KR20120039027A - Target for zno-based transparent conductive film and method for producing same - Google Patents

Target for zno-based transparent conductive film and method for producing same Download PDF

Info

Publication number
KR20120039027A
KR20120039027A KR1020127004170A KR20127004170A KR20120039027A KR 20120039027 A KR20120039027 A KR 20120039027A KR 1020127004170 A KR1020127004170 A KR 1020127004170A KR 20127004170 A KR20127004170 A KR 20127004170A KR 20120039027 A KR20120039027 A KR 20120039027A
Authority
KR
South Korea
Prior art keywords
zno
powder
target
transparent conductive
oxide
Prior art date
Application number
KR1020127004170A
Other languages
Korean (ko)
Other versions
KR101412319B1 (en
Inventor
히데꼬 후꾸시마
Original Assignee
히타치 긴조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히타치 긴조쿠 가부시키가이샤 filed Critical 히타치 긴조쿠 가부시키가이샤
Publication of KR20120039027A publication Critical patent/KR20120039027A/en
Application granted granted Critical
Publication of KR101412319B1 publication Critical patent/KR101412319B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

높은 소결 밀도를 갖는 붕소(B) 및 바나듐(V)을 모두 첨가한 ZnO계 투명 도전막용 타깃 및 그 제조 방법을 제공한다. 본 발명의 타깃은, 붕소량이, B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.5 내지 10mass%, 바나듐량이, V2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.05 내지 5mass%이며, 그 밀도가 상대 밀도로 90% 이상의 산화물 소결체인 ZnO계 투명 도전막용 타깃이며, 본 발명의 제조 방법은, 붕소원으로서 H3BO3 분말, 바나듐원으로서 V2O3 분말을 사용하는 것을 특징으로 한다. 제조 방법에 있어서 H3BO3 분말과, ZnO 분말 혹은 다시 V2O3 분말을 혼합하여, 하소해서 얻은 하소 분말을 소결 원료로서 소결하는 것이 바람직하다.Provided are a ZnO-based transparent conductive film target containing both boron (B) and vanadium (V) having a high sintered density, and a method of manufacturing the same. Target of the present invention, the boron amount, B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3) × a as oxide equivalent to 100 0.5 to 10mass%, vanadium amount, V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) is a target for ZnO-based transparent conductive film, which is 0.05 to 5 mass% in terms of oxide, and the density is 90% or more of oxide sintered body in relative density, and the production method of the present invention is It is characterized by using H 3 BO 3 powder as the boron source and V 2 O 3 powder as the vanadium source. In the production method, it is preferable to sinter the calcined powder obtained by mixing the H 3 BO 3 powder with the ZnO powder or V 2 O 3 powder and calcining as a sintering raw material.

Description

ZnO계 투명 도전막용 타깃 및 그 제조 방법{TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME}TANKET-based transparent conductive film target and manufacturing method thereof {TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME}

본 발명은, 액정 디스플레이나 박막 태양 전지 등의 제조에 사용되는 붕소(B) 및 바나듐(V)을 모두 첨가한 ZnO계 투명 도전막용 타깃 및 그 제조 방법에 관한 것이다.This invention relates to the target for ZnO type transparent conductive films which added both boron (B) and vanadium (V) used for manufacture of a liquid crystal display, a thin film solar cell, etc., and its manufacturing method.

액정 디스플레이나 박막 태양 전지 등에는, 도전성이고 또한 광에 대하여 투명한 전극(투명 전극)이 사용되고 있다. 이러한 성질을 갖는 재료로서는, 예를 들어, In2O3-SnO2(이하, ITO), ZnO-B2O3(이하, BZO), ZnO-Al2O3(이하, AZO), ZnO-Ga2O3(이하, GZO) 등의 산화물 재료가 알려져 있다. 이러한 재료는, 스퍼터링법에 의해 액정 디스플레이나 박막 태양 전지 상에 박막으로서 형성된 후에, 전극으로서 패터닝되어, 투명 전극이 된다.Electroconductive and transparent electrodes (transparent electrodes) are used for liquid crystal displays, thin film solar cells, and the like. As a material having such a property, for example, In 2 O 3 -SnO 2 (hereinafter referred to as ITO), ZnO-B 2 O 3 (hereinafter referred to as BZO), ZnO-Al 2 O 3 (hereinafter referred to as AZO) and ZnO- an oxide material, such as Ga 2 O 3 (hereinafter, GZO) has been known. After such a material is formed as a thin film on a liquid crystal display or a thin film solar cell by sputtering, it is patterned as an electrode and becomes a transparent electrode.

스퍼터링법에 있어서는, 스퍼터링 장치 중에서, 박막이 형성되는 기판과 스퍼터링 타깃(이하, 타깃)을 대향시켜 배치된다. 이들 사이에서 가스 방전을 발생시키고, 이 가스 방전에 의해 발생한 이온이 타깃의 표면에 부딪치고, 그 충격에 의해 방출된 원자(입자)를 대향하는 기판에 부착시켜 박막이 형성된다. 이 타깃은 투명 전극이 되는 재료로 형성되고, 투명 전극의 특성은 사용한 타깃의 특성에 반영된다.In the sputtering method, in a sputtering apparatus, the board | substrate with which a thin film is formed, and a sputtering target (henceforth a target) are arrange | positioned facing. A gas discharge is generated between them, ions generated by the gas discharge hit the surface of the target, and the atoms (particles) released by the impact are attached to the opposing substrate to form a thin film. This target is formed of the material used as a transparent electrode, and the characteristic of a transparent electrode is reflected by the characteristic of the used target.

또한, 일반적으로 타깃은 매우 고가이고, 그 가격이 액정 디스플레이나 태양 전지의 제조 비용에서 차지하는 비율은 크다. 이로 인해, 액정 디스플레이나 태양 전지의 저비용화를 위해서는, 타깃이 저렴한 것도 요구된다. 그 중에서도 BZO 타깃은, 저렴한 원료인 ZnO 분말과 B2O3 분말을 사용해서 제조되어, 저비용화에는 유망하다. 또한, BZO는, 투명 전극으로서 사용되고 있는 ITO, AZO에 비교하여, 파장 1000㎚ 이상의 투과율이 높고, 태양광이 유효하게 활용될 수 있다는 점에서 태양 전지용 투명 전극으로서 유망하다. 그러나, ZnO 분말과 B2O3 분말을 소결해서 BZO 타깃을 얻으려고 하면, B2O3이 약 600℃ 부근에서 액상이 생성되기 시작하기 때문에 B2O3끼리에 의한 융착, 조대화가 행해져, 소결체 내에 편석이 발생하는 등의 문제, 혹은, 흡습성이나 B2O3의 증발의 문제 등에 의해 치밀한 소결체를 얻기 어렵다고 하는 문제가 지적되고 있다.Moreover, in general, the target is very expensive, and the ratio of the price to the manufacturing cost of the liquid crystal display or the solar cell is large. For this reason, in order to reduce the cost of a liquid crystal display or a solar cell, a target with low cost is also required. Among BZO target is manufactured by using cheap raw materials ZnO powder and B 2 O 3 powder, it is low cost, the prospective. In addition, BZO is promising as a transparent electrode for solar cells in comparison with ITO and AZO, which are used as transparent electrodes, and having a high transmittance of a wavelength of 1000 nm or more and sunlight can be effectively utilized. However, by sintering the ZnO powder and B 2 O 3 powder to obtain a BZO target, B 2 O 3 is due to start liquid phase is produced at about 600 ℃ the fusion, coarsening due to the B 2 O 3 together done The problem that a dense sintered compact is difficult to obtain due to problems such as segregation in the sintered compact or a problem of hygroscopicity or evaporation of B 2 O 3 has been pointed out.

이 과제를 해결하기 위해서, ZnO 분말과 B2O3 분말을 하소해서 얻은 복합 분말로 이루어지는 원료를 사용하는 것, 혹은 공심법에 의한 수산화물에 의한 분말을하소해서 얻은 복합 분말로 이루어지는 원료를 사용하는 것이 개시되어 있다(특허 문헌 1, 특허 문헌 2, 특허 문헌 3).In order to solve this problem, a raw material composed of a composite powder obtained by calcining a ZnO powder and a B 2 O 3 powder is used, or a raw material composed of a composite powder obtained by calcining a powder by hydroxide by the hollow core method is used. Are disclosed (Patent Document 1, Patent Document 2, Patent Document 3).

이와 같이, 미리 형성한 복합 분말을 사용하는 것은, 조대한 B2O3상이 존재하지 않게 되므로, 편석을 방지해 치밀한 소결체를 얻는 데 있어서 유효해진다.Thus, it is not to use a composite powder is formed in advance, since the B 2 O 3 coarse phase does not exist, the effective in obtaining a dense sintered body by preventing segregation.

또한, ZnO의 내약품성을 향상시키는 데 있어서, Co나 V 첨가가 유효한 것이 개시되어 있다(특허 문헌 4).Moreover, it is disclosed that Co and V addition are effective in improving chemical resistance of ZnO (patent document 4).

특허 문헌 4에 따르면, 도너 불순물로서 사용되는 상기 붕소가 속하는 III족 원소 등을 첨가한 ZnO계 도전막에 대해서도 Co나 V의 첨가는 유효한 것, 이러한 도전막의 형성에 스퍼터링법이 적용되고, 그를 위한 소결체의 개시도 있다.According to Patent Document 4, the addition of Co or V is effective also for a ZnO-based conductive film to which the boron-containing group III element or the like used as a donor impurity is added. The sputtering method is applied to the formation of such a conductive film. There is also a start of a sintered body.

일본 특허 출원 공개 평11-158607호 공보Japanese Patent Application Laid-open No. Hei 11-158607 일본 특허 출원 공개 평11-171539호 공보Japanese Patent Application Laid-open No. Hei 11-171539 일본 특허 출원 공개 평11-302835호 공보Japanese Patent Application Laid-open No. Hei 11-302835 일본 특허 출원 공개 제2002-75062호 공보Japanese Patent Application Laid-Open No. 2002-75062

특허 문헌 4에 개시되는 V는, 내약품성을 향상시킨다고 하는 점에서는 유리하지만, 특허 문헌 4에 구체적인 기재가 있는 V2O5를 바나듐원으로 할 경우, V2O5의 독성에 대한 신중한 취급이 필요하다.V disclosed in Patent Document 4 is advantageous in terms of improving chemical resistance, but when V 2 O 5 having a specific description in Patent Document 4 is used as a vanadium source, careful handling of the toxicity of V 2 O 5 is avoided. need.

또한, V2O5보다도 독성이 낮은 V산화물로서 V2O3이 알려져 있지만, V2O5의 융점은, 690℃로 저온인 것에 대해서, V2O3의 융점은 1970℃로 높고, 붕소를 포함하는 ZnO계 소결체를 얻는 데 있어서의 거동이 불분명했다.In addition, V 2 O 5 of all but the toxicity of this V 2 O 3 is known as a low-V oxide, with respect to the melting point of the V 2 O 5 has a low temperature as 690 ℃, the melting point of the V 2 O 3 is high as 1970 ℃, boron The behavior in obtaining the ZnO system sintered compact containing this was unclear.

또한, 붕소의 첨가는, 특허 문헌 1 내지 3과 같이 복합 산화물을 형성하는 방법이 유효하다. 그러나, 이와 같은 복합 산화물을 사용하는 제조 기술에 있어서도, V를 첨가할 때의, 원료 산화물인 V의 가수가, 소결성 등에 어떠한 영향이 있을지는, 전혀 미지였다.In addition, as for the addition of boron, the method of forming a complex oxide like patent documents 1-3 is effective. However, also in the manufacturing technique using such a composite oxide, it was unknown at all whether the valence of V which is a raw material oxide at the time of adding V had any influence on sinterability or the like.

본 발명의 목적은, 높은 소결 밀도를 갖는 붕소(B) 및 바나듐(V)을 모두 첨가한 ZnO계 투명 도전막용 타깃 및 그 제조 방법을 제공하는 것이다.The objective of this invention is providing the target for ZnO type transparent conductive films which added both boron (B) and vanadium (V) which have high sintering density, and its manufacturing method.

본 발명자는, V2O3이 붕소를 포함하는 소결체를 얻는 데 있어서, 소결 밀도의 향상에 기여하는 것을 찾아내어, 본 발명에 도달했다.The present inventor, according to the V 2 O 3 to obtain a sintered body containing boron, identify and to contribute to improving the sintered density, and reached the present invention.

즉 본 발명은, 붕소량이, B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.5 내지 10mass%, 바나듐량이, V2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.05 내지 5mass%이며, 그 밀도가 상대 밀도로 90% 이상의 산화물 소결체인 ZnO계 투명 도전막용 타깃이다.That is, in the present invention, the amount of boron is 0.5 to 10 mass% and the amount of vanadium in terms of oxide in which B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100 is V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100 from 0.05 to 5mass% in oxide equivalent, and a ZnO-based transparent conductive film that is the target density of the oxide-sintered body of 90% or more in relative density.

또한, 본 발명은, 알루미늄 및/ 또는 갈륨을 3가의 산화물로서 환산하여, 각각 2mass% 이하 첨가할 수 있다.In addition, in this invention, aluminum and / or gallium can be converted into trivalent oxide, and can add 2 mass% or less, respectively.

또한, 본 발명의 제조 방법은, 붕소와 바나듐을 함유하고, 붕소량이, B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.5 내지 10mass%, 바나듐량이, V2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.05 내지 5mass%인 산화물 소결체로 이루어지는 ZnO계 투명 전극용 타깃의 제조 방법이며, 붕소원으로서 H3BO3 분말, 바나듐원으로서 V2O3 분말을 사용하는 ZnO계 투명 도전막용 타깃의 제조 방법이다.In addition, the production method of the present invention, containing boron and vanadium, boron amount, and B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3) × 0.5 to 10mass% in the terms of oxides to 100, V volume, V 2 O 3 / a (ZnO + B 2 O 3 + V 2 O 3) × as oxides converted to 100 0.05 to 5mass% the method of producing a target for the ZnO-based transparent electrode composed of an oxide sintered body, a boron source H 3 BO 3 powder, a ZnO-based transparent conductive film production method of the target using the V 2 O 3 powder as a vanadium source.

또한, 본 발명의 제조 방법에 있어서의 소결 온도는, 700 내지 1050℃, 소결 분위기는 비환원성 분위기로 하는 것이 바람직하다.Moreover, it is preferable that the sintering temperature in the manufacturing method of this invention makes 700-1050 degreeC, and a sintering atmosphere into a non-reducing atmosphere.

또한, 본 발명의 제조 방법에 있어서, H3BO3 분말과, ZnO 분말 혹은 V2O3 분말을 더 혼합하고, 하소해서 얻은 하소 분말을 소결 원료로서 소결하는 것이 바람직하다.Further, in the production method of the present invention, it is preferable to mix the powder and H 3 BO 3, ZnO powder or V 2 O 3 powder is further calcined by sintering a sintering material a calcined powder obtained.

또한, 본 발명에서 하소 분말을 사용하는 경우, 하소 분말의 조성을 B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로, 0.8 내지 45mass%로 하고, 상기 하소 분말에 ZnO 분말 혹은 V2O3의 한쪽 또는 양쪽을 혼합, 소결해서 상대 밀도 90% 이상의 소결체를 얻는 것이 바람직하다.In the case of using the calcined powder in the present invention, the composition of the calcined powder is 0.8 to 45 mass% in terms of oxide in which the composition of the calcined powder is B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100. It is preferable to mix and sinter one or both of ZnO powder or V 2 O 3 to the calcined powder to obtain a sintered compact having a relative density of 90% or more.

또한, 하소 온도는, 100 내지 500℃로 하는 것이 바람직하다.In addition, it is preferable that calcining temperature shall be 100-500 degreeC.

본 발명은, 높은 소결 밀도를 갖는 붕소(B) 및 바나듐(V)을 모두 첨가한 ZnO계 투명 도전막용 타깃이며, 이상 방전이 적고, 액정 디스플레이나 박막 태양 전지 등의 제조에 적합하다. 또한, 본 발명의 제조 방법은, 안전하고 또한 정밀도가 높은 제조를 할 수 있으므로 상술한 타깃을 얻는 데 있어서, 중요한 기술이 된다.This invention is a target for ZnO type transparent conductive films which added both boron (B) and vanadium (V) which have high sintering density, and has little abnormal discharge, and is suitable for manufacture of a liquid crystal display, a thin film solar cell, etc. Moreover, since the manufacturing method of this invention can manufacture safely and high precision, it becomes an important technique in obtaining the target mentioned above.

도 1은 본 발명의 타깃의 마이크로 조직 및 대응하는 특정 원자 분포의 일례를 나타내는 도면이다.
도 2는 비교예의 타깃의 마이크로 조직 및 대응하는 특정 원자 분포의 일례를 나타내는 도면이다.
1 is a diagram showing an example of a microstructure of a target of the present invention and a corresponding specific atomic distribution.
2 is a diagram showing an example of the microstructure of the target of the comparative example and the corresponding specific atomic distribution.

상술한 바와 같이, 본 발명의 중요한 특징은, V2O3이 붕소를 포함하는 소결체를 얻는 데 있어서, 소결 밀도의 향상에 기여하는 것을 발견하여, 높은 소결 밀도를 갖는 붕소 및 바나듐을 모두 첨가한 ZnO계 투명 도전막용 타깃을 실현한 것에 있다.As described above, an important feature of the present invention is that V 2 O 3 was found to contribute to the improvement of sintered density in obtaining a sintered body containing boron, and both boron and vanadium having high sintered density were added. The ZnO-based transparent conductive film target is realized.

본 발명에 있어서, 붕소량을, B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.5 내지 10mass%로 한 것은, 붕소 첨가에 의해, 형성하는 도전막의 저저항성과 투명성을 확보하는 데 있어서, 유효하기 때문이다. 바람직하게는, 0.5 내지 5mass%이다.In the present invention, the amount of boron is 0.5 to 10% by mass in terms of oxide in terms of B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, which is formed by addition of boron. It is because it is effective in ensuring the low resistance and transparency of a film | membrane. Preferably, it is 0.5-5 mass%.

또한, 본 발명에 있어서, 바나듐량을, V2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.05mass% 이상으로 한 것은, 0.05mass% 미만에서는, 소결성 향상의 명확한 효과가 얻어지지 않고, 또 제조 시에 타깃에 있어서의 균일한 분산을 시키기 어렵기 때문이다. 또한, 5mass% 이하로 한 것은, 저렴하고 특정 파장의 투과율이 높다고 하는 붕소 첨가의 작용을 유지하기 위해서이다. 바람직하게는, 0.05 내지 2mass%이다.In the present invention, the amount of vanadium is 0.05 mass% or more in terms of an oxide of V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, when less than 0.05 mass%, This is because it is difficult to obtain a definite effect of improving the sinterability and to make it possible to uniformly disperse the target at the time of manufacture. In addition, the reason why it is 5 mass% or less is for maintaining the effect | action of boron addition which is inexpensive and the transmittance | permeability of a specific wavelength is high. Preferably, it is 0.05-2 mass%.

본 발명에 있어서는, 상기 붕소의 특징을 살리기 위해서, 붕소와 바나듐 이외의 도전성을 부여하는 산화물은 반드시 필요하지는 않지만, 첨가하는 것은 가능하다. 전형적으로는, 알루미늄(Al)이나 갈륨(Ga)의 산화물의 첨가가 가능하다. 이들의 첨가는, 3가의 산화물로서 환산하여, 각각 2mass% 이하로 하는 것이 바람직하다.In the present invention, in order to utilize the characteristics of the boron, an oxide that imparts conductivity other than boron and vanadium is not necessarily required, but can be added. Typically, addition of oxides of aluminum (Al) or gallium (Ga) is possible. It is preferable to make these addition into 2 mass% or less in conversion as a trivalent oxide.

또한, 본 발명의 타깃의 상대 밀도는, 90% 이상으로 했다. 90% 미만은, 통상의 소결에서도 용이하게 도달할 수 있기 때문에, V2O3 첨가에 의한 소결성 향상의 의미가 적기 때문이다. 바람직하게는, 95% 이상으로 한다. 보다 바람직하게는 98% 이상이다.In addition, the relative density of the target of this invention was 90% or more. Less than 90% is because, since conventional can be easily reached in sintering, there is less of a sintering property improving means by V 2 O 3 addition. Preferably, you may be 95% or more. More preferably, it is 98% or more.

또한, 본 발명에서 말하는 상대 밀도는, 타깃 조직 중에, ZnO, B2O3, V2O3의 각 상이 각각 독립하여 존재하고 있다고 가정하여, 계산되는 밀도에 대한 상대 밀도이다.Further, the relative density in the present invention is to assume that the target tissue, ZnO, B 2 O 3, each independently of the presence of the V 2 O 3 different from each other, the relative density of the computed density.

다음에, 본 발명의 제조 방법에 대해서 상세하게 설명한다.Next, the manufacturing method of this invention is demonstrated in detail.

본 발명의 제조 방법에 있어서는, 상술한 조성의 타깃을 얻기 위해서, 붕소원으로서 H3BO3 분말, 바나듐원으로서 V2O3 분말을 사용하는 데 중요한 특징의 하나가 있다.In the production method of the present invention, one important feature in using the V 2 O 3 powder as a, H 3 BO 3 powder, a boron source, vanadium source to obtain a target of the above composition.

보통 붕소원으로서 사용되는 B2O3 분말은, 흡습성이 높아 칭량 오차를 일으키기 쉽다고 하는 문제를 확인하고 있다. 한편, 본 발명에서 사용하는 H3BO3 분말은, 수화물이고 수분 흡수의 염려가 없어, 칭량 오차를 일으키기 어려운 것이며, 성분 조정의 정밀도를 높이는 데 있어서 유효하다.Average B 2 O 3 powder used as a boron source, and make the problem of easy to cause a weighing error increases the hygroscopicity. On the other hand, the H 3 BO 3 powder used in the present invention is a hydrate and has no fear of moisture absorption, and thus is unlikely to cause a weighing error, and is effective in increasing the accuracy of component adjustment.

또, 통상 바나듐원으로서 사용되는 V2O5은, 상술한 바와 같이 독성이 있어 취급상 문제가 있다. 한편, 본 발명이 사용하는 V2O3은, 그와 같은 문제가 없다. 그리고, 중요한 것은, V2O3이 1970℃라고 하는 고온의 융점을 가짐에도 불구하고, 소결성을 높이는 데에 기여한다고 하는 것을 발겨한 것에 있다.In addition, V 2 O 5 is used as the vanadium source is normal, there is a problem for handling toxic, as described above. On the other hand, V 2 O 3 used in the present invention does not have such a problem. It is important to note that V 2 O 3 contributes to increasing the sinterability even though V 2 O 3 has a high melting point of 1970 ° C.

본 발명자의 검토에 따르면, 타깃 조직에 존재하는 Zn-B-O상의 조직이, V2O3 무첨가에서는 입상의 조직인 것에 대해서, V2O3의 첨가에 의해 주상 조직이 된다고 하는 현상을 확인하고 있다. 이것으로부터 첨가한 V2O3 분말은 타깃 조직에 크게 영향을 미치고, 소결성을 향상시키는 인자가 되고 있다고 추정된다.According to the examination of the present inventors, it is confirmed that the Zn-BO phase structure present in the target structure is a columnar structure by the addition of V 2 O 3 , whereas the V 2 O 3 no addition structure is a granular structure. A V 2 O 3 powder is added from this having a significant effect on the target tissue, it is estimated that there is a factor for improving the sinterability.

그리고, 이 방법에 의해, 상대 밀도를 90%, 바람직하게는 95% 이상, 더욱 바람직하게는 98% 이상으로 향상시키는 것이 가능해진다.And by this method, it becomes possible to improve a relative density to 90%, Preferably it is 95% or more, More preferably, it is 98% or more.

본 발명의 제조 방법에 있어서의 소결 온도는, 700 내지 1050℃, 소결 분위기는 비환원성 분위기로 하는 것이 바람직하다. 700℃ 미만의 소결 온도에서는, 소결 시간이 지나치게 걸려, 1050℃ 이상에서는, 구성하는 산화물의 분해가 진행되어 소정의 소결 밀도가 얻어지지 않을 뿐만아니라, 조성 변동도 커지는 경우가 있기 때문이다.It is preferable that the sintering temperature in the manufacturing method of this invention is 700-1050 degreeC, and sintering atmosphere shall be a non-reducing atmosphere. This is because at a sintering temperature of less than 700 ° C., the sintering time is excessively long, and at 1050 ° C. or more, decomposition of the constituent oxide proceeds, a predetermined sintered density is not obtained, and composition variation may also increase.

또한, 소결 분위기로서 비환원 분위기를 선택함으로써, 구성하는 산화물의 분해를 용이하게 억제할 수 있다고 하는 이점이 있다. 이 비환원성 분위기로서는, 공기, 질소, 불활성 가스 등을 사용하는 것이 가능하다.In addition, there is an advantage in that decomposition of the oxide to constitute can be easily suppressed by selecting the non-reducing atmosphere as the sintering atmosphere. As this non-reducing atmosphere, it is possible to use air, nitrogen, an inert gas, or the like.

본 발명의 제조 방법에 있어서, H3BO3 분말의 사용은, 상술한 바와 같이 조성 제어에 있어서 유효하지만, 그대로 소결 원료로 하면 가열에 의해 산화 붕소와 물로 분해되기 때문에, 산화 붕소를 그대로 소결 원료로 했을 경우와 마찬가지로 소결체 내에 큰 편석이 발생하거나, 치밀한 소결체가 얻어지지 않을 경우가 있다.In the production method of the present invention, the use of the H 3 BO 3 powder is effective in the composition control as described above, but when it is used as the sintering raw material, it is decomposed into boron oxide and water by heating, so that the boron oxide is sintered as it is. As in the case of a large sintered body, large segregation may occur or a dense sintered body may not be obtained.

그로 인해, ZnO 분말과 H3BO3 분말을 혼합하고, 하소해서 얻은 하소 분말을 제조하여 이것을 소결 원료로 하면, 복합 산화물이 형성되어 있기 때문에, 편석을 방지해 치밀한 소결체를 얻는 것이 가능해진다. 또한, 하소 공정은, 소결체로서는 불필요한 수분을 미리 제거해 둘 수 있으므로, 수분 존재에 의한 소결체의 변형, 결함의 형성을 방지하는 데 있어서도 유효하다. 이때, V2O3 분말도 동시에 혼합해 두어, 하소 분말을 얻어도 좋다.Therefore, when a calcination powder obtained by mixing ZnO powder and H 3 BO 3 powder is produced and calcined as a sintering raw material, a complex oxide is formed, so segregation can be prevented and a compact sintered body can be obtained. In addition, since the calcination process can remove previously unnecessary moisture as a sintered compact, it is effective also in preventing deformation | transformation of a sintered compact and formation of a defect by moisture presence. At this time, V 2 O 3 powder may also be mixed at the same time to obtain calcined powder.

또한, 본 발명의 제조법에 있어서, 하소 분말만을 원료로 해서 소결해도 되지만, 하소 분말에 더하여 다른 산화물 분말을 혼합해서 소결해도 된다. 구체적으로는, 하소 분말의 조성을 B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로, 0.5-45mass%로 조정하여, 상기 하소 분말에 ZnO 분말 혹은 V2O3의 한쪽 또는 양쪽을 혼합, 소결하는 것이 바람직하다.In addition, in the manufacturing method of this invention, you may sinter only with a calcination powder as a raw material, but you may mix and sinter another oxide powder in addition to a calcination powder. Specifically, the composition of the calcined powder was adjusted to 0.5-45 mass% in terms of an oxide having a composition of B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, and ZnO powder or V was added to the calcined powder. 2 mixture of one or both of the O 3, it is preferable to sinter.

B2O3비를, 0.5% 이상으로 한 것은, 0.5% 미만에서는 전극으로서의 특성을 얻기 어려워, 하소 분말에 더하여, 다른 붕소원 등을 첨가할 필요가 발생하기 때문이다.The B 2 O 3 ratio is set to 0.5% or more because it is difficult to obtain characteristics as an electrode at less than 0.5%, and in addition to the calcined powder, it is necessary to add another boron source or the like.

한편, B2O3비를 45% 이하로 한 것은, 45%을 초과해서 높아져 가면, 복합 산화물로서 존재하는 이외에 B2O3상으로서 존재하는 양이 많아져, B의 분산성이 나빠지는 경우가 있기 때문이다. 실제의 하소 분말의 조성은, 사용하는 H3BO3 분말이 B2O3이 된 경우의 양과 ZnO 분말의 ZnO량, 혹은 V2O3 분말의 V2O3량에 의해 조정할 수 있다.On the other hand, when the B 2 O 3 ratio is made to be 45% or less, when it becomes higher than 45%, the amount which exists as B 2 O 3 phase other than being present as a complex oxide will become large, and the dispersibility of B will worsen. Because there is. The actual composition of the calcined powder is to use H 3 BO 3 powder can be adjusted by the amount of ZnO, V 2 O 3 or V 2 O 3 powder in the amount of the amount of ZnO powder in the case where the B 2 O 3.

상기, 하소 공정에 있어서, 하소 온도는 100℃ 이상 500℃ 이하로 하는 것이 적합하다. 이것은, 100℃보다 저온이면, H3BO3으로부터의 물의 분해 제거가 진행되기 어렵기 때문이다.In the above calcination step, the calcination temperature is preferably set to 100 ° C or higher and 500 ° C or lower. This is a temperature lower than 100 ℃, it is difficult to decompose the water removal from the H 3 BO 3 in progress.

한편, 500℃보다 고온에서는, 하소 분말이 크게 성장해 버려, 소결 원료로서는 특별한 분쇄 처리 등이 필요해지기 때문이다.On the other hand, when the temperature is higher than 500 ° C., the calcined powder grows significantly and a special grinding treatment or the like is required as the sintered raw material.

[실시예][Example]

이하, 본 발명의 실시예를 설명한다. 단, 본 발명은, 이하에 서술하는 실시예에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described. However, this invention is not limited to the Example described below.

본 실시예에서 적용한 제조 공정은 이하와 같다.The manufacturing process applied in the present Example is as follows.

(공정 A1)(Step A1)

비표면적 4.5㎡/g의 ZnO 분말과 H3BO3 분말을 표 1에 나타내는 소정의 타깃 조성이 되도록 칭량한 후, 볼밀로 혼합해 혼합분을 제작했다.The ZnO powder having a specific surface area of 4.5 m 2 / g and the H 3 BO 3 powder were weighed so as to have a predetermined target composition shown in Table 1, and then mixed with a ball mill to prepare a mixed powder.

얻어진 혼합분을 소정의 온도에서 하소하여 하소 분말을 얻었다. 얻어진 하소 분말에 V2O3 분말을 소정의 타깃 조성이 되도록 칭량한 후, 볼밀로 혼합해 혼합분을 제작했다. 얻어진 혼합분에 바인더로서 폴리비닐알코올을 0.5mass% 첨가하여, 갈아 으깨면서 혼합한 후, 조립(造粒)한 조립분을 제작했다.The obtained mixed powder was calcined at a predetermined temperature to obtain calcined powder. V 2 O 3 powder was weighed into the obtained calcined powder so as to have a predetermined target composition, and then mixed with a ball mill to prepare a mixed powder. 0.5 mass% of polyvinyl alcohol was added to the obtained mixed powder as a binder, and it grind | pulverized, and after mixing, granulated granulated powder was produced.

또한, 다른 산화물 분말을 첨가하는 경우에는, V2O3과 동일하게 첨가했다.Further, if the addition of another oxide powder, and the same is added with V 2 O 3.

(공정 A2)(Step A2)

비표면적 4.5㎡/g의 ZnO 분말과 H3BO3 분말과 V2O3 분말을 소정의 타깃 조성이 되도록 칭량한 후, 볼밀로 혼합해 혼합분을 제작했다. 얻어진 혼합분을 소정의 온도에서 하소하여 하소 분말을 얻었다. 얻어진 하소 분말에 바인더로서 폴리비닐알코올을 0.5mass% 첨가하여, 갈아 으깨면서 혼합한 후, 조립한 조립분을 제작했다.The ZnO powder, H 3 BO 3 powder, and V 2 O 3 powder having a specific surface area of 4.5 m 2 / g were weighed to have a predetermined target composition, and then mixed with a ball mill to prepare a mixed powder. The obtained mixed powder was calcined at a predetermined temperature to obtain calcined powder. 0.5 mass% of polyvinyl alcohol was added to the obtained calcined powder as a binder, it grind | pulverized, it mixed, and the granulated powder granulated was produced.

(공정 A3)(Step A3)

비교예의 공정으로서, 비표면적 4.5㎡/g의 ZnO 분말과 H3BO3 분말을 소정의 타깃 조성이 되도록 칭량한 후, 볼밀로 혼합해 혼합분을 제작했다.As a comparative example, the process, after the specific surface area 4.5㎡ / g of ZnO powder and H 3 BO 3 powder were weighed so that a predetermined target composition, to prepare a mixed decomposition mixture by a ball mill.

얻어진 혼합분을 소정의 온도에서 하소하여 하소 분말을 얻었다. 얻어진 하소 분말에 바인더로서 폴리비닐알코올을 0.5mass% 첨가하여, 갈아 으깨면서 혼합한 후, 조립한 조립분을 제작했다.The obtained mixed powder was calcined at a predetermined temperature to obtain calcined powder. 0.5 mass% of polyvinyl alcohol was added to the obtained calcined powder as a binder, it grind | pulverized, it mixed, and the granulated powder granulated was produced.

(공정 B)(Step B)

다음에, A1 내지 A3의 어느 하나의 공정에서 얻어진 조립분을 냉간 정수압 프레스로 3ton/㎠의 압력으로 성형하여, 직경 120㎜, 두께 8㎜의 원반 형상의 성형체를 얻었다. 얻어진 성형체를, 표 1에 나타내는 소정의 온도, 분위기에서 소결해 소결체를 제작했다. 얻어진 소결체를 직경 100㎜, 두께 5㎜의 원반 형상으로 가공하여, 스퍼터링용 타깃을 제작했다.Next, the granulated powder obtained in any of steps A1 to A3 was molded at a pressure of 3 ton / cm 2 by cold hydrostatic press to obtain a disk-shaped molded body having a diameter of 120 mm and a thickness of 8 mm. The obtained molded object was sintered at the predetermined temperature and atmosphere shown in Table 1, and the sintered compact was produced. The obtained sintered compact was processed into the disk shape of diameter 100mm and thickness 5mm, and the target for sputtering was produced.

(타깃 평가)(Target evaluation)

제조 과정에서 얻어진 소결체의 밀도를 수중치환법에 의해 측정하고, 소결체를 구성하는 성분이 소정의 산화물로서 존재한다고 가정해서 구한 이론 밀도로 나눈 값을 상대 밀도로 했다. 소결체의 조성 분석은, 고주파 유도 결합 플라즈마 발광 분광 분석법(ICP-AES)에 의해, Zn량, B량, V량, Al량, Ga량을 분석하고, ZnO, B2O3, V2O3, Al2O3, Ga2O3의 산화물로 다시 환산해 구했지만, 목적 조성과 일치하고 있었다. 이들의 결과를 표 1로 나타낸다.The density of the sintered compact obtained at the manufacturing process was measured by the underwater substitution method, and the value divided by the theoretical density calculated on the assumption that the component which comprises a sintered compact exists as a predetermined oxide was made into the relative density. The composition analysis of the sintered body is analyzed by ZnO, B amount, V amount, Al amount and Ga amount by high frequency inductively coupled plasma emission spectroscopy (ICP-AES), and ZnO, B 2 O 3 , V 2 O 3 Was converted back into oxides of Al 2 O 3 and Ga 2 O 3 , but was consistent with the desired composition. These results are shown in Table 1.

얻어진 소결체를 주사형 전자 현미경으로 관찰하는 동시에, 조직에 있어서의 원소 분포를 EPMA으로 매핑했다. 전형적인 예로서, 도 1에 제 2 실시예, 도 2에 제2 비교예의 타깃의 마이크로 조직 및 대응하는 특정 원자 분포를 나타낸다.The obtained sintered compact was observed with the scanning electron microscope, and the element distribution in a structure was mapped to EPMA. As a typical example, the microstructure and the corresponding specific atomic distribution of the target of the second example in FIG. 1 and the second comparative example are shown in FIG.

도 1 및 도 2 각각에 나타내는 4개의 관찰상은, 좌상이 주사형 현미경에 의한 조직, 우상이 대응하는 시야에 있어서의 B 원자 분포, 좌하가 대응하는 시야에 있어서의 V 원자 분포, 우하가 대응하는 시야에 있어서의 Zn 원자 분포를 나타내고 있다. 또한, 원자 분포는 흑색-백색-갈색의 순으로 농도가 높은 것을 나타내고 있다.The four observation images shown in FIG. 1 and FIG. 2 respectively correspond to the B atom distribution in the structure where the upper left corresponds to the structure by the scanning microscope, the upper right corresponding to the V atom distribution in the visual field to which the lower left corresponds, and the lower right correspond to. The Zn atomic distribution in the field of view is shown. In addition, the atomic distribution shows that concentration is high in order of black-white-brown.

또한, 실시예 및 비교예에 있어서 붕소 농화부에는, X선 회절 분석에 의해 Zn3B2O6 화합물이 검출되고, 바나듐 농화부에는, Zn3(VO4)2 화합물이 검출되었다.In the examples and comparative examples, Zn 3 B 2 O 6 compounds were detected in the boron enrichment unit by X-ray diffraction analysis, and Zn 3 (VO 4 ) 2 compounds were detected in the vanadium enrichment unit.

(성막 평가)(Film formation evaluation)

제조한 타깃을 사용해서 DC 마그네트론 스퍼터링법에 의해 막 두께 200㎚의 성막을 행했다. 스퍼터링 조건은, 투입 전력 200W, Ar 가스압 0.7Pa로 고정했다. 그리고 실험 개시로부터 10시간 경과 후 10분당 발생하는 이상 방전 횟수, 기판 온도 200℃시의 막의 체적 저항률과, 1200㎚ 파장 영역에 있어서의 투과율을 측정했다. 또한, 기판 온도 200℃시의 막을 온도 60℃, 습도 90%의 환경하에 폭로하고, 폭로 시간 1000간 후의 체적 저항률을 측정하여, 폭로 전의 체적 저항률에 대한 폭로 후의 체적 저항률의 변화를 평가했다. 결과를 표 2로 나타낸다.The film | membrane with a film thickness of 200 nm was formed by DC magnetron sputtering method using the manufactured target. The sputtering conditions were fixed at an input power of 200 W and an Ar gas pressure of 0.7 Pa. The number of abnormal discharges generated per 10 minutes after 10 hours had elapsed from the start of the experiment, the volume resistivity of the film at the substrate temperature of 200 ° C., and the transmittance in the 1200 nm wavelength region were measured. Furthermore, the film | membrane at the substrate temperature of 200 degreeC was exposed in the environment of the temperature of 60 degreeC, and 90% of humidity, the volume resistivity after 1000 exposure time was measured, and the change of the volume resistivity after exposure with respect to the volume resistivity before exposure was evaluated. The results are shown in Table 2.

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

표 1에 있어서, 예를 들어 제3 실시예와 제1 비교예를 대비하면, 동량의 B2O3에 대하여 V2O3의 첨가에 의해, 동일한 소결 조건이어도 현저하게 상대 밀도가 상승하고 있는 것을 알 수 있다. 또 제3 실시예와 제2 비교예를 대비하면, V2O3을 첨가하지 않을 경우, 소결 온도를 1000℃의 고온으로 하여, 겨우 근사한 소결 밀도가 얻어지는 것을 알 수 있다. 이들의 결과는, 붕소를 포함하는 ZnO계 소결체를 얻는 데 있어서, V2O3의 첨가가 소결 밀도를 높이기 위해서 유효하게 작용하는 것을 나타내고 있다.In Table 1, for example, the third embodiment and the first comparative example when the contrast, the addition of V 2 O 3 with respect to the same amount of B 2 O 3, which may be the same sintering conditions, notably the relative density is increased It can be seen that. In contrast with the third example and the second comparative example, it can be seen that when V 2 O 3 is not added, the sintering temperature is set to a high temperature of 1000 ° C., and only an approximate sintering density is obtained. These results show that, in obtaining a ZnO-based sintered body containing boron, the addition of V 2 O 3 works effectively to increase the sintered density.

또한, 표 2에 있어서, V2O3의 첨가에 의해, 체적 저항률의 변화를 억제할 수 있는 것을 알 수 있으며, V2O3의 첨가가 내환경성을 향상시키는 것을 알 수 있다. 또한, 소정의 V2O3의 첨가에 의해서도 1200㎚ 투과율은 크게 열화하지 않기 때문에, 붕소를 포함하는 ZnO계 소결체의 특성을 유지할 수 있다고 하는 점에서도 유효한 것을 알 수 있다.Note that, in Table 2, the addition of V 2 O 3, it can be seen that there can be suppressed a change in the volume resistivity, it can be seen that the addition of the V 2 O 3 to improve the environmental resistance. In addition, since the transmittance of 1200 nm does not significantly deteriorate even by the addition of the predetermined V 2 O 3 , it is also found to be effective in that the characteristics of the ZnO-based sintered body containing boron can be maintained.

Claims (8)

붕소량이, B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.5 내지 10mass%, 바나듐량이, V2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.05 내지 5mass%이며, 그 밀도가 상대 밀도로 90% 이상의 산화물 소결체인 것을 특징으로 하는, ZnO계 투명 도전막용 타깃.The amount of boron is 0.5 to 10 mass% and the amount of vanadium in terms of oxide converted to B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, and V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3) × 100 with a 0.05 to 5mass% in the terms of oxides, the target density of the transparent conductive film ZnO-based, characterized in that the oxide-sintered body with a relative density of 90% or more. 제1항에 있어서, 알루미늄 및/또는 갈륨을 3가의 산화물로서 환산하고, 각각 2mass% 이하 포함하는 것을 특징으로 하는, ZnO계 투명 도전막용 타깃.The target for ZnO-based transparent conductive films according to claim 1, wherein aluminum and / or gallium are converted into trivalent oxides, and each contains 2% by mass or less. 붕소와 바나듐을 함유하고, 붕소량이, B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.5 내지 10mass%, 바나듐량이, V2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로 0.05 내지 5mass%인 산화물 소결체로 이루어지는 ZnO계 투명 전극용 타깃의 제조 방법이며, 붕소원으로서 H3BO3 분말, 바나듐원으로서 V2O3 분말을 사용하는 것을 특징으로 하는, ZnO계 투명 도전막용 타깃의 제조 방법.Containing boron and vanadium, the amount of boron is 0.5 to 10 mass% and the amount of vanadium in terms of oxide converted to B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100, and V 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3) a × 100 a method of manufacturing a target for the ZnO-based transparent electrodes made of 0.05 to an oxide sintered body 5mass% in the terms of oxides, as the boron source H 3 BO 3 powder, a vanadium source the use of V 2 O 3 powder, characterized in, the method of the target ZnO-based transparent conductive film manufacture. 제3항에 있어서, ZnO계 투명 전극용 타깃은, 알루미늄 및/또는 갈륨을 3가의 산화물로서 환산하여, 각각 2mass% 이하 포함하는 것을 특징으로 하는, ZnO계 투명 도전막용 타깃의 제조 방법.The method for manufacturing a target for a ZnO-based transparent conductive film according to claim 3, wherein the target for the ZnO-based transparent electrode contains 2 mass% or less in terms of aluminum and / or gallium as a trivalent oxide. 제3항 또는 제4항에 있어서, 소결 온도는, 700 내지 1050℃, 소결 분위기는 비환원성 분위기인 것을 특징으로 하는, ZnO계 투명 도전막용 타깃의 제조 방법.The method for producing a target for a ZnO-based transparent conductive film according to claim 3 or 4, wherein the sintering temperature is 700 to 1050 ° C and the sintering atmosphere is a non-reducing atmosphere. 제3항 내지 제5항 중의 어느 한 항에 있어서, H3BO3 분말과, ZnO 분말 혹은 V2O3 분말을 더 혼합하고, 하소해서 얻은 하소 분말을 소결 원료로서 소결하는 것을 특징으로 하는, ZnO계 투명 도전막용 타깃의 제조 방법.6. The calcined powder obtained by further mixing H 3 BO 3 powder and ZnO powder or V 2 O 3 powder and calcining is sintered as a sintering raw material according to any one of claims 3 to 5, The manufacturing method of the target for ZnO type transparent conductive films. 제6항에 있어서, 하소 분말의 조성을 B2O3/(ZnO+B2O3+V2O3)×100으로 한 산화물 환산으로, 0.5 내지 45mass%로 하고, 상기 하소 분말에 ZnO 분말 혹은 V2O3의 한쪽 또는 양쪽을 혼합, 소결하여, 상대 밀도 90% 이상의 소결체를 얻는 것을 특징으로 하는, ZnO계 투명 도전막용 타깃의 제조 방법.7. The calcined powder according to claim 6, wherein the composition of the calcined powder is 0.5 to 45 mass% in terms of an oxide having a composition of B 2 O 3 / (ZnO + B 2 O 3 + V 2 O 3 ) × 100. one or both of V 2 O 3 mixture, and sintering, the relative density, the method of the target ZnO-based transparent conductive film prepared, characterized in that to obtain more than 90% of the sintered body. 제6항 또는 제7항에 있어서, 하소 온도를 100 내지 500℃로 하는 것을 특징으로 하는, ZnO계 투명 도전막용 타깃의 제조 방법.The method for producing a target for a ZnO-based transparent conductive film according to claim 6 or 7, wherein the calcining temperature is set to 100 to 500 ° C.
KR1020127004170A 2009-07-21 2010-07-15 TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME KR101412319B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2009-169759 2009-07-21
JP2009169759 2009-07-21
PCT/JP2010/061997 WO2011010603A1 (en) 2009-07-21 2010-07-15 TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME

Publications (2)

Publication Number Publication Date
KR20120039027A true KR20120039027A (en) 2012-04-24
KR101412319B1 KR101412319B1 (en) 2014-06-26

Family

ID=43499076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127004170A KR101412319B1 (en) 2009-07-21 2010-07-15 TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME

Country Status (4)

Country Link
JP (1) JP5392633B2 (en)
KR (1) KR101412319B1 (en)
CN (1) CN102549191B (en)
WO (1) WO2011010603A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045496A (en) * 2013-08-26 2015-04-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered body and amorphous film
US9541784B2 (en) 2013-08-09 2017-01-10 Samsung Display Co., Ltd. Liquid crystal display and method for fabricating the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888599B2 (en) * 2012-03-13 2016-03-22 三菱マテリアル株式会社 Sputtering target and high resistance transparent film manufacturing method
WO2017187763A1 (en) * 2016-04-28 2017-11-02 リンテック株式会社 Transparent conductive film and method for producing transparent conductive film
CN109487223B (en) * 2018-12-26 2020-01-07 武汉大学 Preparation method of hydrated calcium silicate nano film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158607A (en) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd Zno sintered compact and its production
JPH11171539A (en) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd Zno-base sintered compact and its production
JP3636914B2 (en) * 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ High resistance transparent conductive film, method for producing high resistance transparent conductive film, and sputtering target for forming high resistance transparent conductive film
JPH11302835A (en) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd Production of zinc oxide base sintered compact
JP2002075062A (en) * 2000-09-01 2002-03-15 Uchitsugu Minami Transparent conductive film
CN1320155C (en) * 2001-06-26 2007-06-06 三井金属矿业株式会社 Sputtering target for high resistance transparent conductive membrane and mfg. method of high resistance transparent conductive membrane
CN100485081C (en) * 2005-06-16 2009-05-06 中国科学院物理研究所 Process for preparing boron-doped n-shape high-hardness transparent conductive zinc oxide film
JP5682112B2 (en) * 2007-12-19 2015-03-11 日立金属株式会社 Zinc oxide sintered body and manufacturing method thereof, sputtering target, and electrode formed using this sputtering target
JPWO2009078329A1 (en) * 2007-12-19 2011-04-28 日立金属株式会社 Zinc oxide sintered body and manufacturing method thereof, sputtering target, electrode
JP2009167515A (en) * 2008-01-15 2009-07-30 Kanazawa Inst Of Technology Sputtering target for producing transparent conductive film, and method for forming transparent conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541784B2 (en) 2013-08-09 2017-01-10 Samsung Display Co., Ltd. Liquid crystal display and method for fabricating the same
KR20150045496A (en) * 2013-08-26 2015-04-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered body and amorphous film

Also Published As

Publication number Publication date
JP5392633B2 (en) 2014-01-22
KR101412319B1 (en) 2014-06-26
CN102549191B (en) 2013-10-30
WO2011010603A1 (en) 2011-01-27
CN102549191A (en) 2012-07-04
JPWO2011010603A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
CN1545567B (en) Sputtering target, transparent conductive film, and method for producing same
KR101590429B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP4933756B2 (en) Sputtering target
JP6091735B2 (en) Ceramic preparation process, the ceramic thus obtained and its use as a sputtering target in particular
KR101738742B1 (en) Oxide sintered compact, sputtering target, thin film and method of producing oxide sintered compact
KR20120051656A (en) Oxide sinter, method for producing same, target and transparent conductive film
KR101859787B1 (en) Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
DE112011100972T5 (en) Transparent conductive film
KR101412319B1 (en) TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME
KR20140003509A (en) Oxide sintered body and tablets obtained by processing same
KR101294986B1 (en) In Sm OXIDE SPUTTERING TARGET
KR20200020855A (en) Oxide thin film formed using the oxide sputtering target, its manufacturing method, and this oxide sputtering target
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
KR20180093140A (en) Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
JP2006200016A (en) ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
KR20120094035A (en) Transparent conductive film, solar cell using same, sputtering target for forming said transparent conductive film, and manufacturing method therefor
JP5952031B2 (en) Oxide sintered body manufacturing method and target manufacturing method
JP2012106880A (en) Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film
JP2012106879A (en) Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film
JP2010269984A (en) METHOD FOR MANUFACTURING ZnO-BASED SINTERED COMPACT CONTAINING BORON
JP2015017017A (en) Complex oxide sintered body and oxide transparent conductive film
JP2012148937A (en) Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target
JP2012140696A (en) Zinc oxide based transparent conductive film forming material, method for producing the material, target using the material, and method for forming zinc oxide based transparent conductive film

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 6