JP6027844B2 - Method for producing zinc oxide-based sintered body - Google Patents

Method for producing zinc oxide-based sintered body Download PDF

Info

Publication number
JP6027844B2
JP6027844B2 JP2012228379A JP2012228379A JP6027844B2 JP 6027844 B2 JP6027844 B2 JP 6027844B2 JP 2012228379 A JP2012228379 A JP 2012228379A JP 2012228379 A JP2012228379 A JP 2012228379A JP 6027844 B2 JP6027844 B2 JP 6027844B2
Authority
JP
Japan
Prior art keywords
sintered body
zinc oxide
powder
based sintered
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012228379A
Other languages
Japanese (ja)
Other versions
JP2013209277A (en
Inventor
邦彦 中田
邦彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012228379A priority Critical patent/JP6027844B2/en
Publication of JP2013209277A publication Critical patent/JP2013209277A/en
Application granted granted Critical
Publication of JP6027844B2 publication Critical patent/JP6027844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、スパッタリング法、イオンプレーティング法、パルスレーザーデポジション(PLD)法またはエレクトロンビーム(EB)蒸着法などにより酸化亜鉛系透明導電膜を安定して形成することができるターゲット等として有用な酸化亜鉛系焼結体の製造方法およびこの製造方法で得られた酸化亜鉛系焼結体を用いたターゲットに関する。   INDUSTRIAL APPLICATION This invention is useful as a target etc. which can form a zinc oxide type transparent conductive film stably by sputtering method, an ion plating method, a pulse laser deposition (PLD) method, or an electron beam (EB) vapor deposition method. The present invention relates to a method for manufacturing a zinc oxide-based sintered body and a target using the zinc oxide-based sintered body obtained by this manufacturing method.

導電性と光透過性とを兼ね備えた透明導電膜は、これまでから、太陽電池、液晶表示素子、その他各種受光素子における電極などとして利用されているほか、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケース等における防曇用透明発熱体など、幅広い用途に利用されている。特に、低抵抗で導電性に優れた透明導電膜は、太陽電池や、液晶、有機エレクトロルミネッセンス、無機エレクトロルミネッセンスなどの液晶表示素子や、タッチパネルなどに好適であることが知られている。   Transparent conductive films that combine electrical conductivity and light transmission have been used as electrodes in solar cells, liquid crystal display elements, and other various light receiving elements, as well as automotive window and heat ray reflective films for buildings, It is used for a wide range of applications such as anti-static films and transparent heating elements for anti-fogging in frozen showcases. In particular, it is known that a transparent conductive film having a low resistance and excellent conductivity is suitable for a solar cell, a liquid crystal display element such as a liquid crystal, organic electroluminescence, and inorganic electroluminescence, a touch panel, and the like.

従来、透明導電膜としては、例えば、アンチモンドープ酸化スズ(ATO)膜、フッ素ドープ酸化スズ(FTO)膜などの酸化スズ(SnO2)系の薄膜;アルミニウムドープ酸化亜鉛(AZO)膜、ガリウムドープ酸化亜鉛(GZO)膜などの酸化亜鉛(ZnO)系の薄膜;スズドープ酸化インジウム(ITO;Indium Tin Oxide)膜などの酸化インジウム(In23)系の薄膜が知られている。中でも、最も工業的に利用されているのは酸化インジウム系の透明導電膜であり、とりわけITO膜は、低抵抗で導電性に優れることから、幅広く実用化されている。 Conventionally, as the transparent conductive film, for example, a tin oxide (SnO 2 ) -based thin film such as an antimony-doped tin oxide (ATO) film or a fluorine-doped tin oxide (FTO) film; an aluminum-doped zinc oxide (AZO) film or a gallium-doped film Zinc oxide (ZnO) -based thin films such as zinc oxide (GZO) films; indium oxide (In 2 O 3 ) -based thin films such as tin-doped indium oxide (ITO) films are known. Among them, the most industrially used is an indium oxide-based transparent conductive film, and in particular, an ITO film is widely used because of its low resistance and excellent conductivity.

このような透明導電膜を形成する際には、従来から、スパッタリング法、イオンプレーティング法、PLD法、EB蒸着法などが工業的に汎用されている。これらの成膜方法において膜原料として用いられるターゲットは、成膜しようとする膜を構成する金属元素を含む固体からなり、金属、金属酸化物、金属窒化物、金属炭化物などの焼結体や混合体、場合によっては単結晶で形成される。   Conventionally, when forming such a transparent conductive film, sputtering, ion plating, PLD, EB vapor deposition and the like are widely used industrially. The target used as a film raw material in these film formation methods is made of a solid containing a metal element constituting the film to be formed, and is a sintered body or a mixture of metal, metal oxide, metal nitride, metal carbide, etc. Body, and in some cases, a single crystal.

例えば、ITOのような酸化物の膜をスパッタリング法で形成する際には、ターゲットとしては、一般に、膜を構成する金属元素からなる合金ターゲット(ITO膜を形成する場合にはIn−Sn合金)、または膜を構成する金属元素を含む酸化物を焼結もしくは混合してなる酸化物ターゲット(ITO膜を形成する場合にはIn−Sn−Oからなる焼結体や混合体)が用いられる。   For example, when an oxide film such as ITO is formed by sputtering, the target is generally an alloy target made of a metal element constituting the film (In-Sn alloy when forming an ITO film). Alternatively, an oxide target obtained by sintering or mixing an oxide containing a metal element constituting the film (in the case of forming an ITO film, a sintered body or a mixture made of In—Sn—O) is used.

合金ターゲットを用いると、形成される膜中の酸素は全て雰囲気中の酸素ガスから供給されることになるので、雰囲気中の酸素ガス量が変動しやすくなり、その結果、雰囲気中の酸素ガス量に依存する成膜速度や得られる膜の特性(比抵抗、透過率)を一定に保つことが困難になる場合がある。
他方、酸化物ターゲットを用いると、膜に供給される酸素の一部は、ターゲット自体から供給され、不足分のみが雰囲気中の酸素ガスから供給されることになるので、雰囲気中の酸素ガス量の変動は、合金ターゲットを用いる場合に比べ抑えることができ、その結果、一定の膜厚を有し一定の膜特性を有する透明導電膜を容易に製造することが可能となる。
したがって、これまで、工業的に用いるターゲットとしている。
When an alloy target is used, all the oxygen in the formed film is supplied from the oxygen gas in the atmosphere, so the oxygen gas amount in the atmosphere tends to fluctuate. As a result, the oxygen gas amount in the atmosphere It may be difficult to keep the film formation speed depending on the film thickness and the characteristics (specific resistance, transmittance) of the film obtained constant.
On the other hand, when an oxide target is used, part of the oxygen supplied to the film is supplied from the target itself, and only the deficiency is supplied from the oxygen gas in the atmosphere, so the amount of oxygen gas in the atmosphere This variation can be suppressed as compared with the case where an alloy target is used. As a result, it is possible to easily manufacture a transparent conductive film having a constant film thickness and a constant film characteristic.
Therefore, it has been a target for industrial use so far.

ところで、ITO膜などの酸化インジウム系の透明導電膜は、その必須原料であるIn(インジウム)が、希少金属であるため高価で且つ資源枯渇のおそれがあり、しかも毒性を有し環境や人体に対して悪影響を及ぼす可能性がある。そのため、近年、ITO膜に代替し得る工業的に汎用可能な透明導電膜が要望されている。そのような中、スパッタリング法による工業的製造も可能である酸化亜鉛系透明導電膜が注目されており、その導電性能を高めるべく研究が進められている。   By the way, an indium oxide-based transparent conductive film such as an ITO film is expensive because it is a rare metal because In (indium), which is an essential raw material, has a risk of resource depletion, and has toxicity and is harmful to the environment and the human body. It may have an adverse effect on it. Therefore, in recent years, an industrially versatile transparent conductive film that can be substituted for an ITO film has been demanded. Under such circumstances, a zinc oxide-based transparent conductive film that can be industrially manufactured by a sputtering method has attracted attention, and research is being conducted to improve its conductive performance.

具体的には、非特許文献1では、導電性を高めるべくZnOに種々のドーパントをドープさせる試みが報告されている。その中で、現在、AZO(アルミニウムドープ酸化亜鉛)膜、GZO(ガリウムドープ酸化亜鉛)膜が優れた導電性を示すため実用的に使用されている。しかし、AZO膜やGZO膜は、化学的耐久性が乏しく、特に近赤外領域の透過性が低い為、例えば、CIS/CIGS太陽電池の透明電極としての用途など太陽電池用途に適していない。   Specifically, Non-Patent Document 1 reports an attempt to dope various dopants into ZnO in order to increase conductivity. Among them, an AZO (aluminum-doped zinc oxide) film and a GZO (gallium-doped zinc oxide) film are practically used because they exhibit excellent conductivity. However, since AZO films and GZO films have poor chemical durability and particularly low transparency in the near infrared region, they are not suitable for solar cell applications such as applications as transparent electrodes for CIS / CIGS solar cells.

また、本発明者らは、亜鉛に比べ化学的耐久性に優れ、ドーパントであるチタン源として4価の酸化チタン(TiO2(IV))でなく、低原子価酸化チタンを含有し、この低原子価酸化チタンの含有量を従来最適とされていた含有量よりもさらに増やした酸化物ターゲットを用いれば、優れた導電性と化学的耐久性とを兼ね備えた酸化亜鉛系透明導電膜とすることができることを見出している(特許文献1参照)。 In addition, the present inventors have excellent chemical durability compared to zinc, and contain low-valent titanium oxide instead of tetravalent titanium oxide (TiO 2 (IV)) as a titanium source as a dopant. By using an oxide target with a valence titanium oxide content that has been increased more than the conventional optimal content, a zinc oxide-based transparent conductive film that combines excellent electrical conductivity and chemical durability is obtained. (See Patent Document 1).

上述した酸化物ターゲット、すなわち低原子価酸化チタンドープ酸化亜鉛系焼結体を無加圧焼結により作製するのに、低原子価酸化チタンが酸化されて4価の酸化チタン(TiO2(IV))となるのを抑制するため、不活性雰囲気や還元雰囲気などの非酸化性雰囲気中にて焼結する必要がある。
さらに、亜鉛の揮散のしやすさは、焼結する際の雰囲気によって異なり、例えば、焼結体の原料に酸化亜鉛粉を用いた場合、大気雰囲気や酸化雰囲気などの酸化性雰囲気では焼結体の製造過程で酸化亜鉛粉自体の揮散しか起こらないが、非酸化性雰囲気で焼結すると、酸化亜鉛が還元されて、酸化亜鉛よりもさらに揮散しやすい金属亜鉛となるので、非酸化性雰囲気で焼結体を製造する場合は、酸化性雰囲気下で製造する場合よりも、亜鉛の消失量が増すことになる。そのため、低原子価酸化チタンドープ酸化亜鉛系焼結体を無加圧焼結により作製するには、予め焼結体の目的組成に対して、その原料粉末である酸化亜鉛粉の仕込み量を増やしておく必要がある。
In order to produce the above-described oxide target, that is, a low-valent titanium oxide-doped zinc oxide-based sintered body by pressureless sintering, the low-valent titanium oxide is oxidized to form tetravalent titanium oxide (TiO 2 (IV )), It is necessary to sinter in a non-oxidizing atmosphere such as an inert atmosphere or a reducing atmosphere.
Furthermore, the ease of volatilization of zinc differs depending on the atmosphere during sintering. For example, when zinc oxide powder is used as a raw material of the sintered body, the sintered body is oxidized in an oxidizing atmosphere such as an air atmosphere or an oxidizing atmosphere. In the production process, only the zinc oxide powder itself volatilizes, but when sintered in a non-oxidizing atmosphere, zinc oxide is reduced and becomes metal zinc that is more easily volatilized than zinc oxide. When manufacturing a sintered compact, the loss | disappearance amount of zinc increases compared with the case where it manufactures in an oxidizing atmosphere. Therefore, in order to produce a low-valent titanium oxide doped zinc oxide-based sintered body by pressureless sintering, the amount of zinc oxide powder that is the raw material powder is increased in advance with respect to the target composition of the sintered body. It is necessary to keep.

しかし、亜鉛の揮散量を正確に計算するのは極めて困難であったため、目的の組成である焼結体が得られにくいという問題があった。
亜鉛が揮散する際、焼結体が反るという問題があり、特に焼結体のサイズが大きく、円盤状や板状のように厚みが薄い場合には顕著である。焼結体をターゲットに切削加工する際、焼結体が反っていると、加工性が悪く、生産効率が低下するという問題があった。
However, since it was extremely difficult to accurately calculate the amount of zinc volatilization, there was a problem that it was difficult to obtain a sintered body having the target composition.
When zinc is volatilized, there is a problem that the sintered body is warped, particularly when the size of the sintered body is large and the thickness is thin such as a disk shape or a plate shape. When cutting the sintered body with the target, if the sintered body is warped, there is a problem that workability is poor and production efficiency is lowered.

さらに、亜鉛が揮散する部分には当然空孔が生じやすく、焼結体の密度低下に繋がり、このような低密度の焼結体を用いてスパッタリングにて成膜すると、異常放電が発生しやすくなり安定に成膜できないという問題があった。すなわち、亜鉛の揮散を抑制することは無加圧焼結にて物理的に実現できない。加圧焼結方法であれば、亜鉛の揮散を抑制できる可能性はあるが、固体圧縮法による一般的なホットプレス法では、原料粉末を成型加圧して焼結させるが、黒鉛からなるダイスとパンチ間にクリアランス(隙間)があるため、亜鉛の揮散を避けることができない。
なお、高密度の焼結体は、相対密度が98%以上であるものをいう。
Furthermore, naturally, vacancies are likely to occur in the portion where zinc is volatilized, which leads to a decrease in the density of the sintered body. When such a low-density sintered body is used to form a film by sputtering, abnormal discharge is likely to occur. There was a problem that the film could not be formed stably. That is, suppressing the volatilization of zinc cannot be physically realized by pressureless sintering. Although there is a possibility that the volatilization of zinc can be suppressed by the pressure sintering method, in the general hot press method by the solid compression method, the raw material powder is molded and pressed and sintered. Since there is a clearance (gap) between punches, zinc volatilization cannot be avoided.
Note that a high-density sintered body has a relative density of 98% or more.

一方、ガス圧縮法による加圧焼結法として、圧力媒体として気体を用い、目的とすべき焼結体にガスが貫入しないように焼結すべき粉体を金属製の容器(カプセル)に充填し、金属製の容器内を気密封止した後、高温高圧下で金属製の容器ごと熱処理して高密度焼結体を作製するカプセルHIP法が知られている。
しかしながら、カプセルHIP法では、焼結すべき粉体を金属製の容器内に気密封止するので、亜鉛の揮散をほとんどゼロに抑えることができるが、金属製の容器を使用し、金属製の容器内を真空脱気する工程が必要になり製造コストが高くなる要因があった。
On the other hand, as a pressure sintering method using a gas compression method, a gas is used as a pressure medium, and a metal container (capsule) is filled with powder to be sintered so that the gas does not penetrate into the sintered body to be targeted. A capsule HIP method is known in which a metal container is hermetically sealed and then heat-treated with the metal container under high temperature and high pressure to produce a high-density sintered body.
However, in the capsule HIP method, since the powder to be sintered is hermetically sealed in a metal container, the volatilization of zinc can be suppressed to almost zero, but a metal container is used. The process of vacuum degassing the inside of the container is required, which causes the manufacturing cost to increase.

特開2011‐190528号公報JP 2011-190528 A

月刊ディスプレイ、1999年9月号、p10〜「ZnO系透明導電膜の動向」Monthly Display, September 1999, p10 “Trends in ZnO-based transparent conductive films”

本発明の課題は、亜鉛の揮散及び焼結体の反りを抑制して、高密度の酸化亜鉛系焼結体を製造する方法、およびターゲットを提供することにある。特に、本発明は、金属製容器を使用しないカプセルフリーの熱間静水圧プレス法(HIP法)により、亜鉛の揮散を抑制して、高密度(相対密度98%以上)の酸化亜鉛系焼結体を製造する方法を提供することにある。   An object of the present invention is to provide a method and a target for producing a high-density zinc oxide-based sintered body by suppressing zinc volatilization and warping of the sintered body. In particular, the present invention suppresses zinc volatilization by a capsule-free hot isostatic pressing method (HIP method) that does not use a metal container, and has a high density (relative density of 98% or more) zinc oxide-based sintering. The object is to provide a method of manufacturing a body.

本発明者は、上記課題を解決すべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has found a solution means having the following configuration, and has completed the present invention.

