6.14×10−4Ωcmと基板温度が常温であるにも関わらず、非常に低くなっている。一方、比較例のターゲットTG2によって形成した膜の最低抵抗率は、本発明のTG1に近いものの、固溶Al量は7.9%であり少なく、ターゲットの抵抗率も高いため、製造性に劣ることが認められる。また、比較例のターゲットTG3の酸素含有量は高く、固溶Al量も少ないため、TG3によって形成した膜の最低抵抗率が高くなってしまっている。
Table 1 summarizes the evaluation results.
The target TG1 of the present invention has a very high solid solution Al of 10.4%, and the resistivity of the thin film is 6.14 × 10 −4 Ωcm and the substrate temperature is room temperature. It is low. On the other hand, the minimum resistivity of the film formed by the target TG2 of the comparative example is close to TG1 of the present invention, but the amount of solid solution Al is small at 7.9% and the resistivity of the target is high, so that the productivity is inferior. It is recognized that In addition, since the target TG3 of the comparative example has a high oxygen content and a small amount of dissolved Al, the minimum resistivity of the film formed of TG3 is high.

Figure 2010084177
Figure 2010084177

本発明は、低抵抗率なZnO系薄膜が得られるので、低抵抗率の透明導電膜を必要とする大型の液晶ディスプレイや高透過率が求められる太陽電池への適用が容易になる。   Since the present invention provides a low resistivity ZnO-based thin film, it can be easily applied to large liquid crystal displays that require a low resistivity transparent conductive film and solar cells that require high transmittance.

Claims (2)

アルミニウムを0.2〜3質量%含有する酸化亜鉛系ターゲットであって、焼結密度5.5g/cm以上、且つアルミニウムの内の8原子%以上が、固溶した形態で存在していること特徴とする酸化亜鉛系焼結ターゲット。 A zinc oxide-based target containing 0.2 to 3% by mass of aluminum, with a sintered density of 5.5 g / cm 3 or more, and 8 atomic% or more of aluminum in a solid solution form. A zinc oxide-based sintered target. 平均粒径1μm以下の酸化亜鉛粉末と、平均粒径1.5μm以下の亜鉛とアルミニウムの複合酸化物粉末とをアルミニウムを0.2〜3質量%含有するように調整し混合した後、プレス成形し、次いで酸素濃度1ppm以下の窒素気流中で、1200℃から1500℃の温度で焼結を行い、焼結密度5.5g/cm以上、アルミニウムの内の8原子%以上を固溶した形態で存在させた焼結体を得ることを特徴とする酸化亜鉛系焼結ターゲットの製造方法。 A zinc oxide powder having an average particle diameter of 1 μm or less and a zinc-aluminum composite oxide powder having an average particle diameter of 1.5 μm or less are adjusted so as to contain 0.2 to 3 mass% of aluminum, and then press-molded. Then, sintering was performed at a temperature of 1200 ° C. to 1500 ° C. in a nitrogen stream with an oxygen concentration of 1 ppm or less, and a sintered density of 5.5 g / cm 3 or more and 8 atomic% or more of aluminum in solid solution A method for producing a zinc oxide based sintered target, comprising obtaining a sintered body present in step (1).
JP2008253303A 2008-09-30 2008-09-30 Zinc oxide-based sintered target and method for producing the same Pending JP2010084177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008253303A JP2010084177A (en) 2008-09-30 2008-09-30 Zinc oxide-based sintered target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253303A JP2010084177A (en) 2008-09-30 2008-09-30 Zinc oxide-based sintered target and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010084177A true JP2010084177A (en) 2010-04-15

Family

ID=42248427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253303A Pending JP2010084177A (en) 2008-09-30 2008-09-30 Zinc oxide-based sintered target and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010084177A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144409A (en) * 2011-01-14 2012-08-02 Tosoh Corp Oxide sintered compact, target formed of the same, and transparent conductive film
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144409A (en) * 2011-01-14 2012-08-02 Tosoh Corp Oxide sintered compact, target formed of the same, and transparent conductive film
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof

Similar Documents

Publication Publication Date Title
US10037830B2 (en) Indium oxide transparent conductive film
JP5202643B2 (en) Cu-Ga alloy sintered compact sputtering target and method for manufacturing the same
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP5144766B2 (en) Cu-Ga sintered compact sputtering target and method for producing the same
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
TWI487687B (en) Indium oxide sintered body and indium oxide transparent conductive film
EP2500447A1 (en) Cu-in-ga-se quaternary alloy sputtering target
JPWO2016072441A1 (en) ITO sputtering target, method for producing the same, ITO transparent conductive film, and method for producing ITO transparent conductive film
JP2009235541A (en) Method for producing zinc oxide based sintered target
JP2010084177A (en) Zinc oxide-based sintered target and method for producing the same
JP5952031B2 (en) Oxide sintered body manufacturing method and target manufacturing method
JP6233233B2 (en) Sputtering target and manufacturing method thereof
JP6146773B2 (en) Oxide sintered body and manufacturing method thereof
JP5993700B2 (en) Method for producing zinc oxide-based sintered body
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP5562000B2 (en) Oxide sintered body and manufacturing method thereof
JP2010269984A (en) METHOD FOR MANUFACTURING ZnO-BASED SINTERED COMPACT CONTAINING BORON
JP2012148937A (en) Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target
JP6356290B2 (en) Oxide sintered body and manufacturing method thereof
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP2013185175A (en) Transparent oxide film, method for manufacturing the same, and oxide sputtering target