JP5392063B2 - Lithium ion secondary battery, vehicle and battery-equipped equipment - Google Patents

Lithium ion secondary battery, vehicle and battery-equipped equipment Download PDF

Info

Publication number
JP5392063B2
JP5392063B2 JP2009292632A JP2009292632A JP5392063B2 JP 5392063 B2 JP5392063 B2 JP 5392063B2 JP 2009292632 A JP2009292632 A JP 2009292632A JP 2009292632 A JP2009292632 A JP 2009292632A JP 5392063 B2 JP5392063 B2 JP 5392063B2
Authority
JP
Japan
Prior art keywords
active material
material layer
positive electrode
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009292632A
Other languages
Japanese (ja)
Other versions
JP2011134564A (en
Inventor
宏基 粟野
裕之 山口
達哉 古賀
吉修 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009292632A priority Critical patent/JP5392063B2/en
Publication of JP2011134564A publication Critical patent/JP2011134564A/en
Application granted granted Critical
Publication of JP5392063B2 publication Critical patent/JP5392063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、集電板及び活物質層を有する電極板(正電極板,負電極板)と、セパレータとを捲回してなる発電要素を備えるリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器に関する。   The present invention relates to a lithium ion secondary battery comprising a power generation element formed by winding a current collector plate and an electrode plate (positive electrode plate, negative electrode plate) having an active material layer and a separator, and this lithium ion secondary battery. The present invention relates to mounted vehicles and battery-mounted devices.

近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池が利用されている。
このようなリチウムイオン二次電池には、いずれも帯状の、負電極板と正電極板と、これらの間に介在してなるセパレータとを捲回した発電要素を備えるリチウムイオン二次電池(以下、単に電池という)が挙げられる。
In recent years, lithium ion secondary batteries have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.
Such a lithium ion secondary battery is a lithium ion secondary battery (hereinafter, referred to as a belt-shaped lithium ion secondary battery including a negative electrode plate, a positive electrode plate, and a separator interposed between them). Simply referred to as a battery).

このような電池に関連して、特許文献1では、長手方向に延びる帯状の集電体(正極集電板,負極集電板)のうち、その長手方向に直交する幅方向の中央に位置する面には、突起部が規則的に形成された第1の領域を、幅方向の両側縁に位置する面には、突起部がランダムに形成された第2の領域をそれぞれ形成したリチウム二次電池用電極(正電極板,負電極板)が開示されている。   In relation to such a battery, in Patent Document 1, among strip-shaped current collectors (positive electrode current collector plate, negative electrode current collector plate) extending in the longitudinal direction, the battery is located at the center in the width direction orthogonal to the longitudinal direction. Lithium secondary in which a first region in which protrusions are regularly formed is formed on the surface, and a second region in which protrusions are randomly formed on the surface located on both side edges in the width direction. Battery electrodes (positive electrode plate, negative electrode plate) are disclosed.

特開2008−103231号公報JP 2008-103231 A

上述のリチウム二次電池用電極における集電体の第2の領域では、第1の領域よりも活物質(正極活物質層,負極活物質層)との密着性が高い。このため、充放電の際に、両端縁に位置する第2の領域で生じる、正極活物質層(又は負極活物質層)と正極集電板(又は負極集電板)との間の剥離を抑制することができ、電池のサイクル特性の低下を抑制できる。   In the second region of the current collector in the electrode for a lithium secondary battery described above, the adhesiveness to the active material (positive electrode active material layer, negative electrode active material layer) is higher than that in the first region. For this reason, the peeling between the positive electrode active material layer (or the negative electrode active material layer) and the positive electrode current collector plate (or the negative electrode current collector plate) that occurs in the second region located at both ends of the edge during charging and discharging is performed. It is possible to suppress the deterioration of the cycle characteristics of the battery.

しかしながら、特許文献1に記載のように、集電体(正極集電板,負極集電板)の表面を改質して、それぞれ特性の異なる第1の領域及び第2の領域を設け、その上に活物質(正極活物質層,負極活物質層)を配置した集電体を形成するのは困難である。   However, as described in Patent Document 1, the surface of the current collector (positive electrode current collector plate, negative electrode current collector plate) is modified to provide a first region and a second region having different characteristics, respectively, It is difficult to form a current collector having an active material (positive electrode active material layer, negative electrode active material layer) disposed thereon.

そこで、発明者らは、集電体(正極集電板,負極集電板)ではなく、正極活物質層,負極活物質層の特性の向上により、正極活物質層と正極集電板との間、及び、負極活物質層と負極集電板との間の少なくともいずれかの密着性を向上させることについて検討した。しかし、例えば、活物質層中の結着材量を多くして活物質層と集電板との間の剥離強度を全面にわたって高くした場合、これを用いた電池において、放電レート特性が低下してしまい好ましくない。結着材量を多くしたことにより、活物質層の全面にわたって、活物質層内のリチウムイオンの移動が妨げられたため、特に高レートの放電でその影響を受けたと考えられる。なお、放電レート特性とは、小さな(低レートの)放電電流値で電池を放電させたときの電池容量に対する、大きな(高レートの)放電電流値で電池を放電させたときの電池容量の割合(高レート容量維持率)で表される特性であり、その割合が大きい(高レートでも電池容量が低下しにくい)ほど好ましい。   Therefore, the inventors have improved the characteristics of the positive electrode active material layer and the negative electrode active material layer, not the current collector (positive electrode current collector plate, negative electrode current collector plate), and thereby improved the positive electrode active material layer and the positive electrode current collector plate. And improving at least any adhesion between the negative electrode active material layer and the negative electrode current collector plate. However, for example, when the amount of the binder in the active material layer is increased to increase the peel strength between the active material layer and the current collector plate over the entire surface, the discharge rate characteristics of the battery using this decrease. This is not preferable. Since the increase in the amount of the binder hinders the movement of lithium ions in the active material layer over the entire surface of the active material layer, it is considered that the binder material was particularly affected by the discharge at a high rate. The discharge rate characteristic is the ratio of the battery capacity when the battery is discharged with a large (high rate) discharge current value to the battery capacity when the battery is discharged with a small (low rate) discharge current value. It is a characteristic represented by (high rate capacity maintenance rate), and the larger the ratio (the battery capacity is less likely to decrease even at a high rate), the more preferable.

本発明は、かかる問題点に鑑みてなされたものであって、製造容易で良好な電池特性を有するリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器を提供することを目的とする。   The present invention has been made in view of such problems, and provides a lithium ion secondary battery that is easy to manufacture and has good battery characteristics, a vehicle equipped with the lithium ion secondary battery, and a battery-equipped device. With the goal.

本発明の一態様は、導電性を有する帯状の正極集電板、及び、この正極集電板上に配置され、正極活物質粒子と結着材とを含み、この正極集電板の長手方向に延びる帯状の正極活物質層を有する帯状の正電極板と、導電性を有する帯状の負極集電板、及び、この負極集電板上に配置され、負極活物質粒子と結着材とを含み、この負極集電板の長手方向に延びる帯状の負極活物質層を有し、上記正電極板と対向してなる帯状の負電極板と、上記正電極板と上記負電極板との間に介在してなるセパレータと、を捲回してなる発電要素を備えるリチウムイオン二次電池であって、上記正極活物質層と上記正極集電板との間の剥離強度、及び、上記負極活物質層と上記負極集電板との間の剥離強度の少なくともいずれかについて、上記長手方向に直交する幅方向について、活物質層の特性を異ならせることにより、その幅方向の中央部に比して両側縁部を高くしてなるリチウムイオン二次電池である。   One embodiment of the present invention includes a strip-shaped positive electrode current collector plate having conductivity, and a positive electrode current collector plate which is disposed on the positive electrode current collector plate and includes positive electrode active material particles and a binder. A strip-shaped positive electrode plate having a strip-shaped positive electrode active material layer extending in the direction of the electrode, a conductive strip-shaped negative electrode current collector plate, and a negative electrode active material particle and a binder disposed on the negative electrode current collector plate. A negative electrode active material layer extending in the longitudinal direction of the negative electrode current collector plate, the negative electrode plate having a band shape facing the positive electrode plate, and between the positive electrode plate and the negative electrode plate A lithium ion secondary battery comprising a power generation element formed by winding a separator interposed between the positive electrode active material layer and the positive electrode current collector plate, and the negative electrode active material Orthogonal to the longitudinal direction for at least one of the peel strength between the layer and the negative electrode current collector plate For that the width direction, by varying the characteristics of the active material layer, a lithium ion secondary battery comprising a higher side edge portions than in the central portion in the width direction.

上述の電池では、正極活物質層と正極集電板との間の剥離強度、及び、負極活物質層と負極集電板との間の剥離強度の少なくともいずれかについて、幅方向中央部に比して両側縁部を高くしてなる。これにより、当該活物質層について、剥離しやすいその幅方向両側縁部が、集電板から剥離するのを抑制することができる。
その一方で、剥離強度を高めたことで、リチウムイオンの移動のしやすさなどの電気的特性が低下しがちな両側縁部に比べ、中央部ではこのような特性の低下は生じにくいので、活物質層全体としては、良好な特性を得ることができる。
かくして、活物質層の剥離を抑制しつつも、良好な電池特性を有する電池とすることができる。
In the above-described battery, at least one of the peel strength between the positive electrode active material layer and the positive electrode current collector plate and the peel strength between the negative electrode active material layer and the negative electrode current collector plate is compared with the central portion in the width direction. The side edges are raised. Thereby, about the said active material layer, it can suppress that the width direction both-sides edge which is easy to peel from peeling from a current collecting plate.
On the other hand, by increasing the peel strength, compared to the side edges where the electrical characteristics such as the ease of movement of lithium ions tend to decrease, such a decrease in characteristics is less likely to occur at the center, Good characteristics can be obtained for the entire active material layer.
Thus, it is possible to obtain a battery having good battery characteristics while suppressing peeling of the active material layer.

なお、剥離強度の測定手法としては、例えば、碁盤目試験や、電極板を液温が60℃のN−メチル−2−ピロリドン(NMP)に30日間浸漬する浸漬試験が挙げられる。このうち、碁盤目試験とは、例えば、市販の自動クロスカット剥離試験機を用いて、活物質層を貫通して集電板に達する切り傷を碁盤目状に付け、粘着テープを付着して引きはがしたときの表面の状態を観察し、その表面の状態から剥離強度を評価する分類表により評価する試験である。   Examples of the peel strength measuring method include a cross-cut test and an immersion test in which the electrode plate is immersed in N-methyl-2-pyrrolidone (NMP) having a liquid temperature of 60 ° C. for 30 days. Among these, the cross-cut test is, for example, using a commercially available automatic cross-cut peel tester to cut the cut through the active material layer to reach the current collector plate and attach the adhesive tape. This is a test in which the state of the surface when peeled is observed and evaluated by a classification table for evaluating the peel strength from the surface state.

また、活物質層の特性を異ならせる手法としては、幅方向中央部と幅方向両端縁部との剥離強度を異ならせるように、例えば、正極活物質層(或いは負極活物質層)中の結着材の量や、結着材の結晶化度や、結着材の分子量によって変える手法が挙げられる。   In addition, as a method for making the characteristics of the active material layer different, for example, in the positive electrode active material layer (or the negative electrode active material layer), for example, the peel strength between the width direction center portion and the width direction both end edges is made different. Examples of the method include changing the amount according to the amount of the binder, the crystallinity of the binder, and the molecular weight of the binder.

さらに、上述のリチウムイオン二次電池であって、前記正極活物質層及び前記負極活物質層のうち、前記剥離強度について、前記幅方向の前記中央部に比して前記両側縁部を高くした活物質層は、上記活物質層中の前記結着材の量を、上記中央部に比して上記両側縁で多くしてなるリチウムイオン二次電池とすると良い。   Furthermore, in the lithium ion secondary battery described above, in the positive electrode active material layer and the negative electrode active material layer, the both side edge portions are made higher than the central portion in the width direction with respect to the peel strength. The active material layer may be a lithium ion secondary battery in which the amount of the binder in the active material layer is increased at both side edges as compared to the central portion.

活物質層中の結着材の量を多くすると、活物質層と集電板との間の剥離強度を高くすることができる。このため、上述の電池では、活物質層と集電板との間の剥離強度について、幅方向の中央部に比して両側縁部で確実に高くすることができ、活物質層の剥離を確実に抑制しつつ、良好な電池特性を有する電池とすることができる。   When the amount of the binder in the active material layer is increased, the peel strength between the active material layer and the current collector plate can be increased. For this reason, in the battery described above, the peel strength between the active material layer and the current collector plate can be reliably increased at both side edges as compared to the central portion in the width direction, and the active material layer can be peeled off. It can be set as the battery which has favorable battery characteristics, suppressing it reliably.

又は、前述のリチウムイオン二次電池であって、前記正極活物質層及び前記負極活物質層のうち、前記剥離強度について、前記幅方向の前記中央部に比して前記両側縁部を高くした活物質層は、上記活物質層中の前記結着材の結晶化度を、上記中央部に比して上記両側縁部で高くしてなるリチウムイオン二次電池とすると良い。   Or it is the above-mentioned lithium ion secondary battery, Comprising: About the said peeling strength among the said positive electrode active material layers and the said negative electrode active material layers, the said both edge part was made high compared with the said center part of the said width direction. The active material layer may be a lithium ion secondary battery in which the degree of crystallinity of the binder in the active material layer is higher at both side edges than at the center.

活物質層中の結着材の結晶化度を高くすると結着材の粘性が高くなり、この活物質層と集電板との間の剥離強度を高くすることができる。このため、上述の電池では、活物質層と集電板との間の剥離強度について、幅方向の中央部に比して両側縁部で確実に高くすることができ、活物質層の剥離を確実に抑制しつつ、良好な電池特性を有する電池とすることができる。   When the crystallinity of the binder in the active material layer is increased, the viscosity of the binder is increased, and the peel strength between the active material layer and the current collector plate can be increased. For this reason, in the battery described above, the peel strength between the active material layer and the current collector plate can be reliably increased at both side edges as compared to the central portion in the width direction, and the active material layer can be peeled off. It can be set as the battery which has favorable battery characteristics, suppressing it reliably.

なお、結晶化度を測定する測定手段としては、例えば、示差走査熱量計(DSC)を用いた融解熱測定が挙げられる。   In addition, as a measuring means which measures a crystallinity degree, the heat of fusion measurement using a differential scanning calorimeter (DSC) is mentioned, for example.

又は、前述のリチウムイオン二次電池であって、前記正極活物質層及び前記負極活物質層のうち、前記剥離強度について、前記幅方向の前記中央部に比して前記両側縁部を高くした活物質層は、上記活物質層中の前記結着材の分子量を、上記中央部に比して上記両側縁部で大きくしてなるリチウムイオン二次電池とすると良い。   Or it is the above-mentioned lithium ion secondary battery, Comprising: About the said peeling strength among the said positive electrode active material layers and the said negative electrode active material layers, the said both edge part was made high compared with the said center part of the said width direction. The active material layer may be a lithium ion secondary battery in which the molecular weight of the binder in the active material layer is increased at both side edge portions as compared to the central portion.

活物質層中の結着材の分子量を大きくすると結着材の粘性が高くなり、この活物質層と集電板との間の剥離強度を高くすることができる。このため、上述の電池では、活物質層と集電板との間の剥離強度について、幅方向の中央部に比して両側縁部で確実に高くすることができ、活物質層の剥離を確実に抑制しつつ、良好な電池特性を有する電池とすることができる。   When the molecular weight of the binder in the active material layer is increased, the viscosity of the binder is increased, and the peel strength between the active material layer and the current collector plate can be increased. For this reason, in the battery described above, the peel strength between the active material layer and the current collector plate can be reliably increased at both side edges as compared to the central portion in the width direction, and the active material layer can be peeled off. It can be set as the battery which has favorable battery characteristics, suppressing it reliably.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両である。   Or the other aspect of this invention is a vehicle which mounts one of the above-mentioned lithium ion secondary batteries, and uses the electrical energy stored in this lithium ion secondary battery for all or one part of a motive power source.

上述の車両は、良好な電池特性を有する電池を搭載しているので、安定した性能の動力源を有する車両とすることができる。   Since the above-mentioned vehicle is equipped with a battery having good battery characteristics, it can be a vehicle having a power source with stable performance.

なお、車両としては、電池による電気エネルギを動力源の全部又は一部に使用する車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electric vehicle Examples include assist bicycles and electric scooters.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを駆動エネルギ源の全部又は一部に使用する電池搭載機器である。   Alternatively, according to another aspect of the present invention, a battery-mounted device in which any one of the above-described lithium ion secondary batteries is mounted and the electric energy stored in the lithium ion secondary battery is used for all or part of the driving energy source. It is.

上述の電池搭載機器は、良好な電池特性を有する電池を搭載しているので、安定した性能の動力源を有する電池搭載機器とすることができる。   Since the above-described battery-mounted device is equipped with a battery having good battery characteristics, it can be a battery-mounted device having a power source with stable performance.

なお、電池搭載機器としては、電池を搭載し、これをエネルギ源の全部又は一部に使用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。   In addition, as a battery mounting apparatus, what is necessary is just an apparatus which mounts a battery and uses this for all or one part of an energy source, for example, a personal computer, a mobile telephone, a battery-powered electric tool, an uninterruptible power supply, etc. And various home appliances driven by batteries, office equipment, and industrial equipment.

実施形態1,変形形態1,変形形態2にかかる電池の斜視図である。3 is a perspective view of a battery according to Embodiment 1, Modification 1 and Modification 2. FIG. 実施形態1,変形形態1,変形形態2の正電極板の斜視図である。It is a perspective view of the positive electrode plate of Embodiment 1, Modification 1, and Modification 2. 実施形態1,変形形態1,変形形態2の負電極板の斜視図である。It is a perspective view of the negative electrode plate of Embodiment 1, modification 1, and modification 2. FIG. 変形形態1の正電極板,負電極板の説明図である。It is explanatory drawing of the positive electrode plate of a modification 1, and a negative electrode plate. 実施形態2にかかる車両の説明図である。It is explanatory drawing of the vehicle concerning Embodiment 2. FIG. 実施形態3にかかる電池搭載機器の説明図である。It is explanatory drawing of the battery mounting apparatus concerning Embodiment 3. FIG.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
まず、本実施形態1にかかる電池1について、図1を参照して説明する。
この電池1は、帯状の正電極板20と、帯状の負電極板30と、正電極板20と負電極板30との間に介在させた帯状のセパレータ50とを捲回し、このセパレータ50に電解液60を含浸させた発電要素10を備えるリチウムイオン二次電池である(図1参照)。この電池1は、発電要素10を電池ケース80に収容してなる。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
First, the battery 1 according to the first embodiment will be described with reference to FIG.
The battery 1 is formed by winding a strip-shaped positive electrode plate 20, a strip-shaped negative electrode plate 30, and a strip-shaped separator 50 interposed between the positive electrode plate 20 and the negative electrode plate 30. It is a lithium ion secondary battery provided with the electric power generation element 10 impregnated with the electrolyte solution 60 (refer FIG. 1). The battery 1 includes a power generation element 10 accommodated in a battery case 80.

この電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と発電要素10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、発電要素10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   The battery case 80 has a battery case body 81 and a sealing lid 82 both made of aluminum. Among these, the battery case main body 81 has a bottomed rectangular box shape, and an insulating film (not shown) made of resin and bent into a box shape is interposed between the battery case 80 and the power generation element 10. The sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collecting member 91 and the negative electrode current collecting member 92 connected to the power generation element 10, the positive electrode terminal portion 91 </ b> A and the negative electrode terminal portion 92 </ b> A located at the tips of the sealing lid 82 pass through, respectively. 1 protrudes from the lid surface 82a facing upward. Insulating members 95 made of insulating resin are interposed between the positive electrode terminal portion 91A and the negative electrode terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、電解液60は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを、体積比でEC:DMC=3:7に調整した混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1mol/lの濃度とした非水電解液である。 In addition, the electrolytic solution 60 was prepared by adding LiPF 6 as a solute to a mixed organic solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were adjusted to EC: DMC = 3: 7 by volume ratio, and lithium ions were added. This is a non-aqueous electrolyte having a concentration of 1 mol / l.

また、発電要素10は、帯状の正電極板20及び負電極板30が、帯状のセパレータ50を介して扁平形状に捲回されてなる捲回型の形態である(図1参照)。なお、この発電要素10では、正電極板20と負電極板30とが対向している。また、この発電要素10の正電極板20及び負電極板30はそれぞれ、クランク状に屈曲した板状の負極集電部材92又は正極集電部材91と接合している(図1参照)。
このうち、多孔性のポリプロピレンからなる帯状のセパレータ50は、正電極板20と負電極板30との間に介在して、これらを離間させている。このセパレータ50には、全体に上述した電解液60が含浸させてある。
The power generation element 10 has a wound-type configuration in which a strip-like positive electrode plate 20 and a negative electrode plate 30 are wound into a flat shape via a strip-like separator 50 (see FIG. 1). In the power generation element 10, the positive electrode plate 20 and the negative electrode plate 30 face each other. Further, the positive electrode plate 20 and the negative electrode plate 30 of the power generation element 10 are respectively joined to a plate-like negative electrode current collecting member 92 or a positive electrode current collecting member 91 bent in a crank shape (see FIG. 1).
Among these, the strip-shaped separator 50 made of porous polypropylene is interposed between the positive electrode plate 20 and the negative electrode plate 30 to separate them. The separator 50 is entirely impregnated with the electrolytic solution 60 described above.

また、正電極板20は、図2に示すように、長手方向DAに延びる帯状で、導電性を有するアルミニウムからなるアルミ箔28(箔厚は15μm)と、このアルミ箔28の両主面上に配置され、長手方向DLに延びる帯状の2つの正極活物質層21,21とを有している。   Further, as shown in FIG. 2, the positive electrode plate 20 has a strip shape extending in the longitudinal direction DA, and an aluminum foil 28 (foil thickness is 15 μm) made of conductive aluminum and on both main surfaces of the aluminum foil 28. And two strip-shaped positive electrode active material layers 21 and 21 extending in the longitudinal direction DL.

このうち正極活物質層21は、それぞれ、長手方向DLに直交する幅方向DWについて、この正極活物質層21の特性を異ならせてある。具体的には、図2に示すように、正極活物質層21は、幅方向DWの中央に位置する帯状の中央部21C、幅方向DWの両側縁に位置する2つの帯状の縁部21E,21E、及び、これら中央部21Cと縁部21Eとの間に位置する2つの帯状の中間部21M,21Mからなる。
これら中央部21C、縁部21E及び中間部21Mはいずれも、LiCoO2からなる正極活物質粒子24、カーボンブラックからなる導電材25、及び、結晶化温度が約140℃のポリフッ化ビニリデン(PVDF)からなる結着材23を含む。但し、中央部21C、縁部21E及び中間部21Mでは、これら正極活物質粒子24、導電材25及び結着材23の重量比をそれぞれ異ならせてある。
具体的には、中央部21C内における、正極活物質粒子24、導電材25及び結着材23の重量比を、正極活物質粒子24:導電材25:結着材23=88:9:3としてある。また、縁部21E内における、それらの重量比を、正極活物質粒子24:導電材25:結着材23=85:6:9としてある。さらに、中間部21M内における、それらの重量比を、正極活物質粒子24:導電材25:結着材23=87:8:5としてある。即ち、正極活物質粒子24の量を中央部21C,中間部21M,縁部21Eの順に多く、つまり、中央部21Cから両側の縁部21E,21Eに向かうほど多くしてある。
Among these, the positive electrode active material layer 21 has different characteristics of the positive electrode active material layer 21 in the width direction DW orthogonal to the longitudinal direction DL. Specifically, as shown in FIG. 2, the positive electrode active material layer 21 includes a belt-like central portion 21 </ b> C located at the center in the width direction DW, two belt-like edge portions 21 </ b> E located at both side edges in the width direction DW, 21E, and two belt-like intermediate portions 21M and 21M located between the central portion 21C and the edge portion 21E.
These central part 21C, edge part 21E and intermediate part 21M are all positive electrode active material particles 24 made of LiCoO 2 , conductive material 25 made of carbon black, and polyvinylidene fluoride (PVDF) having a crystallization temperature of about 140 ° C. The binder 23 which consists of is included. However, in the central part 21C, the edge part 21E, and the intermediate part 21M, the weight ratios of the positive electrode active material particles 24, the conductive material 25, and the binder material 23 are different.
Specifically, the weight ratio of the positive electrode active material particles 24, the conductive material 25, and the binder 23 in the central portion 21C is determined as follows: positive electrode active material particles 24: conductive material 25: binder 23 = 88: 9: 3 It is as. Further, the weight ratio in the edge portion 21E is set as positive electrode active material particles 24: conductive material 25: binder 23 = 85: 6: 9. Furthermore, the weight ratio in the intermediate portion 21M is set as positive electrode active material particles 24: conductive material 25: binder 23 = 87: 8: 5. That is, the amount of the positive electrode active material particles 24 is increased in the order of the central portion 21C, the intermediate portion 21M, and the edge portion 21E, that is, the amount increases toward the edge portions 21E and 21E on both sides from the central portion 21C.

一方、負電極板30は、図3に示すように、長手方向DAに延びる帯状で、導電性を有する銅からなる銅箔38(箔厚は15μm)と、この銅箔38の主面上に配置され、長手方向DLに延びる帯状の2つの負極活物質層31,31とを有している。   On the other hand, as shown in FIG. 3, the negative electrode plate 30 has a strip shape extending in the longitudinal direction DA, a copper foil 38 made of conductive copper (foil thickness is 15 μm), and a main surface of the copper foil 38. It has two strip-shaped negative electrode active material layers 31 and 31 that are arranged and extend in the longitudinal direction DL.

このうち負極活物質層31は、正極活物質層21と同様に、幅方向DWついて、この負極活物質層31の特性を異ならせてある。具体的には、図3に示すように、負極活物質層31は、幅方向DWの中央に位置する帯状の中央部31C、幅方向DWの両側縁に位置する2つの帯状の縁部31E,31E、及び、これら中央部31Cと縁部31Eとの間に位置する2つの帯状の中間部31M,31Mからなる。
これら中央部31C、縁部31E及び中間部31Mはいずれも、グラファイト粉末の負極活物質粒子34、及び、結晶化温度が約140℃のPVDFからなる結着材33を含む。但し、中央部31C、縁部31E及び中間部31Mでは、これら負極活物質粒子34及び結着材33の重量比をそれぞれ異ならせてある。
具体的には、中央部31C内における、負極活物質粒子34及び結着材33の重量比を、負極活物質粒子34:結着材33=965:35としてある。また、縁部31E内における、それらの重量比を、負極活物質粒子34:結着材33=905:95としてある。さらに、中間部31M内における、それらの重量比を、負極活物質粒子34:結着材33=935:65としてある。即ち、負極活物質粒子34の量を中央部31C,中間部31M,縁部31Eの順に多く、つまり、中央部31Cから両側の縁部31E,31Eに向かうほど多くしてある。
Among these, the negative electrode active material layer 31 is different in the characteristics of the negative electrode active material layer 31 in the width direction DW, like the positive electrode active material layer 21. Specifically, as shown in FIG. 3, the negative electrode active material layer 31 includes a strip-shaped central portion 31C located at the center in the width direction DW, two strip-shaped edge portions 31E located at both side edges in the width direction DW, 31E and two strip-shaped intermediate portions 31M and 31M located between the central portion 31C and the edge portion 31E.
Each of the central part 31C, the edge part 31E and the intermediate part 31M includes a negative electrode active material particle 34 made of graphite powder and a binder 33 made of PVDF having a crystallization temperature of about 140 ° C. However, the weight ratios of the negative electrode active material particles 34 and the binder 33 are different in the central portion 31C, the edge portion 31E, and the intermediate portion 31M.
Specifically, the weight ratio of the negative electrode active material particles 34 and the binder 33 in the central portion 31C is set as the negative electrode active material particles 34: binder 33 = 965: 35. Moreover, the weight ratio in the edge part 31E is set as the negative electrode active material particle 34: binder 33 = 905: 95. Furthermore, the weight ratio in the intermediate portion 31M is set as negative electrode active material particles 34: binder 33 = 935: 65. That is, the amount of the negative electrode active material particles 34 is increased in the order of the central portion 31C, the intermediate portion 31M, and the edge portion 31E, that is, increases toward the edge portions 31E and 31E on both sides from the central portion 31C.

ところで、本発明者らは、上述した電池1の放電レート特性、サイクル特性、及び、活物質層における剥離の有無について評価すべく、電池1と同様の正極活物質層、負極活物質層、セパレータ及び電解液を用いた円筒形状の試料電池T1を用意した。
具体的に、まず、上述の結着材23を3g溶解したN−メチル−2−ピロリドン(NMP)125ml中に、上述の正極活物質粒子24を88g、及び、導電材25を9gそれぞれ投入し、均一になるよう混練して、第1正極ペースト(図示しない)を作製した(この第1正極ペーストにおける結着材23は3wt%である)。
同様にして、結着材23を5g溶解したNMP125ml中に、正極活物質粒子24を87g、及び、導電材25を8gそれぞれ投入し、均一になるよう混練して、第2正極ペースト(図示しない)を作製した(この第2正極ペーストにおける結着材23は5wt%である)。また、結着材23を9g溶解したNMP125ml中に、正極活物質粒子24を85g、及び、導電材25を6gそれぞれ投入し、均一になるよう混練して、第3正極ペースト(図示しない)を作製した(この第2正極ペーストにおける結着材23は9wt%である)。
By the way, in order to evaluate the discharge rate characteristics, cycle characteristics, and presence / absence of delamination in the active material layer of the battery 1, the present inventors have the same positive electrode active material layer, negative electrode active material layer, separator as in the battery 1. A cylindrical sample battery T1 using the electrolyte solution was prepared.
Specifically, first, 88 g of the positive electrode active material particles 24 and 9 g of the conductive material 25 are put into 125 ml of N-methyl-2-pyrrolidone (NMP) in which 3 g of the binder 23 is dissolved. The first positive electrode paste (not shown) was prepared by kneading so as to be uniform (the binder 23 in the first positive electrode paste is 3 wt%).
Similarly, 87 g of the positive electrode active material particles 24 and 8 g of the conductive material 25 are respectively added to 125 ml of NMP in which 5 g of the binder 23 is dissolved, and kneaded uniformly to obtain a second positive electrode paste (not shown). (The binder 23 in the second positive electrode paste is 5 wt%). Also, 85 g of the positive electrode active material particles 24 and 6 g of the conductive material 25 are respectively added to 125 ml of NMP in which 9 g of the binder 23 is dissolved, and they are kneaded uniformly to obtain a third positive electrode paste (not shown). This was produced (the binder 23 in the second positive electrode paste was 9 wt%).

これら第1,第2,第3正極ペーストを、長手方向に延びる帯状のアルミニウム製のアルミ箔(箔厚は15μm)に塗布し、乾燥させた。
具体的には、まず、第1正極ペーストを、アルミ箔の両主面の、長手方向に直交する幅方向の中央の位置に、30.0mmの幅寸法で帯状にそれぞれ塗布した。塗布後、アルミ箔上の第1正極ペーストを120℃で乾燥させた。
次いで、第2正極ペーストを、乾燥させた第1正極ペーストの幅方向両縁に隣接するように、片側の主面につき2条、7.5mmの幅寸法で帯状にそれぞれ塗布し、乾燥させた。さらに、第3正極ペーストを、アルミ箔の幅方向の両側縁に、第2正極ペーストの縁に隣接するように、片側の主面につき2条、1.5mmの幅寸法で帯状にそれぞれ塗布し、乾燥させた。かくして、第1,第2,第3正極ペーストを、幅方向に見て、第3正極ペースト、第2正極ペースト、第1正極ペースト、第2正極ペースト及び第3正極ペーストの順序で、アルミ箔の両主面上に並べた。
These first, second and third positive electrode pastes were applied to a strip-shaped aluminum aluminum foil (foil thickness: 15 μm) extending in the longitudinal direction and dried.
Specifically, first, the first positive electrode paste was applied in a band shape with a width of 30.0 mm to the center position in the width direction orthogonal to the longitudinal direction of both main surfaces of the aluminum foil. After the application, the first positive electrode paste on the aluminum foil was dried at 120 ° C.
Next, the second positive electrode paste was applied to the main surface on one side in a strip shape with a width of 7.5 mm so as to be adjacent to both edges in the width direction of the dried first positive electrode paste, and dried. . Further, the third positive electrode paste is applied to both side edges of the aluminum foil in the width direction so as to be adjacent to the edge of the second positive electrode paste in strips with a width of 1.5 mm and two strips on one main surface. , Dried. Thus, when the first, second, and third positive electrode pastes are viewed in the width direction, the aluminum foil is arranged in the order of the third positive electrode paste, the second positive electrode paste, the first positive electrode paste, the second positive electrode paste, and the third positive electrode paste. Lined up on both main faces.

乾燥した各正極ペーストを、図示しないロールプレスで圧縮して高密度化し、上述した電池1にかかる正極活物質層21と同じ、アルミ箔上に、中央部、縁部及び中間部を有する正極活物質層(図示しない)を作製した。なお、この正極活物質層における、中央部,縁部,中間部の幅方向の寸法がそれぞれ30.0,7.5,3.5mmであり、正極活物質層の層厚が90μm、密度が1.6g/cm3である。
作製した正極活物質層を、アルミ箔と共に、52mm×720mmの形状に切断し(このうち、正極活物質層を担持した部位の寸法は52mm×680mm)、正電極板(図示しない)とした。
Each dried positive electrode paste is compressed by a roll press (not shown) to be densified, and the positive electrode active material having a central part, an edge part, and an intermediate part on the aluminum foil, which is the same as the positive electrode active material layer 21 according to the battery 1 described above. A material layer (not shown) was prepared. In this positive electrode active material layer, the center, edge, and intermediate portions in the width direction are 30.0, 7.5, and 3.5 mm, respectively, the positive electrode active material layer has a thickness of 90 μm, and a density of 1.6 g / cm 3 .
The produced positive electrode active material layer was cut into a shape of 52 mm × 720 mm together with the aluminum foil (among these, the size of the portion carrying the positive electrode active material layer was 52 mm × 680 mm) to obtain a positive electrode plate (not shown).

また一方で、上述の結着材33を3.5g溶解したNMP125ml中に、上述の負極活物質粒子34を96.5g投入し、混練して第1負極ペースト(図示しない)を作製した(この第1負極ペーストにおける結着材33は3.5wt%である)。
同様にして、結着材33を6.5g溶解したNMP125ml中に、負極活物質粒子34を93.5g投入して第2負極ペースト(図示しない)を、また、結着材33を9.5g溶解したNMP125ml中に、負極活物質粒子34を90.5g投入して第3負極ペースト(図示しない)を、それぞれ作製した(第2,第3負極ペーストにおける結着材33はそれぞれ6.5,9.5wt%である)。
On the other hand, 96.5 g of the negative electrode active material particles 34 described above was added to 125 ml of NMP in which 3.5 g of the binder 33 was dissolved, and kneaded to prepare a first negative electrode paste (not shown) (this) The binder 33 in the first negative electrode paste is 3.5 wt%).
Similarly, 93.5 g of the negative electrode active material particles 34 are added to 125 ml of NMP in which 6.5 g of the binder 33 is dissolved, and the second negative electrode paste (not shown) is added, and 9.5 g of the binder 33 is added. 90.5 g of negative electrode active material particles 34 were added to 125 ml of dissolved NMP to prepare third negative electrode pastes (not shown), respectively (the binder 33 in the second and third negative electrode pastes was 6.5, respectively). 9.5 wt%).

これら第1,第2,第3負極ペーストを、長手方向に延びる帯状の銅製の銅箔CF(箔厚は15μm)に塗布した。
具体的には、第1負極ペーストを、銅箔の両主面の、長手方向に直交する幅方向の中央の位置に、30.0mmの幅寸法で帯状にそれぞれ塗布した。塗布後、銅箔上の第1負極ペーストを120℃で乾燥させた。
次いで、第2負極ペーストを、乾燥させた第1負極ペーストの幅方向両縁に隣接するように、片側の主面につき2条、7.5mmの幅寸法で帯状にそれぞれ塗布し、乾燥させた。さらに、第3負極ペーストを、銅箔の幅方向の両側縁に、第2負極ペーストの縁に隣接するように、片側の主面につき2条、1.5mmの幅寸法で帯状にそれぞれ塗布し、乾燥させた。かくして、第1,第2,第3負極ペーストを、幅方向に見て、第3負極ペースト、第2負極ペースト、第1負極ペースト、第2負極ペースト及び第3負極ペーストの順序で、銅箔の両主面上に並べた。
These first, second and third negative electrode pastes were applied to a strip-like copper copper foil CF (foil thickness of 15 μm) extending in the longitudinal direction.
Specifically, the 1st negative electrode paste was apply | coated to the center position of the width direction orthogonal to a longitudinal direction of both the main surfaces of copper foil, respectively with the width | variety of 30.0 mm at strip | belt shape. After the application, the first negative electrode paste on the copper foil was dried at 120 ° C.
Next, the second negative electrode paste was applied in strips with a width of 7.5 mm and two strips on one main surface so as to be adjacent to both edges in the width direction of the dried first negative electrode paste, and dried. . Further, the third negative electrode paste was applied in strips with a width of 1.5 mm and two strips on one side of the main surface on both sides of the copper foil in the width direction so as to be adjacent to the edge of the second negative electrode paste. , Dried. Thus, when the first, second, and third negative electrode pastes are viewed in the width direction, the copper foil in the order of the third negative electrode paste, the second negative electrode paste, the first negative electrode paste, the second negative electrode paste, and the third negative electrode paste. Lined up on both main faces.

乾燥した各負極ペーストを、図示しないロールプレスで圧縮して高密度化し、上述した電池1にかかる負極活物質層31と同じ、銅箔上に、中央部、縁部及び中間部を有する負極活物質層(図示しない)を作製した。なお、この負極活物質層における、中央部,縁部,中間部の幅方向の寸法がそれぞれ30.0,7.5,5.0mmであり、負極活物質層の層厚が40μm、密度が1.2g/cm3である。
作製した負極活物質層を、銅箔と共に、55mm×740mmの形状に切断し(このうち、負極活物質層を担持した部位の寸法は55mm×720mm)、負電極板(図示しない)とした。
Each of the dried negative electrode pastes is compressed by a roll press (not shown) to increase the density, and the negative electrode active material having the central part, the edge part, and the intermediate part on the copper foil, which is the same as the negative electrode active material layer 31 of the battery 1 described above. A material layer (not shown) was prepared. In this negative electrode active material layer, the center, edge, and intermediate portions in the width direction are 30.0, 7.5, and 5.0 mm, respectively, the negative electrode active material layer has a thickness of 40 μm, and a density of 1.2 g / cm 3 .
The produced negative electrode active material layer was cut into a shape of 55 mm × 740 mm together with the copper foil (among these, the size of the portion carrying the negative electrode active material layer was 55 mm × 720 mm) to obtain a negative electrode plate (not shown).

これら正電極板と負電極板との間に、厚みが30μmのポリエチレン製のセパレータ(図示しない)を介在させて積層し、これら正電極板、負電極板及びセパレータを捲回して、捲回型の発電要素(図示しない)を作製した。この発電要素を18650型円筒ケースに挿入し、上述の電解液60をその中に注入した後、封止して試料電池T1(図示しない)を製造した。   The positive electrode plate and the negative electrode plate are laminated with a polyethylene separator (not shown) having a thickness of 30 μm interposed therebetween, and the positive electrode plate, the negative electrode plate and the separator are wound to form a wound type. A power generation element (not shown) was prepared. This power generation element was inserted into a 18650 type cylindrical case, and the above-described electrolytic solution 60 was injected therein, followed by sealing to manufacture a sample battery T1 (not shown).

上述の試料電池T1のうち、製造して間もない新品(初期)のものの電池容量について測定した。具体的には、まず、25℃の温度環境下で、試料電池T1について、3.0〜4.1Vの電圧範囲で定電流充電及び定電流放電(共に0.1C)を、1組の充放電を1サイクルとして3サイクル繰り返した(コンディショニング)。
続いて、1.0Cの電流値で、4.1Vまで充電し、その後、25℃の温度環境下で、その電圧を保ちつつ電流値を徐々に低下させながら2.5時間保持した(定電流−定電圧充電)。さらに、25℃の温度環境下で、1/3Cの電流値で3.0Vとなるまで定電流放電を行い、放電した電池容量を測定した。なお、このときの電池容量を、「1/3C電池容量」とする。
次いで、再び上述の定電流−低電圧充電を行った後、電流値を20Cに変えて定電流放電を行い、電池容量を測定した。
そして、測定した各電池容量から、放電電流値が20Cにおける高レート容量維持率を算出した。この高レート容量維持率は、各放電電流値の電池容量を、1/3C電池容量で割ったもの(百分率)である。
Among the sample batteries T1, the battery capacity of a new (initial) battery that was just manufactured was measured. Specifically, first, a constant current charge and a constant current discharge (both 0.1 C) are performed in a voltage range of 3.0 to 4.1 V for a sample battery T1 in a temperature environment of 25 ° C. The discharge was repeated for 3 cycles (conditioning).
Subsequently, the battery was charged to 4.1 V at a current value of 1.0 C, and then maintained for 2.5 hours while gradually decreasing the current value while maintaining the voltage in a temperature environment of 25 ° C. (constant current). -Constant voltage charging). Further, under a temperature environment of 25 ° C., constant current discharge was performed until the current value of 1 / 3C became 3.0 V, and the discharged battery capacity was measured. The battery capacity at this time is referred to as “1 / 3C battery capacity”.
Subsequently, after performing the above-described constant current-low voltage charging again, the current value was changed to 20 C, constant current discharging was performed, and the battery capacity was measured.
And from each measured battery capacity, the high rate capacity maintenance rate in case discharge current value is 20C was computed. This high rate capacity maintenance ratio is obtained by dividing the battery capacity of each discharge current value by the 1 / 3C battery capacity (percentage).

さらに、上述の試験を行った試料電池T1について、3.0〜4.1Vの電圧範囲で定電流充電(電流値は2C)及び定電流放電(電流値は2C)を繰り返すサイクル試験を実施した。具体的には、60℃の温度環境下で、1組の充放電を1サイクルとして、500サイクルを連続して繰り返した。
その後、試料電池T1の電池容量を、上述と同様にして測定した。そして、サイクル試験後における試料電池T1のサイクル容量維持率を算出した。このサイクル容量維持率は、サイクル試験後の電池容量を、サイクル試験前の電池容量で割ったもの(百分率)である。
Furthermore, a cycle test in which constant current charging (current value is 2 C) and constant current discharging (current value is 2 C) was repeated in the voltage range of 3.0 to 4.1 V for the sample battery T1 subjected to the above test. . Specifically, in a temperature environment of 60 ° C., 500 cycles were repeated continuously, with one set of charging / discharging as one cycle.
Thereafter, the battery capacity of the sample battery T1 was measured in the same manner as described above. And the cycle capacity maintenance factor of sample battery T1 after a cycle test was computed. This cycle capacity maintenance ratio is obtained by dividing the battery capacity after the cycle test by the battery capacity before the cycle test (percentage).

サイクル試験の後、正極活物質層及び負極活物質層のうち縁部付近の剥離の有無を確認した。具体的には、市販の自動クロスカット剥離試験機を用いて、各活物質層を貫通して集電板に達する切り傷を碁盤目状に付け、粘着テープを付着して引きはがしたときの表面の状態を観察し、分類表により各活物質層の剥離強度を判定した。なお、正極活物質層及び負極活物質層のいずれにも剥離が見られない場合には「剥離なし」、それ以外の場合には「剥離あり」とそれぞれ判定した。   After the cycle test, the presence or absence of peeling near the edge of the positive electrode active material layer and the negative electrode active material layer was confirmed. Specifically, using a commercially available automatic crosscut peel tester, when the cuts reaching the current collector plate through each active material layer were made in a grid pattern, the adhesive tape was attached and peeled off The state of the surface was observed, and the peel strength of each active material layer was determined according to the classification table. In addition, when peeling was not seen in any of the positive electrode active material layer and the negative electrode active material layer, “no peeling” was determined, and “other than that” was determined otherwise.

この試料電池T1と同様にして、比較例である比較電池C1,C2も製作し、これらの電池についての電池特性(高レート容量維持率及びサイクル容量維持率)を、試料電池T1と同様に測定した。
但し、比較電池C1は、結着材23を9.0wt%含む第1正極ペーストを全体に用いた正極活物質層を有する点、及び、結着材33を9.5wt%含む第1負極ペーストを全体に用いた負極活物質層を有する点で試料電池T1と異なる。
また、比較電池C2は、結着材23を3.0wt%含む第3正極ペーストを全体に用いた正極活物質層を有する点、及び、結着材33を3.5wt%含む第3負極ペーストを全体に用いた負極活物質層を有する点で試料電池T1と異なる。
これら試料電池T1及び比較電池C1,C2の、正極活物質層及び負極活物質層における結着材の重量比率、正極活物質層及び負極活物質層のうち縁部付近の剥離の有無、サイクル容量維持率及び高レート容量維持率を表1に示す。
In the same manner as this sample battery T1, comparative batteries C1 and C2 as comparative examples were also manufactured, and the battery characteristics (high rate capacity maintenance rate and cycle capacity maintenance rate) of these batteries were measured in the same manner as the sample battery T1. did.
However, the comparative battery C1 has a positive electrode active material layer using the first positive electrode paste including 9.0 wt% of the binder 23 as a whole, and the first negative electrode paste including 9.5 wt% of the binder 33. Is different from the sample battery T1 in that it has a negative electrode active material layer.
Further, the comparative battery C2 has a positive electrode active material layer using a third positive electrode paste containing 3.0 wt% of the binder 23 as a whole, and a third negative electrode paste containing 3.5 wt% of the binder 33. Is different from the sample battery T1 in that it has a negative electrode active material layer.
The weight ratio of the binder in the positive electrode active material layer and the negative electrode active material layer of the sample battery T1 and the comparative batteries C1 and C2, presence or absence of peeling near the edge of the positive electrode active material layer and the negative electrode active material layer, cycle capacity Table 1 shows the maintenance rate and the high rate capacity maintenance rate.

Figure 0005392063
Figure 0005392063

表1によれば、剥離の有無について、試料電池T1と比較電池C1は、「剥離なし」の判定となった。一方、比較電池C2は、「剥離あり」の判定となった。また、試料電池T1及び比較電池C1の各サイクル容量維持率(84%及び75%)は、比較電池C2のサイクル容量維持率(37%)に比して明らかに高い。
試料電池T1と比較電池C1では、正極活物質層及び負極活物質層の縁部における結着材の重量比率を、それぞれ高くしてある(9.0wt%及び9.5wt%)。このように結着材の量を多くすることで、正極活物質層とアルミ箔との間、及び、負極活物質層と銅箔との間の剥離強度を上げることができ、それらの間での剥離を抑制することができたと考えられる。また、そのため、試料電池T1と比較電池C1では、サイクル特性の低下を抑制できたと考えられる。
According to Table 1, regarding the presence / absence of peeling, the sample battery T1 and the comparative battery C1 were judged as “no peeling”. On the other hand, the comparison battery C2 was judged as “with peeling”. In addition, the cycle capacity maintenance rates (84% and 75%) of the sample battery T1 and the comparative battery C1 are clearly higher than the cycle capacity maintenance rates (37%) of the comparative battery C2.
In the sample battery T1 and the comparative battery C1, the weight ratio of the binder at the edges of the positive electrode active material layer and the negative electrode active material layer is increased (9.0 wt% and 9.5 wt%), respectively. Thus, by increasing the amount of the binder, the peel strength between the positive electrode active material layer and the aluminum foil and between the negative electrode active material layer and the copper foil can be increased, and between them It is considered that peeling of the film could be suppressed. For this reason, it is considered that the sample battery T1 and the comparative battery C1 were able to suppress the deterioration of the cycle characteristics.

さらに、試料電池T1と比較電池C1とを比較するに、試料電池T1の高レート容量維持率(72%)は、比較電池C1のそれ(45%)よりも高い。このことから、正極活物質層全体及び負極活物質層全体の結着材の重量比率をそれぞれ一様に高く(9.0wt%及び9.5wt%)した電池よりも、幅方向の中央部における結着材の重量比率を、縁部に比して低く(3.0wt%及び3.5wt%)した方が、高レート容量維持率を高くできる、即ち、放電レート特性の低下を抑制できることが判る。
これは、活物質層の全体にわたって結着材の重量比率を高くすると、活物質層の全面にわたって、正極活物質層及び負極活物質層内のリチウムイオンの移動が妨げられ、特に高レートの放電でその影響を受ける。これに対して、試料電池T1のように、活物質層のうちでも縁部(及び中間部)だけ、結着材の重量比率を高くする場合にはその影響が限られるためであると考えられる。
Furthermore, when comparing the sample battery T1 and the comparative battery C1, the high rate capacity retention rate (72%) of the sample battery T1 is higher than that (45%) of the comparative battery C1. From this, the battery in which the weight ratio of the binder of the whole positive electrode active material layer and the whole negative electrode active material layer is uniformly high (9.0 wt% and 9.5 wt%) is higher in the central portion in the width direction. When the weight ratio of the binder is lower than that of the edge (3.0 wt% and 3.5 wt%), the high rate capacity retention rate can be increased, that is, the deterioration of the discharge rate characteristics can be suppressed. I understand.
This is because when the weight ratio of the binder is increased throughout the active material layer, the movement of lithium ions in the positive electrode active material layer and the negative electrode active material layer is hindered over the entire surface of the active material layer. It is affected by that. On the other hand, when the weight ratio of the binder is increased only in the edge portion (and the intermediate portion) of the active material layer as in the sample battery T1, the influence is limited. .

以上より、上述の試料電池T1、さらには試料電池T1と同じ構成の正極活物質層及び負極活物質層を用いた電池1では、正極活物質層及び負極活物質層のいずれについても、剥離しやすいその幅方向の縁部が、アルミ箔及び銅箔から剥離するのを抑制することができる。
その一方で、正極活物質層とアルミ箔との間、及び、負極活物質層と銅箔との間の各剥離強度を高めたことで、リチウムイオンの移動のしやすさなどの電気的特性が低下しがちな縁部に比べ、中央部ではこのような特性の低下は生じにくいので、正極活物質層及び負極活物質層全体としては、良好な特性を得ることができる。
かくして、試料電池T1及び電池1では、活物質層の剥離を抑制しつつも、良好な電池特性(サイクル特性、放電レート特性)を有する電池とすることができる。
From the above, in the battery 1 using the above-described sample battery T1, and further the positive electrode active material layer and the negative electrode active material layer having the same configuration as the sample battery T1, both the positive electrode active material layer and the negative electrode active material layer were peeled off. It can suppress that the edge part of the width direction which is easy peels from aluminum foil and copper foil.
On the other hand, by increasing the peel strength between the positive electrode active material layer and the aluminum foil and between the negative electrode active material layer and the copper foil, electrical characteristics such as ease of movement of lithium ions Such a decrease in characteristics is less likely to occur in the central portion than in the edge portion, which tends to decrease, so that favorable characteristics can be obtained for the positive electrode active material layer and the negative electrode active material layer as a whole.
Thus, the sample battery T1 and the battery 1 can be batteries having good battery characteristics (cycle characteristics, discharge rate characteristics) while suppressing the peeling of the active material layer.

また、上述の試料電池T1及び電池1では、正極活物質層及び負極活物質層の縁部の結着材の量を中央部に比して多くしているので、活物質層と集電板との間の剥離強度について、幅方向の中央部に比して縁部で確実に高くすることができる。従って、活物質層の剥離を確実に抑制しつつも、良好な電池特性を有する電池とすることができる。   Further, in the sample battery T1 and the battery 1 described above, since the amount of the binder at the edge of the positive electrode active material layer and the negative electrode active material layer is larger than that in the central portion, the active material layer and the current collector plate Can be reliably increased at the edge compared to the central portion in the width direction. Therefore, it is possible to obtain a battery having good battery characteristics while reliably suppressing peeling of the active material layer.

次に、本実施形態1にかかる電池1の製造方法について説明する。
まず、試料電池T1とほぼ同様にして、発電要素10を作製する。具体的には、まず、前述した第1正極ペースト、第2正極ペースト及び第3正極ペーストを、アルミ箔28の両主面にそれぞれ塗布し、乾燥させて、これらを、アルミ箔28の幅方向DWに見て、第3正極ペースト、第2正極ペースト、第1正極ペースト、第2正極ペースト及び第3正極ペーストの順序で、アルミ箔28の両主面上に配置させた。これらを図示しないロールプレスで圧縮して高密度化し、正極活物質層21を作製し、帯状の正電極板20ができあがる(図2参照)。
Next, a method for manufacturing the battery 1 according to the first embodiment will be described.
First, the power generation element 10 is manufactured in substantially the same manner as the sample battery T1. Specifically, first, the first positive electrode paste, the second positive electrode paste, and the third positive electrode paste described above are respectively applied to both main surfaces of the aluminum foil 28 and dried, and these are applied in the width direction of the aluminum foil 28. As viewed from DW, the third positive electrode paste, the second positive electrode paste, the first positive electrode paste, the second positive electrode paste, and the third positive electrode paste were arranged on both main surfaces of the aluminum foil 28 in the order. These are compressed by a roll press (not shown) and densified to produce a positive electrode active material layer 21, and a belt-like positive electrode plate 20 is completed (see FIG. 2).

また一方で、前述した第1負極ペースト、第2負極ペースト及び第3負極ペーストを、銅箔38の両主面にそれぞれ塗布し、乾燥させて、これらを、銅箔38の幅方向DWに見て、第3負極ペースト、第2負極ペースト、第1負極ペースト、第2負極ペースト及び第3負極ペーストの順序で、銅箔38の両主面上に配置させた。これらを図示しないロールプレスで圧縮して高密度化し、負極活物質層31を作製し、帯状の負電極板30ができあがる(図3参照)。
上述のように作製した正電極板20と負電極板30との間に、セパレータ50を介在させて捲回し、発電要素10とする。
On the other hand, the first negative electrode paste, the second negative electrode paste, and the third negative electrode paste described above are respectively applied to both main surfaces of the copper foil 38 and dried, and these are seen in the width direction DW of the copper foil 38. The third negative electrode paste, the second negative electrode paste, the first negative electrode paste, the second negative electrode paste, and the third negative electrode paste were arranged on both main surfaces of the copper foil 38 in this order. These are compressed by a roll press (not shown) and densified to produce a negative electrode active material layer 31, and a strip-like negative electrode plate 30 is completed (see FIG. 3).
A power generation element 10 is obtained by winding the separator 50 between the positive electrode plate 20 and the negative electrode plate 30 manufactured as described above.

その後は、正電極板20(アルミ箔28)及び負電極板30(銅箔38)にそれぞれ正極集電部材91及び負極集電部材92を溶接し、電池ケース本体81に挿入し、前述した電解液60を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池1が完成する(図1参照)。   Thereafter, the positive electrode current collecting member 91 and the negative electrode current collecting member 92 are respectively welded to the positive electrode plate 20 (aluminum foil 28) and the negative electrode plate 30 (copper foil 38), inserted into the battery case body 81, and the above-described electrolysis. After injecting the liquid 60, the battery case body 81 is sealed with a sealing lid 82 by welding. Thus, the battery 1 is completed (see FIG. 1).

(変形形態1)
次に、本発明の変形形態1にかかる電池101について、図1〜4を参照しつつ説明する。
本変形形態1は、正極活物質層及び負極活物質層における結着材の結晶化度を、中央部、中間部及び縁部の順に高くした点で、前述の実施形態1の電池1と異なり、それ以外は同様である。
そこで、実施形態1と異なる点を中心に説明し、同様の部分の説明は省略または簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Modification 1)
Next, the battery 101 according to the first modification of the present invention will be described with reference to FIGS.
This modification 1 is different from the battery 1 of the first embodiment described above in that the crystallinity of the binder in the positive electrode active material layer and the negative electrode active material layer is increased in the order of the central part, the intermediate part, and the edge part. The others are the same.
Therefore, differences from the first embodiment will be mainly described, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

本変形形態1にかかる電池101は、帯状の正電極板120と、帯状の負電極板130と、正電極板120と負電極板130との間に介在させた帯状のセパレータ50とを捲回し、このセパレータ50に電解液60を含浸させた発電要素110を備えるリチウムイオン二次電池である(図1参照)。   The battery 101 according to the first modification is formed by winding a strip-shaped positive electrode plate 120, a strip-shaped negative electrode plate 130, and a strip-shaped separator 50 interposed between the positive electrode plate 120 and the negative electrode plate 130. The lithium ion secondary battery includes a power generation element 110 in which the separator 50 is impregnated with the electrolytic solution 60 (see FIG. 1).

発電要素110は、実施形態1の電池1と同様、帯状の正電極板120及び負電極板130が、帯状のセパレータ50を介して扁平形状に捲回されてなる捲回型の形態である(図1参照)。このうち、正電極板120は、図2に示すように、電池1と同様のアルミ箔28と、このアルミ箔28の両主面上に配置され、長手方向DLに延びる帯状の2つの正極活物質層121,121とを有している。   The power generation element 110 has a wound type configuration in which the belt-like positive electrode plate 120 and the negative electrode plate 130 are wound into a flat shape via the belt-like separator 50, as in the battery 1 of the first embodiment ( (See FIG. 1). Among these, as shown in FIG. 2, the positive electrode plate 120 includes two aluminum foils 28 that are the same as those of the battery 1 and two strip-shaped positive electrode active members that are disposed on both main surfaces of the aluminum foil 28 and extend in the longitudinal direction DL. Material layers 121 and 121.

この正極活物質層121は、実施形態1と同様、それぞれ、長手方向DLに直交する幅方向DWについて、この正極活物質層121の特性を異ならせてある。具体的には、図2に示すように、幅方向DWに、1条の中央部121C、2条の縁部121E,121E、及び、2条の中間部121M,121Mからなる。
これら中央部121C、縁部121E及び中間部121Mはいずれも、LiCoO2からなる正極活物質粒子24、カーボンブラックからなる導電材25、及び、結晶化温度が約140℃のPVDFからなる結着材(次述する中央部結着材123C,縁部結着材123E,中間部結着材123M)を含む。但し、中央部121C、縁部121E及び中間部121Mでは、これらに含まれる結着材(中央部結着材123C,縁部結着材123E,中間部結着材123M)の結晶化度をそれぞれ異ならせてある。
As in the first embodiment, the positive electrode active material layer 121 has different characteristics of the positive electrode active material layer 121 in the width direction DW perpendicular to the longitudinal direction DL. Specifically, as shown in FIG. 2, the width direction DW includes one central part 121C, two edge parts 121E and 121E, and two intermediate parts 121M and 121M.
The central part 121C, the edge part 121E and the intermediate part 121M are all positive electrode active material particles 24 made of LiCoO 2 , a conductive material 25 made of carbon black, and a binder made of PVDF having a crystallization temperature of about 140 ° C. (The center binder 123C, the edge binder 123E, and the intermediate binder 123M described below). However, in the central part 121C, the edge part 121E, and the intermediate part 121M, the crystallinity of the binders (the central part binder 123C, the edge part binder 123E, and the intermediate part binder 123M) included therein is set. It is different.

具体的に、中央部121C、縁部121E及び中間部121Mには、結晶化度が20〜30%の中央部結着材123C、40〜50%の縁部結着材123E、及び、30〜40%の中間部結着材123Mをそれぞれ含む。即ち、結着材123C,123M,123Eの結晶化度を中央部121C,中間部121M,縁部121Eの順に高く、つまり、中央部121Cから両側の縁部121E,121Eに向かうほど高くしてある。結着材の結晶化度が高いほど、結着材の粘性が高くなるので、正極活物質層121の剥離強度は、中央部121Cから縁部121Eに向かうほど高くなる。   Specifically, in the central part 121C, the edge part 121E, and the intermediate part 121M, the central part binder 123C having a crystallinity of 20 to 30%, the edge part binder 123E having 40 to 50%, and 30 to 30%. 40% of the intermediate portion binder 123M is included. That is, the degree of crystallinity of the binders 123C, 123M, and 123E is increased in the order of the central portion 121C, the intermediate portion 121M, and the edge portion 121E, that is, the higher the direction from the central portion 121C to the edge portions 121E and 121E on both sides. . The higher the degree of crystallinity of the binder, the higher the viscosity of the binder. Therefore, the peel strength of the positive electrode active material layer 121 increases from the center 121C toward the edge 121E.

また、負極活物質層131は、実施形態1と同様、それぞれ、長手方向DLに直交する幅方向DWについて、この負極活物質層131の特性を異ならせてある。具体的には、図3に示すように、幅方向DWに、1条の中央部131C、2条の縁部131E,131E、及び、2条の中間部131M,131Mからなる。
これら中央部131C、縁部121E及び中間部131Mはいずれも、グラファイト粉末の負極活物質粒子34、及び、結晶化温度が約140℃のPVDFからなる結着材(次述する中央部結着材133C,縁部結着材133E,中間部結着材133M)を含む。但し、中央部131C、縁部131E及び中間部131Mでは、これらに含まれる結着材(中央部結着材133C,縁部結着材133E,中間部結着材133M)の結晶化度をそれぞれ異ならせてある。
In addition, the negative electrode active material layer 131 has different characteristics of the negative electrode active material layer 131 in the width direction DW perpendicular to the longitudinal direction DL, as in the first embodiment. Specifically, as shown in FIG. 3, the width direction DW includes one central portion 131C, two edge portions 131E and 131E, and two intermediate portions 131M and 131M.
The central part 131C, the edge part 121E, and the intermediate part 131M are all composed of negative electrode active material particles 34 of graphite powder and a binder made of PVDF having a crystallization temperature of about 140 ° C. (the central part binder described below) 133C, edge binder 133E, intermediate binder 133M). However, in the central part 131C, the edge part 131E, and the intermediate part 131M, the crystallinity of the binding materials (the central part binding material 133C, the edge part binding material 133E, and the intermediate part binding material 133M) included therein is set. It is different.

具体的に、中央部131C、縁部131E及び中間部131Mには、結晶化度が20〜30%の中央部結着材133C、40〜50%の縁部結着材133E、及び、30〜40%の中間部結着材133Mをそれぞれ含む。即ち、結着材133C,133M,133Eの結晶化度を中央部131C,中間部131M,縁部131Eの順に高く、つまり、中央部131Cから両側の縁部131E,131Eに向かうほど高くしてある。結着材の結晶化度が高いほど、結着材の粘性が高くなるので、負極活物質層131の剥離強度は、中央部131Cから縁部131Eに向かうほど高くされている。   Specifically, in the central portion 131C, the edge portion 131E, and the intermediate portion 131M, the central portion binding material 133C having a crystallinity of 20 to 30%, the edge portion binding material 133E having 40 to 50%, and 30 to 30%. 40% of the intermediate binder 133M is included. That is, the degree of crystallinity of the binders 133C, 133M, and 133E increases in the order of the central portion 131C, the intermediate portion 131M, and the edge portion 131E, that is, increases toward the edge portions 131E and 131E on both sides from the central portion 131C. . The higher the degree of crystallinity of the binder, the higher the viscosity of the binder. Therefore, the peel strength of the negative electrode active material layer 131 is increased from the center portion 131C toward the edge portion 131E.

なお、本変形形態1では、結着材をさらす最高温度の違いにより、この結着材の結晶化度を変える。
上述の結着材に用いるPVDFの結晶化温度は約140℃であるので、ペーストを加熱・乾燥して活物質層を形成するにあたり、例えば、結着材を、その結晶化温度よりも高い温度(例えば、160℃)にすることで、結晶化させることができる、即ち、比較的高い結晶化度を有する結着材にすることができる。逆に、結着材を、その結晶化温度を下回る温度(例えば、120℃)までしか上げないようにすることで、結晶化していない(或いはわずかに結晶化した)、即ち、比較的低い結晶化度を有する結着材にすることができる。
In the first modification, the crystallinity of the binder is changed depending on the difference in the maximum temperature at which the binder is exposed.
Since the crystallization temperature of PVDF used for the above-mentioned binder is about 140 ° C., when the paste is heated and dried to form an active material layer, for example, the binder is heated to a temperature higher than its crystallization temperature. (For example, 160 degreeC) can be made to crystallize, ie, it can be set as the binder which has a comparatively high crystallinity degree. Conversely, by increasing the binder only to a temperature below its crystallization temperature (for example, 120 ° C.), it is not crystallized (or slightly crystallized), that is, relatively low crystals. A binding material having a degree of conversion can be obtained.

ところで、本発明者らは、実施形態1と同様にして、上述した電池1の放電レート特性、サイクル特性、及び、活物質層における剥離の有無について評価すべく、電池101と同様の正極活物質層、負極活物質層、セパレータ及び電解液を用いた円筒形状の試料電池T2を用意した。
具体的に、まず、上述の結着材(PVDF)を5g溶解したNMP125ml中に、上述の正極活物質粒子24を85g、及び、導電材25を10gそれぞれ投入し、均一になるよう混練して、正極ペースト121Pを作製した。
By the way, in order to evaluate the discharge rate characteristics, cycle characteristics, and presence / absence of delamination in the active material layer of the battery 1 described above, the present inventors have the same positive electrode active material as that of the battery 101 in the same manner as in the first embodiment. A cylindrical sample battery T2 using a layer, a negative electrode active material layer, a separator, and an electrolytic solution was prepared.
Specifically, first, 85 g of the positive electrode active material particles 24 and 10 g of the conductive material 25 are respectively added to 125 ml of NMP in which 5 g of the above-described binder (PVDF) is dissolved, and kneaded to be uniform. A positive electrode paste 121P was produced.

この正極ペースト121Pを、長手方向に延びる帯状のアルミニウム製のアルミ箔AF(箔厚は15μm)に塗布し、乾燥させた。
具体的には、まず、正極ペースト121Pを、図4(a)に示すように、アルミ箔AFの両主面の、幅方向DWの中央を含む45mmの幅寸法の間隔を空けて、3.5mmの幅寸法で帯状に2条塗布した。塗布後、この正極ペースト121Pを160℃で乾燥させた。乾燥温度が結着材の結晶化温度(約140℃)よりも高いので、この正極ペースト121Pの乾燥が進むと共に、正極ペースト121P内の結着材の結晶化が進む。これにより、この正極ペースト121Pは、結晶化度が40〜50%の縁部結着材123Eを含む、未圧縮の正極活物質層の縁部になる。
This positive electrode paste 121P was applied to a strip-shaped aluminum aluminum foil AF (foil thickness of 15 μm) extending in the longitudinal direction and dried.
Specifically, first, as shown in FIG. 4A, the positive electrode paste 121P is spaced apart by a width dimension of 45 mm including the center in the width direction DW on both main surfaces of the aluminum foil AF. Two strips were applied in a band shape with a width of 5 mm. After the application, this positive electrode paste 121P was dried at 160 ° C. Since the drying temperature is higher than the crystallization temperature of the binder (about 140 ° C.), the drying of the positive electrode paste 121P proceeds and the crystallization of the binder in the positive electrode paste 121P proceeds. As a result, the positive electrode paste 121P becomes an edge portion of the uncompressed positive electrode active material layer including the edge portion binder 123E having a crystallinity of 40 to 50%.

次いで、正極ペースト121Pを、図4(b)に示すように、幅方向DWの中央を含む30mmの幅寸法の間隔を空けつつ、縁部結着材123Eを含む、乾燥させた2条の正極ペーストが挟む内側に隣接させて、7.5mmの幅寸法で帯状に2条塗布した。塗布後、この正極ペースト121Pを140℃で乾燥させた。乾燥温度が結着材の結晶化温度とほぼ同じであるので、この正極ペースト121Pの乾燥が進むと共に、正極ペースト121P内の結着材の結晶化が進む(但し、上述した縁部結着材123Eほど結晶化は進まない)。これにより、この正極ペースト121Pは、結晶化度が30〜40%の中間部結着材123Mを含む、未圧縮の正極活物質層の中間部になる。
さらに、正極ペースト121Pを、中間部結着材123Mを含む、乾燥させた2条の正極ペーストが挟む内側に隣接させて、幅方向DWの中央を含む30mmの幅寸法で帯状に1条塗布した。塗布後、この正極ペースト121Pを120℃で乾燥させた。乾燥温度が結着材の結晶化温度よりも低いので、この正極ペースト121Pの乾燥が進むが、正極ペースト121P内の結着材の結晶化はあまり進まない。これにより、この正極ペースト121Pは、結晶化度が20〜30%の中央部結着材123Cを含む、未圧縮の正極活物質層の中央部になる。
かくして、未圧縮の正極活物質層を、幅方向DWに見て、縁部結着材123Eを含むもの、中間部結着材123Mを含むもの、中央部結着材123Cを含むもの、中間部結着材123Mを含むもの、及び、縁部結着材123Eを含むものの順序で、アルミ箔AFの両主面上に並べた。
Next, as shown in FIG. 4B, the dried positive electrode paste 121P including the edge binder 123E with an interval of a width of 30 mm including the center in the width direction DW, as shown in FIG. 4B. Two strips with a width of 7.5 mm were applied adjacent to the inside of the paste. After the application, this positive electrode paste 121P was dried at 140 ° C. Since the drying temperature is almost the same as the crystallization temperature of the binder, the drying of the positive electrode paste 121P proceeds and the crystallization of the binder in the positive electrode paste 121P proceeds (however, the edge binder described above) Crystallization does not progress as much as 123E). Thereby, this positive electrode paste 121P becomes an intermediate part of the uncompressed positive electrode active material layer including the intermediate part binder 123M having a crystallinity of 30 to 40%.
Further, the positive electrode paste 121P was applied in a strip shape with a width of 30 mm including the center in the width direction DW, adjacent to the inside sandwiched by two dried positive electrode pastes including the intermediate binder 123M. . After the application, this positive electrode paste 121P was dried at 120 ° C. Since the drying temperature is lower than the crystallization temperature of the binder, the drying of the positive electrode paste 121P proceeds, but the crystallization of the binder in the positive electrode paste 121P does not progress much. Thereby, this positive electrode paste 121P becomes a central portion of the uncompressed positive electrode active material layer including the central portion binder 123C having a crystallinity of 20 to 30%.
Thus, when the uncompressed positive electrode active material layer is viewed in the width direction DW, it includes the edge binder 123E, the intermediate binder 123M, the central binder 123C, and the intermediate portion. They were arranged on both main surfaces of the aluminum foil AF in the order of the binder material 123M and the edge binder material 123E.

この未圧縮の正極活物質層を、図示しないロールプレスで圧縮して高密度化し、上述した電池101にかかる正極活物質層121と同じ、アルミ箔AF上に、中央部、縁部及び中間部を有する正極活物質層(図示しない)を作製した。なお、この正極活物質層における、中央部,縁部,中間部の幅方向の寸法がそれぞれ30.0,7.5,3.5mmであり、正極活物質層の層厚が90μm、密度が1.6g/cm3である。
作製した正極活物質層を、アルミ箔と共に、52mm×720mmの形状に切断し(このうち、正極活物質層を担持した部位の寸法は52mm×680mm)、正電極板(図示しない)とした。
This uncompressed positive electrode active material layer is compressed and densified by a roll press (not shown), and is the same as the positive electrode active material layer 121 applied to the battery 101 described above, on the aluminum foil AF, at the center, the edge, and the intermediate portion. A positive electrode active material layer (not shown) was prepared. In this positive electrode active material layer, the center, edge, and intermediate portions in the width direction are 30.0, 7.5, and 3.5 mm, respectively, the positive electrode active material layer has a thickness of 90 μm, and a density of 1.6 g / cm 3 .
The produced positive electrode active material layer was cut into a shape of 52 mm × 720 mm together with the aluminum foil (among these, the size of the portion carrying the positive electrode active material layer was 52 mm × 680 mm) to obtain a positive electrode plate (not shown).

また一方で、上述の結着材33を7.5g溶解したNMP125ml中に、上述の負極活物質粒子34を92.5g投入し、混練して負極ペースト131Pを作製した。
この負極ペーストを、長手方向に延びる帯状の銅製の銅箔CF(箔厚は15μm)に塗布し、乾燥させた。
On the other hand, 92.5 g of the negative electrode active material particles 34 described above was added to 125 ml of NMP in which 7.5 g of the above-described binder 33 was dissolved, and kneaded to prepare a negative electrode paste 131P.
This negative electrode paste was applied to a strip-like copper copper foil CF (foil thickness of 15 μm) extending in the longitudinal direction and dried.

具体的には、まず、負極ペースト131Pを、図4(a)に示すように、銅箔CFの両主面の、幅方向DWの中央を含む45mmの幅寸法の間隔を空けて、3.5mmの幅寸法で帯状に2条塗布した。塗布後、この負極ペースト131Pを160℃で乾燥させた。これにより、この負極ペースト131Pは、結晶化度が40〜50%の縁部結着材133Eを含む、未圧縮の負極活物質層の縁部になる。   Specifically, first, as shown in FIG. 4A, the negative electrode paste 131P is spaced apart by a width dimension of 45 mm including the center in the width direction DW on both main surfaces of the copper foil CF. Two strips were applied in a band shape with a width of 5 mm. After application, the negative electrode paste 131P was dried at 160 ° C. As a result, the negative electrode paste 131P becomes an edge of the uncompressed negative electrode active material layer including the edge binder 133E having a crystallinity of 40 to 50%.

次いで、負極ペースト131Pを、図4(b)に示すように、幅方向DWの中央を含む30mmの幅寸法の間隔を空けつつ、縁部結着材133Eを含む、乾燥させた2条の負極ペーストが挟む内側に隣接させて、7.5mmの幅寸法で帯状に2条塗布した。塗布後、この負極ペースト131Pを140℃で乾燥させた。これにより、この負極ペースト131Pは、結晶化度が30〜40%の中間部結着材133Mを含む、未圧縮の負極活物質層の中間部になる。
さらに、負極ペースト131Pを、中間部結着材133Mを含む、乾燥させた2条の負極ペーストが挟む内側に隣接させて、幅方向DWの中央を含む30mmの幅寸法で帯状に1条塗布した。塗布後、この負極ペースト131Pを120℃で乾燥させた。これにより、この負極ペースト131Pは、結晶化度が20〜30%の中央部結着材133Cを含む、未圧縮の負極活物質層の中央部になる。
Next, as shown in FIG. 4B, the dried negative electrode of the two strips of the negative electrode paste 131P including the edge binder 133E while being spaced by a width of 30 mm including the center in the width direction DW. Two strips with a width of 7.5 mm were applied adjacent to the inside of the paste. After the application, this negative electrode paste 131P was dried at 140 ° C. Thereby, this negative electrode paste 131P becomes an intermediate part of the uncompressed negative electrode active material layer including the intermediate part binder 133M having a crystallinity of 30 to 40%.
Further, the negative electrode paste 131P was applied in a strip shape with a width of 30 mm including the center in the width direction DW, adjacent to the inside sandwiched by two dried negative electrode pastes including the intermediate binder 133M. . After the application, this negative electrode paste 131P was dried at 120 ° C. As a result, the negative electrode paste 131P becomes the central portion of the uncompressed negative electrode active material layer including the central binder 133C having a crystallinity of 20 to 30%.

さらに、未圧縮の負極活物質層(縁部,中間部,中央部)を、図示しないロールプレスで圧縮して高密度化し、上述した電池101にかかる負極活物質層131と同じ、銅箔CF上に、中央部、縁部及び中間部を有する負極活物質層(図示しない)を作製した。なお、この負極活物質層における、中央部,縁部,中間部の幅方向の寸法がそれぞれ30.0,7.5,5.0mmであり、負極活物質層の層厚が40μm、密度が1.2g/cm3である。
作製した負極活物質層を、銅箔と共に、55mm×740mmの形状に切断し(このうち、負極活物質層を担持した部位の寸法は55mm×720mm)、負電極板(図示しない)とした。
Further, the uncompressed negative electrode active material layer (edge portion, intermediate portion, center portion) is compressed by a roll press (not shown) to increase the density, and the copper foil CF is the same as the negative electrode active material layer 131 applied to the battery 101 described above. A negative electrode active material layer (not shown) having a central portion, an edge portion, and an intermediate portion was formed thereon. In this negative electrode active material layer, the center, edge, and intermediate portions in the width direction are 30.0, 7.5, and 5.0 mm, respectively, the negative electrode active material layer has a thickness of 40 μm, and a density of 1.2 g / cm 3 .
The produced negative electrode active material layer was cut into a shape of 55 mm × 740 mm together with the copper foil (among these, the size of the portion carrying the negative electrode active material layer was 55 mm × 720 mm) to obtain a negative electrode plate (not shown).

これら正電極板と負電極板との間に、厚みが30μmのポリエチレン製のセパレータ(図示しない)を介在させて積層し、これら正電極板、負電極板及びセパレータを捲回して、捲回型の発電要素(図示しない)を作製した。この発電要素を18650型円筒ケースに挿入し、上述の電解液60をその中に注入した後、封止して試料電池T2(図示しない)を製造した。   The positive electrode plate and the negative electrode plate are laminated with a polyethylene separator (not shown) having a thickness of 30 μm interposed therebetween, and the positive electrode plate, the negative electrode plate and the separator are wound to form a wound type. A power generation element (not shown) was prepared. This power generation element was inserted into a 18650 type cylindrical case, and the above-described electrolytic solution 60 was injected therein, followed by sealing to manufacture a sample battery T2 (not shown).

上述の試料電池T2について、実施形態1と同様の測定を行った。
即ち、この試料電池T2のうち、製造して間もない新品(初期)のものの電池容量について測定した。具体的には、コンディショニングの後、1/3Cの電流値で3.0Vとなるまで定電流放電を行い、放電した電池容量(「1/3C電池容量」)を測定した。
次いで、電流値を20Cに変えて定電流放電を行って電池容量を測定した。この電池容量から高レート容量維持率を算出した。
For the sample battery T2, the same measurement as in the first embodiment was performed.
That is, of the sample battery T2, the battery capacity of a new (initial) battery that was just manufactured was measured. Specifically, after conditioning, constant current discharge was performed until the current value of 1 / 3C became 3.0 V, and the discharged battery capacity (“1 / 3C battery capacity”) was measured.
Subsequently, the battery capacity was measured by changing the current value to 20 C and performing constant current discharge. The high rate capacity retention rate was calculated from this battery capacity.

さらに、上述の試験を行った試料電池T2について、実施形態1と同様のサイクル試験を実施した。
その後、試料電池T2の電池容量を、上述と同様にして測定した。そして、サイクル試験後における試料電池T2のサイクル容量維持率を算出した。
さらに、その後の正極活物質層及び負極活物質層のうち縁部付近の剥離の有無について、実施形態1と同様にして確認した。
Further, a cycle test similar to that of the first embodiment was performed on the sample battery T2 on which the above test was performed.
Thereafter, the battery capacity of the sample battery T2 was measured in the same manner as described above. And the cycle capacity maintenance factor of sample battery T2 after a cycle test was computed.
Furthermore, the presence or absence of peeling in the vicinity of the edge portion of the subsequent positive electrode active material layer and negative electrode active material layer was confirmed in the same manner as in Embodiment 1.

この試料電池T2と同様にして、比較例である比較電池C3,C4も製作し、これらの電池についての電池特性(高レート容量維持率及びサイクル容量維持率)を、試料電池T2と同様に測定した。
但し、比較電池C3は、正極活物質層に結晶化度が40〜50%の結着材を含む点、及び、負極活物質層に結晶化度が40〜50%の結着材を含む点で試料電池T2と異なる。
また、比較電池C4は、正極活物質層に結晶化度が20〜30%の結着材を含む点、及び、負極活物質層に結晶化度が20〜30%の結着材を含む点で試料電池T2と異なる。
これら試料電池T2及び比較電池C3,C4の、正極活物質層及び負極活物質層における結着材の重量比率、正極活物質層及び負極活物質層のうち縁部付近の剥離の有無、サイクル容量維持率及び高レート容量維持率を表2に示す。
Similarly to this sample battery T2, comparative batteries C3 and C4, which are comparative examples, were also manufactured, and the battery characteristics (high rate capacity maintenance rate and cycle capacity maintenance rate) of these batteries were measured in the same manner as the sample battery T2. did.
However, the comparative battery C3 includes a positive electrode active material layer containing a binder with a crystallinity of 40 to 50% and a negative electrode active material layer containing a binder with a crystallinity of 40 to 50%. And different from the sample battery T2.
Further, the comparative battery C4 includes a positive electrode active material layer containing a binder with a crystallinity of 20 to 30% and a negative electrode active material layer containing a binder with a crystallinity of 20 to 30%. And different from the sample battery T2.
In these sample battery T2 and comparative batteries C3 and C4, the weight ratio of the binder in the positive electrode active material layer and the negative electrode active material layer, the presence or absence of peeling near the edge of the positive electrode active material layer and the negative electrode active material layer, cycle capacity Table 2 shows the maintenance rate and the high rate capacity maintenance rate.

Figure 0005392063
Figure 0005392063

表2によれば、剥離の有無について、試料電池T2と比較電池C3は、「剥離なし」の判定となった。一方、比較電池C4は、「剥離あり」の判定となった。また、試料電池T2及び比較電池C3の各サイクル容量維持率(88%及び78%)は、比較電池C4のサイクル容量維持率(62%)に比して高い。
試料電池T2と比較電池C3では、正極活物質層及び負極活物質層の縁部における結着材(縁部結着材123E,133E)の結晶化度を、それぞれ高くしてある(40〜50%)。このように縁部結着材123E,133Eの結晶化度を高くすることで、これら縁部結着材123E,133Eの粘性を高くすることができる。従って、正極活物質層とアルミ箔との間、及び、負極活物質層と銅箔との間の剥離強度を上げることができ、それらの間での剥離を抑制することができたと考えられる。また、そのため、試料電池T2と比較電池C3では、サイクル特性の低下を抑制できたと考えられる。
According to Table 2, regarding the presence / absence of peeling, the sample battery T2 and the comparative battery C3 were judged as “no peeling”. On the other hand, the comparison battery C4 was judged as “with peeling”. Further, the cycle capacity maintenance rates (88% and 78%) of the sample battery T2 and the comparative battery C3 are higher than the cycle capacity maintenance rates (62%) of the comparative battery C4.
In the sample battery T2 and the comparative battery C3, the crystallinity of the binders (edge binders 123E and 133E) at the edges of the positive electrode active material layer and the negative electrode active material layer is increased (40 to 50). %). By increasing the crystallinity of the edge binders 123E and 133E in this way, the viscosity of the edge binders 123E and 133E can be increased. Therefore, it is considered that the peel strength between the positive electrode active material layer and the aluminum foil and between the negative electrode active material layer and the copper foil can be increased, and the peel between them can be suppressed. For this reason, it is considered that in the sample battery T2 and the comparative battery C3, it was possible to suppress a decrease in cycle characteristics.

さらに、試料電池T2と比較電池C3とを比較するに、試料電池T2の高レート容量維持率(76%)は、比較電池C3のそれ(58%)よりも高い。このことから、正極活物質層全体及び負極活物質層全体の結着材の乾燥温度をそれぞれ一様に高く(160℃)した電池よりも、幅方向の中央部における結着材の乾燥温度を、縁部に比して低く(120℃)した方が、高レート容量維持率を高くできる、即ち、放電レート特性の低下を抑制できることが判る。
これは、活物質層の全体にわたって、結着材の結晶化度を高め、結着材の粘性を高くすると、活物質層の全面にわたって、正極活物質層及び負極活物質層内のリチウムイオンの移動が妨げられ、特に高レートの放電でその影響を受ける。これに対して、試料電池T2のように、活物質層のうち縁部(及び中間部)だけ、結着材の結晶化度を高くする場合にはその影響が限られるためであると考えられる。
Furthermore, when comparing the sample battery T2 and the comparative battery C3, the high rate capacity maintenance rate (76%) of the sample battery T2 is higher than that of the comparative battery C3 (58%). From this, the drying temperature of the binder in the central portion in the width direction is higher than that of the battery in which the drying temperature of the entire positive electrode active material layer and the entire negative electrode active material layer is uniformly high (160 ° C.). It can be seen that the lower rate (120 ° C.) compared to the edge portion can increase the high rate capacity retention rate, that is, suppress the deterioration of the discharge rate characteristics.
This is because when the crystallinity of the binder is increased over the entire active material layer, and the viscosity of the binder is increased, lithium ions in the positive electrode active material layer and the negative electrode active material layer are spread over the entire surface of the active material layer. Movement is hindered, particularly affected by high rate discharges. On the other hand, it is considered that the influence is limited when the crystallinity of the binder is increased only in the edge portion (and the intermediate portion) of the active material layer as in the sample battery T2. .

以上より、上述の試料電池T2、さらには試料電池T2と同じ構成の正極活物質層及び負極活物質層を用いた電池101では、正極活物質層及び負極活物質層の縁部における結着材の結晶化度を中央部に比して高くしているので、活物質層と集電板との間の剥離強度について、幅方向の中央部に比して縁部で確実に高くすることができる。従って、活物質層の剥離を確実に抑制しつつも、良好な電池特性を有する電池とすることができる。   As described above, in the battery 101 using the above-described sample battery T2 and further the positive electrode active material layer and the negative electrode active material layer having the same configuration as the sample battery T2, the binder at the edge of the positive electrode active material layer and the negative electrode active material layer. Since the crystallinity of the layer is higher than that of the central portion, the peel strength between the active material layer and the current collector plate can be reliably increased at the edge portion compared to the central portion in the width direction. it can. Therefore, it is possible to obtain a battery having good battery characteristics while reliably suppressing peeling of the active material layer.

次に、本変形形態1にかかる電池101の製造方法について説明する。
まず、試料電池T2とほぼ同様にして、発電要素110を作製する。具体的には、まず、前述した正極ペースト121Pを、アルミ箔28の両主面の、幅方向DWの中央を含む所定の幅寸法の間隔を空けて帯状に2条塗布した。塗布後、アルミ箔28上の正極ペースト121Pを160℃で乾燥させた。
次いで、正極ペースト121Pを、縁部結着材123Eを含む、乾燥させた2条の正極ペーストが挟む内側に隣接させつつ、幅方向DWの中央を含む所定の幅寸法の間隔を空けて帯状に2条塗布した。塗布後、アルミ箔28上の正極ペースト121Pを140℃で乾燥させた。
さらに、正極ペースト121Pを、中間部結着材123Mを含む、乾燥させた2条の正極ペーストが挟む内側に隣接させて帯状に1条塗布した。塗布後、アルミ箔28上の正極ペースト121Pを120℃で乾燥させた。
かくして、未圧縮の正極活物質層を、幅方向DWに見て、縁部結着材123Eを含むもの、中間部結着材123Mを含むもの、中央部結着材123Cを含むもの、中間部結着材123Mを含むもの、及び、縁部結着材123Eを含むものの順序で、アルミ箔28の両主面上に並べた。
このような未圧縮の正極活物質層を、図示しないロールプレスで圧縮して高密度化し、正極活物質層121を作製し、帯状の正電極板120ができあがる(図2参照)。
Next, a method for manufacturing the battery 101 according to the first modification will be described.
First, the power generation element 110 is manufactured in substantially the same manner as the sample battery T2. Specifically, first, the above-described positive electrode paste 121P was applied in two strips at intervals of a predetermined width dimension including the center in the width direction DW of both main surfaces of the aluminum foil 28. After the application, the positive electrode paste 121P on the aluminum foil 28 was dried at 160 ° C.
Next, the positive electrode paste 121P is adjacent to the inside sandwiched by the two dried positive electrode pastes including the edge binder 123E, and in a band shape with a predetermined width dimension including the center in the width direction DW. Two strips were applied. After the application, the positive electrode paste 121P on the aluminum foil 28 was dried at 140 ° C.
Further, a single strip of the positive electrode paste 121P was applied adjacent to the inner side sandwiched by two dried positive electrode pastes including the intermediate binder 123M. After the application, the positive electrode paste 121P on the aluminum foil 28 was dried at 120 ° C.
Thus, when the uncompressed positive electrode active material layer is viewed in the width direction DW, it includes the edge binder 123E, the intermediate binder 123M, the central binder 123C, and the intermediate portion. They were arranged on both main surfaces of the aluminum foil 28 in the order of the binder material 123M and the edge binder material 123E.
Such an uncompressed positive electrode active material layer is compressed by a roll press (not shown) to be densified to produce a positive electrode active material layer 121, and a belt-like positive electrode plate 120 is completed (see FIG. 2).

また一方で、前述した負極ペースト131Pを、まず、銅箔38の両主面の、幅方向DWの中央を含む所定の幅寸法の間隔を空けて帯状に2条塗布した。塗布後、銅箔38上の負極ペースト131Pを160℃で乾燥させた。
次いで、負極ペースト131Pを、縁部結着材133Eを含む、乾燥させた2条の負極ペーストが挟む内側に隣接させつつ、幅方向DWの中央を含む所定の幅寸法の間隔を空けて帯状に2条塗布した。塗布後、銅箔38上の負極ペースト131Pを140℃で乾燥させた。
さらに、負極ペースト131Pを、中間部結着材133Mを含む、乾燥させた2条の負極ペーストが挟む内側に隣接させて帯状に1条塗布した。塗布後、銅箔38上の負極ペースト131Pを120℃で乾燥させた。
かくして、未圧縮の負極活物質層を、幅方向DWに見て、縁部結着材133Eを含むもの、中間部結着材133Mを含むもの、中央部結着材133Cを含むもの、中間部結着材133Mを含むもの、及び、縁部結着材133Eを含むものの順序で、銅箔38の両主面上に並べた。
このような未圧縮の負極活物質層を、図示しないロールプレスで圧縮して高密度化し、負極活物質層131を作製し、帯状の負電極板130ができあがる(図3参照)。
上述のように作製した正電極板120と負電極板130との間に、セパレータ50を介在させて捲回し、発電要素110とする。
On the other hand, the negative electrode paste 131P described above was first applied in two strips at intervals of a predetermined width dimension including the center in the width direction DW of both main surfaces of the copper foil 38. After application, the negative electrode paste 131P on the copper foil 38 was dried at 160 ° C.
Next, the negative electrode paste 131P is adjacent to the inner side sandwiched by the two dried negative electrode pastes including the edge binder 133E, and in the form of a band with a predetermined width dimension including the center in the width direction DW. Two strips were applied. After the application, the negative electrode paste 131P on the copper foil 38 was dried at 140 ° C.
Further, a single strip of the negative electrode paste 131P was applied adjacent to the inner side sandwiched by two dried negative electrode pastes including the intermediate binder 133M. After application, the negative electrode paste 131P on the copper foil 38 was dried at 120 ° C.
Thus, the uncompressed negative electrode active material layer as viewed in the width direction DW includes the edge binder 133E, the intermediate binder 133M, the central binder 133C, the intermediate portion They were arranged on both main surfaces of the copper foil 38 in the order of those including the binder 133M and those including the edge binder 133E.
Such an uncompressed negative electrode active material layer is compressed and densified by a roll press (not shown) to produce a negative electrode active material layer 131, and a strip-shaped negative electrode plate 130 is completed (see FIG. 3).
A power generation element 110 is obtained by winding the separator 50 between the positive electrode plate 120 and the negative electrode plate 130 manufactured as described above.

その後は、正電極板120(アルミ箔28)及び負電極板130(銅箔38)にそれぞれ正極集電部材91及び負極集電部材92を溶接し、電池ケース本体81に挿入し、前述した電解液60を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池101が完成する(図1参照)。   Thereafter, the positive electrode current collecting member 91 and the negative electrode current collecting member 92 are welded to the positive electrode plate 120 (aluminum foil 28) and the negative electrode plate 130 (copper foil 38), respectively, inserted into the battery case body 81, and the above-described electrolysis. After injecting the liquid 60, the battery case body 81 is sealed with a sealing lid 82 by welding. Thus, the battery 101 is completed (see FIG. 1).

(変形形態2)
次に、本発明の変形形態2にかかる電池201について、図1〜3を参照しつつ説明する。
本変形形態2は、正極活物質層及び負極活物質層における結着材の分子量を、中央部、中間部及び縁部の順に大きくした点で、前述の実施形態1の電池1と異なり、それ以外は同様である。
そこで、実施形態1と異なる点を中心に説明し、同様の部分の説明は省略または簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Modification 2)
Next, a battery 201 according to the second modification of the present invention will be described with reference to FIGS.
This modification 2 is different from the battery 1 of the first embodiment described above in that the molecular weight of the binder in the positive electrode active material layer and the negative electrode active material layer is increased in the order of the central part, the intermediate part, and the edge part. Other than that, the same applies.
Therefore, differences from the first embodiment will be mainly described, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

本変形形態2にかかる電池201は、帯状の正電極板220と、帯状の負電極板230と、正電極板220と負電極板230との間に介在させた帯状のセパレータ50とを捲回し、このセパレータ50に電解液60を含浸させた発電要素210を備えるリチウムイオン二次電池である(図1参照)。   A battery 201 according to the second modification is formed by winding a strip-shaped positive electrode plate 220, a strip-shaped negative electrode plate 230, and a strip-shaped separator 50 interposed between the positive electrode plate 220 and the negative electrode plate 230. The lithium ion secondary battery includes a power generation element 210 in which the separator 50 is impregnated with the electrolytic solution 60 (see FIG. 1).

発電要素210は、実施形態1の電池1と同様、帯状の正電極板220及び負電極板230が、帯状のセパレータ50を介して扁平形状に捲回されてなる捲回型の形態である(図1参照)。このうち、正電極板220は、図2に示すように、電池1と同様のアルミ箔28と、このアルミ箔28の両主面上に配置され、長手方向DLに延びる帯状の2つの正極活物質層221,221とを有している。   The power generation element 210 has a wound-type configuration in which the strip-like positive electrode plate 220 and the negative electrode plate 230 are wound into a flat shape via the strip-like separator 50, as in the battery 1 of the first embodiment ( (See FIG. 1). Among these, as shown in FIG. 2, the positive electrode plate 220 includes two aluminum foils 28 that are the same as those of the battery 1 and two strip-shaped positive electrode active members that are disposed on both main surfaces of the aluminum foil 28 and extend in the longitudinal direction DL. Material layers 221 and 221.

この正極活物質層221は、実施形態1と同様、それぞれ、長手方向DLに直交する幅方向DWについて、この正極活物質層221の特性を異ならせてある。具体的には、図2に示すように、幅方向DWに、1条の中央部221C、2条の縁部221E,221E、及び、2条の中間部221M,221Mからなる。
これら中央部221C、縁部221E及び中間部221Mはいずれも、LiCoO2からなる正極活物質粒子24、カーボンブラックからなる導電材25、及び、PVDFからなる結着材(次述する中央部結着材223C,縁部結着材223E,中間部結着材223M)を含む。但し、中央部121C、縁部121E及び中間部121Mでは、これらに含まれる結着材(中央部結着材223C,縁部結着材223E,中間部結着材223M)の分子量の大きさをそれぞれ異ならせてある。
As in the first embodiment, the positive electrode active material layer 221 has different characteristics of the positive electrode active material layer 221 in the width direction DW perpendicular to the longitudinal direction DL. Specifically, as shown in FIG. 2, the width direction DW includes one central portion 221C, two edge portions 221E and 221E, and two intermediate portions 221M and 221M.
The central part 221C, the edge part 221E and the intermediate part 221M are all positive electrode active material particles 24 made of LiCoO 2 , conductive material 25 made of carbon black, and a binder made of PVDF (the central part binder described below). Material 223C, edge binder 223E, intermediate binder 223M). However, in the central part 121C, the edge part 121E, and the intermediate part 121M, the size of the molecular weight of the binder (the central part binder 223C, the edge part binder 223E, and the middle part binder 223M) included therein is set. Each is different.

具体的に、中央部221C、縁部221E及び中間部221Mには、分子量が28万の中央部結着材223C、分子量が100万の縁部結着材223E、及び、分子量が50万の中間部結着材223Mをそれぞれ含む。即ち、結着材223C,223M,223Eの分子量の大きさを中央部221C,中間部221M,縁部221Eの順に大きく、つまり、中央部221Cから両側の縁部221E,221Eに向かうほど大きくしてある。結着材の分子量が大きいほど、結着材の粘性が高くなるので、正極活物質層221の剥離強度は、中央部221Cから縁部221Eに向かうほど高くなる。   Specifically, the central part 221C, the edge part 221E, and the intermediate part 221M include a central part binder 223C having a molecular weight of 280,000, an edge binder 223E having a molecular weight of 1,000,000, and an intermediate part having a molecular weight of 500,000. Each part binding material 223M is included. That is, the molecular weights of the binding materials 223C, 223M, and 223E are increased in the order of the center portion 221C, the intermediate portion 221M, and the edge portion 221E, that is, the binding materials 223C, 223M, and 223E are increased toward the edge portions 221E and 221E on both sides from the center portion 221C. is there. The greater the molecular weight of the binder, the higher the viscosity of the binder, so that the peel strength of the positive electrode active material layer 221 increases from the central portion 221C toward the edge portion 221E.

また、負極活物質層231は、実施形態1と同様、それぞれ、長手方向DLに直交する幅方向DWについて、この負極活物質層231の特性を異ならせてある。具体的には、図3に示すように、幅方向DWに、1条の中央部231C、2条の縁部231E,231E、及び、2条の中間部231M,231Mからなる。
これら中央部231C、縁部221E及び中間部231Mはいずれも、グラファイト粉末の負極活物質粒子34、及び、PVDFからなる結着材(次述する中央部結着材233C,縁部結着材233E,中間部結着材233M)を含む。但し、中央部231C、縁部231E及び中間部231Mでは、これらに含まれる結着材(中央部結着材233C,縁部結着材233E,中間部結着材233M)の分子量の大きさをそれぞれ異ならせてある。
In addition, the negative electrode active material layer 231 has different characteristics of the negative electrode active material layer 231 in the width direction DW orthogonal to the longitudinal direction DL, as in the first embodiment. Specifically, as shown in FIG. 3, the width direction DW includes one central portion 231C, two edge portions 231E and 231E, and two intermediate portions 231M and 231M.
The central portion 231C, the edge portion 221E, and the intermediate portion 231M are all composed of negative electrode active material particles 34 of graphite powder and a binder made of PVDF (a central binder 233C and an edge binder 233E described below). , Intermediate binder 233M). However, in the central portion 231C, the edge portion 231E, and the intermediate portion 231M, the molecular weights of the binding materials (the central binding material 233C, the edge binding material 233E, and the intermediate binding material 233M) included therein are set. Each is different.

具体的に、中央部231C、縁部231E及び中間部231Mには、分子量が28万の中央部結着材233C、分子量が100万の縁部結着材233E、及び、分子量が50万の中間部結着材233Mをそれぞれ含む。即ち、正極側と同様、結着材233C,233M,233Eの分子量の大きさを中央部231C,中間部231M,縁部231Eの順に大きく、つまり、中央部231Cから両側の縁部231E,231Eに向かうほど大きくしてある。このため、負極活物質層231の剥離強度は、正極活物質層221と同様に、中央部231Cから縁部231Eに向かうほど高くなる。   Specifically, the central part 231C, the edge part 231E, and the intermediate part 231M include a central part binder 233C having a molecular weight of 280,000, an edge binder 233E having a molecular weight of 1,000,000, and an intermediate part having a molecular weight of 500,000. Each part binding material 233M is included. That is, like the positive electrode side, the molecular weight of the binders 233C, 233M, and 233E increases in the order of the central portion 231C, the intermediate portion 231M, and the edge portion 231E, that is, from the central portion 231C to the edge portions 231E and 231E on both sides. It gets bigger as you go. For this reason, the peel strength of the negative electrode active material layer 231 increases as it goes from the central portion 231C to the edge portion 231E, similarly to the positive electrode active material layer 221.

ところで、本発明者らは、実施形態1と同様にして、上述した電池201の放電レート特性、サイクル特性、及び、活物質層における剥離の有無について評価すべく、電池201と同様の正極活物質層、負極活物質層、セパレータ及び電解液を用いた円筒形状の試料電池T3を用意した。
具体的に、まず、上述の中央部結着材223C(分子量の大きさが28万)を5g溶解したNMP125ml中に、上述の正極活物質粒子24を85g、及び、導電材25を10gそれぞれ投入し、均一になるよう混練して、第1正極ペースト(図示しない)を作製した。
同様にして、上述の中間部結着材223M(分子量の大きさが50万)を5g溶解したNMP125ml中に、正極活物質粒子24を85g、及び、導電材25を10gそれぞれ投入し、均一になるよう混練して、第2正極ペースト(図示しない)を作製した。また、上述の縁部結着材223E(分子量の大きさが100万)を5g溶解したNMP125ml中に、正極活物質粒子24を85g、及び、導電材25を10gそれぞれ投入し、均一になるよう混練して、第3正極ペースト(図示しない)を作製した。
By the way, in order to evaluate the discharge rate characteristics, cycle characteristics, and presence / absence of delamination in the active material layer of the battery 201 as described in the first embodiment, the present inventors have the same positive electrode active material as that of the battery 201. A cylindrical sample battery T3 using a layer, a negative electrode active material layer, a separator, and an electrolytic solution was prepared.
Specifically, first, 85 g of the positive electrode active material particles 24 and 10 g of the conductive material 25 are charged into 125 ml of NMP in which 5 g of the above-described central binder 223C (molecular weight is 280,000) is dissolved. And knead | mixed so that it might become uniform, The 1st positive electrode paste (not shown) was produced.
Similarly, 85 g of the positive electrode active material particles 24 and 10 g of the conductive material 25 are respectively added to 125 ml of NMP in which 5 g of the above-described intermediate binder 223M (molecular weight is 500,000) is dissolved. The mixture was kneaded to produce a second positive electrode paste (not shown). Moreover, 85 g of the positive electrode active material particles 24 and 10 g of the conductive material 25 are respectively added to 125 ml of NMP in which 5 g of the edge binder 223E (molecular weight is 1,000,000) is dissolved, so that it becomes uniform. The mixture was kneaded to prepare a third positive electrode paste (not shown).

これら第1,第2,第3正極ペーストを用いて、実施形態1の試料電池T1と同様にして、上述した電池201にかかる正極活物質層221と同じ、アルミ箔上に、中央部、縁部及び中間部を有する正極活物質層(図示しない)を作製した。なお、この正極活物質層における、中央部,縁部,中間部の幅方向の寸法がそれぞれ30.0,7.5,3.5mmであり、正極活物質層の層厚が90μm、密度が1.6g/cm3である。
さらに、作製した正極活物質層を、アルミ箔と共に、52mm×720mmの形状に切断し(このうち、正極活物質層を担持した部位の寸法は52mm×680mm)、正電極板(図示しない)とした。
Using these first, second, and third positive electrode pastes, in the same manner as the sample battery T1 of the first embodiment, the same as the positive electrode active material layer 221 according to the battery 201 described above, on the aluminum foil, the center portion, the edge A positive electrode active material layer (not shown) having a part and an intermediate part was produced. In this positive electrode active material layer, the center, edge, and intermediate portions in the width direction are 30.0, 7.5, and 3.5 mm, respectively, the positive electrode active material layer has a thickness of 90 μm, and a density of 1.6 g / cm 3 .
Further, the produced positive electrode active material layer was cut into a shape of 52 mm × 720 mm together with the aluminum foil (of which the size of the portion carrying the positive electrode active material layer was 52 mm × 680 mm), and a positive electrode plate (not shown) did.

また一方で、上述の中央部結着材233C(分子量の大きさが28万)を5.5g溶解したNMP125ml中に、上述の負極活物質粒子34を92.5g投入し、混練して第1負極ペースト(図示しない)を作製した。
同様にして、上述の中間部結着材233M(分子量の大きさが50万)を5.5g溶解したNMP125ml中に、負極活物質粒子34を92.5g投入し、混練して第2負極ペースト(図示しない)を作製した。また、上述の縁部結着材233E(分子量の大きさが100万)を5.5g溶解したNMP125ml中に、負極活物質粒子34を92.5g投入し、混練して第3負極ペースト(図示しない)を作製した。
On the other hand, 92.5 g of the negative electrode active material particles 34 described above is added to 125 ml of NMP in which 5.5 g of the above-mentioned central binder 233C (molecular weight is 280,000) is dissolved, and the first kneaded. A negative electrode paste (not shown) was prepared.
Similarly, 92.5 g of the negative electrode active material particles 34 is put into 125 ml of NMP in which 5.5 g of the above-mentioned intermediate binder 233M (molecular weight is 500,000) is dissolved, and kneaded to obtain the second negative electrode paste. (Not shown) was prepared. Further, 92.5 g of the negative electrode active material particles 34 was put into 125 ml of NMP in which 5.5 g of the edge binder 233E (molecular weight is 1,000,000) was dissolved, and kneaded to obtain a third negative electrode paste (illustrated). Not).

これら第1,第2,第3負極ペーストを用いて、実施形態1の試料電池T1と同様にして、上述した電池201にかかる負極活物質層231と同じ、銅箔上に、中央部、縁部及び中間部を有する負極活物質層(図示しない)を作製した。なお、この負極活物質層における、中央部,縁部,中間部の幅方向の寸法がそれぞれ30.0,7.5,5.0mmであり、負極活物質層の層厚が40μm、密度が1.2g/cm3である。
さらに、作製した負極活物質層を、銅箔と共に、55mm×740mmの形状に切断し(このうち、負極活物質層を担持した部位の寸法は55mm×720mm)、負電極板(図示しない)とした。
Using these first, second, and third negative electrode pastes, the same as the negative electrode active material layer 231 according to the battery 201 described above, on the copper foil, in the same manner as the sample battery T1 of the first embodiment, the center portion, the edge A negative electrode active material layer (not shown) having a part and an intermediate part was produced. In this negative electrode active material layer, the center, edge, and intermediate portions in the width direction are 30.0, 7.5, and 5.0 mm, respectively, the negative electrode active material layer has a thickness of 40 μm, and a density of 1.2 g / cm 3 .
Further, the produced negative electrode active material layer was cut into a 55 mm × 740 mm shape together with the copper foil (of which the size of the portion carrying the negative electrode active material layer was 55 mm × 720 mm), and a negative electrode plate (not shown) did.

これら正電極板と負電極板との間に、厚みが30μmのポリエチレン製のセパレータ(図示しない)を介在させて積層し、これら正電極板、負電極板及びセパレータを捲回して、捲回型の発電要素(図示しない)を作製した。この発電要素を18650型円筒ケースに挿入し、上述の電解液60をその中に注入した後、封止して試料電池T3(図示しない)を製造した。   The positive electrode plate and the negative electrode plate are laminated with a polyethylene separator (not shown) having a thickness of 30 μm interposed therebetween, and the positive electrode plate, the negative electrode plate and the separator are wound to form a wound type. A power generation element (not shown) was prepared. This power generation element was inserted into a 18650 type cylindrical case, and the above-described electrolytic solution 60 was injected therein, followed by sealing to manufacture a sample battery T3 (not shown).

上述の試料電池T3について、実施形態1と同様の測定を行った。
即ち、この試料電池T3のうち、製造して間もない新品(初期)のものの電池容量について測定した。具体的には、コンディショニングの後、1/3Cの電流値で3.0Vとなるまで定電流放電を行い、放電した電池容量(「1/3C電池容量」)を測定した。
次いで、電流値を20Cに変えて定電流放電を行って電池容量を測定した。この電池容量から高レート容量維持率を算出した。
For the sample battery T3, the same measurement as in the first embodiment was performed.
That is, of the sample battery T3, the battery capacity of a new (initial) battery that was just manufactured was measured. Specifically, after conditioning, constant current discharge was performed until the current value of 1 / 3C became 3.0 V, and the discharged battery capacity (“1 / 3C battery capacity”) was measured.
Subsequently, the battery capacity was measured by changing the current value to 20 C and performing constant current discharge. The high rate capacity retention rate was calculated from this battery capacity.

さらに、上述の試験を行った試料電池T3について、実施形態1と同様のサイクル試験を実施した。
その後、試料電池T3の電池容量を、上述と同様にして測定した。そして、サイクル試験後における試料電池T3のサイクル容量維持率を算出した。
さらに、その後の正極活物質層及び負極活物質層のうち縁部付近の剥離の有無について、実施形態1と同様にして確認した。
Further, a cycle test similar to that of the first embodiment was performed on the sample battery T3 subjected to the above-described test.
Thereafter, the battery capacity of the sample battery T3 was measured in the same manner as described above. And the cycle capacity maintenance factor of sample battery T3 after a cycle test was computed.
Furthermore, the presence or absence of peeling in the vicinity of the edge portion of the subsequent positive electrode active material layer and negative electrode active material layer was confirmed in the same manner as in Embodiment 1.

この試料電池T3と同様にして、比較例である比較電池C5も製作し、これらの電池についての電池特性(高レート容量維持率及びサイクル容量維持率)を、試料電池T3と同様に測定した。
但し、比較電池C5は、正極活物質層全体及び負極活物質層全体に、分子量が100万の結着材を含んでいる点で試料電池T3と異なる。
これら試料電池T3及び比較電池C5の、正極活物質層及び負極活物質層における結着材の重量比率、正極活物質層及び負極活物質層のうち縁部付近の剥離の有無、サイクル容量維持率及び高レート容量維持率を表3に示す。また、このほかに、比較電池C4のデータを表3に再掲する。
A comparative battery C5, which is a comparative example, was also manufactured in the same manner as the sample battery T3, and the battery characteristics (high rate capacity retention ratio and cycle capacity retention ratio) of these batteries were measured in the same manner as the sample battery T3.
However, the comparative battery C5 is different from the sample battery T3 in that the whole positive electrode active material layer and the whole negative electrode active material layer contain a binder having a molecular weight of 1,000,000.
In these sample battery T3 and comparative battery C5, the weight ratio of the binder in the positive electrode active material layer and the negative electrode active material layer, presence or absence of peeling near the edge of the positive electrode active material layer and the negative electrode active material layer, cycle capacity maintenance rate Table 3 shows the high rate capacity maintenance rate. In addition, the data of the comparative battery C4 is listed again in Table 3.

Figure 0005392063
Figure 0005392063

表3によれば、剥離の有無について、試料電池T3と比較電池C5は、「剥離なし」の判定となった。一方、比較電池C4は、「剥離あり」の判定となった。また、試料電池T3及び比較電池C5の各サイクル容量維持率(86%及び77%)は、比較電池C4のサイクル容量維持率(62%)に比して高い。
試料電池T3と比較電池C5では、正極活物質層及び負極活物質層の縁部における結着材の分子量を、それぞれ大きくしてある(いずれも100万)。このように結着材の分子量を大きくすることで、縁部における結着材の粘性を高くすることができる。従って、正極活物質層とアルミ箔との間、及び、負極活物質層と銅箔との間の剥離強度を上げることができ、それらの間での剥離を抑制することができたと考えられる。また、そのため、試料電池T3と比較電池C5では、サイクル特性の低下を抑制できたと考えられる。
According to Table 3, regarding the presence / absence of peeling, the sample battery T3 and the comparative battery C5 were judged as “no peeling”. On the other hand, the comparison battery C4 was judged as “with peeling”. Further, the cycle capacity maintenance rates (86% and 77%) of the sample battery T3 and the comparative battery C5 are higher than the cycle capacity maintenance rates (62%) of the comparative battery C4.
In the sample battery T3 and the comparative battery C5, the molecular weights of the binders at the edges of the positive electrode active material layer and the negative electrode active material layer are each increased (one million). Thus, by increasing the molecular weight of the binder, the viscosity of the binder at the edge can be increased. Therefore, it is considered that the peel strength between the positive electrode active material layer and the aluminum foil and between the negative electrode active material layer and the copper foil can be increased, and the peel between them can be suppressed. For this reason, it is considered that in the sample battery T3 and the comparative battery C5, it was possible to suppress a decrease in cycle characteristics.

さらに、試料電池T3と比較電池C5とを比較するに、試料電池T3の高レート容量維持率(74%)は、比較電池C5のそれ(52%)よりも高い。このことから、正極活物質層全体及び負極活物質層全体の結着材の分子量をそれぞれ一様に大きく(100万)した電池よりも、幅方向の中央部における結着材の分子量を、縁部に比して小さく(28万)した方が、高レート容量維持率を高くできる、即ち、放電レート特性の低下を抑制できることが判る。
これは、活物質層の全体にわたって、結着材の分子量を大きくして、結着材の粘性を高くすると、活物質層の全面にわたって、正極活物質層及び負極活物質層内のリチウムイオンの移動が妨げられ、特に高レートの放電でその影響を受ける。これに対して、試料電池T3のように、活物質層のうち縁部(及び中間部)だけ、結着材の分子量を大きくする場合にはその影響が限られるためであると考えられる。
Furthermore, when comparing the sample battery T3 and the comparative battery C5, the high rate capacity retention rate (74%) of the sample battery T3 is higher than that of the comparative battery C5 (52%). From this, the molecular weight of the binder in the central portion in the width direction is less than that of the battery in which the molecular weight of the binder in the whole positive electrode active material layer and the whole negative electrode active material layer is uniformly large (1 million). It can be seen that a smaller (280,000) portion than the portion can increase the high rate capacity retention rate, that is, can suppress a decrease in discharge rate characteristics.
This is because when the molecular weight of the binder is increased over the entire active material layer to increase the viscosity of the binder, lithium ions in the positive electrode active material layer and the negative electrode active material layer are spread over the entire surface of the active material layer. Movement is hindered, particularly affected by high rate discharges. On the other hand, it is considered that the influence is limited when the molecular weight of the binder is increased only in the edge portion (and the intermediate portion) of the active material layer as in the sample battery T3.

以上より、上述の試料電池T3、さらには試料電池T3と同じ構成の正極活物質層及び負極活物質層を用いた電池201では、正極活物質層及び負極活物質層の縁部における結着材の分子量を中央部に比して大きくしているので、活物質層と集電板との間の剥離強度について、幅方向の中央部に比して縁部で確実に高くすることができる。従って、活物質層の剥離を確実に抑制しつつも、良好な電池特性を有する電池とすることができる。   As described above, in the battery 201 using the above-described sample battery T3 and the positive electrode active material layer and the negative electrode active material layer having the same configuration as the sample battery T3, the binder at the edge of the positive electrode active material layer and the negative electrode active material layer. Therefore, the peel strength between the active material layer and the current collector plate can be reliably increased at the edge as compared with the central portion in the width direction. Therefore, it is possible to obtain a battery having good battery characteristics while reliably suppressing peeling of the active material layer.

なお、電池201の製造方法は、実施形態1の電池1とほぼ同じであるので説明を省略する。   Note that the manufacturing method of the battery 201 is substantially the same as that of the battery 1 of the first embodiment, and a description thereof will be omitted.

(実施形態2)
本実施形態2にかかる車両300は、前述した電池1,101,201を複数含むバッテリパック310を搭載したものである。具体的には、図5に示すように、車両300は、エンジン340、フロントモータ320及びリアモータ330を併用して駆動するハイブリッド自動車である。この車両300は、車体390、エンジン340、これに取り付けられたフロントモータ320、リアモータ330、ケーブル350、インバータ360、及び、矩形箱形状のバッテリパック310を有している。このうちバッテリパック310は、前述した電池1,101,201を複数収容してなる。
(Embodiment 2)
A vehicle 300 according to the second embodiment is equipped with a battery pack 310 including a plurality of the above-described batteries 1, 101, 201. Specifically, as shown in FIG. 5, vehicle 300 is a hybrid vehicle that is driven by using engine 340, front motor 320, and rear motor 330 in combination. The vehicle 300 includes a vehicle body 390, an engine 340, a front motor 320, a rear motor 330, a cable 350, an inverter 360, and a battery pack 310 having a rectangular box shape. Among these, the battery pack 310 contains a plurality of the above-described batteries 1, 101, 201.

本実施形態2にかかる車両300は、良好な電池特性を有する電池1,101,201を搭載しているので、安定した性能の動力源を有する車両200とすることができる。   Since the vehicle 300 according to the second embodiment is equipped with the batteries 1, 101, and 201 having good battery characteristics, the vehicle 200 having a power source with stable performance can be obtained.

(実施形態3)
また、本実施形態3のハンマードリル400は、前述した電池1,101,201を含むバッテリパック410を搭載したものであり、図6に示すように、バッテリパック410、本体420を有する電池搭載機器である。なお、バッテリパック410はハンマードリル400の本体420のうち底部421に可能に収容されている。
(Embodiment 3)
Further, the hammer drill 400 of the third embodiment is equipped with the battery pack 410 including the batteries 1, 101, 201 described above, and the battery-equipped device having the battery pack 410 and the main body 420 as shown in FIG. It is. Note that the battery pack 410 is accommodated in the bottom portion 421 of the main body 420 of the hammer drill 400.

本実施形態3にかかるハンマードリル400は、良好な電池特性を有する電池1,101,201を搭載しているので、安定した性能の動力源を有する電池搭載機器とすることができる。   Since the hammer drill 400 according to the third embodiment is equipped with the batteries 1, 101, 201 having good battery characteristics, it can be a battery-equipped device having a power source with stable performance.

以上において、本発明を実施形態1〜3及び変形形態1,2に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1,変形形態1,2では、正極活物質層と正極集電板との間の剥離強度、及び、負極活物質層と負極集電板との間の剥離強度の両方について、活物質層の特性を異ならせることにより、幅方向の中央部に比して両側縁部を高くしてなる電池を示した。しかし、正極活物質層と正極集電板との間の剥離強度、又は、負極活物質層と負極集電板との間の剥離強度について、活物質層の特性を異ならせることにより、幅方向の中央部に比して両側縁部を高くしてなる電池としても良い。このような電池では、正極側の剥離強度、及び、負極側の剥離強度の両方について、幅方向の中央部に比して両側縁部を高くしていない電池に比べて、良好な電池特性(サイクル特性、放電レート特性)を有する電池とすることができることが判っている。
In the above, the present invention has been described with reference to the first to third embodiments and the first and second modifications. However, the present invention is not limited to the above-described embodiments, and may be appropriately changed without departing from the gist thereof. Needless to say, this is applicable.
For example, in Embodiment 1, Variations 1 and 2, for both the peel strength between the positive electrode active material layer and the positive electrode current collector plate, and the peel strength between the negative electrode active material layer and the negative electrode current collector plate, A battery is shown in which both side edges are made higher than the central part in the width direction by making the characteristics of the active material layer different. However, the width direction can be changed by changing the characteristics of the active material layer with respect to the peel strength between the positive electrode active material layer and the positive electrode current collector plate or the peel strength between the negative electrode active material layer and the negative electrode current collector plate. It is good also as a battery which makes a both-sides edge part high compared with the center part. In such a battery, both the positive electrode side peel strength and the negative electrode side peel strength are superior to those of the battery in which both side edges are not higher than the central portion in the width direction ( It has been found that a battery having cycle characteristics and discharge rate characteristics can be obtained.

1,101,201 電池(リチウムイオン二次電池)
10,110,210 発電要素
20,120,220 正電極板
21,121,221 正極活物質層
21C,121C,221C 中央部
21E,121E,221E 縁部(両側縁部)
23,33 結着材
24 正極活物質粒子
28 アルミ箔(正極集電板)
30,130,230 負電極板
31,131,231 負極活物質層
31C,131C,231C 中央部
31E,131E,231E 縁部(両側縁部)
34 負極活物質粒子
38 銅箔(負極集電板)
50 セパレータ
123C,133C,223C,233C 中央部結着材(結着材)
123E,133E,223E,233E 縁部結着材(結着材)
123M,133M,223M,233M 中間部結着材(結着材)
300 車両
400 ハンマードリル(電池搭載機器)
DL 長手方向
DW 幅方向
1,101,201 battery (lithium ion secondary battery)
10, 110, 210 Power generation element 20, 120, 220 Positive electrode plate 21, 121, 221 Positive electrode active material layer 21C, 121C, 221C Central portion 21E, 121E, 221E Edge portion (both side edge portions)
23, 33 Binder 24 Positive electrode active material particles 28 Aluminum foil (positive electrode current collector plate)
30, 130, 230 Negative electrode plates 31, 131, 231 Negative electrode active material layers 31C, 131C, 231C Central portions 31E, 131E, 231E Edge portions (both side edge portions)
34 Negative electrode active material particles 38 Copper foil (negative electrode current collector plate)
50 Separator 123C, 133C, 223C, 233C Central binder (binder)
123E, 133E, 223E, 233E Edge binder (binder)
123M, 133M, 223M, 233M Intermediate binder (binder)
300 Vehicle 400 Hammer drill (battery mounted equipment)
DL Longitudinal direction DW Width direction

Claims (6)

導電性を有する帯状の正極集電板、及び、この正極集電板上に配置され、正極活物質粒子と結着材とを含み、この正極集電板の長手方向に延びる帯状の正極活物質層を有する帯状の正電極板と、
導電性を有する帯状の負極集電板、及び、この負極集電板上に配置され、負極活物質粒子と結着材とを含み、この負極集電板の長手方向に延びる帯状の負極活物質層を有し、上記正電極板と対向してなる帯状の負電極板と、
上記正電極板と上記負電極板との間に介在してなるセパレータと、を捲回してなる発電要素を備える
リチウムイオン二次電池であって、
上記正極活物質層と上記正極集電板との間の剥離強度、及び、上記負極活物質層と上記負極集電板との間の剥離強度の少なくともいずれかについて、上記長手方向に直交する幅方向について、活物質層の特性を異ならせることにより、その幅方向の中央部に比して両側縁部を高くしてなる
リチウムイオン二次電池。
Conductive strip-shaped positive electrode current collector plate, and a strip-shaped positive electrode active material disposed on the positive electrode current collector plate, including positive electrode active material particles and a binder, and extending in the longitudinal direction of the positive electrode current collector plate A belt-like positive electrode plate having a layer;
Conductive strip-shaped negative electrode current collector plate, and strip-shaped negative electrode active material disposed on the negative electrode current collector plate, including negative electrode active material particles and a binder, and extending in the longitudinal direction of the negative electrode current collector plate A strip-shaped negative electrode plate having a layer and facing the positive electrode plate;
A lithium ion secondary battery comprising a power generation element formed by winding a separator interposed between the positive electrode plate and the negative electrode plate,
The width orthogonal to the longitudinal direction of at least one of the peel strength between the positive electrode active material layer and the positive electrode current collector plate and the peel strength between the negative electrode active material layer and the negative electrode current collector plate A lithium ion secondary battery in which both side edges are made higher than the center in the width direction by making the characteristics of the active material layer different in the direction.
請求項1に記載のリチウムイオン二次電池であって、
前記正極活物質層及び前記負極活物質層のうち、前記剥離強度について、前記幅方向の前記中央部に比して前記両側縁部を高くした活物質層は、
上記活物質層中の前記結着材の量を、上記中央部に比して上記両側縁で多くしてなる
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
Among the positive electrode active material layer and the negative electrode active material layer, for the peel strength, the active material layer having the side edges higher than the central portion in the width direction,
A lithium ion secondary battery in which the amount of the binder in the active material layer is increased at both side edges as compared to the central portion.
請求項1に記載のリチウムイオン二次電池であって、
前記正極活物質層及び前記負極活物質層のうち、前記剥離強度について、前記幅方向の前記中央部に比して前記両側縁部を高くした活物質層は、
上記活物質層中の前記結着材の結晶化度を、上記中央部に比して上記両側縁部で高くしてなる
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
Among the positive electrode active material layer and the negative electrode active material layer, for the peel strength, the active material layer having the side edges higher than the central portion in the width direction,
The lithium ion secondary battery which makes the crystallinity of the said binder in the said active material layer high in the said both edge part compared with the said center part.
請求項1に記載のリチウムイオン二次電池であって、
前記正極活物質層及び前記負極活物質層のうち、前記剥離強度について、前記幅方向の前記中央部に比して前記両側縁部を高くした活物質層は、
上記活物質層中の前記結着材の分子量を、上記中央部に比して上記両側縁部で大きくしてなる
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
Among the positive electrode active material layer and the negative electrode active material layer, for the peel strength, the active material layer having the side edges higher than the central portion in the width direction,
The lithium ion secondary battery which makes the molecular weight of the said binder in the said active material layer large at the said both edge part compared with the said center part.
請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両。 A vehicle on which the lithium ion secondary battery according to any one of claims 1 to 4 is mounted and the electric energy stored in the lithium ion secondary battery is used for all or part of a power source. 請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを駆動エネルギ源の全部又は一部に使用する電池搭載機器。 A battery-equipped device in which the lithium ion secondary battery according to any one of claims 1 to 4 is mounted and the electric energy stored in the lithium ion secondary battery is used for all or a part of a drive energy source. .
JP2009292632A 2009-12-24 2009-12-24 Lithium ion secondary battery, vehicle and battery-equipped equipment Expired - Fee Related JP5392063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292632A JP5392063B2 (en) 2009-12-24 2009-12-24 Lithium ion secondary battery, vehicle and battery-equipped equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292632A JP5392063B2 (en) 2009-12-24 2009-12-24 Lithium ion secondary battery, vehicle and battery-equipped equipment

Publications (2)

Publication Number Publication Date
JP2011134564A JP2011134564A (en) 2011-07-07
JP5392063B2 true JP5392063B2 (en) 2014-01-22

Family

ID=44347083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292632A Expired - Fee Related JP5392063B2 (en) 2009-12-24 2009-12-24 Lithium ion secondary battery, vehicle and battery-equipped equipment

Country Status (1)

Country Link
JP (1) JP5392063B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713206B2 (en) * 2012-05-11 2015-05-07 トヨタ自動車株式会社 Non-aqueous secondary battery
JP2016186921A (en) * 2015-03-27 2016-10-27 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
JP6493747B2 (en) 2015-04-14 2019-04-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery separator and method for producing the same
JP6721636B2 (en) * 2018-07-24 2020-07-15 株式会社エンビジョンAescジャパン ELECTRODE FOR ELECTRIC DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTRICAL DEVICE USING THE ELECTRODE
CN116941059A (en) * 2021-03-17 2023-10-24 松下新能源株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3999890B2 (en) * 1998-09-10 2007-10-31 三洋電機株式会社 Lithium secondary battery
JP3878383B2 (en) * 2000-02-10 2007-02-07 東洋炭素株式会社 Manufacturing method of negative electrode
JP2002270180A (en) * 2001-03-08 2002-09-20 Mitsubishi Cable Ind Ltd Positive electrode active material composition, positive electrode plate with usage of the same, and lithium secondary battery
JP2005183632A (en) * 2003-12-18 2005-07-07 Mitsubishi Chemicals Corp Electrochemical device and electric double layer capacitor or battery using the same
JP4649113B2 (en) * 2004-01-20 2011-03-09 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2005339926A (en) * 2004-05-26 2005-12-08 Yuasa Corp Strip electrode and battery using it
JP2006054115A (en) * 2004-08-12 2006-02-23 Nissan Motor Co Ltd Manufacturing method of electrode plate for battery, electrode plate for battery, and secondary battery using it
KR100901052B1 (en) * 2004-12-10 2009-06-04 파나소닉 주식회사 Lithium ion secondary battery and method for producing thereof
JP2007329077A (en) * 2006-06-09 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2008103231A (en) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd Electrode for lithium secondary battery
JP4883025B2 (en) * 2007-10-31 2012-02-22 ソニー株式会社 Secondary battery
KR100913176B1 (en) * 2007-11-28 2009-08-19 삼성에스디아이 주식회사 Negative electrode for lithium secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP2011134564A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
KR101580731B1 (en) Non-aqueous electrolyte secondary battery
JP5875803B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20100119940A1 (en) Secondary battery
JP7069612B2 (en) Manufacturing method of laminated electrode body, power storage element and laminated electrode body
US9997768B2 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2008078008A (en) Battery pack and its manufacturing method
CN112864546B (en) Non-aqueous electrolyte secondary battery
US11522221B2 (en) Gelation reagent for forming gel electrolyte and methods relating thereto
JP6692123B2 (en) Lithium ion secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP2010086754A (en) Method for manufacturing battery
JP2010244930A (en) Method for manufacturing laminated battery
JP2011070976A (en) Lithium ion secondary battery, vehicle, and battery loading equipment
JP5392063B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
JP2010009773A (en) Electrode for lithium-ion secondary battery
KR101390548B1 (en) Electropositive plate, battery, and electropositive plate manufacturing method
JP5432746B2 (en) Lithium ion secondary battery
JP7069625B2 (en) Manufacturing method of power storage element
KR101858334B1 (en) Non-aqueous electrolyte secondary battery
JP2008293982A (en) Nonaqueous electrolyte secondary battery
JP2013020784A (en) Nonaqueous electrolyte secondary battery
JP2004119199A (en) Nonaqueous electrolyte secondary battery
JP2011060605A (en) Lithium ion secondary battery, vehicle, battery mounting device, and positive electrode plate
JP2021182478A (en) Non-aqueous electrolyte secondary battery
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

LAPS Cancellation because of no payment of annual fees