すなわち、本発明は、以下の構成からなる。
(1)下記プロセスAないしCを含み、プロセスBの一次焼成およびプロセスCの二次焼成がカプセルフリー熱間静水圧プレスにより行なわれることを特徴とする酸化亜鉛系焼結体の製造方法。
プロセスA:実質的に、亜鉛と、チタンと、酸素とからなり、チタンの割合が全金属原子数に対して0.2%以上10%以下である原料粉末を、成形して成型体を得る工程
プロセスB:前記プロセスAで得られた成型体を、圧力1〜30MPaの不活性ガス雰囲気下、焼成温度900〜1200℃で一次焼成を行い、相対密度が92%以上98%未満で、かつ欠陥が閉気孔である一次焼結体を得る工程
プロセスC:前記プロセスBで得られた一次焼結体を、圧力90MPa以上の不活性ガス雰囲気下、800〜1400℃で二次焼成を行い、相対密度が98%以上である酸化亜鉛系焼結体を得る工程
(2)下記プロセスDないしFを含み、プロセスEの一次焼成およびプロセスFの二次焼成がカプセルフリー熱間静水圧プレスにより行なわれることを特徴とする酸化亜鉛系焼結体の製造方法。
プロセスD:実質的に、ガリウムおよびアルミニウムから選ばれる少なくとも一方、亜鉛、チタン並びに酸素からなり、チタンの割合が全金属原子数に対して0.2%以上10%以下であり、ガリウムまたはアルミニウムの原子数の割合が全金属原子数に対して0.1%以上6%以下である原料粉末を成形して成型体を得る工程
プロセスE:前記プロセスDで得られた成型体を、圧力1〜30MPaの不活性ガス雰囲気下、焼成温度900〜1200℃で一次焼成を行い、相対密度が92%以上98%未満であり、かつ欠陥が閉気孔である一次焼結体を得る工程
プロセスF:前記プロセスEで得られた一次焼結体を、圧力90MPa以上の不活性ガス雰囲気下、800〜1400℃で二次焼成を行い、相対密度が98%以上である酸化亜鉛系焼結体を得る工程
(3)前記原料粉末は、酸化チタン粉と、酸化亜鉛粉との混合粉を含む前記(1)に記載の酸化亜鉛系焼結体の製造方法。
(4)前記原料粉末は、酸化ガリウム粉および酸化アルミニウム粉から選ばれる少なくとも一方と、酸化チタン粉と、酸化亜鉛粉との混合粉を含む前記(2)に記載の酸化亜鉛系焼結体の製造方法。
(5)前記酸化チタン粉が、一般式:TiO2-X(X=0.1〜1)で表される低原子価酸化チタンの粉末である前記(3)または(4)に記載の酸化亜鉛系焼結体の製造方法。
(6)スパッタリング法、イオンプレーティング法、パルスレーザーデポジション(PLD)法またはエレクトロンビーム(EB)蒸着法による成膜に用いられるターゲットであって、前記(1)〜(5)のいずれかに記載の製造方法により得られた酸化亜鉛系焼結体を加工してなることを特徴とするターゲット。
That is, this invention consists of the following structures.
(1) A method for producing a zinc oxide-based sintered body comprising the following processes A to C, wherein the primary firing of process B and the secondary firing of process C are performed by capsule-free hot isostatic pressing.
Process A: A raw material powder substantially consisting of zinc, titanium, and oxygen and having a titanium ratio of 0.2% to 10% with respect to the total number of metal atoms is molded to obtain a molded body. Step Process B: The molded body obtained in Process A is subjected to primary firing at a firing temperature of 900 to 1200 ° C. in an inert gas atmosphere at a pressure of 1 to 30 MPa, and the relative density is 92% or more and less than 98%, and Step of obtaining a primary sintered body in which the defects are closed pores Process C: The primary sintered body obtained in Process B is subjected to secondary firing at 800 to 1400 ° C. in an inert gas atmosphere at a pressure of 90 MPa or more, Step of obtaining a zinc oxide sintered body having a relative density of 98% or more (2) Including the following processes D to F, primary firing of process E and secondary firing of process F are performed by capsule-free hot isostatic pressing Method for producing a zinc oxide-based sintered body, characterized in Rukoto.
Process D: substantially consisting of at least one selected from gallium and aluminum, zinc, titanium, and oxygen, the ratio of titanium being 0.2% or more and 10% or less with respect to the total number of metal atoms, Step of obtaining a molded body by molding a raw material powder having a ratio of the number of atoms of 0.1% or more and 6% or less with respect to the total number of metal atoms. Process E: Process of performing primary firing at a firing temperature of 900 to 1200 ° C. in an inert gas atmosphere of 30 MPa to obtain a primary sintered body having a relative density of 92% or more and less than 98% and having defects having closed pores Process F: The primary sintered body obtained in Process E is subjected to secondary firing at 800 to 1400 ° C. in an inert gas atmosphere at a pressure of 90 MPa or higher, and zinc oxide having a relative density of 98% or higher. Obtaining a sintered body (3) the raw material powder, titanium oxide powder, method for producing a zinc oxide-based sintered body according to (1) comprising a mixed powder of zinc oxide powder.
(4) The raw material powder of the zinc oxide-based sintered body according to (2), including a mixed powder of at least one selected from gallium oxide powder and aluminum oxide powder, titanium oxide powder, and zinc oxide powder. Production method.
(5) The oxidation according to (3) or (4), wherein the titanium oxide powder is a powder of low-valent titanium oxide represented by the general formula: TiO 2-X (X = 0.1-1). A method for producing a zinc-based sintered body.
(6) A target used for film formation by a sputtering method, an ion plating method, a pulse laser deposition (PLD) method, or an electron beam (EB) vapor deposition method, and any one of the above (1) to (5) A target obtained by processing a zinc oxide-based sintered body obtained by the production method described above.

本発明によれば、亜鉛の揮散及び焼結体の反りが抑制され、目的組成からほとんどずれることなく、高密度の酸化亜鉛系焼結体を作製できる。この酸化亜鉛系焼結体を加工してなるターゲットを用いることにより、スパッタリング法、イオンプレーティング法、PLD法またはEB蒸着法などによって、成膜中にほとんど異常放電が発生することなく、安定的に再現性よく優れた導電性を発現する酸化亜鉛系透明導電膜を形成することができる。しかも、このようにして形成された透明導電膜は、希少金属であり毒性を有するインジウムを必須としないという利点も有するので、工業的に極めて有用である。   According to the present invention, volatilization of zinc and warpage of the sintered body are suppressed, and a high-density zinc oxide-based sintered body can be produced without substantially deviating from the target composition. By using a target obtained by processing this zinc oxide-based sintered body, it is stable with almost no abnormal discharge during film formation by sputtering, ion plating, PLD or EB vapor deposition. It is possible to form a zinc oxide-based transparent conductive film that exhibits excellent conductivity with good reproducibility. In addition, the transparent conductive film formed in this manner is extremely useful industrially because it has the advantage that it does not require toxic indium, which is a rare metal.

(酸化亜鉛系焼結体の製造方法)
本発明の製造方法(以下、製造方法(a)という場合がある)は、カプセルフリー熱間静水圧プレスにより酸化亜鉛系焼結体を製造する方法であって、実質的に、亜鉛と、チタンと、酸素とからなり、チタンを所定割合で含有する原料粉末(以下、原料粉末(a)という場合がある)を成形して成型体を得、HIP処理装置内にこの成型体を設置し、成型体の欠陥が閉気孔となる焼成温度、酸化亜鉛の揮散を抑制できるレベルの比較的低圧(通常のHIPの圧力に較べれば、比較的低圧)の不活性ガス(Ar、窒素等)雰囲気下で開気孔がなくなるレベルまで一次焼成することにより、閉気孔からなる相対密度92%以上98%未満(通常92%〜95%)の一次焼結体を作製し、この一次焼結体をHIP処理装置内に導入し、不活性ガスからなる高圧ガス雰囲気下にて二次焼結することで、相対密度98%以上の高密度の酸化亜鉛系焼結体を作製する方法である。この方法であれば、金属製容器(カプセル)を用いなくても、亜鉛の揮散を抑制して組成むらがほとんどない、高密度の焼結体を作製できる。なお、低圧焼結(一次焼結)と高圧焼結(二次焼結)とは同一の装置で行ってもよいし、別の装置にてそれぞれ実施しても構わない。
(Method for producing zinc oxide-based sintered body)
The production method of the present invention (hereinafter sometimes referred to as production method (a)) is a method of producing a zinc oxide-based sintered body by capsule-free hot isostatic pressing, and substantially comprises zinc and titanium. And forming a raw material powder (hereinafter sometimes referred to as a raw material powder (a)) containing oxygen in a predetermined ratio, and forming a molded body, and placing the molded body in the HIP processing apparatus, In the atmosphere of inert gas (Ar, nitrogen, etc.) at a firing pressure at which defects in the molded body become closed pores and at a relatively low pressure (relatively low pressure compared to normal HIP pressure) at a level that can suppress the volatilization of zinc oxide. To produce a primary sintered body having a relative density of 92% or more and less than 98% (usually 92% to 95%) consisting of closed pores, and subjecting this primary sintered body to HIP treatment. Introduced into the equipment and inert gas By secondary sintering under high pressure gas atmosphere comprising, a method of making a zinc oxide-based sintered body relative density of 98% or more of high density. This method can produce a high-density sintered body that suppresses the volatilization of zinc and has almost no composition unevenness without using a metal container (capsule). The low pressure sintering (primary sintering) and the high pressure sintering (secondary sintering) may be performed by the same apparatus or may be performed by different apparatuses.

本発明におけるカプセルフリー熱間静水圧プレスとは、原料粉末を充填する金属製容器などのカプセルを用いずに熱間静水圧プレス(HIP)を行なうことをいう。カプセルフリー熱間静水圧プレスでは金属製の容器を使用しないので、カプセルフリー熱間静水圧プレスにより酸化亜鉛系焼結体を製造すれば、カプセル熱間静水圧プレスにより酸化亜鉛系焼結体を製造する場合よりも製造コストを掛けずに酸化亜鉛系焼結体を製造することができる。   The capsule-free hot isostatic pressing in the present invention refers to performing hot isostatic pressing (HIP) without using a capsule such as a metal container filled with raw material powder. Since the capsule-free hot isostatic press does not use a metal container, if a zinc oxide-based sintered body is produced by a capsule-free hot isostatic press, the zinc oxide-based sintered body is produced by a capsule hot isostatic press. A zinc oxide-based sintered body can be manufactured with less manufacturing cost than in the case of manufacturing.

原料粉末(a)は、実質的に亜鉛、チタンおよび酸素からなる。ここで、「実質的」とは、原料粉末(a)を構成する全原子の99%以上が亜鉛と、チタンと、酸素とからなることを意味する。   The raw material powder (a) substantially consists of zinc, titanium and oxygen. Here, “substantially” means that 99% or more of all atoms constituting the raw material powder (a) are composed of zinc, titanium, and oxygen.

さらに、原料粉末(a)中のチタン原子数の割合は、全金属原子数に対して0.2%以上10%以下であるのが好ましく、より好ましくは0.5〜9%であり、さらに好ましくは0.8〜8%である。
原料粉末(a)中のチタン原子数の割合が上記範囲内となるように酸化チタン粉が混合されると、カプセルフリーHIP法により、亜鉛を揮発することなく、チタン原子数の割合がこの範囲内である組成の酸化亜鉛系焼結体を製造することができる。この酸化亜鉛系焼結体におけるチタンの含有量が上述の範囲で上限に近い場合(すなわち、10%に近い場合)、得られる酸化亜鉛系透明導電膜は、優れた化学的耐久性を有するが、チタンの含有量が上述の範囲で下限に近い場合(すなわち、0.2%に近い場合)よりも、屈折率が若干高くなり、近赤外域の高透過性は維持できるものの近紫外域および可視光域の透過性が若干低下する傾向にある。用途によっては全く問題ないが、例えば、化学的耐久性よりも透過率が要求されるCIS/CIGS太陽電池における透明電極などの太陽電池の部材に用いる場合、太陽電池の変換効率がチタンの含有量が下限に近い場合に比べて少し低下する傾向にある。一方、チタンの含有量が下限に近い場合、チタンの含有量が上限に近い場合よりも、化学的耐久性が問題のない範囲で若干低下するものの、得られる酸化亜鉛系透明導電膜の屈折率が若干低くなり、近赤外域の高透過性を維持しながら、近紫外域および可視光域の透過性も向上させることができる。
このように、化学的耐久性が要求される用途や透過率が要求される用途によって、チタンの含有量を増減させることができる。
特にチタン原子数の割合が、全金属原子数に対して、2%超10%以下であれば、この酸化亜鉛系焼結体を用いて、耐湿性、耐熱性など化学的耐久性、導電性などに優れた膜を形成することができる。
ここで、全金属原子数とは、原料粉末に含まれる金属原子の総数であり、亜鉛が全金属原子数の約90〜99.8%を占める。そのため、原料粉末において、亜鉛が主成分となる。
Furthermore, the ratio of the number of titanium atoms in the raw material powder (a) is preferably 0.2% or more and 10% or less with respect to the total number of metal atoms, more preferably 0.5 to 9%, Preferably it is 0.8 to 8%.
When the titanium oxide powder is mixed so that the ratio of the number of titanium atoms in the raw material powder (a) is within the above range, the ratio of the number of titanium atoms is within this range without volatilizing zinc by the capsule-free HIP method. A zinc oxide-based sintered body having a composition within the above range can be produced. When the content of titanium in the zinc oxide-based sintered body is close to the upper limit in the above range (that is, close to 10%), the resulting zinc oxide-based transparent conductive film has excellent chemical durability. The refractive index is slightly higher than the case where the titanium content is close to the lower limit in the above range (that is, close to 0.2%), and the high transmittance in the near infrared region can be maintained, but the near ultraviolet region and There is a tendency for the transmittance in the visible light region to slightly decrease. There is no problem at all depending on the application, but for example, when used for a member of a solar cell such as a transparent electrode in a CIS / CIGS solar cell that requires a transmittance rather than chemical durability, the conversion efficiency of the solar cell is the content of titanium. Tends to be slightly lower than when close to the lower limit. On the other hand, when the titanium content is close to the lower limit, the refractive index of the zinc oxide-based transparent conductive film obtained is slightly lower than the case where the titanium content is close to the upper limit in a range where there is no problem. However, the transmittance in the near ultraviolet region and the visible light region can be improved while maintaining high transmittance in the near infrared region.
In this way, the titanium content can be increased or decreased depending on the use requiring chemical durability or the use requiring transmittance.
In particular, if the ratio of the number of titanium atoms is more than 2% and not more than 10% with respect to the total number of metal atoms, this zinc oxide-based sintered body can be used for chemical durability such as moisture resistance and heat resistance, and conductivity. An excellent film can be formed.
Here, the total number of metal atoms is the total number of metal atoms contained in the raw material powder, and zinc occupies about 90 to 99.8% of the total number of metal atoms. Therefore, zinc is the main component in the raw material powder.

このような原料粉末(a)を構成する粉末としては、例えば、(A1)酸化チタン粉と、酸化亜鉛粉もしくは水酸化亜鉛粉との混合粉および(B1)チタン酸亜鉛化合物粉から選ばれる少なくとも一方を含む粉末などが挙げられる。   Examples of the powder constituting the raw material powder (a) include at least selected from (A1) a mixed powder of titanium oxide powder and zinc oxide powder or zinc hydroxide powder and (B1) zinc titanate compound powder. Examples thereof include powder containing one.

酸化亜鉛粉としては、通常、ウルツ鉱構造のZnO等の粉末が用いられ、さらにこのZnOを予め還元雰囲気で焼成して酸素欠損を含有させたものを用いてもよい。なお、酸化亜鉛粉としては、純度が99重量%以上であるものを用いるのがよい。なお、酸化亜鉛粉は焼成履歴があってもよい。   As the zinc oxide powder, a powder of ZnO or the like having a wurtzite structure is usually used, and a powder obtained by firing this ZnO in advance in a reducing atmosphere and containing oxygen deficiency may be used. In addition, as a zinc oxide powder, it is good to use what has a purity of 99 weight% or more. The zinc oxide powder may have a firing history.

酸化亜鉛粉の平均粒径は、それぞれ0.02μm以上5μm以下であることが好ましい。また、そのBET比表面積は、特に限定されない。
また、一次焼結する際、酸化亜鉛粉の粒径が小さいと、比表面積が大きくなり、表面が活性となるので、粒径が大きい酸化亜鉛粉の一次焼結よりも低い焼結温度で一次焼結できるため、低い焼成温度にて一次焼結させる場合は、酸化亜鉛粉の平均粒径が小さい方が好ましい。
The average particle diameter of the zinc oxide powder is preferably 0.02 μm or more and 5 μm or less, respectively. Further, the BET specific surface area is not particularly limited.
In addition, when the particle size of the zinc oxide powder is small during the primary sintering, the specific surface area becomes large and the surface becomes active, so the primary sintering is performed at a lower sintering temperature than the primary sintering of the zinc oxide powder having a large particle size. Since sintering is possible, when the primary sintering is performed at a low firing temperature, it is preferable that the average particle diameter of the zinc oxide powder is small.

水酸化亜鉛粉としては、アモルファスのZn(OH)2粉、結晶構造を有するZn(OH)2粉などが挙げられる。 Examples of the zinc hydroxide powder include amorphous Zn (OH) 2 powder and Zn (OH) 2 powder having a crystal structure.

ドーパントである酸化チタン粉としては、TiO(II)、Ti23(III)という整数の原子価を有するものばかりでなく、Ti35、Ti47、Ti611、Ti59、Ti815等も含む、一般式 TiO2-X(X=0.1〜1)で表される低原子価酸化チタン粉末等が挙げられ、なかでも、酸化亜鉛系焼結体は、2価のチタンからなる酸化チタン(TiO)、3価のチタンからなる酸化チタン(Ti23)をチタン源として得られたものであることが好ましく、その点で、酸化チタン粉としてはTiOまたはTi23の粉末を用いるのが好ましい。ここで、Ti23をチタン源とすることが好ましい理由は、Ti23の結晶構造は三方晶であり、これと混合する酸化亜鉛は六方晶のウルツ鉱であるため、結晶構造の対称性が一致し、固相焼結する際に置換固溶しやすいからである。なお、酸化チタン粉としては、純度が99重量%以上であるものを用いるのがよい。
この低原子価酸化チタンの構造は、X線回折装置(X‐Ray Diffraction、XRD)、X線光電子分光装置(X‐ray Photoelectron Spectroscopy、XPS)などの機器分析の結果によって確認することができる。
Titanium oxide powder as a dopant includes not only those having an integer valence of TiO (II) and Ti 2 O 3 (III), but also Ti 3 O 5 , Ti 4 O 7 , Ti 6 O 11 , Ti 5. Examples include low-valent titanium oxide powders represented by the general formula TiO 2-X (X = 0.1-1) including O 9 , Ti 8 O 15 and the like. Is preferably obtained by using titanium oxide (TiO) composed of divalent titanium and titanium oxide (Ti 2 O 3 ) composed of trivalent titanium as a titanium source. Is preferably TiO or Ti 2 O 3 powder. Here, the reason it is preferable that the Ti 2 O 3 and titanium source, the crystal structure of the Ti 2 O 3 is trigonal, because zinc oxide is mixed with this is wurtzite hexagonal, the crystal structure This is because the symmetries coincide with each other and the solid solution is easily dissolved during solid phase sintering. In addition, it is good to use what has a purity of 99 weight% or more as titanium oxide powder.
The structure of this low-valence titanium oxide can be confirmed by the results of instrumental analysis such as an X-ray diffractometer (XRD) and an X-ray photoelectron spectrometer (XPS).

チタン酸亜鉛化合物粉としては、ZnTiO3、Zn2TiO4等の粉末を用いることができ、特に、Zn2TiO4の粉末を用いるのが好ましい。 As the zinc titanate compound powder, powders of ZnTiO 3 , Zn 2 TiO 4 and the like can be used, and it is particularly preferable to use Zn 2 TiO 4 powder.

原料粉末(a)として各々用いる化合物(粉)の平均粒径は、それぞれ5μm以下であることが好ましい。   The average particle size of each compound (powder) used as the raw material powder (a) is preferably 5 μm or less.

酸化亜鉛系焼結体は、上述の酸化チタン粉と酸化亜鉛粉とを少なくとも含有する原料粉末を一軸プレス成形あるいはCIP成形などを行い成型体とし、この成型体をHIP装置内に設置した後、一次焼結および二次焼結の2段階プロセスにより製造される。   The zinc oxide-based sintered body is formed by performing uniaxial press molding or CIP molding on the raw material powder containing at least the above-described titanium oxide powder and zinc oxide powder, and after this molded body is installed in the HIP apparatus, Manufactured by a two-step process of primary and secondary sintering.

本発明における成型体は、原料粉末を一軸プレスや冷間静水圧プレス(CIP)などの成形法により作製される。
原料粉末を成形する際のプレス圧力は、一軸プレスの場合は、少なくとも10MPa以上50MPa未満であり、より好ましくは20MPa以上することが好ましい。10MPa未満であると、安定なプレス成型体ができないおそれがある。50MPa以上であると、成型体がもろくわれやすくなる。
冷間静水圧プレス(CIP)の場合は、少なくとも50MPa以上300MPa未満であり、より好ましくは100MPa以上することが好ましい。50MPa未満であると、安定なプレス成型体ができないおそれがある。300MPa以上であると、成型体がもろくわれやすくなる。
成型体の形状や寸法は、特に限定されず、例えば、円筒状、直方体などであればよい。
The molded body in the present invention is produced by forming a raw material powder by a molding method such as uniaxial pressing or cold isostatic pressing (CIP).
In the case of uniaxial pressing, the pressing pressure at the time of forming the raw material powder is at least 10 MPa or more and less than 50 MPa, more preferably 20 MPa or more. If it is less than 10 MPa, there is a possibility that a stable press-molded product cannot be produced. When it is 50 MPa or more, the molded body is fragile.
In the case of cold isostatic pressing (CIP), it is at least 50 MPa or more and less than 300 MPa, more preferably 100 MPa or more. If it is less than 50 MPa, there is a possibility that a stable press-molded product cannot be produced. When the pressure is 300 MPa or more, the molded body is fragile.
The shape and dimensions of the molded body are not particularly limited, and may be, for example, a cylindrical shape or a rectangular parallelepiped.

得られる成型体の密度をより均一化するなどのために、原料粉末を成形する前に、原料粉末を造粒して造粒物とし、この造粒物を成形して成型体としてもよい。
原料粉末を造粒物とする方法としては、特に限定されず、例えば、原料粉末と水系溶媒とを混合し、得られたスラリーを充分に湿式混合により混合した後、固液分離・乾燥・造粒する湿式造粒;原料粉末に強制的に外力や熱を加えて顆粒化する乾式造粒などが挙げられる。
In order to make the density of the obtained molded body more uniform, before forming the raw material powder, the raw material powder may be granulated into a granulated product, and this granulated product may be molded into a molded body.
The method of making the raw material powder into a granulated product is not particularly limited. For example, after mixing the raw material powder and an aqueous solvent and sufficiently mixing the resulting slurry by wet mixing, solid-liquid separation, drying, Wet granulation; granulation by forcibly applying external force or heat to the raw material powder.

湿式混合は、例えば、硬質ZrO2ボール等を用いた湿式ボールミルや振動ミルにより行なえばよく、湿式ボールミルや振動ミルを用いた場合の混合時間は、12〜78時間程度が好ましい。なお、原料粉末をそのまま乾式混合してもよいが、湿式混合の方がより好ましい。固液分離・乾燥・造粒については、それぞれ公知の方法を採用すればよい。
水系溶媒は、水を主成分とし、水単独であってもよいし、水とメタノール、エタノール等のアルコールなどとの混合物であってもよい。
なお、造粒物を得る際には、乾燥後、公知の方法で造粒すればよいが、その場合、原料粉末とともにバインダーも混合することが好ましい。バインダーとして、例えば、ポリビニルアルコール、酢酸ビニル、エチルセルロース等を用いることができる。
なお、造粒物を得るためにバインダーを用いた際は、低圧HIPにて一次焼結する前に脱脂により脱バインダー処理を行う。
The wet mixing may be performed by, for example, a wet ball mill using a hard ZrO 2 ball or a vibration mill, and the mixing time when using the wet ball mill or the vibration mill is preferably about 12 to 78 hours. In addition, although raw material powder may be dry-mixed as it is, wet mixing is more preferable. For solid-liquid separation / drying / granulation, known methods may be employed.
The aqueous solvent contains water as a main component and may be water alone, or may be a mixture of water and alcohol such as methanol or ethanol.
In addition, when obtaining a granulated material, what is necessary is just to granulate by a well-known method after drying, In that case, it is preferable to mix a binder with raw material powder. As the binder, for example, polyvinyl alcohol, vinyl acetate, ethyl cellulose and the like can be used.
In addition, when using a binder in order to obtain a granulated material, a debinding process is performed by degreasing before primary sintering with low-pressure HIP.

一次焼結体を作製する条件は、1MPa〜30MPa、好ましくは3MPa〜30MPa、より好ましくは4MPa〜20MPaの不活性ガス雰囲気下で焼成温度は900℃〜1200℃、好ましくは950℃〜1150℃、より好ましくは1000℃〜1100℃である。この条件であれば、亜鉛の揮散及び焼結体の反りを抑制して開気孔の焼結も常圧と同等レベルにて進捗させることができ、開気孔がなく、欠陥が閉気孔である状態で、相対密度が92%以上98%未満(通常、92%〜95%)とすることができ、この条件での焼結は、二次焼結する前の一次焼結に最適である。また、圧力が上記範囲内の不活性ガス雰囲気下であっても焼成温度が1200℃を超えると、亜鉛が揮散し始め、焼成温度が900℃未満であると、焼結が十分に進まず、一次焼結体の開気孔はすべてなくならず、得られる一次焼結体の相対密度は92%未満となるおそれがある。
また、一次焼結体を作製する条件の保持時間は1〜48時間であるのが好ましい。
なお、一般に、900℃以上で圧力が0.1013MPa(常圧)以下の不活性雰囲気もしくは還元雰囲気などの非酸化性雰囲気中では、酸化亜鉛が金属亜鉛に還元され、金属亜鉛の形態にて揮散してしまい、焼結体も亜鉛の揮散により反ってしまう。一方、1MPa〜30MPaの非酸化性雰囲気にすることにより、900℃〜1200℃の範囲内であれば亜鉛の揮散を抑制及び焼結体の反りも抑制できる。
このようにして得られた一次焼結体は、後述する二次焼結が施されることにより、亜鉛の揮散が抑制され、相対密度が98%以上である酸化亜鉛系焼結体となる。
不活性雰囲気としては、例えば、窒素、アルゴン、ヘリウム、真空、二酸化炭素などが挙げられる。
還元性雰囲気としては、例えば、水素、一酸化炭素、硫化水素、二酸化硫黄などが挙げられる。
The conditions for producing the primary sintered body are 1 MPa to 30 MPa, preferably 3 MPa to 30 MPa, more preferably 4 MPa to 20 MPa in an inert gas atmosphere, and the firing temperature is 900 ° C. to 1200 ° C., preferably 950 ° C. to 1150 ° C. More preferably, it is 1000 degreeC-1100 degreeC. Under these conditions, the zinc volatilization and the warping of the sintered body can be suppressed, and the sintering of the open pores can proceed at the same level as the normal pressure, there is no open pores, and the defect is a closed pore. Thus, the relative density can be 92% or more and less than 98% (usually 92% to 95%). Sintering under these conditions is optimal for primary sintering before secondary sintering. Further, even when the pressure is in an inert gas atmosphere within the above range, if the firing temperature exceeds 1200 ° C, zinc begins to evaporate, and if the firing temperature is less than 900 ° C, sintering does not proceed sufficiently, All the open pores of the primary sintered body do not disappear, and the relative density of the obtained primary sintered body may be less than 92%.
Moreover, it is preferable that the holding | maintenance time of the conditions which produce a primary sintered compact is 1-48 hours.
In general, in a non-oxidizing atmosphere such as an inert atmosphere or a reducing atmosphere at 900 ° C. or higher and a pressure of 0.1013 MPa (normal pressure) or lower, zinc oxide is reduced to metallic zinc and volatilized in the form of metallic zinc. Therefore, the sintered body also warps due to the volatilization of zinc. On the other hand, by using a non-oxidizing atmosphere of 1 MPa to 30 MPa, the volatilization of zinc and the warpage of the sintered body can be suppressed if they are within the range of 900 ° C to 1200 ° C.
The primary sintered body thus obtained is subjected to secondary sintering, which will be described later, thereby suppressing zinc volatilization and becoming a zinc oxide-based sintered body having a relative density of 98% or more.
Examples of the inert atmosphere include nitrogen, argon, helium, vacuum, carbon dioxide, and the like.
Examples of the reducing atmosphere include hydrogen, carbon monoxide, hydrogen sulfide, sulfur dioxide, and the like.

一次焼結体は、相対密度が92%以上98%未満で、かつ欠陥はすべて閉気孔のみである。相対密度が92%以上98%未満であるので、二次焼結により、相対密度が98%以上の酸化亜鉛系焼結体とすることができる。   The primary sintered body has a relative density of 92% or more and less than 98%, and all defects are only closed pores. Since the relative density is 92% or more and less than 98%, a zinc oxide-based sintered body having a relative density of 98% or more can be obtained by secondary sintering.

ここで、相対密度とは、焼結体の原料である各金属酸化物の単体密度に各金属酸化物粉末の混合重量比をかけ、和をとった理論密度に対する、実際に得られた焼結体の密度の割合であり、例えば、焼結体が酸化亜鉛および酸化チタンからなる場合は、下記式から求められる。
相対密度=100×[(焼結体の密度)/(理論密度)]
理論密度=(酸化亜鉛の単体密度×混合重量比+酸化チタンの単体密度×混合重量比)
なお、焼結体の密度は、実施例に記載の評価方法によって測定することができる。
Here, the relative density is obtained by multiplying the unit density of each metal oxide, which is the raw material of the sintered body, by the mixing weight ratio of each metal oxide powder, and the actual density obtained by taking the sum of the theoretical density. For example, when the sintered body is made of zinc oxide and titanium oxide, the density is obtained from the following formula.
Relative density = 100 × [(density of sintered body) / (theoretical density)]
Theoretical density = (Zinc oxide simple substance density x mixing weight ratio + Titanium oxide simple substance density x mixing weight ratio)
In addition, the density of a sintered compact can be measured with the evaluation method as described in an Example.

本発明では、一次焼結体の欠陥はすべて閉気孔のみであることが重要である。これは下記理由による。
一般に、焼結体の欠陥は、外界と通じている開気孔、外界と通じていない閉気孔の2種類に分類される。開気孔を有する焼結体は、高い圧力がかけられても開気孔をつぶすような体積収縮が進行しにくい。そのため、高圧高温でカプセルフリーHIP焼結を実施しても、開気孔をつぶすような焼結は進行しにくく、焼結体を高密度化しにくい。これに対して、閉気孔のみからなる焼結体は、高い圧力がかけられると、閉気孔をつぶすなどして体積収縮しやすい。そのため、高圧高温でカプセルフリーHIP焼結を行えば、閉気孔をつぶすような焼結を進行させて、焼結体を高密度化することができる。このため、高圧高温でカプセルフリーHIP焼結する前に、あらかじめ成型体を低圧高温下で時間を掛けて焼結させて、すなわち成型体の開気孔をつぶすような焼結を進行させて、得られる一次焼結体の欠陥をすべて閉気孔のみとする。
なお、通常の常圧焼結では、試料の開気孔、閉気孔とも焼結が進行し、焼結密度が向上するに従って、反応してつぶれる方向にある。
In the present invention, it is important that all defects of the primary sintered body are only closed pores. This is due to the following reasons.
In general, defects in a sintered body are classified into two types: open pores that communicate with the outside world and closed pores that do not communicate with the outside world. In a sintered body having open pores, volume shrinkage that crushes open pores is difficult to proceed even when a high pressure is applied. For this reason, even when capsule-free HIP sintering is performed at high pressure and high temperature, sintering that crushes open pores is difficult to proceed, and it is difficult to increase the density of the sintered body. On the other hand, when a high pressure is applied to a sintered body consisting only of closed pores, the sintered body is likely to shrink in volume by crushing the closed pores. Therefore, if capsule-free HIP sintering is performed at a high pressure and a high temperature, the sintering can be progressed to crush closed pores, and the sintered body can be densified. For this reason, before the capsule-free HIP sintering at high pressure and high temperature, the molded body is preliminarily sintered at low pressure and high temperature for a long time, that is, the sintering is performed so as to crush the open pores of the molded body. All the defects of the primary sintered body to be made are only closed pores.
In normal atmospheric pressure sintering, both the open pores and closed pores of the sample are sintered, and the reaction is crushed as the sintered density increases.

二次焼結は、高温高圧下の不活性ガスを圧力媒体として一次焼結体自体を焼結する。
この時のHIP処理条件は、圧力90MPa以上の不活性ガス雰囲気下、焼成温度800〜1400℃の条件で通常1時間以上保持して行う。HIP処理条件がこの条件であれば、一次焼結体の閉気孔を焼結させて高密度化させることができる。二次焼結における圧力は90MPa以上と高圧なので、亜鉛の揮散は抑制され組成ずれもほとんどおこることはない。保持時間は、通常1時間以上であるが、これに限定されず、得られる酸化亜鉛系焼結体の相対密度が98%以上となるようにすればよい。圧力媒体としての不活性ガスとしては、窒素、アルゴン等を用いることができる。
In the secondary sintering, the primary sintered body itself is sintered using an inert gas under high temperature and high pressure as a pressure medium.
The HIP treatment conditions at this time are usually carried out for 1 hour or longer under an inert gas atmosphere with a pressure of 90 MPa or higher under a firing temperature of 800 to 1400 ° C. If the HIP processing condition is this condition, the closed pores of the primary sintered body can be sintered and densified. Since the pressure in the secondary sintering is as high as 90 MPa or more, volatilization of zinc is suppressed and compositional deviation hardly occurs. The holding time is usually 1 hour or longer, but is not limited to this, and the relative density of the obtained zinc oxide-based sintered body may be 98% or higher. Nitrogen, argon, etc. can be used as the inert gas as the pressure medium.

(他の酸化亜鉛系焼結体の製造方法)
本発明の他の酸化亜鉛系焼結体の製造方法(以下、製造方法(b)という場合がある)は、実質的に、ガリウムおよびアルミニウムから選ばれる少なくとも一方、亜鉛、チタン並びに酸素からなり、チタンを所定の割合で含有し、かつガリウムまたはアルミニウムを所定の割合で含有する原料粉末(以下、原料粉末(b)という場合がある)を、上述した製造方法(a)における原料粉末に代えて用いる他は、上述した製造方法(a)と同様にして、酸化亜鉛系焼結体を製造する方法である。
(Manufacturing method of other zinc oxide sintered bodies)
The method for producing another zinc oxide-based sintered body of the present invention (hereinafter sometimes referred to as production method (b)) substantially consists of at least one selected from gallium and aluminum, zinc, titanium and oxygen, A raw material powder containing titanium in a predetermined ratio and containing gallium or aluminum in a predetermined ratio (hereinafter sometimes referred to as a raw material powder (b)) is replaced with the raw material powder in the manufacturing method (a) described above. The other method is a method for producing a zinc oxide-based sintered body in the same manner as in the production method (a) described above.

原料粉末(b)は、実質的に、ガリウムおよびアルミニウムから選ばれる少なくとも一方、亜鉛、チタン並び酸素からなる。ここで、「実質的」とは、原料粉末(b)を構成する全原子の99%以上が、ガリウムおよびアルミニウムから選ばれる少なくとも一方と、亜鉛と、チタンと、酸素とからなることを意味する。
原料粉末(b)は、第二ドーパントとしてガリウムおよびアルミニウムから選ばれる少なくとも一方を含有するので、得られる酸化亜鉛系焼結体を用いて形成される酸化亜鉛系透明導電膜をより低抵抗化することができる。
The raw material powder (b) is substantially composed of at least one selected from gallium and aluminum, zinc, titanium and oxygen. Here, “substantially” means that 99% or more of all atoms constituting the raw material powder (b) are composed of at least one selected from gallium and aluminum, zinc, titanium, and oxygen. .
Since the raw material powder (b) contains at least one selected from gallium and aluminum as the second dopant, the resistance of the zinc oxide-based transparent conductive film formed using the obtained zinc oxide-based sintered body is further reduced. be able to.

原料粉末(b)中のチタン原子数の割合は、全金属原子数に対して0.2%以上10%以下であるのが好ましく、より好ましくは0.5〜9%であり、さらに好ましくは0.8〜8%である。
原料粉末(b)中のチタン原子数の割合が上記範囲内となるように酸化チタン粉が混合されると、カプセルフリーHIP法により、亜鉛を揮発することなく、チタン原子数の割合がこの範囲内である組成の酸化亜鉛系焼結体を製造することができる。チタン原子数の割合は、原料粉末(a)と同様に、化学的耐久性が要求される用途や透過率が要求される用途によって、チタンの含有量を増減させることができる。
特にチタン原子数の割合が、全金属原子数に対して、2%超10%以下であれば、この酸化亜鉛系焼結体を用いて、耐湿性、耐熱性など化学的耐久性、導電性などに優れた膜を形成することができる。
ここで、全金属原子数とは、原料粉末(b)に含まれる金属原子の総数であり、亜鉛が全金属原子数の約84〜99.7%を占める。そのため、原料粉末(b)において、亜鉛が主成分となる。
The ratio of the number of titanium atoms in the raw material powder (b) is preferably 0.2% or more and 10% or less, more preferably 0.5 to 9%, and still more preferably with respect to the total number of metal atoms. 0.8 to 8%.
When the titanium oxide powder is mixed so that the ratio of the number of titanium atoms in the raw material powder (b) is within the above range, the ratio of the number of titanium atoms is within this range without volatilizing zinc by the capsule-free HIP method. A zinc oxide-based sintered body having a composition within the above range can be produced. The ratio of the number of titanium atoms can increase or decrease the titanium content depending on the use requiring chemical durability and the use requiring transmittance, as in the case of the raw material powder (a).
In particular, if the ratio of the number of titanium atoms is more than 2% and not more than 10% with respect to the total number of metal atoms, this zinc oxide-based sintered body can be used for chemical durability such as moisture resistance and heat resistance, and conductivity. An excellent film can be formed.
Here, the total number of metal atoms is the total number of metal atoms contained in the raw material powder (b), and zinc accounts for about 84 to 99.7% of the total number of metal atoms. Therefore, zinc is the main component in the raw material powder (b).

原料粉末(b)中のガリウムまたはアルミニウムの原子数の割合は、全金属原子数に対して0.1%以上6%以下、好ましくは0.5%以上6%以下である。ガリウムまたはアルミニウムの原子数の割合が0.1%未満であると、導電性の向上効果が不十分となるおそれがある。一方、6%を超えると、ガリウムまたはアルミニウムが亜鉛サイトに置換固溶しきれなくなり、結晶粒界に析出し、導電性の低下、透過率の低下を招くおそれがある。
原料粉末(b)にはガリウムおよびアルミニウムが含まれていてもよく、係る場合、原料粉末(b)中のガリウムおよびアルミニウムの原子数の割合は、全金属原子数に対して0.1%以上6%以下であればよい。
The ratio of the number of atoms of gallium or aluminum in the raw material powder (b) is 0.1% or more and 6% or less, preferably 0.5% or more and 6% or less with respect to the total number of metal atoms. If the ratio of the number of atoms of gallium or aluminum is less than 0.1%, the conductivity improving effect may be insufficient. On the other hand, if it exceeds 6%, gallium or aluminum cannot be completely substituted and dissolved in the zinc site, and is precipitated at the crystal grain boundary, which may cause a decrease in conductivity and a decrease in transmittance.
The raw material powder (b) may contain gallium and aluminum. In such a case, the ratio of the number of atoms of gallium and aluminum in the raw material powder (b) is 0.1% or more with respect to the total number of metal atoms. It may be 6% or less.

このような原料粉末(b)を構成する粉末としては、例えば、酸化ガリウム粉および酸化アルミニウム粉から選ばれる少なくとも一方と、(A2)酸化チタン粉と、酸化亜鉛粉もしくは水酸化亜鉛粉との混合粉および(B2)チタン酸亜鉛化合物粉から選ばれる少なくとも一方とを含む粉末などが挙げられる。   As the powder constituting such raw material powder (b), for example, at least one selected from gallium oxide powder and aluminum oxide powder, and (A2) a mixture of titanium oxide powder and zinc oxide powder or zinc hydroxide powder Examples thereof include powder and at least one selected from (B2) zinc titanate compound powder.

酸化アルミニウム粉としては、例えば、Al23粉などが挙げられ、酸化ガリウム粉としては、例えば、Ga23などが挙げられる。
酸化チタン粉、酸化亜鉛粉、水酸化亜鉛粉およびチタン酸亜鉛化合物粉などは、製造方法(a)で例示したものと同様のものを用いることができる。
Examples of the aluminum oxide powder include Al 2 O 3 powder, and examples of the gallium oxide powder include Ga 2 O 3 .
As the titanium oxide powder, zinc oxide powder, zinc hydroxide powder and zinc titanate compound powder, those similar to those exemplified in the production method (a) can be used.

原料粉末(b)として各々用いる化合物(粉)の平均粒径は、それぞれ5μm以下であることが好ましい。   The average particle size of each compound (powder) used as the raw material powder (b) is preferably 5 μm or less.

(酸化亜鉛系焼結体)
このようにして得られる酸化亜鉛系焼結体は、相対密度が98%以上である。このため、例えば、該焼結体を用いてスパッタリングにて成膜する際、異常放電が発生しにくく安定に成膜することができる。
(Zinc oxide sintered body)
The zinc oxide-based sintered body thus obtained has a relative density of 98% or more. For this reason, for example, when forming a film by sputtering using the sintered body, abnormal discharge hardly occurs and the film can be stably formed.

酸化亜鉛系焼結体が、製造方法(a)により製造された場合は、実質的に亜鉛と、チタンと、酸素とからなる焼結体である。
また、製造方法(b)により製造された場合は、実質的に亜鉛と、チタンと、アルミニウムおよびガリウムから選ばれる少なくとも一方と、酸素とからなる。
ここで、「実質的」とは、前者の場合は、酸化亜鉛系焼結体を構成する全原子の99%以上が亜鉛と、チタンと、酸素とからなることを意味し、後者の場合は、酸化亜鉛系焼結体を構成する全原子の99%以上が亜鉛と、チタンと、ガリウムおよびアルミニウムからなる一方と、酸素とからなることを意味する。
When the zinc oxide-based sintered body is manufactured by the manufacturing method (a), it is a sintered body substantially composed of zinc, titanium, and oxygen.
Moreover, when manufactured by the manufacturing method (b), it is substantially composed of zinc, titanium, at least one selected from aluminum and gallium, and oxygen.
Here, “substantially” means that 99% or more of all atoms constituting the zinc oxide-based sintered body are composed of zinc, titanium and oxygen in the former case, and in the latter case, It means that 99% or more of all atoms constituting the zinc oxide-based sintered body are composed of zinc, titanium, one of gallium and aluminum, and oxygen.

酸化亜鉛系焼結体においては、チタンの原子数の割合が全金属原子数に対して0.2%以上10%以下で含有されていることが好ましい。このチタンの原子数の割合が0.2%未満であると、この酸化亜鉛系焼結体をターゲットとして形成された膜の耐薬品性など化学的耐久性が不充分となる。一方、チタンの原子数の割合が10%を超えると、酸化チタンが亜鉛サイトに十分置換固溶できなくなり、この酸化亜鉛系焼結体をターゲットとして形成された膜の導電性や透明性が低下する。好ましくは、チタンの原子数の割合が全金属原子数に対して0.5%以上9%以下となる量であり、より好ましくは0.8%以上8%以下となる量である。   In the zinc oxide-based sintered body, the titanium atom content is preferably 0.2% or more and 10% or less with respect to the total number of metal atoms. If the ratio of the number of atoms of titanium is less than 0.2%, chemical durability such as chemical resistance of a film formed using the zinc oxide sintered body as a target becomes insufficient. On the other hand, when the ratio of the number of atoms of titanium exceeds 10%, titanium oxide cannot be sufficiently substituted and dissolved in the zinc site, and the conductivity and transparency of the film formed using this zinc oxide-based sintered body as a target are lowered. To do. Preferably, it is an amount such that the ratio of the number of atoms of titanium is 0.5% or more and 9% or less, more preferably 0.8% or more and 8% or less with respect to the total number of metal atoms.

酸化亜鉛系焼結体は、特に、チタンが原子数比でTi/(Zn+Ti)=0.002以上0.1以下となるよう含有されていることが好ましい。
このTi/(Zn+Ti)の値が0.002より小さいと、この酸化亜鉛系焼結体をターゲットとして形成された膜の耐薬品性など化学的耐久性が不充分となり、比抵抗も高くなる。しかも、酸化亜鉛系焼結体中にチタン酸亜鉛化合物が形成されにくくなるため焼結体の強度が低下し、ターゲットへの加工が困難になるおそれがある。一方、Ti/(Zn+Ti)の値が0.1を超えるチタン含有量であると、後述するように酸化亜鉛系焼結体中に含まれないことが望まれる酸化チタン結晶相の形成が避けられなくなり、この酸化亜鉛系焼結体をターゲットとして形成された膜の導電性や透明性が低下するおそれがある。好ましくは、チタンの含有量は、原子数比でTi/(Zn+Ti)=0.005〜0.09となる量であり、より好ましくは、原子数比でTi/(Zn+Ti)=0.008〜0.08となる量である。
In particular, the zinc oxide-based sintered body preferably contains titanium so that Ti / (Zn + Ti) = 0.002 or more and 0.1 or less in terms of the atomic ratio.
If the value of Ti / (Zn + Ti) is smaller than 0.002, chemical durability such as chemical resistance of a film formed using this zinc oxide-based sintered body as a target becomes insufficient, and the specific resistance also increases. In addition, since the zinc titanate compound is hardly formed in the zinc oxide-based sintered body, the strength of the sintered body is lowered, and there is a possibility that it becomes difficult to process the target. On the other hand, when the value of Ti / (Zn + Ti) is a titanium content exceeding 0.1, formation of a titanium oxide crystal phase that is desired not to be contained in the zinc oxide-based sintered body can be avoided as described later. There is a risk that the conductivity and transparency of a film formed using this zinc oxide-based sintered body as a target will be reduced. Preferably, the titanium content is such that Ti / (Zn + Ti) = 0.005 to 0.09 in terms of atomic ratio, and more preferably Ti / (Zn + Ti) = 0.008 in terms of atomic ratio. The amount is 0.08.

特にTi/(Zn+Ti)=0.002以上0.02以下では、形成された膜の化学的耐久性はTi/(Zn+Ti)=0.02超0.1以下の場合よりも低下する傾向にあるが、少なくとも現在使用されているAZO(アルミニウムドープ酸化亜鉛)膜やGZO(ガリウムドープ酸化亜鉛)膜よりはるかに化学的耐久性は優れ、チタンの含有量が少なくなることにより、形成された膜の屈折率が小さくなり、特に可視域から近紫外域の透過率が高くなる傾向にある。膜の近紫外域〜可視域の透過性が向上すると、この透明導電膜を例えば、CIS/CIGS太陽電池における透明電極などの太陽電池の部材に用いた太陽電池の変換効率を高くすることができる。さらに、形成された膜の低抵抗化は、チタンだけでは十分に達成しにくいため、アルミニウムおよびガリウムの少なくとも1つを含むことが好ましい。
一方、Ti/(Zn+Ti)=0.02超0.1以下では、この酸化亜鉛系焼結体を用いて形成された膜の化学的耐久性に極めて優れチタンのみでも低抵抗化することは可能であるが、さらなる低抵抗化するために、ガリウムおよびアルミニウムの少なくとも1つを含むことが好ましい。
In particular, when Ti / (Zn + Ti) = 0.002 or more and 0.02 or less, the chemical durability of the formed film tends to be lower than when Ti / (Zn + Ti) = 0.02 and less than 0.1. However, the chemical durability is far superior to at least the currently used AZO (aluminum doped zinc oxide) film and GZO (gallium doped zinc oxide) film, and the titanium content is reduced. The refractive index decreases, and the transmittance particularly from the visible region to the near ultraviolet region tends to increase. When the transparency of the film in the near ultraviolet region to the visible region is improved, the conversion efficiency of a solar cell using this transparent conductive film as a member of a solar cell such as a transparent electrode in a CIS / CIGS solar cell can be increased. . Furthermore, since it is difficult to sufficiently reduce the resistance of the formed film with titanium alone, it is preferable to include at least one of aluminum and gallium.
On the other hand, when Ti / (Zn + Ti) = 0.02 but less than 0.1, the chemical durability of the film formed using this zinc oxide-based sintered body is extremely excellent, and it is possible to reduce the resistance only with titanium. However, in order to further reduce the resistance, it is preferable to include at least one of gallium and aluminum.

本発明の製造方法により得られる酸化亜鉛系焼結体を用いて形成された透明導電膜はいずれもAZO膜,GZO膜より化学的耐久性、近赤外高透過性に優れているが、上述したようにチタンの含有量により近紫外域領域〜可視域領域の高透過性重視、すなわち太陽電池の変換効率向上重視か、極めて高い化学的耐久性重視か、自由に特性を調整することができる。   The transparent conductive film formed using the zinc oxide-based sintered body obtained by the production method of the present invention is superior in chemical durability and near-infrared high transmittance than the AZO film and GZO film. As described above, it is possible to freely adjust the characteristics depending on the content of titanium, whether high transmittance in the near ultraviolet region to visible region is emphasized, that is, whether conversion efficiency of the solar cell is emphasized or extremely high chemical durability is emphasized. .

製造方法(a)により製造された酸化亜鉛系焼結体は、酸化亜鉛相とチタン酸亜鉛化合物相とから構成されることが好ましい。このように酸化亜鉛系焼結体中にチタン酸亜鉛化合物相が含まれていると、焼結体自体の強度が増すので、例えばターゲットとして過酷な条件(高電力など)で成膜してもクラックを生じることがない。
なお、チタン酸亜鉛化合物相とは、具体的には、ZnTiO3、Zn2TiO4のほか、これらの亜鉛サイトにチタン元素が固溶されたものや、酸素欠損が導入されているものや、Zn/Ti比がこれらの化合物から僅かにずれた非化学量論組成のものも含むものとする。
また、酸化亜鉛相とは、具体的には、ZnOのほか、これにチタン元素が固溶されたものや、酸素欠損が導入されているものや、亜鉛欠損により非化学量論組成となったものも含むものとする。なお、酸化亜鉛相は、通常、ウルツ鉱型構造をとる。
The zinc oxide-based sintered body produced by the production method (a) is preferably composed of a zinc oxide phase and a zinc titanate compound phase. If the zinc titanate compound phase is contained in the zinc oxide-based sintered body as described above, the strength of the sintered body itself increases. For example, even if the film is formed under severe conditions (high power, etc.) as a target. No cracks are generated.
In addition, the zinc titanate compound phase specifically includes ZnTiO 3 and Zn 2 TiO 4 , those in which titanium element is dissolved in these zinc sites, those in which oxygen deficiency is introduced, Non-stoichiometric compositions with a Zn / Ti ratio slightly deviating from these compounds are also included.
In addition, the zinc oxide phase specifically includes ZnO, a solution in which a titanium element is dissolved, an oxygen deficiency introduced, or a non-stoichiometric composition due to zinc deficiency. Including things. The zinc oxide phase usually has a wurtzite structure.

製造方法(b)により得られた酸化亜鉛系焼結体は、酸化亜鉛相と、チタン酸亜鉛化合物相と、ガリウムおよびアルミニウムから選ばれる少なくとも一方の酸化物相とから構成される焼結体;酸化亜鉛相と、チタン酸亜鉛化合物相とから構成される焼結体から構成される焼結体であるのが好ましい。
ガリウムおよびアルミニウムから選ばれる少なくとも一方の酸化物相とは、Al23およびGa23から選ばれる少なくとも一方である。
なお、チタン酸亜鉛化合物相とは、具体的には、ZnTiO3、Zn2TiO4のほか、これらの亜鉛サイトおよびチタンサイトから選ばれる少なくとも一方に、チタン元素、ガリウム元素およびアルミニウム元素から選ばれる少なくとも1つが固溶されたものや、酸素欠損が導入されているものや、Zn/Ti比がこれらの化合物から僅かにずれた非化学量論組成のものも含むものとする。
また、酸化亜鉛相とは、具体的には、ZnOのほか、これの亜鉛サイトにチタン元素、ガリウム元素およびアルミニウム元素から選ばれる少なくとも1つが固溶されたものや、酸素欠損が導入されているものや、亜鉛欠損により非化学量論組成となったものも含むものとする。なお、酸化亜鉛相は、通常、ウルツ鉱型構造をとる。
The zinc oxide-based sintered body obtained by the production method (b) is a sintered body composed of a zinc oxide phase, a zinc titanate compound phase, and at least one oxide phase selected from gallium and aluminum; It is preferable that the sintered body is composed of a sintered body composed of a zinc oxide phase and a zinc titanate compound phase.
The at least one oxide phase selected from gallium and aluminum is at least one selected from Al 2 O 3 and Ga 2 O 3 .
The zinc titanate compound phase is specifically selected from ZnTiO 3 , Zn 2 TiO 4 , at least one selected from these zinc sites and titanium sites, and from titanium element, gallium element and aluminum element. It is intended to include those in which at least one is dissolved, those into which oxygen vacancies are introduced, and those having a non-stoichiometric composition in which the Zn / Ti ratio slightly deviates from these compounds.
In addition, the zinc oxide phase specifically includes, in addition to ZnO, at least one selected from a titanium element, a gallium element, and an aluminum element at the zinc site thereof, or oxygen deficiency introduced. And those that have non-stoichiometric composition due to zinc deficiency. The zinc oxide phase usually has a wurtzite structure.

酸化亜鉛系焼結体は、実質的に酸化チタンの結晶相を含有しないことが好ましい。酸化亜鉛系焼結体に酸化チタンの結晶相が含まれていると、得られる膜が、比抵抗などの物性にムラがあり均一性に欠けるものとなるおそれがある。酸化亜鉛系焼結体は、上述したTi/(Zn+Ti)の値が0.1以下であるので、通常、チタンが酸化亜鉛に完全に反応し、酸化亜鉛系焼結体中に酸化チタン結晶相は生成されにくい。なお、酸化チタンの結晶相とは、具体的には、Ti23、TiOのほか、これらの結晶にZnなど他の元素が固溶された物質も含むものとする。なかでも、酸化チタンの結晶相は、Ti23、TiOを含むのが好ましい。 It is preferable that the zinc oxide-based sintered body does not substantially contain a titanium oxide crystal phase. If the zinc oxide-based sintered body contains a crystal phase of titanium oxide, the resulting film may be uneven in physical properties such as specific resistance and lack uniformity. Since the value of Ti / (Zn + Ti) described above is 0.1 or less in the zinc oxide-based sintered body, usually titanium completely reacts with zinc oxide, and the titanium oxide crystal phase is contained in the zinc oxide-based sintered body. Is difficult to generate. The crystal phase of titanium oxide specifically includes, in addition to Ti 2 O 3 and TiO, a substance in which other elements such as Zn are dissolved in these crystals. Among them, the crystalline phase of titanium oxide, Ti 2 O 3, contain the TiO is preferred.

酸化亜鉛系焼結体は、錫、シリコン、ゲルマニウム、ジルコニウム、ハフニウムからなる群より選ばれる少なくとも1種の元素(以下、これらを「添加元素」と称することもある)をも含有することが好ましい。このような添加元素を含有することによって、この酸化亜鉛系焼結体をターゲットとして形成される膜の比抵抗に加え、酸化亜鉛系焼結体自体の比抵抗も低下させることができる。例えば直流スパッタリング時の成膜速度は、スパッタリングターゲットとする酸化亜鉛系焼結体の比抵抗に依存し、酸化亜鉛系焼結体自体の比抵抗を下げることにより、成膜時の生産性を向上させることができる。添加元素を含有する場合、その全含有量は、原子数比で、酸化亜鉛系焼結体を構成する全金属元素の総量に対して0.05%以下であることが好ましい。添加元素の含有量が前記範囲よりも多いと、酸化亜鉛系焼結体をターゲットとして形成される膜の比抵抗が増大するおそれがある。
酸化亜鉛系焼結体に添加元素を含有させるには、例えば、上述した原料粉末に添加元素の酸化物の粉末を混合させるなどすればよい。
The zinc oxide-based sintered body preferably also contains at least one element selected from the group consisting of tin, silicon, germanium, zirconium, and hafnium (hereinafter, these may be referred to as “additive elements”). . By containing such an additive element, the specific resistance of the zinc oxide-based sintered body itself can be reduced in addition to the specific resistance of the film formed using the zinc oxide-based sintered body as a target. For example, the deposition rate during DC sputtering depends on the specific resistance of the zinc oxide-based sintered body used as the sputtering target. By reducing the specific resistance of the zinc oxide-based sintered body itself, productivity during film formation is improved. Can be made. When the additive element is contained, the total content is preferably 0.05% or less with respect to the total amount of all metal elements constituting the zinc oxide-based sintered body in terms of atomic ratio. When there is more content of an additional element than the said range, there exists a possibility that the specific resistance of the film | membrane formed using a zinc oxide type sintered compact as a target may increase.
In order to contain the additive element in the zinc oxide-based sintered body, for example, the oxide powder of the additive element may be mixed with the raw material powder described above.

添加元素は、酸化物の形態で酸化亜鉛系焼結体中に存在していてもよいし、酸化亜鉛相の亜鉛サイトに置換した(固溶した)形態で存在していてもよいし、チタン酸亜鉛化合物相のチタンサイトおよび亜鉛サイトから選ばれる少なくとも一方に置換した(固溶した)形態で存在していてもよい。   The additive element may be present in the zinc oxide-based sintered body in the form of an oxide, or may be present in the form substituted (solid solution) in the zinc site of the zinc oxide phase, or titanium. It may exist in a form substituted (solid solution) with at least one selected from a titanium site and a zinc site in the zinc acid compound phase.

酸化亜鉛系焼結体は、添加元素のほかに、例えば、インジウム、イリジウム、ルテニウム、レニウムなどの他の元素を、不純物として含有していてもよい。不純物として含有される元素の合計含有量は、原子数比で、酸化亜鉛系焼結体を構成する全金属元素の総量に対して0.1%以下であることが好ましい。
酸化亜鉛系焼結体に不純物を含有させるには、例えば、上述した原料粉末に不純物の粉末を混合させるなどすればよい。
The zinc oxide-based sintered body may contain other elements such as indium, iridium, ruthenium, rhenium as impurities in addition to the additive elements. The total content of elements contained as impurities is preferably 0.1% or less with respect to the total amount of all metal elements constituting the zinc oxide-based sintered body in terms of atomic ratio.
In order to contain impurities in the zinc oxide-based sintered body, for example, the impurity powder may be mixed with the above-described raw material powder.

酸化亜鉛系焼結体の比抵抗は、5kΩ・cm以下であることが好ましい。例えば直流スパッタリング時の成膜速度は、スパッタリングターゲットとする酸化亜鉛系焼結体の比抵抗に依存するので、酸化亜鉛系焼結体の比抵抗が5kΩ・cmを超えると、直流スパッタで安定的な成膜を行えないおそれがある。成膜時の生産性を考慮すると、酸化亜鉛系焼結体の比抵抗は低いほど好ましく、具体的には100Ω・cm以下であるのがよい。   The specific resistance of the zinc oxide-based sintered body is preferably 5 kΩ · cm or less. For example, the deposition rate during DC sputtering depends on the specific resistance of the zinc oxide-based sintered body used as a sputtering target. Therefore, when the specific resistance of the zinc oxide-based sintered body exceeds 5 kΩ · cm, the DC sputtering is stable. There is a risk that proper film formation cannot be performed. Considering the productivity at the time of film formation, the specific resistance of the zinc oxide-based sintered body is preferably as low as possible. Specifically, it should be 100 Ω · cm or less.

通常、酸化亜鉛系焼結体を還元雰囲気にて焼結した場合は、酸素欠損の導入により、酸化亜鉛系焼結体の比抵抗は低くなり、酸化雰囲気にて焼結した場合は、比抵抗は高くなる。   Normally, when a zinc oxide-based sintered body is sintered in a reducing atmosphere, the specific resistance of the zinc oxide-based sintered body is reduced due to the introduction of oxygen deficiency, and when sintered in an oxidizing atmosphere, the specific resistance is reduced. Becomes higher.

(ターゲット)
本発明のターゲットは、スパッタリング法、イオンプレーティング法、PLD法またはEB蒸着法による成膜に用いられるターゲットである。なお、このような成膜の際に用いる固形材料のことを「タブレット」と称する場合もあるが、本発明においてはこれらを含め「ターゲット」と称することとする。
(target)
The target of the present invention is a target used for film formation by sputtering, ion plating, PLD, or EB vapor deposition. In addition, although the solid material used in the film formation may be referred to as “tablet”, in the present invention, these are referred to as “target”.

本発明のターゲットは、上述した酸化亜鉛系焼結体を所定の形状および所定の寸法に加工してなる。
加工方法は、特に制限されず、適宜公知の方法を採用すればよい。例えば、酸化亜鉛系焼結体に平面研削等を施した後、所定の寸法に切断してから、支持台に貼着することにより、本発明のターゲットを得ることができる。また、必要に応じて、複数枚の酸化亜鉛系焼結体を分割形状にならべて、大面積のターゲット(複合ターゲット)としてもよい。
The target of the present invention is obtained by processing the zinc oxide-based sintered body described above into a predetermined shape and a predetermined dimension.
A processing method in particular is not restrict | limited, What is necessary is just to employ | adopt a well-known method suitably. For example, after subjecting the zinc oxide-based sintered body to surface grinding or the like, the target of the present invention can be obtained by pasting the zinc oxide-based sintered body to a predetermined size and then attaching it to a support base. Further, if necessary, a plurality of zinc oxide-based sintered bodies may be divided into divided shapes to form a large-area target (composite target).

酸化亜鉛系焼結体または本発明のターゲットを用いて形成された透明導電膜は、再現性よく安定に優れた導電性と化学的耐久性(耐熱性、耐湿性など)とを兼ね備えたものであるので、例えば、液晶ディスプレイ・プラズマディスプレイ・無機EL(エレクトロルミネセンス)ディスプレイ・有機ELディスプレイ・電子ペーパーなどの透明電極、太陽電池の光電変換素子の窓電極、透明タッチパネル等の入力装置の電極、電磁シールドの電磁遮蔽膜等の用途に好適に用いられる。さらに、酸化亜鉛系焼結体または本発明のターゲットを用いて形成された透明導電膜は、透明電波吸収体、紫外線吸収体、さらには透明半導体デバイスとして、他の金属膜や金属酸化膜と組み合わせて活用することもできる。   A transparent conductive film formed using a zinc oxide-based sintered body or the target of the present invention has both reproducible and stable conductivity and chemical durability (heat resistance, moisture resistance, etc.). So, for example, transparent electrodes such as liquid crystal displays, plasma displays, inorganic EL (electroluminescence) displays, organic EL displays, and electronic paper, window electrodes of photoelectric conversion elements of solar cells, electrodes of input devices such as transparent touch panels, It is suitably used for applications such as an electromagnetic shielding film of an electromagnetic shield. Furthermore, the transparent conductive film formed using the zinc oxide-based sintered body or the target of the present invention is combined with other metal films and metal oxide films as transparent radio wave absorbers, ultraviolet absorbers, and transparent semiconductor devices. Can also be used.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

(実施例1)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径0.05μm、ハクスイテック(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Tiの原子数比が97:3となる割合(チタンの全金属原子数に対する割合:3%)で含有した原料粉末を樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、ボールを篩いにより除き、エバポレーターにて溶媒を揮散させ、その後、熱風乾燥機にて100℃で3時間乾燥処理をし、乾燥させた後、冷間静水圧プレスにて137MPaの圧力をかけて成形し、切削加工を行なって、直径80mm、厚さ78mmの円柱状成型体を得た。
Example 1
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 0.05 μm, manufactured by Hux Itec Corp.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, Co., Ltd.) High-purity chemicals research laboratory) raw material powder containing Zn: Ti in a ratio of 97: 3 (ratio to the total number of metal atoms of titanium: 3%) is placed in a resin pot and wet ball mill Wet mixing was performed by a mixing method. The wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
Next, the mixed raw material powder slurry is taken out, the balls are removed by sieving, the solvent is stripped off with an evaporator, and then dried at 100 ° C. for 3 hours with a hot air dryer and dried. Molding was performed by applying a pressure of 137 MPa with a hydraulic press, and cutting was performed to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から950℃まで上げて、圧力10MPaのAr雰囲気下、温度950℃で24時間保持し、低圧HIP処理を行い、一次焼結体を得た。低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は93.2%であった。また、電子顕微鏡にて一次焼結体を観察したところ、明らかな空孔観察されず開気孔の欠陥はほとんどなかった。
なお、一次焼結体の相対密度は、下式に示すように、酸化亜鉛、一酸化チタンの単体密度に混合の重量比をかけ、和をとったものを100%として求めた。
相対密度=100×[(焼結体の密度)/(理論密度)]
理論密度=(酸化亜鉛の単体密度×混合重量比+一酸化チタンの単体密度×混合重量比)
なお、焼結体の密度は、アルキメデス法により測定した。
<Manufacture of zinc oxide-based sintered body>
A cylindrical molded body is installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature is increased from room temperature to 950 ° C. at a temperature rising rate of 500 ° C./hour, and the temperature is 950 ° C. in an Ar atmosphere at a pressure of 10 MPa. For 24 hours, and a low-pressure HIP treatment was performed to obtain a primary sintered body. There was no volatilization of zinc during the low pressure HIP sintering, and the relative density of the primary sintered body was 93.2%. Further, when the primary sintered body was observed with an electron microscope, no clear vacancies were observed and there were almost no open pore defects.
The relative density of the primary sintered body was obtained by multiplying the unit density of zinc oxide and titanium monoxide by the weight ratio of mixing and taking the sum as 100% as shown in the following formula.
Relative density = 100 × [(density of sintered body) / (theoretical density)]
Theoretical density = (Zinc oxide simple substance density x mixing weight ratio + Titanium monoxide simple substance density x mixing weight ratio)
The density of the sintered body was measured by the Archimedes method.

次いで、高圧のガス(Arガス)をHIP装置内に導入し、一次焼結体を圧力100MPaのAr雰囲気下、温度1100℃で1時間保持し、高圧HIP処理を行い、酸化亜鉛系焼結体(1)を得た。高圧HIP処理後の酸化亜鉛系焼結体(1)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.6%であった。また、焼結体(1)に反りはなかった。
得られた焼結体の反りの有無は、目視により判断した。
Next, a high-pressure gas (Ar gas) is introduced into the HIP apparatus, and the primary sintered body is held at a temperature of 1100 ° C. for 1 hour in an Ar atmosphere at a pressure of 100 MPa, subjected to high-pressure HIP treatment, and a zinc oxide-based sintered body (1) was obtained. The relative density of the zinc oxide-based sintered body (1) after the high-pressure HIP treatment was 99.6% as determined in the same manner as the relative density of the primary sintered body. Moreover, there was no curvature in the sintered compact (1).
The presence or absence of warpage of the obtained sintered body was judged visually.

得られた酸化亜鉛系焼結体(1)に研削ついで表面研磨を施し、径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(1)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3であった(Ti/(Zn+Ti)=0.03)。この酸化亜鉛系焼結体(1)のZnとTiの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ti=97:3とまったくずれていないことから、亜鉛の揮散はなかった。
この酸化亜鉛系焼結体(1)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。
The obtained zinc oxide-based sintered body (1) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When this zinc oxide-based sintered body (1) was analyzed with an energy dispersive X-ray fluorescence apparatus (“EDX-700L” manufactured by Shimadzu Corporation), the atomic ratio of Zn and Ti was Zn: Ti = 97. : 3 (Ti / (Zn + Ti) = 0.03). Since the zinc oxide-based sintered body (1) has an atomic ratio of Zn and Ti that is the same as that of the raw material powder Zn: Ti = 97: 3, which is the charged composition, the volatilization of zinc is There wasn't.
When the crystal structure of this zinc oxide-based sintered body (1) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) It was a mixture of crystal phases, and no titanium oxide crystal phase was present.

この酸化亜鉛系焼結体(1)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(石英ガラス基板)上に透明導電膜を成膜して、透明導電基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E−200」)内に、ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、電力75W、基板温度250℃の条件下でスパッタリングを行い、基板上に膜厚500nmの透明導電膜を形成した。
成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。
This zinc oxide-based sintered body (1) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent conductive film was formed on a transparent substrate (quartz glass substrate) by DC sputtering to obtain a transparent conductive substrate. That is, a target and a transparent base material (quartz glass substrate) are respectively installed in a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), and Ar gas (purity 99.9995% or more, Ar pure gas) = 5N) was introduced at 12 sccm, and sputtering was performed under the conditions of a pressure of 0.5 Pa, a power of 75 W, and a substrate temperature of 250 ° C. to form a transparent conductive film having a thickness of 500 nm on the substrate.
Almost no abnormal discharge occurred during film formation. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(1)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(1)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(1)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (1), and the composition of the obtained zinc oxide-based sintered body (1) are not displaced at all. It is a zinc oxide-based sintered body with extremely high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing the zinc oxide-based sintered body (1), it is possible to form a film stably without abnormal discharge. It was.

(実施例2)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径0.05μm、ハクスイテック(株)製)、酸化ガリウム粉(Ga23粉;純度99.9%、平均粒径1μm以下、住友化学(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Ga:Tiの原子数比が94.5:0.5:5.0となる割合(チタンの全金属原子数に対する割合:5%、ガリウムの全金属原子数に対する割合:0.5%)で含有した原料粉末を樹脂製ポットに入れ、実施例1と同様にして湿式混合、乾燥した後、冷間静水圧プレスにて137MPaの圧力をかけて成形し、切削加工を行って、直径80mm、厚さ78mmの円柱状成型体を得た。
(Example 2)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 0.05 μm, manufactured by Hakusuitec Co., Ltd.), gallium oxide powder (Ga 2 O 3 powder; purity 99.9%, average particle size 1 μm or less, Sumitomo Chemical Co., Ltd.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, manufactured by High Purity Chemicals Laboratory Co., Ltd.) having an atomic ratio of Zn: Ga: Ti of 94 5: 0.5: 5.0 The raw material powder contained in a ratio (ratio with respect to the total number of metal atoms of titanium: 5%, ratio with respect to the total number of metal atoms of gallium: 0.5%) in a resin pot Then, after wet mixing and drying in the same manner as in Example 1, it was molded by applying a pressure of 137 MPa with a cold isostatic press and cut to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm. Obtained.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から950℃まで上げて、8MPaのAr雰囲気下、温度950℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、相対密度は92.5%であった。また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
なお、一次焼結体の相対密度は、下式に示すように、酸化亜鉛、一酸化チタン、酸化ガリウムの単体密度に混合の重量比をかけ、和をとったものを100%として求めた。
相対密度=100×[(焼結体の密度)/(理論密度)]
理論密度=(酸化亜鉛の単体密度×混合重量比+一酸化チタンの単体密度×混合重量比+酸化ガリウムの単体密度×混合重量比)
なお、焼結体の密度は、実施例1と同様にして測定した。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was increased from room temperature to 950 ° C. at a temperature increase rate of 500 ° C./hour, and the temperature was 950 ° C. in an Ar atmosphere of 8 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during low pressure HIP sintering and the relative density was 92.5%. Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.
The relative density of the primary sintered body was obtained by multiplying the unit density of zinc oxide, titanium monoxide, and gallium oxide by the weight ratio of the mixture and taking the sum as 100% as shown in the following formula.
Relative density = 100 × [(density of sintered body) / (theoretical density)]
Theoretical density = (Zinc oxide simple substance density × mixing weight ratio + Titanium monoxide simple substance density × mixing weight ratio + gallium oxide simple substance density × mixing weight ratio)
The density of the sintered body was measured in the same manner as in Example 1.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(2)を得た。高圧HIP処理後の酸化亜鉛系焼結体(2)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.6%であった。また、焼結体(2)の反りを実施例1と同様にして判断したところ、焼結体(2)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (2). The relative density of the zinc oxide-based sintered body (2) after the high-pressure HIP treatment was 99.6% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered body (2) was judged in the same manner as in Example 1, the sintered body (2) was not warped.

得られた酸化亜鉛系焼結体(2)を実施例1と同様に加工して、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(2)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとGaとTiとの原子数比はZn:Ga:Ti=94.5:0.5:5.0であった。酸化亜鉛系焼結体(2)のZnとGaとTiとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ga:Ti=94.5:0.5:5.0とまったくずれていないことから、亜鉛の揮散はなかった。
また、この酸化亜鉛系焼結体(2)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化ガリウムの結晶相は確認できなかった。
The obtained zinc oxide-based sintered body (2) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (2) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Ga, and Ti was Zn: Ga: Ti = 94.5: 0. 5: 5.0. The atomic ratio of Zn, Ga, and Ti in the zinc oxide-based sintered body (2) is the charged composition. The atomic ratio of the raw material powder: Zn: Ga: Ti = 94.5: 0.5: 5.0 There was no volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (2) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and there is no crystal phase of titanium oxide. There wasn't. Further, the crystal phase of gallium oxide could not be confirmed.

酸化亜鉛系焼結体(2)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   The zinc oxide based sintered body (2) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target, and a transparent conductive substrate was obtained in the same manner as in Example 1. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(2)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(2)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(2)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (2), and the composition of the obtained zinc oxide-based sintered body (2) are not displaced at all. It is a zinc oxide-based sintered body with very high density and no warping. As a result, even if sputtering is performed using a target obtained by processing the zinc oxide-based sintered body (2), stable film formation can be achieved without abnormal discharge. It was.

(実施例3)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径1μm以下、キシダ化学(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Tiの原子数比が97:3となる割合(チタンの全金属原子数に対する割合:3%)で含有する原料粉末を樹脂製ポットに入れ、実施例1と同様にして、湿式混合、乾燥した後、加圧成形し、切削加工を行なって、直径80mm、厚さ78mmの円柱状成型体を得た。
(Example 3)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 μm or less, manufactured by Kishida Chemical Co., Ltd.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, Ltd.) A raw material powder containing Zn: Ti atomic ratio of 97: 3 (ratio to the total number of metal atoms of titanium: 3%) is put in a resin pot. In the same manner as in No. 1, after wet mixing and drying, pressure forming and cutting were performed to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から1050℃まで上げて、18MPaのAr雰囲気下、温度1050℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は、実施例1と同様にして求めたところ、92.1%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
<Manufacture of zinc oxide-based sintered body>
A cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was increased from room temperature to 1050 ° C. at a temperature increase rate of 500 ° C./hour, and the temperature was 1050 ° C. in an Ar atmosphere of 18 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during low-pressure HIP sintering, and the relative density of the primary sintered body was 92.1% as determined in the same manner as in Example 1.
Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(3)を得た。高圧HIP処理後の酸化亜鉛系焼結体(3)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.7%であった。また、焼結体(3)の反りを実施例1と同様にして判断したところ、焼結体(3)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (3). The relative density of the zinc oxide-based sintered body (3) after the high-pressure HIP treatment was 99.7% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered compact (3) was judged similarly to Example 1, there was no curvature in the sintered compact (3).

酸化亜鉛系焼結体(3)を実施例1と同様にして加工し、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(3)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとTiの原子数比はZn:Ti=97:3であった(Ti/(Zn+Ti)=0.03)。この酸化亜鉛系焼結体(3)のZnとTiの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ti=97:3とまったくずれていないことから、亜鉛の揮散はなかった。
この酸化亜鉛系焼結体(3)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。
The zinc oxide based sintered body (3) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (3) were analyzed in the same manner as in Example 1, the atomic ratio of Zn and Ti was Zn: Ti = 97: 3 (Ti / (Zn + Ti ) = 0.03). Since the zinc oxide-based sintered body (3) has an atomic ratio of Zn and Ti that is the same as that of the raw material powder Zn: Ti = 97: 3, which is the charged composition, the volatilization of zinc is There wasn't.
The crystal structure of the zinc oxide-based sintered body (3) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and no crystal phase of titanium oxide was present. .

酸化亜鉛系焼結体(3)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。   The zinc oxide-based sintered body (3) was bonded using indium solder using a copper plate as a backing plate, and a sputtering target was obtained. In the same manner as in Example 1, a transparent conductive substrate was obtained. Almost no abnormal discharge occurred.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(3)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(3)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(3)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (3), and the composition of the obtained zinc oxide-based sintered body (3) are not displaced at all. It is a zinc oxide-based sintered body with very high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing the zinc oxide-based sintered body (3), stable film formation can be achieved without abnormal discharge. It was.

(実施例4)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径1μm以下、キシダ化学(株)製)、酸化ガリウム(Ga23粉;純度99.9%、平均粒径1μm以下、住友化学(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Ga:Tiの原子数比が94.5:0.5:5.0となる割合(チタンの全金属原子数に対する割合:5%、ガリウムの全金属原子数に対する割合:0.5%)で含有した原料粉末を樹脂製ポットに入れ、実施例2と同様にして湿式混合、乾燥した後、加圧成形し、切削加工を行なって、直径80mm、厚さ78mmの円柱状成型体を得た。
Example 4
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 μm or less, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 powder; purity 99.9%, average particle size 1 μm or less, Sumitomo Chemical) Co.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size of 5 μm or less, manufactured by High Purity Chemicals Laboratory Co., Ltd.) having an atomic ratio of Zn: Ga: Ti of 94. Raw material powder contained in a ratio of 5: 0.5: 5.0 (ratio to the total number of metal atoms of titanium: 5%, ratio to the total number of metal atoms of gallium: 0.5%) is put in a resin pot. In the same manner as in Example 2, after wet mixing and drying, pressure forming and cutting were performed to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から1150℃まで上げて、20MPaのAr雰囲気下、温度1150℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は、実施例2と同様にして求めたところ、92.0%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
<Manufacture of zinc oxide-based sintered body>
A cylindrical molded body is installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature is increased from room temperature to 1150 ° C. at a temperature rising rate of 500 ° C./hour, and the temperature is 1150 ° C. in an Ar atmosphere of 20 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during the low-pressure HIP sintering, and the relative density of the primary sintered body was determined in the same manner as in Example 2 and found to be 92.0%.
Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(4)を得た。高圧HIP処理後の酸化亜鉛系焼結体(4)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.5%であった。また、焼結体(4)の反りを実施例1と同様にして判断したところ、焼結体(4)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (4). The relative density of the zinc oxide-based sintered body (4) after the high-pressure HIP treatment was 99.5% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered body (4) was judged in the same manner as in Example 1, the sintered body (4) was not warped.

酸化亜鉛系焼結体(4)を実施例1と同様にして加工し、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(4)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとGaとTiとの原子数比はZn:Ga:Ti=94.5:0.5:5.0であった。酸化亜鉛系焼結体(4)のZnとGaとTiとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ga:Ti=94.5:0.5:5.0とまったくずれていないことから、亜鉛の揮散はなかった。
また、酸化亜鉛系焼結体(4)は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化ガリウムの結晶相は確認できなかった。
The zinc oxide based sintered body (4) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (4) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Ga, and Ti was Zn: Ga: Ti = 94.5: 0. 5: 5.0. The atomic ratio of Zn, Ga and Ti in the zinc oxide-based sintered body (4) is the charged composition. The atomic ratio of the raw material powder Zn: Ga: Ti = 94.5: 0.5: 5.0 There was no volatilization of zinc.
The zinc oxide-based sintered body (4) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and no crystal phase of titanium oxide was present. Further, the crystal phase of gallium oxide could not be confirmed.

酸化亜鉛系焼結体(4)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   A zinc oxide-based sintered body (4) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target, and a transparent conductive substrate was obtained in the same manner as in Example 1. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(4)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(4)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(4)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (4), and the composition of the obtained zinc oxide-based sintered body (4) are not displaced at all. It is a zinc oxide-based sintered body with very high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing a zinc oxide-based sintered body (4), stable film formation can be achieved without abnormal discharge. It was.

(実施例5)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径1μm以下、キシダ化学(株)製)、酸化ガリウム(Ga23粉;純度99.9%、平均粒径1μm以下、住友化学(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Ga:Tiの原子数比が98.2:0.8:1.0となる割合(チタンの全金属原子数に対する割合:1%、ガリウムの全金属原子数に対する割合:0.8%)で含有した原料粉末を樹脂製ポットに入れ、実施例2と同様にして湿式混合、乾燥した後、加圧成形し、切削加工を行なって、直径80mm、厚さ78mmの円柱状成型体を得た。
(Example 5)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 μm or less, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 powder; purity 99.9%, average particle size 1 μm or less, Sumitomo Chemical) Co., Ltd.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size of 5 μm or less, manufactured by High Purity Chemicals Laboratory Co., Ltd.) having a Zn: Ga: Ti atomic ratio of 98. 2. Raw material powder contained in a ratio of 0.8: 1.0 (ratio to the total number of metal atoms of titanium: 1%, ratio to the total number of metal atoms of gallium: 0.8%) is put in a resin pot. In the same manner as in Example 2, after wet mixing and drying, pressure forming and cutting were performed to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から1120℃まで上げて、20MPaのAr雰囲気下、温度1120℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は、実施例2と同様にして求めたところ、92.8%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was raised from room temperature to 1120 ° C. at a temperature rising rate of 500 ° C./hour, and the temperature was 1120 ° C. in an Ar atmosphere of 20 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during the low-pressure HIP sintering, and the relative density of the primary sintered body was determined in the same manner as in Example 2 and found to be 92.8%.
Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(5)を得た。高圧HIP処理後の酸化亜鉛系焼結体(5)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.5%であった。また、焼結体(5)の反りを実施例1と同様にして判断したところ、焼結体(5)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (5). The relative density of the zinc oxide-based sintered body (5) after the high-pressure HIP treatment was 99.5% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered body (5) was judged in the same manner as in Example 1, the sintered body (5) was not warped.

酸化亜鉛系焼結体(5)を実施例1と同様にして加工し、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(5)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとGaとTiとの原子数比はZn:Ga:Ti=98.2:0.8:1.0であった。酸化亜鉛系焼結体(5)のZnとGaとTiとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ga:Ti=98.2:0.8:1.0とまったくずれていないことから、亜鉛の揮散はなかった。
また、酸化亜鉛系焼結体(5)は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化ガリウムの結晶相は確認できなかった。
The zinc oxide based sintered body (5) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (5) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Ga, and Ti was Zn: Ga: Ti = 98.2: 0. 8: 1.0. The atomic ratio of Zn, Ga, and Ti in the zinc oxide-based sintered body (5) is the charged composition. The atomic ratio of the raw material powder: Zn: Ga: Ti = 98.2: 0.8: 1.0 There was no volatilization of zinc.
The zinc oxide-based sintered body (5) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and no crystal phase of titanium oxide was present. Further, the crystal phase of gallium oxide could not be confirmed.

酸化亜鉛系焼結体(5)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   A zinc oxide-based sintered body (5) was bonded using indium solder using a copper plate as a backing plate, and a sputtering target was obtained. As in Example 1, a transparent conductive substrate was obtained. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(5)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(5)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(5)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (5), and the composition of the obtained zinc oxide-based sintered body (5) are not displaced at all. It is a zinc oxide-based sintered body with very high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing the zinc oxide-based sintered body (5), stable film formation can be achieved without abnormal discharge. It was.

(実施例6)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径0.05μm、ハクスイテック(株)製)、酸化アルミニウム粉(Al23粉;純度99.9%、平均粒径1μm以下、住友化学(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Al:Tiの原子数比が98.2:0.8:1.0となる割合(チタンの全金属原子数に対する割合:1%、アルミニウムの全金属原子数に対する割合:0.8%)で含有した原料粉末を樹脂製ポットに入れ、実施例1と同様にして湿式混合、乾燥した後、冷間静水圧プレスにて137MPaの圧力をかけて成形し、切削加工を行って、直径80mm、厚さ78mmの円柱状成型体を得た。
(Example 6)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 0.05 μm, manufactured by Hakusui Tech Co., Ltd.), aluminum oxide powder (Al 2 O 3 powder; purity 99.9%, average particle size 1 μm or less, Sumitomo Chemical Co., Ltd.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size of 5 μm or less, manufactured by High Purity Chemicals Laboratory Co., Ltd.) having a Zn: Al: Ti atomic ratio of 98 .2: The raw material powder contained in a ratio of 0.8: 1.0 (ratio with respect to the total number of metal atoms of titanium: 1%, ratio with respect to the total number of metal atoms of aluminum: 0.8%) is put in a resin pot. Then, after wet mixing and drying in the same manner as in Example 1, it was molded by applying a pressure of 137 MPa with a cold isostatic press and cut to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm. Obtained.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から950℃まで上げて、8MPaのAr雰囲気下、温度950℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、相対密度は93.4%であった。また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
なお、一次焼結体の相対密度は、下式に示すように、酸化亜鉛、一酸化チタン、酸化アルミニウムの単体密度に混合の重量比をかけ、和をとったものを100%として求めた。
相対密度=100×[(焼結体の密度)/(理論密度)]
理論密度=(酸化亜鉛の単体密度×混合重量比+一酸化チタンの単体密度×混合重量比+酸化アルミニウムの単体密度×混合重量比)
なお、焼結体の密度は、実施例1と同様にして測定した。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was increased from room temperature to 950 ° C. at a temperature increase rate of 500 ° C./hour, and the temperature was 950 ° C. in an Ar atmosphere of 8 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during low pressure HIP sintering and the relative density was 93.4%. Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.
The relative density of the primary sintered body was obtained by multiplying the unit density of zinc oxide, titanium monoxide, and aluminum oxide by the weight ratio of mixing and taking the sum as 100% as shown in the following formula.
Relative density = 100 × [(density of sintered body) / (theoretical density)]
Theoretical density = (Zinc oxide simplex density x mixing weight ratio + Titanium monoxide simplex density x mixing weight ratio + Aluminum oxide simplex density x mixing weight ratio)
The density of the sintered body was measured in the same manner as in Example 1.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(6)を得た。高圧HIP処理後の酸化亜鉛系焼結体(6)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.6%であった。また、焼結体(6)の反りを実施例1と同様にして判断したところ、焼結体(6)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (6). The relative density of the zinc oxide-based sintered body (6) after the high-pressure HIP treatment was 99.6% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered compact (6) was judged similarly to Example 1, there was no curvature in the sintered compact (6).

得られた酸化亜鉛系焼結体(6)を実施例1と同様に加工して、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(6)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとAlとTiとの原子数比はZn:Al:Ti=98.2:0.8:1.0であった。酸化亜鉛系焼結体(6)のZnとAlとTiとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Al:Ti=98.2:0.8:1.0とまったくずれていないことから、亜鉛の揮散はなかった。
また、この酸化亜鉛系焼結体(6)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)、アルミニウム酸亜鉛(ZnAl24)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化アルミニウムの結晶相は確認できなかった。
The obtained zinc oxide-based sintered body (6) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (6) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Al, and Ti was Zn: Al: Ti = 98.2: 0. 8: 1.0. The atomic ratio of Zn, Al, and Ti in the zinc oxide-based sintered body (6) is the charged composition. The atomic ratio of the raw material powder Zn: Al: Ti = 98.2: 0.8: 1.0 There was no volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (6) is a mixture of crystal phases of zinc oxide (ZnO), zinc titanate (Zn 2 TiO 4 ), and zinc aluminate (ZnAl 2 O 4 ). There was no crystalline phase of titanium oxide. Moreover, the crystal phase of aluminum oxide could not be confirmed.

酸化亜鉛系焼結体(6)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   The zinc oxide-based sintered body (6) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target, and a transparent conductive substrate was obtained in the same manner as in Example 1. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(6)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(6)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(6)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (6), and the composition of the obtained zinc oxide-based sintered body (6) are not displaced at all. It is a zinc oxide-based sintered body with very high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing a zinc oxide-based sintered body (6), stable film formation can be achieved without abnormal discharge. It was.

(実施例7)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径0.05μm、ハクスイテック(株)製)、および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Tiの原子数比が99.0:1.0となる割合(チタンの全金属原子数に対する割合:1%)で含有した原料粉末を樹脂製ポットに入れ、実施例1と同様にして湿式混合、乾燥した後、冷間静水圧プレスにて137MPaの圧力をかけて成形し、切削加工を行って、直径80mm、厚さ78mmの円柱状成型体を得た。
(Example 7)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 0.05 μm, manufactured by Hakusui Tech Co., Ltd.), and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, strain A resin pot containing raw material powder containing a high purity chemical laboratory) in a ratio of 9: 1.0 Zn: Ti atomic ratio (ratio to the total number of titanium metal atoms: 1%) In the same manner as in Example 1, after wet mixing and drying, a cold isostatic press was applied by applying a pressure of 137 MPa, and a cutting process was performed to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm. Got.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から950℃まで上げて、8MPaのAr雰囲気下、温度950℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は、実施例1と同様にして求めたところ、93.9%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was increased from room temperature to 950 ° C. at a temperature increase rate of 500 ° C./hour, and the temperature was 950 ° C. in an Ar atmosphere of 8 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during low-pressure HIP sintering, and the relative density of the primary sintered body was determined in the same manner as in Example 1 and found to be 93.9%.
Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(7)を得た。高圧HIP処理後の酸化亜鉛系焼結体(7)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.7%であった。また、焼結体(7)の反りを実施例1と同様にして判断したところ、焼結体(7)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (7). The relative density of the zinc oxide-based sintered body (7) after the high-pressure HIP treatment was 99.7% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered body (7) was judged in the same manner as in Example 1, the sintered body (7) was not warped.

得られた酸化亜鉛系焼結体(7)を実施例1と同様に加工して、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(7)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとTiとの原子数比はZn:Ti=99.0:1.0であった。酸化亜鉛系焼結体(7)のZnとTiとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ti=99.0:1.0とまったくずれていないことから、亜鉛の揮散はなかった。
また、この酸化亜鉛系焼結体(7)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。
The obtained zinc oxide-based sintered body (7) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (7) were analyzed in the same manner as in Example 1, the atomic ratio of Zn and Ti was Zn: Ti = 99.0: 1.0. . Since the atomic ratio of Zn and Ti in the zinc oxide-based sintered body (7) is the charged composition, the atomic ratio of the raw material powder Zn: Ti = 99.0: 1.0 is not deviated at all. There was no volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (7) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and there is no crystal phase of titanium oxide. There wasn't.

酸化亜鉛系焼結体(7)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   The zinc oxide sintered body (7) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target, and a transparent conductive substrate was obtained in the same manner as in Example 1. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(7)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(7)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(7)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (7), and the composition of the obtained zinc oxide-based sintered body (7) are not displaced at all. It is a zinc oxide-based sintered body with very high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing the zinc oxide-based sintered body (7), stable film formation can be achieved without abnormal discharge. It was.

(実施例8)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径0.05μm、ハクスイテック(株)製)、および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)および酸化アルミニウム粉(Al23粉末;純度99.9%、平均粒径0.5μm以下、住友化学(株)製の「AKP-3000」)をZn:Ti:Alの原子数比が99.0:0.5:0.5となる割合(チタンの全金属原子数に対する割合:0.5%、アルミニウムの全金属原子数に対する割合:0.5%)で含有した原料粉末を樹脂製ポットに入れ、実施例1と同様にして湿式混合、乾燥した後、冷間静水圧プレスにて137MPaの圧力をかけて成形し、切削加工を行って、直径80mm、厚さ78mmの円柱状成型体を得た。
(Example 8)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 0.05 μm, manufactured by Hakusui Tech Co., Ltd.), and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, strain ) High purity chemical laboratory) and aluminum oxide powder (Al 2 O 3 powder; purity 99.9%, average particle size 0.5 μm or less, “AKP-3000” manufactured by Sumitomo Chemical Co., Ltd.) Ti: Al ratio of 99.0: 0.5: 0.5 (ratio of titanium to the total number of metal atoms: 0.5%, ratio of aluminum to the total number of metal atoms: 0.5% ) Is put into a resin pot, wet-mixed and dried in the same manner as in Example 1, and then molded by applying a pressure of 137 MPa in a cold isostatic press, and then subjected to cutting to obtain a diameter. A cylindrical molded body having a thickness of 80 mm and a thickness of 78 mm was obtained.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から950℃まで上げて、8MPaのAr雰囲気下、温度950℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は、実施例6と同様にして求めたところ、93.9%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was increased from room temperature to 950 ° C. at a temperature increase rate of 500 ° C./hour, and the temperature was 950 ° C. in an Ar atmosphere of 8 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during the low-pressure HIP sintering, and the relative density of the primary sintered body was determined in the same manner as in Example 6 and found to be 93.9%.
Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(8)を得た。高圧HIP処理後の酸化亜鉛系焼結体(8)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.7%であった。また、焼結体(8)の反りを実施例1と同様にして判断したところ、焼結体(8)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (8). The relative density of the zinc oxide-based sintered body (8) after the high-pressure HIP treatment was 99.7% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered compact (8) was judged similarly to Example 1, there was no curvature in the sintered compact (8).

得られた酸化亜鉛系焼結体(8)を実施例1と同様に加工して、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(8)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとAlとTiとの原子数比はZn:Ti:Al=99.0:0.5:0.5であった。酸化亜鉛系焼結体(8)のZnとTiとAlとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ti:Al=99.0:0.5:0.5とまったくずれていないことから、亜鉛の揮散はなかった。
また、この酸化亜鉛系焼結体(8)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化アルミニウムの結晶相は確認できなかった。
The obtained zinc oxide-based sintered body (8) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (8) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Al, and Ti was Zn: Ti: Al = 99.0: 0. 5: 0.5. The atomic ratio of Zn, Ti, and Al in the zinc oxide-based sintered body (8) is the charged composition. The atomic ratio of the raw material powder: Zn: Ti: Al = 99.0: 0.5: 0.5 There was no volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (8) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and there is no crystal phase of titanium oxide. There wasn't. Moreover, the crystal phase of aluminum oxide could not be confirmed.

酸化亜鉛系焼結体(8)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   The zinc oxide-based sintered body (8) was bonded using indium solder using a copper plate as a backing plate, and a sputtering target was obtained. In the same manner as in Example 1, a transparent conductive substrate was obtained. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(8)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(8)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(8)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder that is the raw material of the zinc oxide-based sintered body (8) and the composition of the obtained zinc oxide-based sintered body (8) are not displaced at all. It is a zinc oxide-based sintered body with very high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing the zinc oxide-based sintered body (8), stable film formation can be achieved without abnormal discharge. It was.

(実施例9)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径0.05μm、ハクスイテック(株)製)、および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)および酸化アルミニウム粉(Al23粉末;純度99.9%、平均粒径0.5μm以下、住友化学(株)製の「AKP-3000」)をZn:Ti:Alの原子数比が98.7:1.0:0.3となる割合(チタンの全金属原子数に対する割合:1.0%、アルミニウムの全金属原子数に対する割合:0.3%)で含有した原料粉末を樹脂製ポットに入れ、実施例1と同様にして湿式混合、乾燥した後、冷間静水圧プレスにて137MPaの圧力をかけて成形し、切削加工を行って、直径80mm、厚さ78mmの円柱状成型体を得た。
Example 9
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 0.05 μm, manufactured by Hakusui Tech Co., Ltd.), and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, strain ) High purity chemical laboratory) and aluminum oxide powder (Al 2 O 3 powder; purity 99.9%, average particle size 0.5 μm or less, “AKP-3000” manufactured by Sumitomo Chemical Co., Ltd.) Ti: Al ratio of 98.7: 1.0: 0.3 (ratio of titanium to the total number of metal atoms: 1.0%, ratio of aluminum to the total number of metal atoms: 0.3% ) Is put into a resin pot, wet-mixed and dried in the same manner as in Example 1, and then molded by applying a pressure of 137 MPa in a cold isostatic press, and then subjected to cutting to obtain a diameter. A cylindrical molded body having a thickness of 80 mm and a thickness of 78 mm was obtained.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から950℃まで上げて、8MPaのAr雰囲気下、温度950℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は、実施例6と同様にして求めたところ、93.9%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was increased from room temperature to 950 ° C. at a temperature increase rate of 500 ° C./hour, and the temperature was 950 ° C. in an Ar atmosphere of 8 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during the low-pressure HIP sintering, and the relative density of the primary sintered body was determined in the same manner as in Example 6 and found to be 93.9%.
Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(9)を得た。高圧HIP処理後の酸化亜鉛系焼結体(9)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.7%であった。また、焼結体(9)の反りを実施例1と同様にして判断したところ、焼結体(9)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (9). The relative density of the zinc oxide sintered body (9) after the high-pressure HIP treatment was 99.7% when determined in the same manner as the relative density of the primary sintered body. Further, when the warpage of the sintered body (9) was determined in the same manner as in Example 1, the sintered body (9) was not warped.

得られた酸化亜鉛系焼結体(9)を実施例1と同様に加工して、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(9)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとAlとTiとの原子数比はZn:Ti:Al=98.7:1.0:0.3であった。酸化亜鉛系焼結体(9)のZnとTiとAlとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ti:Al=98.7:1.0:0.3とまったくずれていないことから、亜鉛の揮散はなかった。
また、この酸化亜鉛系焼結体(9)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化アルミニウムの結晶相は確認できなかった。
The obtained zinc oxide-based sintered body (9) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of the zinc oxide-based sintered body (9) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Al, and Ti was Zn: Ti: Al = 98.7: 1. 0: 0.3. The atomic ratio of Zn, Ti and Al in the zinc oxide-based sintered body (9) is the charged composition. The atomic ratio of the raw material powder Zn: Ti: Al = 98.7: 1.0: 0.3 There was no volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (9) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and there is no crystal phase of titanium oxide. There wasn't. Moreover, the crystal phase of aluminum oxide could not be confirmed.

酸化亜鉛系焼結体(9)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   A zinc oxide-based sintered body (9) was bonded using indium solder using a copper plate as a backing plate, and a sputtering target was obtained. In the same manner as in Example 1, a transparent conductive substrate was obtained. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(9)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(9)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(9)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (9), and the composition of the obtained zinc oxide-based sintered body (9) are not displaced at all. It is a zinc oxide-based sintered body with extremely high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing a zinc oxide-based sintered body (9), stable film formation can be achieved without abnormal discharge. It was.

(実施例10)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径0.05μm、ハクスイテック(株)製)、および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)および酸化アルミニウム粉(Al23粉末;純度99.9%、平均粒径0.5μm以下、住友化学(株)製の「AKP-3000」)をZn:Ti:Alの原子数比が99.3:0.5:0.2となる割合(チタンの全金属原子数に対する割合:0.5%、アルミニウムの全金属原子数に対する割合:0.2%)で含有した原料粉末を樹脂製ポットに入れ、実施例1と同様にして湿式混合、乾燥した後、冷間静水圧プレスにて137MPaの圧力をかけて成形し、切削加工を行って、直径80mm、厚さ78mmの円柱状成型体を得た。
(Example 10)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 0.05 μm, manufactured by Hakusui Tech Co., Ltd.), and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, strain ) High purity chemical laboratory) and aluminum oxide powder (Al 2 O 3 powder; purity 99.9%, average particle size 0.5 μm or less, “AKP-3000” manufactured by Sumitomo Chemical Co., Ltd.) Ti: Al ratio of 99.3: 0.5: 0.2 (ratio of titanium to the total number of metal atoms: 0.5%, ratio of aluminum to the total number of metal atoms: 0.2% ) Is put into a resin pot, wet-mixed and dried in the same manner as in Example 1, and then molded by applying a pressure of 137 MPa in a cold isostatic press, and then subjected to cutting to obtain a diameter. A cylindrical molded body having a thickness of 80 mm and a thickness of 78 mm was obtained.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から950℃まで上げて、8MPaのAr雰囲気下、温度950℃で24時間保持し、低圧HIP焼結を行い、一次焼結体を得た。
低圧HIP焼結中に亜鉛の揮散はなく、一次焼結体の相対密度は、実施例6と同様にして求めたところ、93.9%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔は観察されず開気孔の欠陥はほとんどなかった。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was increased from room temperature to 950 ° C. at a temperature increase rate of 500 ° C./hour, and the temperature was 950 ° C. in an Ar atmosphere of 8 MPa. Holding for 24 hours, low-pressure HIP sintering was performed to obtain a primary sintered body.
There was no volatilization of zinc during the low-pressure HIP sintering, and the relative density of the primary sintered body was determined in the same manner as in Example 6 and found to be 93.9%.
Further, when the sintered body was observed with an electron microscope, no obvious voids were observed and there were almost no defects in open pores.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(10)を得た。高圧HIP処理後の酸化亜鉛系焼結体(10)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、99.7%であった。また、焼結体(10)の反りを実施例1と同様にして判断したところ、焼結体(10)に反りはなかった。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (10). The relative density of the zinc oxide-based sintered body (10) after the high-pressure HIP treatment was 99.7% when determined in the same manner as the relative density of the primary sintered body. Moreover, when the curvature of the sintered compact (10) was judged similarly to Example 1, there was no curvature in the sintered compact (10).

得られた酸化亜鉛系焼結体(10)を実施例1と同様に加工して、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(10)の組成と結晶構造を実施例1と同様にして分析したところ、ZnとAlとTiとの原子数比はZn:Ti:Al=99.3:0.5:0.2であった。酸化亜鉛系焼結体(10)のZnとTiとAlとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ti:Al=99.3:0.5:0.2とまったくずれていないことから、亜鉛の揮散はなかった。
また、この酸化亜鉛系焼結体(10)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化アルミニウムの結晶相は確認できなかった。
The obtained zinc oxide-based sintered body (10) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (10) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Al, and Ti was Zn: Ti: Al = 99.3: 0. 5: 0.2. The atomic ratio of Zn, Ti and Al in the zinc oxide-based sintered body (10) is the charged composition, the atomic ratio of the raw material powder Zn: Ti: Al = 99.3: 0.5: 0.2 There was no volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (10) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and there is no crystal phase of titanium oxide. There wasn't. Moreover, the crystal phase of aluminum oxide could not be confirmed.

酸化亜鉛系焼結体(10)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電に起因してスパッタリング装置の運転が停止した回数は、1時間あたり3回以内であった。   A zinc oxide-based sintered body (10) was bonded using indium solder using a copper plate as a backing plate, and a sputtering target was obtained. In the same manner as in Example 1, a transparent conductive substrate was obtained. Almost no abnormal discharge occurred. Specifically, the number of times the operation of the sputtering apparatus was stopped due to abnormal discharge generated during film formation was within 3 times per hour.

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(10)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(10)の組成とはまったくずれがなく、極めて高密度の反りのない酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(10)を加工してなるターゲットを用いてスパッタリングしても異常放電がなく安定に成膜できた。   From the above, since there is no volatilization of zinc, there is no deviation between the composition of the raw material powder that is the raw material of the zinc oxide-based sintered body (10) and the composition of the obtained zinc oxide-based sintered body (10), It is a zinc oxide-based sintered body with extremely high density and no warpage. As a result, even if sputtering is performed using a target obtained by processing the zinc oxide-based sintered body (10), stable film formation can be achieved without abnormal discharge. It was.

(比較例1)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径1μm以下、キシダ化学(株)製)、酸化ガリウム粉(Ga23粉;純度99.9%、平均粒径1μm以下、住友化学(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Ga:Tiの原子数比が94.5:0.5:5.0(チタンの全金属原子数に対する割合:5%、ガリウムの全金属原子数に対する割合:0.5%)となる割合で含有した原料粉末を樹脂製ポットに入れ、実施例2と同様にして湿式混合、乾燥した後、加圧成形し、切削加工を行い、直径80mm、高さ78mmの円柱状成型体を得た。
(Comparative Example 1)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 μm or less, manufactured by Kishida Chemical Co., Ltd.), gallium oxide powder (Ga 2 O 3 powder; purity 99.9%, average particle size 1 μm or less, Sumitomo Chemical Co., Ltd.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, manufactured by High Purity Chemicals Laboratory Co., Ltd.) having an atomic ratio of Zn: Ga: Ti of 94 .5: 0.5: 5.0 (Ratio of titanium to the total number of metal atoms: 5%, ratio of gallium to the total number of metal atoms: 0.5%) In the same manner as in Example 2, after wet mixing and drying, pressure forming and cutting were performed to obtain a cylindrical molded body having a diameter of 80 mm and a height of 78 mm.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度500℃/時間にて室温から1150℃まで上げて、常圧(0.1013MPa)のAr雰囲気下、温度1150℃で24時間保持し、常圧一次焼結を行い、一次焼結体を得た。また、一次焼結体の反りを実施例1と同様にして判断したところ、一次焼結体は反りが生じた。
常圧一次焼結中に亜鉛の揮散があり、一次焼結体の相対密度は、焼結体の体積を測長により求め、重量測定から密度を計算して求めたところ、87.0%であった。
また、電子顕微鏡にて焼結体を観察したところ、明らかな空孔が観察され開気孔の欠陥が見つかった。
<Manufacture of zinc oxide-based sintered body>
A cylindrical molded body is installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature is increased from room temperature to 1150 ° C. at a heating rate of 500 ° C./hour, and an Ar atmosphere at normal pressure (0.1013 MPa). The temperature was kept at 1150 ° C. for 24 hours, and primary pressure sintering was performed to obtain a primary sintered body. Further, when the warpage of the primary sintered body was judged in the same manner as in Example 1, the primary sintered body warped.
There was zinc volatilization during primary pressure primary sintering, and the relative density of the primary sintered body was determined by measuring the volume of the sintered body by length measurement and calculating the density from weight measurement. there were.
Further, when the sintered body was observed with an electron microscope, clear pores were observed and defects in open pores were found.

次いで、実施例1と同様にして一次焼結体に高圧HIP処理を行い、酸化亜鉛系焼結体(C1)を得た。高圧HIP処理後の酸化亜鉛系焼結体(C1)の相対密度は、一次焼結体の相対密度と同様にして求めたところ、87.0%であった。また、焼結体(C1)の反りを実施例1と同様にして判断したところ、焼結体(C1)は反りが生じた。   Next, the primary sintered body was subjected to high-pressure HIP treatment in the same manner as in Example 1 to obtain a zinc oxide-based sintered body (C1). The relative density of the zinc oxide-based sintered body (C1) after the high-pressure HIP treatment was found to be 87.0% in the same manner as the relative density of the primary sintered body. Further, when the warpage of the sintered body (C1) was determined in the same manner as in Example 1, warpage occurred in the sintered body (C1).

酸化亜鉛系焼結体(C1)を実施例1と同様にして加工し、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(C1)の組成および結晶構造を実施例1と同様にして分析したところ、ZnとGaとTiとの原子数比はZn:Ga:Ti=92.8:0.7:6.5であった。酸化亜鉛系焼結体(C1)のZnとGaとTiとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ga:Ti=94.5:0.5:5.0と組成ずれが生じており、亜鉛の揮散はあった。
また、酸化亜鉛系焼結体(C1)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化ガリウムの結晶相は確認できなかった。
The zinc oxide-based sintered body (C1) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of this zinc oxide-based sintered body (C1) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Ga, and Ti was Zn: Ga: Ti = 92.8: 0. 7: 6.5. The atomic ratio of Zn, Ga and Ti in the zinc oxide-based sintered body (C1) is the charged composition, the atomic ratio of the raw material powder Zn: Ga: Ti = 94.5: 0.5: 5.0 There was a composition shift, and there was volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (C1) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and there is no crystal phase of titanium oxide. It was. Further, the crystal phase of gallium oxide could not be confirmed.

酸化亜鉛系焼結体(C1)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして透明導電基板を得たところ、成膜中にArプラズマが不安定で異常放電が多発した。具体的には、成膜中に1時間当たり20回以上、異常放電が発生した。   A zinc oxide-based sintered body (C1) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target, and a transparent conductive substrate was obtained in the same manner as in Example 1. Ar plasma was unstable and abnormal discharge occurred frequently. Specifically, abnormal discharge occurred 20 times or more per hour during film formation.

以上より、亜鉛の揮散が発生し、酸化亜鉛系焼結体(C1)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(C1)の組成とは組成ずれをおこし、低密度の反りのある酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(C1)を加工してなるターゲットを用いてスパッタリングすると異常放電が多発して安定に成膜することができなかった。   From the above, volatilization of zinc occurs, and the composition of the raw material powder that is the raw material of the zinc oxide-based sintered body (C1) and the composition of the obtained zinc oxide-based sintered body (C1) cause a composition shift. It is a zinc oxide sintered body with low density warpage, and as a result, when sputtering is performed using a target obtained by processing the zinc oxide sintered body (C1), abnormal discharge occurs frequently and a stable film is formed. I could not.

(比較例2)
酸化亜鉛粉(ZnO粉;純度99.9%、平均粒径1μm以下、キシダ化学(株)製)、酸化ガリウム粉(Ga23粉;純度99.9%、平均粒径1μm以下、住友化学(株)製)および一酸化チタン粉(TiO粉;純度99.9%、平均粒径5μm以下、(株)高純度化学品研究所製)をZn:Ga:Tiの原子数比が94.5:0.5:5.0(チタンの全金属原子数に対する割合:5%、ガリウムの全金属原子数に対する割合:0.5%)となる割合で含有した原料粉末を樹脂製ポットに入れ、実施例2と同様にして湿式混合、乾燥した後、加圧成形し、切削加工を行い直径80mm、厚さ78mmの円柱状成型体を得た。
(Comparative Example 2)
Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 μm or less, manufactured by Kishida Chemical Co., Ltd.), gallium oxide powder (Ga 2 O 3 powder; purity 99.9%, average particle size 1 μm or less, Sumitomo Chemical Co., Ltd.) and titanium monoxide powder (TiO powder; purity 99.9%, average particle size 5 μm or less, manufactured by High Purity Chemicals Laboratory Co., Ltd.) having an atomic ratio of Zn: Ga: Ti of 94 .5: 0.5: 5.0 (Ratio of titanium to the total number of metal atoms: 5%, ratio of gallium to the total number of metal atoms: 0.5%) In the same manner as in Example 2, wet mixing and drying were performed, followed by pressure molding and cutting to obtain a cylindrical molded body having a diameter of 80 mm and a thickness of 78 mm.

<酸化亜鉛系焼結体の製造>
円柱状の成型体をHIP処理装置((株)神戸製鋼所製)内に設置し、昇温速度100℃/時間にて室温から1100℃まで上げて、圧力100MPaのAr雰囲気下、温度1100℃で1時間保持し、高圧HIP処理を行い、酸化亜鉛系焼結体(C2)を得た。高圧HIP処理後の酸化亜鉛系焼結体(C2)の相対密度は、焼結体の体積を測長により求め、重量測定から密度を計算して求めたところ、68%であった。また、高圧HIP処理中に亜鉛の揮散はまったくなかった。さらに、焼結体(C2)の反りを実施例1と同様にして判断したところ、焼結体(C2)に反りはなかった。
また、電子顕微鏡にて酸化亜鉛系焼結体(C2)を観察したところ、明らかな空孔が観察され開気孔の欠陥が多数見つかった。
<Manufacture of zinc oxide-based sintered body>
The cylindrical molded body was installed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.), and the temperature was raised from room temperature to 1100 ° C. at a temperature rising rate of 100 ° C./hour, and the temperature was 1100 ° C. in an Ar atmosphere at a pressure of 100 MPa. For 1 hour, and high-pressure HIP treatment was performed to obtain a zinc oxide-based sintered body (C2). The relative density of the zinc oxide-based sintered body (C2) after the high-pressure HIP treatment was 68% when the volume of the sintered body was obtained by length measurement, and the density was calculated from weight measurement. Also, there was no zinc volatilization during the high pressure HIP treatment. Further, when the warpage of the sintered body (C2) was determined in the same manner as in Example 1, the sintered body (C2) was not warped.
Further, when the zinc oxide sintered body (C2) was observed with an electron microscope, clear vacancies were observed and a large number of open pore defects were found.

酸化亜鉛系焼結体(C2)を実施例1と同様にして加工し、直径が50.8mmφ、厚さ3mmの焼結体とした。
この酸化亜鉛系焼結体(C2)の組成および結晶構造を実施例1と同様にして分析したところ、ZnとGaとTiとの原子数比はZn:Ga:Ti=94.5:0.5:5.0であった。酸化亜鉛系焼結体(C2)のZnとGaとTiとの原子数比は、仕込み組成である、原料粉末の原子数比Zn:Ga:Ti=94.5:0.5:5.0とまったくずれていないことから、亜鉛の揮散はなかった。
また、酸化亜鉛系焼結体(C2)の結晶構造は、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンの結晶相は全く存在していなかった。また、酸化ガリウムの結晶相は確認できなかった。
The zinc oxide based sintered body (C2) was processed in the same manner as in Example 1 to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the composition and crystal structure of the zinc oxide-based sintered body (C2) were analyzed in the same manner as in Example 1, the atomic ratio of Zn, Ga, and Ti was Zn: Ga: Ti = 94.5: 0. 5: 5.0. The atomic ratio of Zn, Ga, and Ti in the zinc oxide-based sintered body (C2) is the charged composition. The atomic ratio of the raw material powder: Zn: Ga: Ti = 94.5: 0.5: 5.0 There was no volatilization of zinc.
The crystal structure of the zinc oxide-based sintered body (C2) is a mixture of crystal phases of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ), and there is no crystal phase of titanium oxide. It was. Further, the crystal phase of gallium oxide could not be confirmed.

酸化亜鉛系焼結体(C2)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得、実施例1と同様にして、透明導電基板を得たところ、成膜中にArプラズマが不安定で異常放電が多発した。具体的には、成膜中に1時間当たり30回以上、異常放電が発生した。 The zinc oxide-based sintered body (C2) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target, and a transparent conductive substrate was obtained in the same manner as in Example 1. In addition, Ar plasma was unstable and abnormal discharge occurred frequently. Specifically, abnormal discharge occurred 30 times or more per hour during film formation .

以上より、亜鉛の揮散がない為、酸化亜鉛系焼結体(C2)の原料である原料粉末の組成と、得られた酸化亜鉛系焼結体(C2)の組成とはまったくずれがなく、焼結体の反りも生じなかったが、低密度の酸化亜鉛系焼結体であり、その結果、酸化亜鉛系焼結体(C2)を加工してなるターゲットを用いてスパッタリングすると異常放電が多発して安定に成膜することができなかった。   From the above, since there is no volatilization of zinc, the composition of the raw material powder, which is the raw material of the zinc oxide-based sintered body (C2), and the composition of the obtained zinc oxide-based sintered body (C2) are not displaced at all. Although the sintered body did not warp, it was a low-density zinc oxide-based sintered body. As a result, abnormal discharge occurred frequently when sputtering was performed using a target obtained by processing the zinc oxide-based sintered body (C2). As a result, it was impossible to form a stable film.

Claims (5)

下記プロセスAないしCを含み、プロセスBの一次焼成およびプロセスCの二次焼成がカプセルフリー熱間静水圧プレスにより行なわれることを特徴とする酸化亜鉛系焼結体の製造方法。
プロセスA:実質的に、亜鉛と、チタンと、酸素とからなり、チタンの割合が全金属原子数に対して0.2%以上10%以下である原料粉末を、成形して成型体を得る工程
プロセスB:前記プロセスAで得られた成型体を、圧力1〜30MPaの不活性ガス雰囲気下、焼成温度900〜1200℃で一次焼成を行い、相対密度が92%以上98%未満で、かつ欠陥が閉気孔である一次焼結体を得る工程
プロセスC:前記プロセスBで得られた一次焼結体を、圧力90MPa以上の不活性ガス雰囲気下、800〜1400℃で二次焼成を行い、相対密度が98%以上である酸化亜鉛系焼結体を得る工程
A method for producing a zinc oxide-based sintered body comprising the following processes A to C, wherein the primary firing of process B and the secondary firing of process C are performed by capsule-free hot isostatic pressing.
Process A: A raw material powder substantially consisting of zinc, titanium, and oxygen and having a titanium ratio of 0.2% to 10% with respect to the total number of metal atoms is molded to obtain a molded body. Step Process B: The molded body obtained in Process A is subjected to primary firing at a firing temperature of 900 to 1200 ° C. in an inert gas atmosphere at a pressure of 1 to 30 MPa, and the relative density is 92% or more and less than 98%, and Step of obtaining a primary sintered body in which the defects are closed pores Process C: The primary sintered body obtained in Process B is subjected to secondary firing at 800 to 1400 ° C. in an inert gas atmosphere at a pressure of 90 MPa or more, Step of obtaining a zinc oxide-based sintered body having a relative density of 98% or more
下記プロセスDないしFを含み、プロセスEの一次焼成およびプロセスFの二次焼成がカプセルフリー熱間静水圧プレスにより行なわれることを特徴とする酸化亜鉛系焼結体の製造方法。
プロセスD:実質的に、ガリウムおよびアルミニウムから選ばれる少なくとも一方、亜鉛、チタン並びに酸素からなり、チタンの割合が全金属原子数に対して0.2%以上10%以下であり、ガリウムまたはアルミニウムの原子数の割合が全金属原子数に対して0.1%以上6%以下である原料粉末を成形して成型体を得る工程
プロセスE:前記プロセスDで得られた成型体を、圧力1〜30MPaの不活性ガス雰囲気下、焼成温度900〜1200℃で一次焼成を行い、相対密度が92%以上98%未満であり、かつ欠陥が閉気孔である一次焼結体を得る工程
プロセスF:前記プロセスEで得られた一次焼結体を、圧力90MPa以上の不活性ガス雰囲気下、800〜1400℃で二次焼成を行い、相対密度が98%以上である酸化亜鉛系焼結体を得る工程
A method for producing a zinc oxide-based sintered body comprising the following processes D to F, wherein the primary firing of process E and the secondary firing of process F are performed by capsule-free hot isostatic pressing.
Process D: substantially consisting of at least one selected from gallium and aluminum, zinc, titanium, and oxygen, the ratio of titanium being 0.2% or more and 10% or less with respect to the total number of metal atoms, Step of obtaining a molded body by molding a raw material powder having a ratio of the number of atoms of 0.1% or more and 6% or less with respect to the total number of metal atoms. Process E: Process of performing primary firing at a firing temperature of 900 to 1200 ° C. in an inert gas atmosphere of 30 MPa to obtain a primary sintered body having a relative density of 92% or more and less than 98% and having defects having closed pores Process F: The primary sintered body obtained in Process E is subjected to secondary firing at 800 to 1400 ° C. in an inert gas atmosphere at a pressure of 90 MPa or higher, and zinc oxide having a relative density of 98% or higher. Obtaining a sintered body
前記原料粉末は、酸化チタン粉と、酸化亜鉛粉との混合粉を含む請求項1に記載の酸化亜鉛系焼結体の製造方法。   The said raw material powder is a manufacturing method of the zinc oxide type sintered compact of Claim 1 containing the mixed powder of a titanium oxide powder and a zinc oxide powder. 前記原料粉末は、酸化ガリウム粉および酸化アルミニウム粉から選ばれる少なくとも一方と、酸化チタン粉と、酸化亜鉛粉との混合粉を含む請求項2に記載の酸化亜鉛系焼結体の製造方法。   The said raw material powder is a manufacturing method of the zinc oxide type sintered compact of Claim 2 containing the mixed powder of at least one chosen from gallium oxide powder and aluminum oxide powder, titanium oxide powder, and zinc oxide powder. 前記酸化チタン粉が、一般式:TiO2-X(X=0.1〜1)で表される低原子価酸化チタンの粉末である請求項3または4に記載の酸化亜鉛系焼結体の製造方法。 The zinc oxide-based sintered body according to claim 3 or 4, wherein the titanium oxide powder is a low-valent titanium oxide powder represented by a general formula: TiO2 -X (X = 0.1 to 1). Production method.
JP2012228379A 2012-03-02 2012-10-15 Method for producing zinc oxide-based sintered body Expired - Fee Related JP6027844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228379A JP6027844B2 (en) 2012-03-02 2012-10-15 Method for producing zinc oxide-based sintered body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012046091 2012-03-02
JP2012046091 2012-03-02
JP2012228379A JP6027844B2 (en) 2012-03-02 2012-10-15 Method for producing zinc oxide-based sintered body

Publications (2)

Publication Number Publication Date
JP2013209277A JP2013209277A (en) 2013-10-10
JP6027844B2 true JP6027844B2 (en) 2016-11-16

Family

ID=49527515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228379A Expired - Fee Related JP6027844B2 (en) 2012-03-02 2012-10-15 Method for producing zinc oxide-based sintered body

Country Status (1)

Country Link
JP (1) JP6027844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6412439B2 (en) * 2015-02-17 2018-10-24 三井金属鉱業株式会社 Method for manufacturing ceramic target material and method for manufacturing cylindrical sputtering target

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290350A (en) * 1990-04-09 1991-12-20 Natl Inst For Res In Inorg Mater Production of sintered material of zinc oxide having light transmission property
WO2009078329A1 (en) * 2007-12-19 2009-06-25 Hitachi Metals, Ltd. Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode
JP2009235541A (en) * 2008-03-28 2009-10-15 Hitachi Metals Ltd Method for producing zinc oxide based sintered target
WO2011102425A1 (en) * 2010-02-18 2011-08-25 住友化学株式会社 Oxide sintered body, oxide mixture, manufacturing methods for same, and targets using same

Also Published As

Publication number Publication date
JP2013209277A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5993703B2 (en) Method for producing zinc oxide powder
US8383019B2 (en) Sputtering target, transparent conductive film and transparent electrode
JP5686067B2 (en) Zn-Sn-O-based oxide sintered body and method for producing the same
JP5764828B2 (en) Oxide sintered body and tablet processed the same
WO2011115177A1 (en) Transparent conductive films
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
KR101240197B1 (en) Transparent conducting film, target for transparent conducting film and method of preparing target for transparent conducting film
JP5993700B2 (en) Method for producing zinc oxide-based sintered body
JP6027844B2 (en) Method for producing zinc oxide-based sintered body
JP5952031B2 (en) Oxide sintered body manufacturing method and target manufacturing method
JP2012193073A (en) Oxide molded product, oxide sintered compact, and transparent conductive film-forming material
JP2011207742A (en) Zinc oxide transparent conductive film forming material, method of manufacturing the same, target using the same and method of forming zinc oxide transparent conductive film
JP2012158825A (en) Zinc oxide-based transparent conductive film-forming material and method for producing the same, target using the same, method for forming zinc oxide-based transparent conductive film, and transparent conductive substrate
JP2012197216A (en) Oxide sintered compact, method for manufacturing the same and target using the same
JP2012106880A (en) Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film
JP6014454B2 (en) Method for producing zinc oxide-based sintered body
JP2012106879A (en) Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film
WO2014021374A1 (en) Oxide sintered body and tablet obtained by processing same
JP2012148937A (en) Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target
JP2014097922A (en) Method for producing zinc oxide-based sintered compact and target
JP2012140673A (en) Zinc oxide based transparent conductive film forming material, method for producing the material, target using the material, and method for forming zinc oxide based transparent conductive film
JP6014451B2 (en) Method for producing zinc oxide-based sintered body
JP2014097920A (en) Zinc oxide-based powder and method for producing zinc oxide-based sintered compact
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
JP5822034B2 (en) Sputtering target and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6027844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees