JP5388661B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5388661B2
JP5388661B2 JP2009090776A JP2009090776A JP5388661B2 JP 5388661 B2 JP5388661 B2 JP 5388661B2 JP 2009090776 A JP2009090776 A JP 2009090776A JP 2009090776 A JP2009090776 A JP 2009090776A JP 5388661 B2 JP5388661 B2 JP 5388661B2
Authority
JP
Japan
Prior art keywords
solder
semiconductor element
lead member
conductor pattern
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009090776A
Other languages
Japanese (ja)
Other versions
JP2010245212A (en
Inventor
耕 佐野
規由 新井
進吾 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009090776A priority Critical patent/JP5388661B2/en
Publication of JP2010245212A publication Critical patent/JP2010245212A/en
Application granted granted Critical
Publication of JP5388661B2 publication Critical patent/JP5388661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/77Apparatus for connecting with strap connectors
    • H01L2224/7725Means for applying energy, e.g. heating means
    • H01L2224/77272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Description

本発明は、半導体装置およびその製造方法に関し、特に、リード配線構造を有する電力用の半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a power semiconductor device having a lead wiring structure and a manufacturing method thereof.

電力用半導体装置は、鉄道車両、ハイブリッドカー、電気自動車等の車両、家電機器、産業用機械等において、比較的大きな電力を制御、整流するために利用されている。従って、電力用半導体装置に使用される電力用半導体素子は100A/cmを超える高い電流密度で通電することが求められる。更に、近年はシリコン(Si)に代わる半導体材料として炭化珪素(SiC)が注目されており、SiCからなる半導体素子は500A/cmを超える電流密度での動作が可能である。また、SiCは150℃〜300℃の高温状態でも安定動作が可能であり、高電流密度動作と高温動作の両立が可能な素子として期待されている。 Power semiconductor devices are used to control and rectify relatively large power in vehicles such as railway vehicles, hybrid cars, and electric vehicles, home appliances, and industrial machines. Therefore, the power semiconductor element used in the power semiconductor device is required to be energized at a high current density exceeding 100 A / cm 2 . Furthermore, in recent years, silicon carbide (SiC) has attracted attention as a semiconductor material replacing silicon (Si), and a semiconductor element made of SiC can operate at a current density exceeding 500 A / cm 2 . Further, SiC is capable of stable operation even at a high temperature of 150 ° C. to 300 ° C., and is expected as an element capable of achieving both high current density operation and high temperature operation.

従来、電力用の半導体素子の給電は、絶縁基板上の回路パターンに対向する電極面ははんだ接合し、絶縁基板と反対側の電極面はアルミニウムのワイヤを超音波接合することが一般的に行われていたが、例えば、特許文献1に示すように、特に高い電流密度が要求される半導体装置では、半導体素子上面の主電極の給電に、平板状のリード部材を用いられていた。このようなリード部材は、あらかじめ半導体素子を仮接合した後に、はんだを用いて半導体素子の上面電極に接合することにより、アルミニウムのワイヤに較べて容易に接合面積および通電部の断面積を大きくすることができ、大電流状態や高温状態での使用において、接合信頼性を大きくすることが可能であった。   Conventionally, power supply for power semiconductor elements is generally performed by solder bonding of the electrode surface facing the circuit pattern on the insulating substrate and ultrasonic bonding of an aluminum wire to the electrode surface opposite to the insulating substrate. However, as shown in Patent Document 1, for example, in a semiconductor device that requires a particularly high current density, a flat lead member is used to feed the main electrode on the upper surface of the semiconductor element. In such a lead member, a semiconductor element is temporarily bonded in advance and then bonded to the upper surface electrode of the semiconductor element using solder, thereby easily increasing the bonding area and the cross-sectional area of the current-carrying portion as compared with an aluminum wire. Therefore, it has been possible to increase the bonding reliability when used in a large current state or a high temperature state.

また、特許文献2では、貫通孔を有するリード部材を用いることにより、貫通孔を通してはんだ部材を供給し、また接合の熱応力を緩和している。なお、これらの特許文献1、2では、はんだ接合工程にフラックスを使用せず、窒素雰囲気または水素を用いた還元性雰囲気中での加熱プロセスが用いられている。   Moreover, in patent document 2, the solder member is supplied through a through-hole and the thermal stress of joining is relieved by using the lead member which has a through-hole. In these Patent Documents 1 and 2, a flux is not used in the solder bonding process, and a heating process in a reducing atmosphere using nitrogen atmosphere or hydrogen is used.

特開平11−163045号公報Japanese Patent Laid-Open No. 11-163045 特開2008−182074号公報JP 2008-182074 A

平板状のリード部材を用いた半導体装置の製造方法において、リフロー工程ではんだを溶融してリード部材を接合させる場合、以下のような問題が生じていた。   In the manufacturing method of a semiconductor device using a flat lead member, when the lead member is joined by melting the solder in the reflow process, the following problems occur.

第1に、リード部材が自立式であり、リードフレームの一部となって支持されておらず、かつはんだ接合や半導体素子の支持が無い状態では自重により絶縁基板との平行位置を維持できない形状である場合、リフロー工程ではんだを溶融させるとリード部材が傾いた状態で接合されていた。半導体素子とリード部材の間のはんだ接合部の厚みの不均一さは、温度サイクルによる接合界面の剥離やはんだ内のクラック進展等の原因となり、温度サイクルに対する信頼性が低下する要因となっていた。   First, the lead member is self-supporting, is not supported as a part of the lead frame, and cannot maintain a parallel position with the insulating substrate due to its own weight when there is no solder joint or semiconductor element support In this case, when the solder is melted in the reflow process, the lead member is joined in an inclined state. The non-uniform thickness of the solder joint between the semiconductor element and the lead member has caused the peeling of the joint interface due to the temperature cycle and the progress of cracks in the solder, which has been a cause of reduced reliability with respect to the temperature cycle. .

第2に、近年、一般的になった鉛フリーはんだでは融点が高いことから加熱時間が長くなり、半導体素子の電極面に施されたニッケル膜がはんだ中に拡散し、通電時の温度上昇に対する接合信頼性が低下するという問題があった。特に、半導体素子のダイボンドとリード部材の接合を別々の工程で行う場合は半導体装置全体を2回加熱する必要があるため、こうした問題が生じ易かった。一方、1回の加熱で半導体素子とリード部材を固定しようとすると、フラックスレスはんだではダイボンディングの際の濡れを助長するスクラブ動作を行うことが困難であり、フラックス含有はんだでは、フラックスの蒸発、飛散により、半導体素子、リード部材が動いてしまうため、これらの部材の位置決めが困難であった。更に、フラックスレスではんだ付けを行う場合は、スクラブ機構や、酸素濃度を厳しく管理可能な雰囲気炉が必要であり、製造コストが高くなった。   Secondly, in recent years, lead-free solder, which has become popular, has a high melting point, so that the heating time becomes long, and the nickel film applied to the electrode surface of the semiconductor element diffuses into the solder, and against the temperature rise during energization There was a problem that the bonding reliability was lowered. In particular, in the case where the die bonding of the semiconductor element and the bonding of the lead member are performed in separate steps, it is necessary to heat the entire semiconductor device twice. On the other hand, when trying to fix the semiconductor element and the lead member by one heating, it is difficult to perform a scrub operation that promotes wetting during die bonding with fluxless solder, and with flux-containing solder, flux evaporation, Since the semiconductor element and the lead member move due to the scattering, it is difficult to position these members. Furthermore, when performing soldering without flux, a scrub mechanism and an atmospheric furnace capable of strictly controlling the oxygen concentration are required, resulting in high manufacturing costs.

そこで、本発明は、リード部材と半導体素子との間のはんだ接合部の厚みが均一で、かつ温度サイクルに対する信頼性が高く、安価に製造が可能な電力用の半導体装置の提供を目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a power semiconductor device that has a uniform solder joint thickness between a lead member and a semiconductor element, is highly reliable with respect to a temperature cycle, and can be manufactured at low cost. .

また、本発明は、特性を劣化させることなく、1回の加熱で半導体素子とリード部材を固定する電力用の半導体装置の製造方法の提供を目的とする。   It is another object of the present invention to provide a method for manufacturing a power semiconductor device in which a semiconductor element and a lead member are fixed by a single heating without deteriorating characteristics.

本発明は、リード部材が接続された半導体素子を有する半導体装置であって、表面と裏面とを有する絶縁基板と、絶縁基板の表面に設けられ、互いに電気的に絶縁された第1導体パターンおよび第2導体パターンと、表面電極と裏面電極とを有し、裏面電極が第1導体パターンに第1はんだ部材で接続された半導体素子と、半導体素子の表面電極に第2はんだ部材で接続された板状のリード部材とを含み、リード部材と絶縁基板の表面とが平行になるように、リード部材が第2導体パターンにも接続されたことを特徴とする半導体装置である。   The present invention is a semiconductor device having a semiconductor element to which a lead member is connected, an insulating substrate having a front surface and a back surface, a first conductor pattern provided on the surface of the insulating substrate and electrically insulated from each other, and A semiconductor element having a second conductor pattern, a front electrode and a back electrode, wherein the back electrode is connected to the first conductor pattern by the first solder member, and connected to the front electrode of the semiconductor element by the second solder member A semiconductor device including a plate-like lead member, wherein the lead member is also connected to the second conductor pattern so that the lead member and the surface of the insulating substrate are parallel to each other.

また、本発明は、半導体素子にリード部材を接続する半導体装置の製造方法であって、互いに電気的に絶縁された第1導体パターンおよび第2導体パターンを有する絶縁基板を準備する工程と、第1導体パターンおよび第2導体パターンの上に第1ソルダペーストを塗布する工程と、第1導体パターンの上に、第1ソルダペーストを介して半導体素子を載置する工程と、半導体素子の上に第2ソルダペーストを塗布する工程と、半導体素子の上に、第2ソルダペーストを介して板状のリード部材を載置するとともに、第2導体パターンの上に、第1ソルダペーストを介してリード部材の端部を載置する工程と、第1ソルダーペーストおよび第2ソルダペーストを同時に溶融させた後、固化して、はんだ接合部を形成する工程とを含むことを特徴とする半導体装置の製造方法でもある。   The present invention is also a method of manufacturing a semiconductor device in which a lead member is connected to a semiconductor element, the step of preparing an insulating substrate having a first conductor pattern and a second conductor pattern that are electrically insulated from each other; A step of applying a first solder paste on the first conductor pattern and the second conductor pattern; a step of placing a semiconductor element on the first conductor pattern via the first solder paste; A step of applying the second solder paste, a plate-like lead member is placed on the semiconductor element via the second solder paste, and a lead is passed on the second conductor pattern via the first solder paste. A step of placing the end of the member, and a step of simultaneously melting the first solder paste and the second solder paste and then solidifying them to form a solder joint. It is also a method of manufacturing a semiconductor device according to.

本発明によると、小型の半導体素子にリード部材を接合する場合でも接合状態が良好になり、信頼性の高い電力用の半導体装置を提供することができる。   According to the present invention, even when a lead member is bonded to a small semiconductor element, the bonding state is improved, and a highly reliable power semiconductor device can be provided.

また、半導体素子とリード部材を1回の加熱で固定することができる電力用の半導体装置の製造方法の提供するここともできる。   In addition, it is possible to provide a method for manufacturing a power semiconductor device in which the semiconductor element and the lead member can be fixed by one heating.

本発明の実施の形態1にかかる電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電力用半導体装置の上面図である。1 is a top view of a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる電力用半導体装置のリード部材接合部の拡大断面図である。It is an expanded sectional view of a lead member junction part of a power semiconductor device concerning Embodiment 1 of the present invention. 本発明の実施の形態2にかかる電力用半導体装置の半導体素子傾き抑制作用を示す断面図である。It is sectional drawing which shows the semiconductor element inclination suppression effect | action of the power semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる電力用半導体装置の要部の上面図である。It is a top view of the principal part of the semiconductor device for electric power concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる電力用半導体装置の半導体素子の上面図である。It is a top view of the semiconductor element of the power semiconductor device concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる電力用半導体装置と製造工程の断面図である。It is sectional drawing of the semiconductor device for electric power concerning 4th Embodiment of this invention, and a manufacturing process. 本発明の実施の形態5にかかる電力用半導体装置のリード部材の形状を示す断面図および上面図である。It is sectional drawing and the top view which show the shape of the lead member of the semiconductor device for electric power concerning Embodiment 5 of this invention.

本発明の実施の形態について、図面を参照して説明する。全ての図面において、同一符号は、同一または相当箇所を示す。なお、以下の説明では、「上」、「下」、「左」、「右」およびこれらの用語を含む名称を適宜使用するが、これらの方向は図面を参照した発明の理解を容易にするために用いるものであり、実施形態を上下反転、あるいは任意の方向に回転した形態も、当然に本願発明の技術的範囲に含まれる。   Embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals indicate the same or corresponding parts. In the following description, “top”, “bottom”, “left”, “right” and names including these terms are used as appropriate, but these directions make it easy to understand the invention with reference to the drawings. Therefore, a mode in which the embodiment is inverted upside down or rotated in an arbitrary direction is naturally included in the technical scope of the present invention.

実施の形態1.
図1は、全体が100で表される、本発明の実施の形態1にかかる電力用半導体装置の断面図であり、ソルダペーストからなるはんだ部材を半導体素子の上下およびリード部材端部の接合部に塗布して、各部材を配置した状態を示す断面図である。また、図2は、電力用半導体装置100の上面図を示す。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a power semiconductor device according to a first embodiment of the present invention, represented as a whole by 100. Solder members made of solder paste are joined to upper and lower portions of a semiconductor element and lead member end portions. It is a sectional view showing the state where it applied to and each member has been arranged. FIG. 2 is a top view of the power semiconductor device 100.

電力用半導体装置100は、比較的大きな電力を制御、整流するための装置であり、絶縁基板1を含む。絶縁基板1は、例えばアルミニウム酸化物やアルミニウム窒化物、シリコン窒化物のいずれかからなる。絶縁基板1の上には、導体パターン2が設けられている。導体パターン2は、例えば、厚み0.1mm〜0.5mmの銅、アルミニウム、またはそれらを主成分とする合金からなる。   The power semiconductor device 100 is a device for controlling and rectifying relatively large power, and includes an insulating substrate 1. The insulating substrate 1 is made of, for example, aluminum oxide, aluminum nitride, or silicon nitride. A conductor pattern 2 is provided on the insulating substrate 1. The conductor pattern 2 is made of, for example, copper, aluminum having a thickness of 0.1 mm to 0.5 mm, or an alloy containing them as a main component.

導体パターン2の上には、はんだ部材3により半導体素子4が固定されている。半導体素子4は、例えば、SiからなるIGBTやMOSFET、SiCからなるMOSFETなど、縦型の半導体素子である。はんだ部材3には、例えば、鉛フリーの材料が用いられ、例えば、錫を主成分としてアンチモン、銀、銅などを含有する合金が用いられている。また、金を主成分として錫を含有するはんだ材料も用いられる。これらのはんだ材料は、溶融温度が高く、固相線が210℃を超えており、接合界面に多用されるNiの拡散が進行しやすい。   A semiconductor element 4 is fixed on the conductor pattern 2 by a solder member 3. The semiconductor element 4 is a vertical semiconductor element such as an IGBT, MOSFET, or MOSFET made of Si, for example. For the solder member 3, for example, a lead-free material is used, and for example, an alloy containing tin as a main component and containing antimony, silver, copper, or the like is used. A solder material containing gold as a main component and tin is also used. These solder materials have a high melting temperature and a solidus temperature exceeding 210 ° C., so that diffusion of Ni frequently used at the bonding interface is likely to proceed.

絶縁基板1は導体パターン2、はんだ部材3を介して半導体素子4の下面電極(図示せず)と接合されている。半導体素子4で発生した熱は、絶縁基板1を通して外部に伝達され放熱される。   The insulating substrate 1 is joined to the lower surface electrode (not shown) of the semiconductor element 4 through the conductor pattern 2 and the solder member 3. The heat generated in the semiconductor element 4 is transmitted to the outside through the insulating substrate 1 and radiated.

半導体素子4の上面には、上面電極5と制御電極6が設けられている(図2参照)。上面電極5には、はんだ部材13によりリード部材10が接続されている。はんだ部材13は、導体パターン2と半導体素子4を接合するはんだ部材3と同じ材料でもよい。一方、制御電極6には、例えば金や銅、アルミニウムからなるボンディングワイヤが接続されている。   An upper surface electrode 5 and a control electrode 6 are provided on the upper surface of the semiconductor element 4 (see FIG. 2). A lead member 10 is connected to the upper surface electrode 5 by a solder member 13. The solder member 13 may be made of the same material as the solder member 3 that joins the conductor pattern 2 and the semiconductor element 4. On the other hand, a bonding wire made of, for example, gold, copper, or aluminum is connected to the control electrode 6.

リード部材10は、半導体素子4の上面電極5に接続される板状部分と、半導体素子4側に屈曲して突き出した突起部11を有する。リード部材10が上面電極5に接続された状態で、突起部11は導体パターン12にはんだ部材13で接続される。リード部材10は、厚み0.2mm〜1.0mm程度で、銅または銅を主成分とする合金、銅層を含むクラッド材、またはモリブデンなどからなる。リード部材10の表面には、銅とはんだ部材13との間の金属間化合物の形成を防ぐために、ニッケルなどの被膜が形成されていても良い。   The lead member 10 has a plate-like portion connected to the upper surface electrode 5 of the semiconductor element 4 and a protruding portion 11 that is bent and protrudes toward the semiconductor element 4 side. In a state where the lead member 10 is connected to the upper surface electrode 5, the protrusion 11 is connected to the conductor pattern 12 by the solder member 13. The lead member 10 has a thickness of about 0.2 mm to 1.0 mm and is made of copper or an alloy containing copper as a main component, a clad material including a copper layer, molybdenum, or the like. A film such as nickel may be formed on the surface of the lead member 10 in order to prevent formation of an intermetallic compound between the copper and the solder member 13.

半導体素子4と導体パターン2、リード部材10などの内部配線と絶縁基板1とは、モールド樹脂によってモールドされる(図示せず)。モールド樹脂の材料は、熱硬化性樹脂、熱可塑性樹脂、シリコンゲル、シリコンゴム等から適宜選択されることが好ましい。ゲルやゴムを流し込んで熱硬化させる場合は、例えばポリフェニレンサルファイド(PPS)を成型した、モジュール形状を規定するための枠状ないし箱状の筐体を用いる。樹脂モールドによって、半導体装置の内部は、外気、水分、油分、塵埃等の外部環境から保護される他、電気的に絶縁されて必要な耐電圧が確保されるとともに、機械的な負荷及び衝撃からも保護される。
なお、電力用半導体装置100は、図示されていない外部との接続用端子や、絶縁基板の裏面に接合される伝熱板などを適宜備えても良い。
The semiconductor element 4, the conductor pattern 2, the internal wiring such as the lead member 10 and the insulating substrate 1 are molded with a molding resin (not shown). The material of the mold resin is preferably selected as appropriate from a thermosetting resin, a thermoplastic resin, silicon gel, silicon rubber, and the like. In the case where gel or rubber is poured and thermally cured, for example, a frame-shaped or box-shaped housing formed of polyphenylene sulfide (PPS) for defining the module shape is used. The resin mold protects the interior of the semiconductor device from the external environment such as outside air, moisture, oil, and dust, and is electrically insulated to ensure the necessary withstand voltage and from mechanical loads and impacts. Is also protected.
Note that the power semiconductor device 100 may appropriately include an external connection terminal (not shown), a heat transfer plate bonded to the back surface of the insulating substrate, and the like.

図2に示すように、導体パターン2、12上のソルダペースト層は、メタルマスクなどのスクリーン印刷用マスクを介して、スクリーン印刷によって形成される。また、半導体素子4の上面電極5の上にはディスペンサーによりソルダペーストが定量塗布される。ソルダペースト層は他の工法を用いて形成されても良い。ソルダペーストはほぼ球状のはんだ合金粒子のほか、高沸点の有機溶剤、フラックスその他の有機材料を含有しており、ペースト状態の体積と、加熱溶融し冷却されて固体化した後の体積が著しく異なる。例えば、固体化した状態の体積は、ペースト状態の体積の50%程度かそれ以下に減少する。
従って、リフロー前の状態では、ソルダペーストのチクソトロピックな特性のため、半導体素子4、リード部材10は最終的な位置より高い位置にある。
As shown in FIG. 2, the solder paste layer on the conductor patterns 2 and 12 is formed by screen printing through a screen printing mask such as a metal mask. Also, a solder paste is quantitatively applied onto the upper surface electrode 5 of the semiconductor element 4 by a dispenser. The solder paste layer may be formed using other methods. Solder paste contains almost spherical solder alloy particles, high-boiling organic solvent, flux and other organic materials. The volume of the paste state is significantly different from the volume after solidifying by heating, melting and cooling. . For example, the volume in the solidified state decreases to about 50% or less of the volume in the paste state.
Therefore, in the state before reflow, the semiconductor element 4 and the lead member 10 are at a higher position than the final position due to the thixotropic characteristics of the solder paste.

はんだ部材の融点を超える温度のリフロー工程を経て、ソルダペーストの有機成分が揮発、分解し、はんだ粒子が溶融してはんだ接合部3、13が形成される。はんだ接合部3、13は厚いほど、半導体素子4とはんだ接合部3、13自体にかかる熱応力が低減されるが、フラックスを含むソルダペーストを使用する場合、溶融したはんだの表面張力による安定性を考慮すると、実用的には50μm〜300μm程度の膜厚範囲が好適である。   Through the reflow process at a temperature exceeding the melting point of the solder member, the organic component of the solder paste is volatilized and decomposed, and the solder particles are melted to form the solder joints 3 and 13. As the solder joints 3 and 13 are thicker, the thermal stress applied to the semiconductor element 4 and the solder joints 3 and 13 themselves is reduced. However, when a solder paste containing flux is used, the stability due to the surface tension of the molten solder is increased. Considering the above, a film thickness range of about 50 μm to 300 μm is suitable for practical use.

加熱初期のフラックスの気化、飛散により、半導体素子4とリード部材10は大きく傾いては元に戻るように揺れ動く。その後、はんだが溶融した状態で、半導体素子4、リード部材10の自重により下方向に力がかかると共に、はんだ粒子の溶融による粒子間の空間が小さくなり見掛けの体積が減少し、溶融はんだに濡れたリード部材10表面は、はんだ方向に引き寄せられる。一方で、溶融はんだの表面張力によって、はんだ上のリード部材10を押し上げる力も働く。このため、これらの力の合成力によってリード部材の垂直方向の位置が決まる。   Due to the vaporization and scattering of the flux in the initial stage of heating, the semiconductor element 4 and the lead member 10 are swung so as to return to their original positions when they are largely inclined. After that, in a state where the solder is melted, a force is applied downward due to the weight of the semiconductor element 4 and the lead member 10, and the space between the particles due to the melting of the solder particles is reduced, the apparent volume is reduced, and the molten solder is wetted. The surface of the lead member 10 is pulled in the solder direction. On the other hand, the force that pushes up the lead member 10 on the solder also works due to the surface tension of the molten solder. For this reason, the vertical position of the lead member is determined by the combined force of these forces.

このとき、リード部材10の両端に形成されている支持部11が絶縁基板上の導体パターン12上にはんだを介して支持される。このため、リード部材10は平行状態を回復し、冷却後、半導体素子4との位置関係を所望の位置にすることが出来る。   At this time, the support portions 11 formed at both ends of the lead member 10 are supported on the conductor pattern 12 on the insulating substrate via solder. For this reason, the lead member 10 can recover the parallel state, and after cooling, the positional relationship with the semiconductor element 4 can be set to a desired position.

リード部材10が導体パターン12上の1箇所で支持されている場合は、リード部材10の自重により半導体素子4側に傾く力が働くため、上記のパラメータが複雑に作用することから、半導体素子4上のはんだ接合部13の厚みを安定して均一にすることは困難である。   When the lead member 10 is supported at one place on the conductor pattern 12, since the force that tilts toward the semiconductor element 4 due to the weight of the lead member 10 acts, the above parameters act in a complicated manner. It is difficult to make the thickness of the upper solder joint 13 stable and uniform.

本実施の形態にかかる半導体装置100では、図1、2に示すように、リード部材10の両端に支持部11を有し、このことは、リード部材10の電位を有する導体パターン12が少なくとも2箇所必要になることを意味している。図2の左右の導体パターン12は孤立して外部に引き出されることのないパターンである。
こうした孤立パターンは、量産における品質の安定性を確保する上できわめて有効であり、生産歩留まりが向上し、低コスト化を図ることができる。
As shown in FIGS. 1 and 2, the semiconductor device 100 according to the present embodiment has support portions 11 at both ends of the lead member 10, which means that the conductor pattern 12 having the potential of the lead member 10 is at least 2. This means that it is necessary. The left and right conductor patterns 12 in FIG. 2 are patterns that are isolated and are not drawn to the outside.
Such an isolated pattern is extremely effective in securing the quality stability in mass production, and the production yield can be improved and the cost can be reduced.

半導体装置100の小型化の観点からは、例えば孤立した導電パターン12の幅は2mm程度に抑えればよい。図2の半導体装置には、リード部材10が接合される導体パターン12にソルダーレジスト25が形成されている。ソルダーレジスト25は、一般的なプリント基板に用いられる樹脂材料にフィラーや顔料を混合したもので良い。SiC半導体素子などの高温動作素子を用いる場合は、アルミニウム膜など、はんだに濡れにくい金属被膜を用いることが好ましい。また、導体パターン12自身がアルミニウムから形成される場合は、接合部に選択的にニッケルなどのはんだに濡れ易い被膜を形成すればよい。ソルダーレジスト25を用いてリード部材10の接合領域を制限することにより、はんだ溶融時にはんだの表面張力により、リード部材10が自動的に接合領域に移動するセルフアライメント機能を持たせることが可能になる。半導体素子4も溶融はんだに引張られるため、セルフアライメント機能により半導体素子4とリード部材10の位置精度が向上する。同様に、半導体素子4の接合位置の周囲にもソルダーレジスト(図示せず)を設けることにより、半導体素子4の位置をセルフアライメントで制御できる。   From the viewpoint of miniaturization of the semiconductor device 100, for example, the width of the isolated conductive pattern 12 may be suppressed to about 2 mm. In the semiconductor device of FIG. 2, a solder resist 25 is formed on the conductor pattern 12 to which the lead member 10 is joined. The solder resist 25 may be a resin material used for a general printed circuit board mixed with a filler or a pigment. When a high-temperature operating element such as a SiC semiconductor element is used, it is preferable to use a metal film that is difficult to wet with solder, such as an aluminum film. In addition, when the conductor pattern 12 itself is formed from aluminum, a film that is easily wetted by solder such as nickel may be selectively formed at the joint. By limiting the bonding region of the lead member 10 using the solder resist 25, it is possible to provide a self-alignment function in which the lead member 10 automatically moves to the bonding region due to the surface tension of the solder when the solder is melted. . Since the semiconductor element 4 is also pulled by the molten solder, the position accuracy of the semiconductor element 4 and the lead member 10 is improved by the self-alignment function. Similarly, by providing a solder resist (not shown) around the bonding position of the semiconductor element 4, the position of the semiconductor element 4 can be controlled by self-alignment.

図3は、リード部材10の支持部11近傍の断面図である。図3に示すように、ストレート形状の支持部11を用いれば接合面積、即ち、導体パターン12の面積を小さくすることができる。よりセルフアライメント機能を向上させたい場合は、支持部11の先端に平らな底面を有するL字型の支持部を用いることが好ましい。   FIG. 3 is a cross-sectional view of the vicinity of the support portion 11 of the lead member 10. As shown in FIG. 3, if the straight-shaped support portion 11 is used, the bonding area, that is, the area of the conductor pattern 12 can be reduced. In order to further improve the self-alignment function, it is preferable to use an L-shaped support portion having a flat bottom surface at the tip of the support portion 11.

図2は、制御電極6を有するMOSFETのような半導体素子4を2個並列に配列した例であるが、例えばSiC素子のようにウエハが高価な半導体素子4を用いる場合は、コスト低減の観点から、大型の半導体素子4を1個用いるより、小型の半導体素子4を複数並列に配列することが好ましい。   FIG. 2 shows an example in which two semiconductor elements 4 such as MOSFETs having control electrodes 6 are arranged in parallel. For example, when an expensive semiconductor element 4 such as a SiC element is used, the viewpoint of cost reduction is shown. Therefore, it is preferable to arrange a plurality of small semiconductor elements 4 in parallel rather than using one large semiconductor element 4.

また、SiCからなるMOSFETと並列にダイオードを配列する場合は、ダイオードにも高温動作特性が必要となるため、SiCからなるショットキーバリアダイオードを用いることが好ましい。この場合は、更に並列配置される素子数が増える。このように、複数の小型半導体素子を配列する場合は、リード部材10、半導体素子4により高い位置精度が要求されるため、上述のセルフアライメントの方法がきわめて有効になる。   Further, when the diode is arranged in parallel with the MOSFET made of SiC, it is preferable to use a Schottky barrier diode made of SiC because the diode also needs high-temperature operating characteristics. In this case, the number of elements arranged in parallel further increases. As described above, when arranging a plurality of small semiconductor elements, the lead member 10 and the semiconductor element 4 require high positional accuracy, and thus the above self-alignment method is extremely effective.

また、冷却に伴ってはんだが固化した後、さらに収縮し、導体パターン2、12を引張る力が発生するとともに、リード部材10も収縮するため、リード部材10は多少の変形を伴う。これは、はんだの熱収縮量より1桁以上大きい変形量となる。このため、半導体素子4の上面電極5の端部からリード部材10の支持部11の接合部までの距離D[mm]は小型化の観点からは小さいほうが望ましいが、信頼性の観点から一定以上の大きさであることが求められ、これまでの実験結果から、距離Dは3.5mm以上必要であると思われる。   Further, after the solder is solidified with cooling, the solder is further contracted to generate a force for pulling the conductor patterns 2 and 12, and the lead member 10 is also contracted. Therefore, the lead member 10 is somewhat deformed. This is a deformation amount that is larger by one digit or more than the heat shrinkage amount of the solder. For this reason, the distance D [mm] from the end of the upper surface electrode 5 of the semiconductor element 4 to the joint portion of the support portion 11 of the lead member 10 is preferably small from the viewpoint of miniaturization, but is more than a certain value from the viewpoint of reliability From the experimental results so far, it is considered that the distance D needs to be 3.5 mm or more.

ここで、図2に示すように、D1、D2は、上面電極5と、リード部材10の支持部11との間の距離である。   Here, as shown in FIG. 2, D <b> 1 and D <b> 2 are distances between the upper surface electrode 5 and the support portion 11 of the lead member 10.

以下に示す片持ちはりのたわみの計算式(式(1))から考えると、純銅製のリード部材10の場合、ヤング率E[GPa]は100GPa、リード部材10の幅P[mm]は3mm、リード部材10の厚みT[mm]は0.5mm、断面二次モーメントIは0.3125mm、経験的なSiC半導体素子上の最大引張り荷重W[N]は4N、βは1/3とし、最大たわみδmaxは、リード部材10の高さのプラス側公差20μmとした場合、Lは3.6mmとなる。なお、SiC半導体素子の上面電極5にはNiの被膜が形成されているとする。 Considering the following cantilever deflection calculation formula (formula (1)), in the case of the lead member 10 made of pure copper, the Young's modulus E [GPa] is 100 GPa and the width P [mm] of the lead member 10 is 3 mm. The thickness T [mm] of the lead member 10 is 0.5 mm, the cross-sectional secondary moment I is 0.3125 mm 4 , the empirical maximum tensile load W [N] on the SiC semiconductor element is 4 N, and β is 1/3. When the maximum deflection δmax is a plus-side tolerance of 20 μm of the height of the lead member 10, L is 3.6 mm. It is assumed that a Ni film is formed on the upper electrode 5 of the SiC semiconductor element.

δmax=β・W・L/(1000・E・I)・・・・・・式(1) δmax = β · W · L 3 / (1000 · E · I) (1)

従って、式(1)をもとに、リード部材10の一般的な加工精度限界を20μmとして、Lを式(2)に基づいてSiC半導体素子用の銅製リード部材の支持部とSiC半導体素子の距離を決定することができる。   Therefore, based on the formula (1), the general processing accuracy limit of the lead member 10 is set to 20 μm, and L is based on the formula (2) and the support portion of the copper lead member for the SiC semiconductor element and the SiC semiconductor element The distance can be determined.

L≧(1500・I)1/3・・・・・・式(2) L ≧ (1500 · I) 1/3 ··· Equation (2)

また、リード部材10としてインバー合金を銅で挟み込んだクラッド部材を用いた場合は、式(3)を用いればよい。   Further, when a clad member in which an Invar alloy is sandwiched between copper is used as the lead member 10, the formula (3) may be used.

L≧(1800・I)1/3・・・・・・式(3) L ≧ (1800 · I) 1/3 ··· expression (3)

この関係を用いることにより、SiC半導体素子の上面電極5に過大な応力が加わることがなく、信頼性の高い半導体装置を得ることが出来る。   By using this relationship, an excessive stress is not applied to the upper surface electrode 5 of the SiC semiconductor element, and a highly reliable semiconductor device can be obtained.

なお、リード部材10の支持部11はリード部材端部に配置されていなくても良く、リード部材10を絶縁基板1に対して平行に支持できれば良い。従って、支持部11の数は2箇所以外に、3箇所以上であっても良い。これにより、上述の方法によって支持固定されていないリード部材10を用いた場合であっても、絶縁基板1に対して略平行の位置関係を持つ立体回路を構成することが可能になる。   Note that the support portion 11 of the lead member 10 may not be disposed at the end portion of the lead member, and it is sufficient that the lead member 10 can be supported in parallel to the insulating substrate 1. Accordingly, the number of support portions 11 may be three or more in addition to two. Thereby, even when the lead member 10 that is not supported and fixed by the above-described method is used, a three-dimensional circuit having a substantially parallel positional relationship with respect to the insulating substrate 1 can be configured.

また、はんだ部材3、13にフラックスを含有したソルダペーストを用いることにより、はんだ加熱溶融装置にスクラブ機構は不要となり、酸素濃度を例えば50ppm以下の低い水準に制御する必要が無くなる。このため、製造コストを低減することが可能であるとともに、生産のスループットを高めることも可能となる。加熱時間を最小にすることにより、半導体素子4の上面電極5の表面に設けられたNi被膜が、はんだ中に拡散するのを抑制でき、高温動作における寿命を延ばして、信頼性を高めることができる。   Further, by using solder paste containing flux for the solder members 3 and 13, no scrub mechanism is required in the solder heating and melting apparatus, and it is not necessary to control the oxygen concentration to a low level of, for example, 50 ppm or less. For this reason, it is possible to reduce the manufacturing cost and increase the production throughput. By minimizing the heating time, the Ni coating provided on the surface of the upper surface electrode 5 of the semiconductor element 4 can be prevented from diffusing into the solder, and the life in high temperature operation can be extended and the reliability can be improved. it can.

次に、半導体装置100の製造方法について説明する。製造方法は、以下の工程1〜5を含む。   Next, a method for manufacturing the semiconductor device 100 will be described. The manufacturing method includes the following steps 1 to 5.

工程1:絶縁基板1上の導体パターン2、12の上にソルダペーストを印刷する。通常は、メタルマスクを用いてスクリーン印刷を行う。   Step 1: Solder paste is printed on the conductor patterns 2 and 12 on the insulating substrate 1. Usually, screen printing is performed using a metal mask.

工程2:半導体素子4をソルダペーストパターン上に配置する。   Step 2: The semiconductor element 4 is disposed on the solder paste pattern.

工程3:半導体素子4の上にソルダペーストを塗布する。通常は、ディスペンサを用いて定量塗出を行う。   Step 3: A solder paste is applied on the semiconductor element 4. Usually, quantitative dispensing is performed using a dispenser.

工程4:リード部材10をソルダペーストパターンおよび半導体素子4上のソルダペースト上に配置する。   Step 4: The lead member 10 is disposed on the solder paste pattern and the solder paste on the semiconductor element 4.

工程5:リフロー炉に入れる。全体のはんだがほぼ同時に溶融した後、固化して組み立てが完了する。   Step 5: Place in a reflow oven. After the entire solder melts almost simultaneously, it solidifies and completes the assembly.

このような、簡単な工程を用いることにより、リード部材10を用いた立体的な回路を持つ半導体装置100を、効率よく組み立てることができる。なお、絶縁基板1の下に更に金属等のベース板をはんだ接合する場合は、工程5より前に、ソルダペースト層が形成されたベース板上に絶縁基板1を重ねる工程が追加される。   By using such a simple process, the semiconductor device 100 having a three-dimensional circuit using the lead member 10 can be efficiently assembled. In addition, when solder-joining a base board, such as a metal, under the insulating substrate 1, the process of superimposing the insulating board 1 on the base board in which the solder paste layer was formed is added before the process 5. FIG.

実施の形態2.
半導体素子4の上面電極5が半導体素子4の中心からずれている場合、平板形状のリード部材10を用いると、図4(a)のように半導体素子4がリード部材10側に引き寄せられて、半導体素子4がリード部材10の短辺方向に傾く現象が観察された。図4(a)では、上面電極5が、半導体素子4の中心より左側に形成されている。
このような現象は、半導体素子4が小さいほど顕著に観察され、半導体素子4の一辺の寸法が10mm以下の場合に特に問題となる。特に、高電流密度の通電が可能で、かつ高温状態での動作が可能なSiC素子では、一辺の寸法が5mm以下のMOSFETの給電接続(上面電極)に対して平板状のリード部材10を用いることが有効であるが、このような現象が問題となる。
Embodiment 2. FIG.
When the upper surface electrode 5 of the semiconductor element 4 is shifted from the center of the semiconductor element 4, when the flat lead member 10 is used, the semiconductor element 4 is drawn toward the lead member 10 as shown in FIG. A phenomenon in which the semiconductor element 4 is tilted in the short side direction of the lead member 10 was observed. In FIG. 4A, the upper surface electrode 5 is formed on the left side from the center of the semiconductor element 4.
Such a phenomenon is more noticeably observed as the semiconductor element 4 is smaller, and becomes a problem particularly when the dimension of one side of the semiconductor element 4 is 10 mm or less. In particular, in a SiC element that can be energized at a high current density and can operate in a high temperature state, a flat lead member 10 is used for a power supply connection (upper surface electrode) of a MOSFET having a side dimension of 5 mm or less. Is effective, but this phenomenon is a problem.

このような現象を防止するために、はんだペースト中に金属製の球状フィラー粒子を混入させる方法も可能である。しかしながら、半導体素子4と熱膨張率の大きく異なるリード部材10への接合は、温度サイクル信頼性の観点から、半田部材13は厚い方が望ましい。このため、100μmを超える膜厚で、均一な厚みを持たせるには、球状フィラー粒子の直径が大きくなりすぎて、ペースト中の分散、印刷の均一性を確保することが難しかった。   In order to prevent such a phenomenon, a method of mixing metallic spherical filler particles in the solder paste is also possible. However, it is desirable that the solder member 13 be thicker in joining to the lead member 10 having a coefficient of thermal expansion significantly different from that of the semiconductor element 4 from the viewpoint of temperature cycle reliability. For this reason, in order to give a uniform thickness with a film thickness exceeding 100 μm, the diameter of the spherical filler particles becomes too large, and it is difficult to ensure dispersion in the paste and uniformity of printing.

そこで、図4(b)に示すように、半導体素子4の上面電極5の接合領域に対応して、リード部材10に突起部22を設けることで、はんだ部材13の膜厚を一定に確保するのに有効であることを見出した。   Therefore, as shown in FIG. 4B, the film thickness of the solder member 13 is ensured to be constant by providing the protrusion 22 on the lead member 10 corresponding to the bonding region of the upper surface electrode 5 of the semiconductor element 4. It was found to be effective.

図5は、全体が200で表される、本実施の形態2にかかる電力用半導体装置の断面図である。
半導体素子4の下面電極(図示せず)の接合に関しては、セラミックス製の絶縁基板1の熱膨張係数が半導体素子4に近いため、はんだ部材3の膜厚は100μm以下で足りる。このため、はんだ部材3の所望の厚みの80%以上の粒径を有するNiを主成分とする粒子、ないしはNiめっきを施された金属またはセラミックスの粒子からなるフィラーを混入、分散させたソルダペーストを用いればよい。分散、印刷の特性の観点から粒子は球状に近いことが望ましい。
FIG. 5 is a cross-sectional view of the power semiconductor device according to the second embodiment, the whole being represented by 200.
Regarding the bonding of the lower surface electrode (not shown) of the semiconductor element 4, since the thermal expansion coefficient of the ceramic insulating substrate 1 is close to that of the semiconductor element 4, the film thickness of the solder member 3 is sufficient to be 100 μm or less. For this reason, a solder paste in which fillers composed of particles having a particle size of 80% or more of the desired thickness of the solder member 3 or metal or ceramic particles plated with Ni are mixed and dispersed. May be used. From the viewpoint of dispersion and printing characteristics, the particles are preferably nearly spherical.

また、他の手段として、図4(b)に示すように、導体パターン上2にワイヤバンプ14を形成することによって、平行な接合状態を実現することが可能になる。ワイヤバンプ14は、例えばCu、Alのワイヤを用いてワイヤボンダで形成すればよく、所望のはんだ部材3の厚みに合わせて高さを選択すれば良い。   Further, as another means, as shown in FIG. 4B, a parallel bonding state can be realized by forming the wire bumps 14 on the conductor pattern 2. The wire bumps 14 may be formed by a wire bonder using, for example, Cu or Al wires, and the height may be selected according to the desired thickness of the solder member 3.

なお、図5では、半導体素子ごとに突起部22が4箇所(図面では2箇所のみ表されている)設けられているが、少なくとも1箇所設ければ、ある程度の効果が期待できる。上面電極5の面積と突起部22の加工の制約から、1箇所のみの突起部22を有する場合は、上面電極4の中心から制御電極6と反対側方向にずらした位置に突起部22を形成すればよい。   In FIG. 5, four protrusions 22 (only two are shown in the drawing) are provided for each semiconductor element. However, if at least one protrusion is provided, a certain degree of effect can be expected. Due to the area of the upper surface electrode 5 and the processing restriction of the protrusion 22, when only one protrusion 22 is provided, the protrusion 22 is formed at a position shifted from the center of the upper electrode 4 in the direction opposite to the control electrode 6. do it.

リード部材10の突起部22は、パンチとダイスによるハーフプレス加工(いわゆるダボ出し加工)により精密に行うことが可能である。0.5mm厚の銅板短冊を用いて、突起高さ0.2mmのダボ出し加工を行ったところ、突起高さ10点の計測値の最大と最小の差は15μmであった。これは、はんだ接合のスペーサーとして十分な精度である。このような突起部22を用いることで、量産時にはんだ接合13の形状がばらつくことがなく、信頼性の高い電力用半導体装置が実現できる。   The protrusion 22 of the lead member 10 can be precisely performed by half press processing (so-called doweling processing) using a punch and a die. When a doweling process with a projection height of 0.2 mm was performed using a copper strip with a thickness of 0.5 mm, the difference between the maximum and minimum measurement values at 10 projection heights was 15 μm. This is sufficient accuracy as a solder joint spacer. By using such protrusions 22, the shape of the solder joint 13 does not vary during mass production, and a highly reliable power semiconductor device can be realized.

上記の突起部22を有するリード部材10と、半導体素子4下にフィラーを混合したはんだ部材ないし、ワイヤバンプを用いることにより、半導体素子4上下のはんだ接合とリード部材の接合を1回の加熱溶融による工程で完了することが可能となり、製造コストの低減が可能となる。   By using the lead member 10 having the protrusion 22 and a solder member or a wire bump mixed with a filler under the semiconductor element 4, the solder bonding of the upper and lower portions of the semiconductor element 4 and the bonding of the lead member are performed by one heating and melting. It can be completed in the process, and the manufacturing cost can be reduced.

実施の形態3.
図6は、本実施の形態3にかかる半導体素子4の上面図であり、制御電極6を有する半導体素子4の接合後の傾きについての対策を示す。図6の半導体素子4では、上面電極5の位置を半導体素子4のほぼ中央に配置している。即ち、リード部材10の幅方向(図6では、上下方向)に対して、距離d1とd2がほぼ等しくなっている。ここで、図6に示すように、d1、d2は、上部電極5の端部から半導体素子4の端部までの距離である。
Embodiment 3 FIG.
FIG. 6 is a top view of the semiconductor element 4 according to the third embodiment, and shows a countermeasure against the tilt after the semiconductor element 4 having the control electrode 6 is bonded. In the semiconductor element 4 of FIG. 6, the position of the upper surface electrode 5 is arranged substantially at the center of the semiconductor element 4. That is, the distances d1 and d2 are substantially equal to the width direction of the lead member 10 (vertical direction in FIG. 6). Here, as shown in FIG. 6, d <b> 1 and d <b> 2 are distances from the end of the upper electrode 5 to the end of the semiconductor element 4.

実験的には、一辺が3mm〜6mm程度のサイズの半導体素子4では、d1、d2が半導体素子4の幅の30%以下で、かつ|d1−d2|が半導体素子の幅の5%以内になっていれば、はんだ部材13の厚みの不均一は30μm以下とすることが出来た。この方法では、結果的に上面電極5の面積が小さくなるが、このような小型の半導体素子4では殆ど問題とはならない。   Experimentally, in the semiconductor element 4 having a size of about 3 mm to 6 mm on a side, d1 and d2 are 30% or less of the width of the semiconductor element 4 and | d1-d2 | is within 5% of the width of the semiconductor element. If so, the non-uniform thickness of the solder member 13 could be 30 μm or less. In this method, the area of the upper surface electrode 5 is reduced as a result, but such a small semiconductor element 4 hardly causes a problem.

図7は、本実施の形態3にかかる他の半導体素子4の上面図であり、半導体素子4の縦方向(図7の上下方向)および横方向(図7の左右方向)の両方向において対称な形状(点対称な形状)の上面電極5を有する半導体素子4である。対称な形状は、例えば、H字型(図7左図)、十字型(図7右図)である。   FIG. 7 is a top view of another semiconductor element 4 according to the third embodiment. The semiconductor element 4 is symmetrical in both the vertical direction (vertical direction in FIG. 7) and the horizontal direction (horizontal direction in FIG. 7). This is a semiconductor element 4 having an upper surface electrode 5 having a shape (point-symmetric shape). Symmetric shapes are, for example, an H-shape (left figure in FIG. 7) and a cross shape (right figure in FIG. 7).

このような上面電極5を用いると、量産時にはんだ接合が均一となり、信頼性の高い電力用半導体装置が得られる。   When such an upper surface electrode 5 is used, the solder joint becomes uniform during mass production, and a highly reliable power semiconductor device can be obtained.

実施の形態4.
図8は、全体が300で表される、本発明の実施の形態3にかかる電力用半導体装置の断面図である。電力用半導体装置300は、リード部材10に開口部23が設けられており、他の構造は電力用半導体装置100と同じである。
Embodiment 4 FIG.
FIG. 8 is a cross-sectional view of the power semiconductor device according to the third embodiment of the present invention, the whole being represented by 300. The power semiconductor device 300 has an opening 23 in the lead member 10, and the other structure is the same as that of the power semiconductor device 100.

実施の形態1の製造工程において、工程4では、半導体素子4上のソルダペーストの上にリード部材10を重ねる必要がある。この際、塗出されて塗出範囲上に留まっているソルダペーストを押しつぶすかたちで流動させる必要がある。リード部材10を精度良く配置しても、ソルダペーストは流動性があり、塗出後の形状は必ずしも一定ではない。また、塗出後の糸切れの問題から、塗出量はある程度のばらつきを有する。また、半導体素子4上に厚く盛られた、柔らかく流動性を持つソルダペースト上にリード部材10を配置すると、配置位置は不安定な状態となる。   In the manufacturing process of the first embodiment, in step 4, it is necessary to overlap the lead member 10 on the solder paste on the semiconductor element 4. At this time, it is necessary to cause the solder paste that has been painted and stayed on the painting range to flow in a crushing manner. Even if the lead member 10 is arranged with high accuracy, the solder paste is fluid and the shape after coating is not necessarily constant. In addition, due to the problem of thread breakage after coating, the coating amount has some variation. Further, when the lead member 10 is placed on a soft and fluid solder paste thickly deposited on the semiconductor element 4, the placement position becomes unstable.

従って、ソルダペーストの粘性によっては、ソルダペースト上にリード部材10を配置した状態が個体ごとにばらつき、量産時に安定したはんだ接合13を得ることが難しい場合がある。また、半導体素子4上の電極5からはみ出したソルダペーストは、溶融時に電極側に引き戻されるため、電極外の領域が汚染される恐れもある。汚染により、半導体素子4の外周に形成されているガードリングの絶縁性能が劣化する場合もある。   Therefore, depending on the viscosity of the solder paste, the state in which the lead member 10 is arranged on the solder paste varies from individual to individual, and it may be difficult to obtain a stable solder joint 13 during mass production. Further, since the solder paste that protrudes from the electrode 5 on the semiconductor element 4 is pulled back to the electrode side when melted, the region outside the electrode may be contaminated. The insulation performance of the guard ring formed on the outer periphery of the semiconductor element 4 may deteriorate due to contamination.

これに対して、本実施の形態にかかる電力用半導体装置300では、リード部材10に開口部23が設けられている。開口部23は、半導体素子4の上面電極5の上に配置されるように形成され、図8(a)に示すように、リード部材10を配置後に、開口部23上から上面電極5にソルダペーストを供給できる。更に、開口部23上にソルダペーストがはみ出して滞留した状態を得ることのできる(図8(a))。   On the other hand, in the power semiconductor device 300 according to this embodiment, the lead member 10 is provided with the opening 23. The opening 23 is formed so as to be disposed on the upper surface electrode 5 of the semiconductor element 4, and as shown in FIG. 8A, after the lead member 10 is disposed, the solder is applied from above the opening 23 to the upper surface electrode 5. Can supply paste. Further, it is possible to obtain a state in which the solder paste protrudes and stays on the opening 23 (FIG. 8A).

本実施の形態4にかかる電力用半導体装置300の製造方法は、以下のような工程1〜5を含む。   The manufacturing method of the power semiconductor device 300 according to the fourth embodiment includes the following steps 1 to 5.

工程1:絶縁基板1上の導体パターン2上にソルダペーストを印刷する。   Step 1: A solder paste is printed on the conductor pattern 2 on the insulating substrate 1.

工程2:半導体素子4をソルダペーストパターン上に配置する。   Step 2: The semiconductor element 4 is disposed on the solder paste pattern.

工程3:開口部23を備えたリード部材10をソルダペーストパターン上に配置する。この場合、開口部23は、半導体素子4の上面電極5の上方に配置される。   Step 3: The lead member 10 provided with the opening 23 is disposed on the solder paste pattern. In this case, the opening 23 is disposed above the upper surface electrode 5 of the semiconductor element 4.

工程4:リード部材10の開口部23を介して、上面電極5上にソルダペーストを塗布する。通常は、ディスペンサ30を用いて定量塗出を行う。   Step 4: A solder paste is applied on the upper surface electrode 5 through the opening 23 of the lead member 10. Usually, the dispensing is performed using the dispenser 30.

工程5:リフロー炉に入れる。全体のはんだがほぼ同時に溶融した後、固化して組み立てが完了する。   Step 5: Place in a reflow oven. After the entire solder melts almost simultaneously, it solidifies and completes the assembly.

図8(b)に示すように、リード部材10の上に残留したソルダペーストは、溶融時にリード部材10上面で濡れ広がりながらも、リフロー時に溶融して半導体素子4上の上面電極5とリード部材10に挟まれた領域に毛管現象で吸い込まれていく。このため、適量であればほぼ全量がリード部材10の下側に移動する。ソルダペーストが適量より多い場合には、リード部材10の開口部23上に突出するか、開口部23内に滞留した形で固化する。リード部材10上の多少の突出はモールド樹脂で被覆して絶縁等を確保すれば良く、問題とはならない。開口部23が大きいと、リード部材10の断面積が小さくなってしまうため、大電流を通電するためには開口部23は小さいほうが望ましい。一方、開口部23が円形の場合、ソルダペーストの流動性を考慮して、はんだ粒子の最大粒子径の10倍以上、溶融したはんだの流動性を考慮して、リード部材の厚みの1.5倍以上の直径が必要となる。例えば、厚み0.5mmのリード部材10を用いる場合は、開口部23の直径は0.75mm〜1.5mm程度であることが好ましい。   As shown in FIG. 8B, the solder paste remaining on the lead member 10 is wet and spreads on the upper surface of the lead member 10 at the time of melting, but melts at the time of reflow and melts on the upper surface electrode 5 on the semiconductor element 4 and the lead member. 10 is sucked into the region between the two by capillarity. For this reason, if it is an appropriate amount, almost the entire amount moves to the lower side of the lead member 10. When there is more solder paste than an appropriate amount, it solidifies in the form which protrudes on the opening part 23 of the lead member 10, or stays in the opening part 23. FIG. Some protrusions on the lead member 10 may be covered with a mold resin to ensure insulation or the like, which is not a problem. If the opening 23 is large, the cross-sectional area of the lead member 10 becomes small. Therefore, it is desirable that the opening 23 is small in order to pass a large current. On the other hand, when the opening 23 is circular, the fluidity of the solder paste is taken into consideration and the lead particle thickness of 1.5 or more times the maximum particle diameter of the solder particles is taken into consideration with consideration of the fluidity of the molten solder. More than double the diameter is required. For example, when the lead member 10 having a thickness of 0.5 mm is used, the diameter of the opening 23 is preferably about 0.75 mm to 1.5 mm.

このように、開口部23を有するリード部材10を用いて、開口部23からソルダペーストを供給する方法は、ソルダペースト供給量のばらつきがあっても、ソルダペーストが半導体素子4の上面電極5からはみ出すことがないため、電極外の領域が汚染されない。少なくともはんだ量が不足しないように制御すれば、安定してはんだ接合部13形成することが出来る。   As described above, the method of supplying the solder paste from the opening 23 using the lead member 10 having the opening 23 is configured so that the solder paste is removed from the upper surface electrode 5 of the semiconductor element 4 even if the solder paste supply amount varies. Since it does not protrude, the area outside the electrode is not contaminated. If control is performed so that at least the amount of solder is not insufficient, the solder joint portion 13 can be formed stably.

また、ソルダペーストの乗っていない半導体素子4上にリード部材10を配置することが出来るため、半導体素子上に盛られた流動性を持つソルダペースト上にリード部材10を配置する際の位置決めの不安定さを改善することが出来る。この結果、量産時にはんだ接合の形状がばらつかず、信頼性の高い電力用半導体装置が作成できる。   Further, since the lead member 10 can be disposed on the semiconductor element 4 on which the solder paste is not placed, the positioning of the lead member 10 when positioning the lead member 10 on the solder paste having fluidity built up on the semiconductor element is not possible. Stability can be improved. As a result, the shape of the solder joint does not vary during mass production, and a highly reliable power semiconductor device can be created.

なお、本実施の形態4にかかる製造方法は、融点の異なるはんだ材料を用い、高い融点のはんだ材料(はんだ材料部13)で半導体素子4とリード部材10を接合した後、低い融点のはんだ材料(はんだ接合部3)でリード部材10と半導体素子4の上面電極5を接合するプロセスに用いることが出来るのは言うまでもない。   The manufacturing method according to the fourth embodiment uses a solder material having a different melting point, joins the semiconductor element 4 and the lead member 10 with a high melting point solder material (solder material portion 13), and then has a low melting point solder material. Needless to say, it can be used in the process of joining the lead member 10 and the upper surface electrode 5 of the semiconductor element 4 at the (solder joint portion 3).

実施の形態5.
図9は、本発明の実施の形態5用いるリード部材10であり、(a)は断面図、(b)は上面図を示す。
Embodiment 5 FIG.
FIG. 9 shows a lead member 10 used in the fifth embodiment of the present invention, where (a) shows a cross-sectional view and (b) shows a top view.

半導体素子4の上面電極5が小さく、リード部材にダボ出し加工突起部と開口部を上面電極に対向するリード部材領域内に形成することが難しい場合は、リード部材に予め開口部を形成した後、開口部の周囲にダボ出し加工を施すと、開口部形状が大きく変形してしまい、寸法の安定した開口部の形成ができないという問題があった。   If the upper surface electrode 5 of the semiconductor element 4 is small and it is difficult to form the protrusions and openings on the lead member in the lead member region facing the upper surface electrode, after forming the opening in the lead member in advance When the doweling process is performed around the opening, the shape of the opening is greatly deformed, and there is a problem that the opening having a stable dimension cannot be formed.

これに対して、本実施の形態5では、リード部材10の突起部32を、上述のダボ出し加工より大きい面積のパンチを用いたハーフシャー加工で形成する。開口部はハーフシャー加工部内に形成されている実施の形態を示す断面図である。ハーフシャー加工による突起部32の平面形状は円形でも長方形でも構わない。半導体素子4の上面電極5の形状に合わせて、上面電極5内に収まるように、位置合わせの公差を考慮して寸法を決めればよい。   In contrast, in the fifth embodiment, the protrusion 32 of the lead member 10 is formed by half shearing using a punch having a larger area than the above-described doweling process. It is sectional drawing which shows embodiment in which an opening part is formed in a half shear process part. The planar shape of the protrusion 32 by half shearing may be circular or rectangular. In accordance with the shape of the upper surface electrode 5 of the semiconductor element 4, the dimensions may be determined in consideration of the alignment tolerance so as to be within the upper surface electrode 5.

かかるリード部材10では、開口部23がハーフシャー加工により突き出た領域内に形成されているため、開口部の形状が崩れることなく、精度良く所望のリード部材10を形成することが可能である。   In the lead member 10, since the opening 23 is formed in the region protruding by the half shearing process, the desired lead member 10 can be formed with high accuracy without breaking the shape of the opening.

また、かかるリード部材10では開口部23の形状が安定しているため、量産時にはんだ接合部13の形状がばらつかず、信頼性の高い電力用半導体装置が得られる。   Further, in the lead member 10, since the shape of the opening 23 is stable, the shape of the solder joint 13 does not vary during mass production, and a highly reliable power semiconductor device can be obtained.

以上、本発明の実施の形態1〜5について説明したが、本発明は、これらの実施の形態に限定されるものではなく、絶縁基板1の代わりに導体基板上に絶縁層を形成した基板を用いる電力用半導体装置なども本発明に含まれる。   As mentioned above, although Embodiment 1-5 of this invention was demonstrated, this invention is not limited to these embodiment, The board | substrate which formed the insulating layer on the conductor substrate instead of the insulating substrate 1 was used. The power semiconductor device to be used is also included in the present invention.

1 絶縁基板、2、12 導体パターン、3、13 はんだ部材、4 半導体素子、5 上面電極、6 制御電極、8 ボンディングワイヤ、10 リード部材、11 支持部、25 ソルダーレジスト、100 電力用半導体装置。   DESCRIPTION OF SYMBOLS 1 Insulating substrate, 2, 12 Conductor pattern 3, 13, 13 Solder member, 4 Semiconductor element, 5 Upper surface electrode, 6 Control electrode, 8 Bonding wire, 10 Lead member, 11 Support part, 25 Solder resist, 100 Power semiconductor device.

Claims (7)

リード部材が接続された半導体素子を有する半導体装置であって、
表面と裏面とを有する絶縁基板と、
該絶縁基板の表面に設けられ、互いに電気的に絶縁された第1導体パターンおよび該第1パターンを挟んでその両側にそれぞれ設けられた第2導体パターンと、
上面電極と制御電極とを含む表面電極と裏面電極とを有し、該裏面電極が該第1導体パターンに第1はんだ部材で接続された半導体素子と、
該半導体素子の該面電極に第2はんだ部材で接続され、該面電極の上方に開口部を有し、かつその両端部は該絶縁基板方向に延びた支持部を有する板状のリード部材とを含み、
該リード部材と該絶縁基板の表面とが平行になるように、該リード部材の両端部が該第2導体パターンにそれぞれ第1はんだ部材で接続されたことを特徴とする半導体装置。
A semiconductor device having a semiconductor element to which a lead member is connected,
An insulating substrate having a front surface and a back surface;
A first conductor pattern provided on the surface of the insulating substrate and electrically insulated from each other; a second conductor pattern provided on both sides of the first pattern;
A semiconductor element having a front electrode including a top electrode and a control electrode, and a back electrode , the back electrode connected to the first conductor pattern by a first solder member;
The to the upper surface electrode of the semiconductor element are connected by second solder member has an opening above the upper surface electrode, and a plate-like lead both ends thereof having a support portion extending in the insulating substrate direction Including members,
A semiconductor device, wherein both ends of the lead member are connected to the second conductor pattern by a first solder member so that the lead member and the surface of the insulating substrate are parallel to each other.
上記リード部材は、上記上面電極の上方に突起部を有することを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the lead member has a protrusion above the upper surface electrode. 上記第1はんだ部材は、Niを主成分とする粒子、ないしはNiめっきが施された金属またはセラミックスの粒子を含むはんだ材料からなることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the first solder member is made of a solder material including particles containing Ni as a main component, or metal or ceramic particles plated with Ni. 上記半導体素子の表面電極は、点対称な形状であることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the surface electrode of the semiconductor element has a point-symmetric shape. 上記第1導体パターンの上に、上記半導体素子が接合される領域を規定するようにソルダーレジストが設けられ、および/または上記第2導体パターンの上に、上記リード部材が接合される領域を規定するようにソルダーレジストが設けられたことを特徴とする請求項1に記載の半導体装置。   A solder resist is provided on the first conductor pattern so as to define a region where the semiconductor element is bonded, and / or a region where the lead member is bonded on the second conductor pattern. The semiconductor device according to claim 1, further comprising a solder resist. 上記半導体素子は、複数の炭化珪素からなる半導体素子であり、それぞれの表面電極に上記リード部材が接続されたことを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor element is a semiconductor element made of a plurality of silicon carbides, and the lead member is connected to each surface electrode. 半導体素子にリード部材を接続する半導体装置の製造方法であって、
互いに電気的に絶縁された第1導体パターンおよび第2導体パターンを有する絶縁基板を準備する工程と、
該第1導体パターンおよび該第2導体パターンの上に第1ソルダペーストを塗布する工程と、
該第1導体パターンの上に、該第1ソルダペーストを介して、上面電極と制御電極とを含む半導体素子を載置する工程と、
板状のリード部材に設けられた開口部が半導体素子の該上面電極の上方に配置され、かつ該リード部材と該絶縁基板の表面とが平行になるように、該第2導体パターンの上に、該第1ソルダペーストを介して該リード部材の両端部をそれぞれ載置する工程と、
該開口部を通して第2ソルダペーストを該半導体素子の該上面電極の上に塗布して、その一部を該リード部材の上にも塗布する工程と、
該第1ソルダペーストおよび該第2ソルダペーストを同時に溶融させた後、固体して、はんだ接合部を形成する工程とを含むことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a lead member is connected to a semiconductor element,
Providing an insulating substrate having a first conductor pattern and a second conductor pattern electrically insulated from each other;
Applying a first solder paste on the first conductor pattern and the second conductor pattern;
Placing a semiconductor element including a top electrode and a control electrode on the first conductor pattern via the first solder paste;
An opening provided in the plate-like lead member is disposed above the upper surface electrode of the semiconductor element, and is formed on the second conductor pattern so that the lead member and the surface of the insulating substrate are parallel to each other. And placing both end portions of the lead member via the first solder paste,
Applying a second solder paste through the opening onto the upper surface electrode of the semiconductor element, and applying a part thereof onto the lead member;
After melting the first Sol d'paste and the second solder paste at the same time, and a solid, a method of manufacturing a semiconductor device which comprises a step of forming a solder joint.
JP2009090776A 2009-04-03 2009-04-03 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5388661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090776A JP5388661B2 (en) 2009-04-03 2009-04-03 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090776A JP5388661B2 (en) 2009-04-03 2009-04-03 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010245212A JP2010245212A (en) 2010-10-28
JP5388661B2 true JP5388661B2 (en) 2014-01-15

Family

ID=43097920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090776A Expired - Fee Related JP5388661B2 (en) 2009-04-03 2009-04-03 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5388661B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212713A (en) * 2011-03-30 2012-11-01 Toshiba Corp Mounting structure of semiconductor device
JP6043049B2 (en) * 2011-03-30 2016-12-14 株式会社東芝 Semiconductor device mounting structure and semiconductor device mounting method
JP5863602B2 (en) * 2011-08-31 2016-02-16 三菱電機株式会社 Power semiconductor device
JP5796520B2 (en) * 2012-03-16 2015-10-21 株式会社豊田自動織機 Semiconductor device
US9312234B2 (en) * 2012-05-29 2016-04-12 Nsk Ltd. Semiconductor module and method for manufacturing the same
CN104247012B (en) 2012-10-01 2017-08-25 富士电机株式会社 Semiconductor device and its manufacture method
KR101443968B1 (en) * 2012-10-29 2014-09-23 삼성전기주식회사 Power module package and method of manufacturing the same
JP6305302B2 (en) * 2014-10-02 2018-04-04 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP6293030B2 (en) * 2014-10-09 2018-03-14 三菱電機株式会社 Power semiconductor device
JP6361447B2 (en) * 2014-10-15 2018-07-25 住友電気工業株式会社 Semiconductor module
JP6418530B2 (en) * 2015-02-13 2018-11-07 新電元工業株式会社 Semiconductor device manufacturing method and manufacturing jig
US11437340B2 (en) 2017-05-19 2022-09-06 Shindengen Electric Manufacturing Co., Ltd. Electronic module, method of manufacturing connector, and method of manufacturing electronic module
JP6509429B2 (en) * 2017-05-19 2019-05-08 新電元工業株式会社 Electronic module
JP6952042B2 (en) * 2017-05-19 2021-10-20 新電元工業株式会社 Electronic module
JP6858657B2 (en) * 2017-06-27 2021-04-14 三菱電機株式会社 Power semiconductor device
JP7271570B2 (en) 2018-11-19 2023-05-11 ローム株式会社 semiconductor equipment
JP7120083B2 (en) 2019-03-06 2022-08-17 株式会社デンソー semiconductor equipment
US20220285254A1 (en) * 2019-10-17 2022-09-08 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
JP2023018165A (en) * 2020-01-17 2023-02-08 パナソニックIpマネジメント株式会社 Semiconductor device
EP4084061A1 (en) * 2021-04-28 2022-11-02 Siemens Aktiengesellschaft Circuit carrier and method for making an electrical connection with the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553434A (en) * 1978-10-16 1980-04-18 Mitsubishi Electric Corp Semiconductor device
JP4260263B2 (en) * 1999-01-28 2009-04-30 株式会社ルネサステクノロジ Semiconductor device
JP4085563B2 (en) * 2000-08-24 2008-05-14 富士電機ホールディングス株式会社 Power semiconductor module manufacturing method
JP2004087609A (en) * 2002-08-23 2004-03-18 Toshiba Corp Inverter unit and manufacturing method thereof
JP4085768B2 (en) * 2002-10-08 2008-05-14 トヨタ自動車株式会社 Upper electrode, power module, and upper electrode soldering method
JP2006135347A (en) * 2005-12-12 2006-05-25 Toshiba Corp Ceramics circuit board
JP2007188933A (en) * 2006-01-11 2007-07-26 Fuji Xerox Co Ltd Mounting method of plural elements
JP2007305962A (en) * 2006-05-12 2007-11-22 Honda Motor Co Ltd Power semiconductor module

Also Published As

Publication number Publication date
JP2010245212A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5388661B2 (en) Semiconductor device and manufacturing method thereof
JP4821854B2 (en) Heat dissipation wiring board
JP2007184525A (en) Electronic apparatus
JP6206494B2 (en) Semiconductor device
JP2004228461A (en) Semiconductor apparatus
JP2016167527A (en) Semiconductor module and manufacturing method of the same
WO2019064775A1 (en) Semiconductor device and production method therefor
JP6043049B2 (en) Semiconductor device mounting structure and semiconductor device mounting method
JP5233853B2 (en) Semiconductor device
US11424178B2 (en) Semiconductor module
JPWO2017037837A1 (en) Semiconductor device and power electronics device
JP5579148B2 (en) Power semiconductor device
JP7107199B2 (en) semiconductor equipment
JP5515251B2 (en) Semiconductor device and manufacturing method thereof
JP6107010B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2011023748A (en) Electronic apparatus
JP2016143685A (en) Semiconductor module
JP2019216183A (en) Semiconductor device and method of manufacturing semiconductor device
JP4833678B2 (en) Method for manufacturing piezoelectric oscillator
WO2020039986A1 (en) Power semiconductor device, method for manufacturing same, and power conversion device
JP2009094293A (en) Semiconductor device
JP4861200B2 (en) Power module
JP5217014B2 (en) Power conversion device and manufacturing method thereof
JP6274986B2 (en) Power semiconductor module and manufacturing method thereof
JP5734493B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees