JP5383636B2 - 光反射体、発光素子搭載用配線基板、および発光装置 - Google Patents

光反射体、発光素子搭載用配線基板、および発光装置 Download PDF

Info

Publication number
JP5383636B2
JP5383636B2 JP2010279414A JP2010279414A JP5383636B2 JP 5383636 B2 JP5383636 B2 JP 5383636B2 JP 2010279414 A JP2010279414 A JP 2010279414A JP 2010279414 A JP2010279414 A JP 2010279414A JP 5383636 B2 JP5383636 B2 JP 5383636B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
glass
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010279414A
Other languages
English (en)
Other versions
JP2011090325A (ja
Inventor
信也 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010279414A priority Critical patent/JP5383636B2/ja
Publication of JP2011090325A publication Critical patent/JP2011090325A/ja
Application granted granted Critical
Publication of JP5383636B2 publication Critical patent/JP5383636B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は、発光ダイオード等の発光素子を搭載するための発光素子の光反射部分に好適に用いられる光反射体およびそれを用いた発光素子搭載用配線基板、並びに発光装置に関する。
従来、LEDを用いた発光装置は、非常に発光効率が高く、しかも、白熱電球などと比較すると発光に伴い発生する熱量が小さいために様々な用途に用いられてきた。しかしながら、白熱電球や蛍光灯などと比較すると発光量が小さいため、照明用ではなく、表示用の光源として用いられ、通電量も30mA程度と非常に小さいものであった。
しかし、近年では、発光素子を用いた発光装置の高輝度化、白色化に伴い、携帯電話や大型液晶TV等のバックライトに発光装置が多く用いられてきている。そのなかで、光反射体として、結晶性ガラスを用いるものが提案されている(例えば特許文献1参照)。
特開2000−16833号公報
しかしながら、特許文献1に記載の結晶性ガラスの反射体はプラズマディスプレイパネルの絶縁性反射皮膜として用いると記載されているが、可視光域の反射率が15〜20%とが低いため、プラズマディスプレイパネルには使用できても携帯端末の発光装置や照明用の発光装置等の高輝度の要求される機器においては効率が低いという問題があった。特に、携帯電話等の電池を用いる機器用の発光装置では効率が低いと使用時間が短くなってしまうという問題があった。また、照明用の発光装置では、光量が不充分となってしまうという問題があった。
従って、本発明の目的は、可視光域において高い反射率を有する光反射体、およびそれを用いた発光素子搭載用配線基板、並びに発光装置を提供することである。
本発明の光反射体は、ガラスとセラミック粒子とを含有するガラスセラミックスからなり、前記セラミック粒子は可視光領域に特有の光吸収帯を有していない酸化物結晶であり、前記ガラスセラミックスの断面において、前記セラミック粒子のうち粒子径が0.3〜1.0μmである粒子群の占有面積が前記断面の10〜70%であるとともに、前記ガラスセラミックスが遷移金属元素(ただし、Zrを除く)を実質的に含有していないことを特徴とする。
前記セラミック粒子が、アルミナ、ジルコニア、セルジアン、スラウソナイト、アノーサイト、ディオプサイト、フォルステライト、エンスタタイト、ガーナイト、スピネル、ウイレマイト、コーディエライト、ムライト、クオーツおよびこれらの固溶体の群から選ばれる少なくとも1種からなることが好ましい。
前記粒子群の占有面積のうち、アスペクト比が3以上である粒子の占有面積が20%以上であることが好ましい。
前記光反射体は可視光の波長領域全域において、反射率が75%以上であることが好ましい。
本発明の発光素子搭載用配線基板は、絶縁基板の主面に、配線層と、発光素子を搭載する発光素子搭載部とを設けてなる発光素子搭載用配線基板において、前記発光素子搭載部が前記光反射体からなることを特徴とする。
本発明発光装置は、前記発光素子搭載用配線基板の前記発光素子搭載部に発光素子を搭載してなることを特徴とする。
本発明の光反射体は、ガラスとセラミック粒子とを含有するガラスセラミックスからなり、前記セラミック粒子は可視光領域に特有の光吸収帯を有していない酸化物結晶であり、前記ガラスセラミックスの断面において、前記セラミック粒子のうち粒子径が0.3〜1.0μmである粒子群の占有面積が前記断面の10〜70%であるとともに、前記ガラスセラミックスが遷移金属元素(ただし、Zrを除く)を実質的に含有していないことにより、波長が400〜700nmである可視光が散乱され、可視光の波長領域で反射率を高くすることが出来る。すなわち、ガラスとセラミック粒子では屈折率が異なるため、それらの界面で光の散乱が起きるが、その際に、セラミック粒子の粒径が可視光の波長に近いため散乱の効率がよくなり、可視光の波長領域で反射率が高くなる。

本発明の光反射体であるガラスセラミックスの微細構造の一例を示す断面図である。 本発明の光反射体であるガラスセラミックスの微細構造の一例を示す断面図である。 本発明の発光素子搭載用配線基板を示す断面図である。 本発明の発光装置を示す断面図である。
本発明を、添付図面に基づいて説明する。
図1は本発明の光反射体の一実施形態の断面の模式図である。
本発明の光反射体は、ガラスセラミックス1からなっているものであり、ガラスセラミックス1は、例えばガラス3と、セラミック粒子5およびセラミック粒子7のようなセラミック粒子と、を含有するものである。
本発明の光反射体は、ガラスとセラミック粒子とを含有するガラスセラミックスからなり、前記ガラスセラミックスの断面において、前記セラミック粒子のうち粒子径が0.3〜1.0μmである粒子群の占有面積が断面の10〜70%であることが重要である。
本発明の光反射体をかかる構成とすることにより、屈折率の異なるガラスとセラミック粒子との界面において、効率よく光が散乱するため高い反射率を得ることができる。断面における粒子径を0.3〜1.0μmと、可視光の波長領域である400nm(0.4μm)〜700nm(0.7μm)に近い大きさとすることにより、可視光を特に効率よく反射させることが可能となるため、可視光の波長領域で、高い反射率を示すことが可能となる。
可視光の反射率を高くするためには、前記断面における粒子径が0.3〜0.8μmのセラミック粒子の粒子群の占有面積が断面の15〜65%であることが更に好ましく、前記断面における粒子径が0.4〜0.7μmのセラミック粒子の粒子群の占有面積が断面
の20〜60%であることが最適である。
なお、本発明での断面における粒子径は、ガラスセラミックスの断面を鏡面研磨し、走査型顕微鏡(SEM)で撮影した画像から算出する値で、具体的には、アスペクト比が3より小さい粒子では断面形状を円形近似した場合の粒子の直径のことであり、アスペクト比が3以上の粒子では粒子の短径のことである。アスペクト比が大きい異方性粒子の場合は、円形近似を行うと実際の粒子の大きさと円形近似した場合の粒子の直径との差が大きくなるため、光の散乱に与える影響の大きい短径を断面における粒子径とした。
ここで、アスペクト比とは、粒子の断面積を二等分する線分の中でもっとも長いものを断面における粒子の長径とし、もっとも短いものを断面における粒子の短径とした場合の長径/短径のことである。また、ここで円形近似とは、粒子の断面積を測定し、その断面積と同じ面積を有する円の直径を断面における粒子径とするものである。なお、粒径1.27μmの真球状の粒子に対する本発明の断面における粒子径は、計算上では平均で約1.0μmとなる。
測定をおこなう断面は、光反射体の主に光を反射する面に略平行な断面で、測定は100μmの範囲に対して行えばよい。なお、光反射体の光を反射する面が100μmに満たない場合は、反射する面に略平行な断面全体を測定すればよい。また、測定範囲の境界をまたいでいる粒子については、アスペクト比および断面における粒子径の測定は測定範囲を超えている部分も含めて粒子の断面全体に対して行い、面積はその粒子の断面のうち測定範囲内の部分を計測すればよい。そのためには、走査型顕微鏡で撮影する範囲は、測定範囲の境界をまたいでいる粒子の粒子径が測定できる程度に測定範囲より広い範囲とする。
また、断面における粒子径が0.3〜1.0μmであるセラミック粒子は、ガラスセラミックスを製造する際に、原料粉末の段階でガラスと混合するフィラーとして添加してもよいが、焼成中にガラスから微細な結晶相としてセラミック粒子を析出させることが、光反射体の製造上好ましい。そうすれば、平均粒子径が約1.3μm以下の微粉末をフィラーとして使用しないため、フィラー製造のコストが増加したり、フィラーが凝集等して、ガラスとフィラーの混合が不充分で焼成時にガラスセラミックスにクラックが発生したりすることがない。
さらに、光反射体の反射率以外の特性、例えば、抗折強度や誘電率、誘電損失、熱膨張係数等を制御するために、フィラーとしては製造が容易な平均粒径が約1.3μm以上のセラミック粒子7を使用し、かつ、焼成中にガラスから微細な結晶相であるセラミック粒子5を析出させることが、光反射体に様々な特性を付与できるとともに容易に製造することが可能となる点で好ましい。
本発明のセラミック粒子は、アルミナ、ジルコニア、セルジアン、スラウソナイト、アノーサイト、ディオプサイト、フォルステライト、エンスタタイト、ガーナイト、スピネル、ウイレマイト、コーディエライト、ムライト、クオーツおよびこれらの固溶体の群から選ばれる少なくとも1種であることが好ましい。それらのセラミック粒子は可視光領域に特有の光吸収帯を有していなく、無色透明な結晶であることから、光反射体の反射率をより高くすることが出来る。なお、セラミック粒子は、断面における粒子径が0.3〜1.0μmの微細な結晶粒子が得やすいという点で、ジルコニア、ガーナイト、スピネルであることが好ましい。
図1に示したセラミック粒子5は例えば、焼成によりガラスから析出したガ−ナイトであり、セラミック粒子7はフィラーのアルミナである。このような構成にすることにより
、断面における粒子径が0.3〜1.0μmのセラミック粒子であるのは、主にガ−ナイトとなり、断面における粒子径が0.3〜1.0μmのセラミック粒子の占有面積の割合が10〜70%であれば、ガラスセラミックス1からなる光反射体の反射率が高くなる。また、セラミック粒子7がアルミナであることから、ガラスセラミック1からなる光反射体に強度が高い、耐食性に優れる等の特性を付与することが容易になる。
また、図1中ではセラミック粒子としてセラミック粒子5およびセラミック粒子7の2種類がある場合を例示しているが、セラミック粒子の種類は1種類であっても、3種類以上であっても差し支えない。さらに、ガラス3に関しても、1種類でなく複数のガラスが混在していても差し支えない。複数のガラスを混在させるためには、原料粉末の段階で複数の種類のガラスを原料として使用する方法の他、焼成中に分相させる方法を選択することができる。
また、ガラスセラミックス1の結晶化度を50%以上、特に60%以上とすれば、ガラスセラミックス1中の結晶粒子の量が増加するため、ガラス3とセラミック粒子5やセラミック粒子7との界面が増加し、より高い反射率を得られるため好ましい。
ここで、結晶化度とは、ガラスセラミックス中の全結晶相の質量の合計/ガラスセラミックスの質量により定義されるものであり、ガラスセラミックス中に含まれる結晶相の割合を質量比で表したものである。ガラスセラミックス中の結晶相の質量はリートベルト解析により算出されるものである。したがって、結晶相としては、フィラーとして原料粉末として添加したもの、ガラスから焼成中に析出したもの、ガラスとフィラーの反応により生成したもの等の全てを含んで測定される。
また、遷移金属元素を実質的に含有しないことにより、遷移金属元素特有の吸収帯による、反射率の低下を抑制することができる。さらに、吸収帯の反射率が低いことにより入射光と反射光の色調の差を少なくすることができる。これにより、照明用等で白色の光が必要な場合に、白色の反射光を安定して得ることができる。遷移金属元素としては、酸化物で構成されるガラスセラミックス中で酸化物として存在する遷移金属酸化物にて例示すれば、Crは緑、Coは青、CeOは黄色、等固有の吸収帯を有しているものや、TiOやMnOのように元来は白色であるものの、焼成雰囲気の変動による価数変化や反応/固溶等により着色するという性質を有しているものがある。
ここで、実質的に含有しないとは、意図的に含有させないことを指し、不可避不純物は含有していてもかまわない。その含有量としては、1質量%以下、特に0.1質量%以下であることが好ましい。
また、可視光の波長領域である、波長400〜700nmの全域において、反射率が75%以上、特に80%以上、最適には85%以上であることが、特に、高い反射効率を示す発光装置を得るために好ましい。
また、可視光の波長領域全域において、反射率を75%以上とすることにより、光反射体に吸収または光反射体を透過する光が少なくなり、より高い発光効率の発光装置を得ることができる。
次に、本発明の光反射体の製造方法を詳述する。
まず、例えば、原料粉末として平均粒径1〜5μmのガラス粉末およびセラミック粉末を用意する。このときガラス粉末としては、焼成中に結晶相が析出する結晶化ガラスを用いることがより好ましい。ここで、結晶化ガラスとは、焼成によりガラスの一部あるいは
全部が結晶として析出するガラスのことである。上記、原料粉末を所望の混合比にて秤量し、適当な有機バインダー、溶媒等を添加した後、混合しスラリーを得る。
得られたスラリーを所望の成形手段、例えば、金型プレス、冷間静水圧プレス、射出成形、押出し成形、ドクターブレード法、カレンダーロール法、圧延法、印刷等により任意の形状に成形する。特にグリーンシートを作製するには、ドクターブレード法が好適である。
次に、上記の成形体を焼成するにあたり、まず、成形のために配合した有機バインダー成分を除去する。そして、700〜1000℃の酸化性雰囲気または非酸化性雰囲気中で0.2〜10時間、特に0.5〜5時間焼成することにより光反射体を得ることが出来る。
特にガラス粉末として結晶化ガラスを用いた場合に、断面における粒子径が0.3〜1.0μmの結晶の析出を適切な大きさに制御するためには、焼成パターンを制御することが効果的である。即ち、核生成温度や結晶化温度をあらかじめ測定しておき、例えば、析出結晶相を微細化するためには、焼成中に核生成温度付近にて保持パターンを設け核の発生量を増加させることが効果的であり、逆に、析出結晶相を成長させたい場合には、結晶化温度付近まで急速に昇温し、核生成を抑制することが効果的である。
図2は本発明の別の光反射体の実施形態の断面の模式図である。
本発明の光反射体は、ガラスセラミックス11からなっているものであり、ガラスセラミックス11は、例えばガラス13と、セラミック粒子15とセラミック粒子17と異方性セラミック粒子19のようなセラミック粒子と、を含有するものである。
本発明の光反射体は、ガラスとセラミック粒子とを含有するガラスセラミックスからなり、前記ガラスセラミックスの断面において、前記セラミック粒子の粒子径が0.3〜1.0μmである粒子群の占有面積の中で、セラミック粒子のアスペクト比が3以上である粒子の占有面積が20%以上であることが好ましく、30%以上であることがより好ましい。アスペクト比が3以上、即ち、針状晶や板状晶といった異方性セラミック粒子19は、等方性の粒子と比較して、ひとつのセラミック粒子により広範囲の波長の光を反射することが可能であるため、可視光領域で、より高い反射率を得ることが可能となる。
断面における粒子径が0.3〜1.0μmでアスペクト比が3以上あるセラミック粒子の比率を増やすためには、セラミック粒子が異方性結晶となるアルミナおよびセルジアンのうちの少なくとも1種であることが好ましい。
図2に示したセラミック粒子15は例えば、焼成によりガラスから析出したガ−ナイトであり、セラミック粒子17はフィラーのアルミナであり、異方性セラミック粒子19は焼成によりガラスから析出したセルジアンである。このような構成にすることにより、断面における粒子径が0.3〜1.0μmのセラミック粒子であるのは、主にセルジアンとガ−ナイトとなり、断面における粒子径が0.3〜1.0μmのセラミック粒子の占有面積の割合が10〜70%であれば、ガラスセラミックス11からなる光反射体の反射率が高くなる。加えて、断面におけるアスペクト比が3以上である粒子であるのは、主にセルジアンとなり、断面におけるアスペクト比が3以上である粒子の占有面積が20%以上であれば、ガラスセラミックス11からなる光反射体の反射率をさらに高くすることが容易となる。また、セラミック粒子17がアルミナであることから、ガラスセラミック11からなる光反射体に強度が高い、耐食性に優れる等の特性を付与することが容易になる。
断面における粒子径が0.3〜1.0μmでアスペクト比が3以上あるセラミック粒子の比率を増やすためには、上記と同様の焼成パターンの制御を、特に異方性セラミック粒子を対象にして行なうことが効果的である。
図3(a)は本発明の発光素子搭載用配線基板の一実施形態の断面図である。
本発明の発光素子搭載用配線基板113は、絶縁層101a〜101cを積層してなる絶縁基体103と、絶縁基体103の一方の主面103aに形成された搭載される発光素子との接続を行なう端子となる接続端子105と、絶縁基体103の他方の主面103bに形成された外部電極端子107と、接続端子105と外部電極端子107とを接続するために、絶縁基体103を貫通して形成された貫通導体109と、絶縁基体103の主面103aに形成された光反射体111とを具備している。
なお、絶縁基体103は、図3(a)に示すような積層体であっても、バルク体であっても良い。
光反射体111には、発光素子が搭載される発光素子搭載部115が配設されている。
絶縁基体103は、熱伝導率の高い窒化アルミニウム質焼結体を用いることが好ましく、窒化アルミニウム質焼結体からなる絶縁層101aと、絶縁層101aの主面に形成された光反射体111とを組み合わせることで放熱性に優れ、例えば、光の反射率が低い窒化アルミニウム質焼結体を絶縁層101aとして用いた場合であっても、発光素子用配線基板113に搭載される発光素子からの光を効率よく利用することのできる発光素子搭載用配線基板113となる。
すなわち、この光反射体111によって発光素子搭載部115に搭載される発光素子の放射光が発光素子搭載用配線基板113の主面103aに形成された光反射体111により反射され、放射光が絶縁基体103に吸収、あるいは絶縁基体103を透過することを抑制することができる。
したがって、発光素子が直接に放射する光のみならず、光反射体111に反射した光までも、任意の方向に誘導することができるため、より強い光を供給することが可能となり、発光効率を格段に高くすることができる。
つまり、本発明の発光素子搭載用配線基板113によれば、このような光反射体111を設けることで、絶縁基体103が、例えば、黒色であって非常に反射率が低い場合であっても、あるいは、絶縁基体103の透光性が高い場合であっても、発光素子搭載用配線基板113の反射率を高くすることができるのである。
そのため、絶縁基体103として、高熱伝導の窒化アルミニウム質焼結体や、安価で高強度のアルミナ質焼結体や、安価な樹脂製のプリント基板を用いた場合であっても、高い反射率を実現することができ、絶縁基体103の特性を活かした発光素子用配線基板113となる。
光反射体111の厚みを、25μm以下にすることにより、光反射体11の熱抵抗を低く抑えられ、発光素子からの放熱性に優れた発光効率の良い発光素子用配線基板13を得ることができる。特に、表面反射層11の厚みは20μm以下、さらに15μm以下とすることが好ましい。
接続端子105、外部電極端子107および貫通導体109としては、絶縁基体103
が窒化アルミニウム質焼結体やアルミナ質焼結体である場合は、W、Moのうち少なくとも1種を主成分としたものが例示できる。また、接続端子105の表面にAlやAgめっきを施すことにより、反射率を向上させることができる。
また、例えば、図3(b)に示すように、絶縁基体103の発光素子搭載部115側に、搭載される発光素子を収納するための枠体216を形成してもよい。
この枠体216は、発光素子の発する光を反射して、光を所望の方向に誘導する機能を有していることが望ましく、枠体216については、発光素子の放射光を受ける内壁面216aの反射率が70%以上であることが望ましい。特に、75%以上、さらに80%以上とすることが望ましい。
枠体216はセラミックスにより形成することで、絶縁基体103と枠体216とを同時焼成することができ、工程が簡略化されるため、安価な発光素子搭載用配線基板213を容易に作製することができる。また、セラミックスは耐熱性、耐湿性に優れているため、長期間の使用や、悪条件での使用にも、優れた耐久性を有する発光素子搭載用配線基板213となる。
また、安価で、加工性に優れた金属により枠体216を形成することで、複雑な形状の枠体216であっても、容易に安価に製造することができ、安価な発光素子用配線基板213を供給することができる。この金属製の枠体216は、例えば、AlやFe−Ni−Co合金等などにより好適に形成することができる。また、枠体216の表面には、Ni、Au、Agなどからなるめっき層(図示せず)を形成してもよい。
このように枠体216を金属により形成する場合には、予め、絶縁基体103の主面103aまたは絶縁基体103の主面103aに金属層217を形成し、この金属層217と枠体216とを、例えば、接着剤(図示せず)によって接着することができる。
また、図示しないが、枠体216は、表面反射層111の主面に形成した金属層217と接着してもよい。
また、枠体116の形状を、底の抜けたボウル、あるいはパラボラアンテナのようにすることで光の誘導効率を向上させることができる。
図3(c)は本発明の発光素子搭載用配線基板のまた別の一実施形態の断面図である。
本発明の発光素子搭載用配線基板313は、光反射体からなる絶縁層311a〜311fを積層してなる絶縁基体303と、絶縁層311d〜311f部分の一方の主面303aに形成された搭載される発光素子との接続を行なう端子となる接続端子305と、絶縁基体303の他方の主面303bに形成された外部電極端子307と、接続端子305と外部電極端子307とを接続するために、絶縁層311d〜311f部分を貫通して形成された貫通導体309とを具備している。
なお、絶縁基体303は、図3(c)に示すような積層体であっても、バルク体であっても良い。
絶縁層311a〜311c部分により、キャビティが形成さており、絶縁層311d〜311f部分の主面303aには、発光素子が搭載される発光素子搭載部315が配設されている。
すなわち、発光素子搭載部315に搭載される発光素子の放射光が光反射体からなる絶縁基体303によって反射され、発光素子が直接に放射する光のみならず、光反射体からなる絶縁基体303に反射した光までも、任意の方向に誘導することができるため、より強い光を供給することが可能となり、発光効率を格段に高くすることができる。
また、光反射体からなる絶縁層基体303は、1000℃以下の低温で焼成することが可能であるため、接続端子305、外部電極端子307および貫通導体309として融点の低い金、銀、銅といった抵抗の低い金属と同時焼成が可能であり、これらの低抵抗金属を配線材料とすることが可能である。そのため、WやMoといった抵抗の高い配線材料を使用する窒化アルミニウム質焼結体やアルミナ質焼結体を絶縁基体として使用した場合と比較して、電力損失を低下させることができる。
さらに、接続端子105として銀を用いた場合に、配線層自体の反射率が高いことにより、発光素子搭載用配線基板313全体として、より高い反射率を得ることができる。一方、銀は高価であるため、接続端子305と外部電極端子307とには安価な銅を使用し、接続端子305と外部電極端子307上に、銀めっきや金めっきを施すことにより、高い反射率を得ることが可能である。一方、接続端子305と外部電極端子307に金を使用すると、耐酸化性に最も優れるため、特に長期間使用した際でも、特性劣化のない非常に優れた信頼性を有する発光素子搭載用配線基板313を得ることができる。
なお、図3(c)には発光素子搭載部315の周囲にキャビティを形成された発光素子搭載用配線基板313を示したが、図3(a)の様に発光素子搭載用配線基板を平板状にしてもよい。
図4(a)は本発明の発光装置の一実施形態の断面図である。
本発明の発光装置127は、図3(a)に示した本発明の発光素子搭載用配線基板113の発光素子搭載部115に、発光素子121としてLEDチップを接着剤129で接着して搭載し、ボンディングワイヤ123により、LEDチップ121と接続端子105とを電気的に接続して形成されるものである。
本発明の発光装置127によれば、発光素子121に給電することにより、発光素子121の放射する光を反射率の高い光反射体111に反射させ、任意の方向へと誘導することができるため、高効率の発光装置127となる。
また、絶縁基体103として熱伝導率が高い材料を用いた場合には、発光素子121からの発熱を速やかに放出することができ、熱による輝度低下を抑制できる。
さらに、発光素子121は、モールド材131により被覆されているが、モールド材131を用いずに、蓋体(図示せず)を用いて封止してもよく、また、モールド材131と蓋体とを併用してもよい。蓋体はガラスなどの透光性の素材を用いることが望ましい。
またさらに、モールド材131に発光素子121が放射する光を波長変換するための蛍光体(図示せず)を添加してもよい。
発光素子121としては、黄色や青色のLEDチップ等が好適に用いられ、適切な波長変換を行う蛍光体を選択することにより、白色光に変換することができる。本発明の発光装置127においては、光反射体111が可視光領域で、高い反射率を有するため、特に白色光を発光する発光装置として使用する場合に、その特性を最も有効に活用することができるが、赤、青、緑の発光装置として使用した際でも、高い発光効率を示すことが可能
である。
なお、図4(a)に示した例では、発光素子121は、接着剤129により光反射体111発光体配線基板103に固定され、電力の供給はワイヤボンド123によりなされているが、発光素子用配線基板103との接続形態は、フリップチップ接続であってもよい。
また、例えば、図4(b)に示すように、図3(b)に示した枠体116の形成された発光素子用配線基板113の発光素子搭載部115に、発光素子121としてLEDチップを接着剤129で接着して搭載し、ボンディングワイヤ123により、LEDチップ121と接続端子105とを電気的に接続して形成してもよい。
枠体116を搭載した発光装置127では、枠体116の内側に発光素子121を収納することで、容易に発光素子121を保護することができる。
またさらに、図4(c)に示すように、図3(c)に示した発光素子用配線基板313の発光素子搭載部315に、発光素子321としてLEDチップを接着剤329で接着して搭載し、ボンディングワイヤ323により、LEDチップ321と接続端子305とを電気的に接続して形成してもよい。
実施例1
表1に示す組成の平均粒径2.0μmの結晶化ガラス粉末および表2に示す組成と粒径とを有するフィラーを準備し、表2の組成に従い秤量し、これに、有機バインダー、可塑剤および溶媒を混合し、スラリーを作製し、得られたスラリーをドクターブレード法によって成形した。
得られた成形体を厚み2mmとなるように熱圧着法にて積層し、大気中500℃、2時間の熱処理により脱有機バインダー処理した後、大気雰囲気中にて、900℃、1hrの条件にて焼成することにより、光反射体であるガラスセラミックを得た。
このガラスセラミックスについて、断面を鏡面研磨し、走査型顕微鏡(SEM)を用いて2次電子像および反射電子像を撮影し、画像解析装置を用いて、100μmの範囲で、断面における粒子の短径、長径および面積を測定した。長径/短径をアスペクト比とし、アスペクト比が3以上の粒子については、短径を断面における粒子径として算出し、アスペクト比が3よりも小さい粒子については、その面積と同じ面積を有する円の直径を断面における粒子径として算出した。
その結果から、断面における粒子径が0.3〜1.0μmである粒子群の占有面積を計算し、測定面積中に占める前記粒子群の占有面積の割合を表3に示した。さらに、前記粒子群のなかでアスペクト比が3以上である粒子の占有面積を計算し、前記粒子群の占有面積のうち、アスペクト比が3以上である粒子の占有する面積の割合を表3に示した。
また、ガラスセラミックスの結晶相をX線回折測定により回折パターンを測定し、結晶相の同定を行った。さらに、リートベルト法を用いて結晶化度を算出した。結果を表3に示す。
さらに、発光分光分析法にて、波長400nm〜700nmの可視光領域全域に渡って10nm毎に反射率を測定し、反射率の最も低い波長での値を表3に示した。
また、比較サンプルとして、表1に示した組成を有する非結晶化ガラスであるガラスG7のみを焼成して作製したセラミックフィラーも焼成により析出する結晶相も含有しないガラス焼結体および窒化アルミニウム焼結体に関してもサンプルを作製し、同様の評価を行った。
Figure 0005383636
Figure 0005383636
Figure 0005383636
本発明の光反射体である試料No.4〜17は、可視光領域での最も低い反射率が75%以上、即ち、可視光全域に渡って75%以上の高い反射率を示すものであった。特にアスペクト比が3以上である粒子の占有面積が20%以上である資料No.7〜14は、可視光領域での最も低い反射率が78%以上の高い反射率を示すものであった。
一方、セラミックフィラーも焼成により析出する結晶相もないため、セラミック粒子を全く含まない本発明の範囲外の試料No.1は反射率が低いものとなった。また、窒化アルミニウム焼結体からなる本発明の範囲外の試料No.2と結晶化度の高い結晶化ガラスを用いた本発明の範囲外の試料No.3では、結晶化度は高いものの、析出粒子の直径が大きく、0.3〜1.0μmの微細な粒子の析出量が少ないため、反射率が低いものとなった。
実施例2
本発明の範囲内の試料No.11の光反射体材料Hを用いて、実施例1と同様にして厚さ300μmのグリーンシートを成形した。得られた前記グリーンシートをパンチングにて貫通穴を形成し、そこに銅を主成分とし焼成後に貫通導体309となる導体ペーストを充填し、さらにスクリーン印刷法にて必要な配線パターンをグリーンシートの表面および裏面に、銅を主成分とする導体ペーストを用いて配線層を形成し絶縁層311d〜311fとなる加工済みグリーンシートを作製した。前記配線層のうち絶縁層311dに形成されたものの一部が接続端子305となり、前記配線層のうち絶縁層311fに形成されたものの一部が外部電極端子307となる。
またこれとは別に、得られた前記グリーンシートにパンチングにてキャビティを形成するための貫通穴を同様にパンチングにて形成し、絶縁層311a〜311cとなる加工済みグリーンシートを作製した。
得られた加工済のグリーンシートを位置あわせして熱圧着法にて積層し、キャビティ構
造を有する積層体を得た。
得られた、積層体を水蒸気含有窒素雰囲気中にて、700℃にて脱有機バインダー処理を施した後、900℃、1hr、水蒸気含有窒素雰囲気中にて焼成することにより、本発明の光反射体であるガラスセラミックスを絶縁基体とし、低抵抗の銅を主成分とする配線層を有し、絶縁層311a〜311cの厚みが0.6mm、絶縁層311d〜311fの厚みが0.6mmの発光素子搭載用配線基板313を得た。
さらに、外部電極端子307、接続端子305上に、Ni−Auめっきを施した後、さらに銀めっきを施した。
銀めっきを施した、発光素子搭載用配線基板313上に接着剤329としてエポキシ樹脂を使用し、発光素子321として黄色LEDチップを用いて、発光素子搭載用配線基板313上に黄色LEDチップを位置あわせして載置し、熱処理を施すことによりエポキシ樹脂を硬化することにより、LEDチップを発光素子搭載用配線基板313上に実装した。
続いて、Auワイヤを用いたボンディングワイヤ323により、接続端子305と発光素子321とを電気的に接続し、その上から、黄色光を白色光に変換する蛍光体を充填し白色に発光するLED装置である発光装置327を得た。
得られた白色LED装置は、低抵抗の金属を配線層に使用しているため電力損失が小さく、かつ、可視光全域に渡って高い反射率を有することから、良好な白色光を発光した。
1、11・・・ガラスセラミックス
3、13・・・ガラス
5、7、15、17・・・セラミック粒子
19・・・異方性セラミック粒子
101a〜101c・・・絶縁層
311a〜f・・・光反射体からなる絶縁層
103、303・・・絶縁基体
105、305・・・接続端子
107、307・・・外部電極端子
109、309・・・貫通導体
111・・・光反射体
113、213、313・・・発光素子搭載用配線基板
115、315・・・発光素子搭載部
121、221、321・・・発光素子
123、223、323・・・ボンディングワイヤ
127、227、327・・・発光装置

Claims (7)

  1. ガラスとセラミック粒子とを含有するガラスセラミックスからなり、前記セラミック粒子は可視光領域に特有の光吸収帯を有していない酸化物結晶であり、前記ガラスセラミックスの断面において、前記セラミック粒子のうち粒子径が0.3〜1.0μmである粒子群の占有面積が前記断面の10〜70%であるとともに、前記ガラスセラミックスが遷移金属元素(ただし、Zrを除く)を実質的に含有していないことを特徴とする光反射体。
  2. 前記セラミック粒子が、アルミナ、ジルコニア、セルジアン、スラウソナイト、アノーサイト、ディオプサイト、フォルステライト、エンスタタイト、ガーナイト、スピネル、ウイレマイト、コーディエライト、ムライト、クオーツおよびこれらの固溶体の群から選ばれる少なくとも1種からなることを特徴とする請求項1記載の光反射体。
  3. 可視光の波長領域全域において、反射率が75%以上であることを特徴とする請求項1記載の光反射体。
  4. 前記粒子群の占有面積のうち、アスペクト比が3以上である粒子の占有面積が20%以上であることを特徴とする請求項1〜3のいずれかに記載の光反射体。
  5. 前記ガラスセラミックスの結晶化度が50%以上であることを特徴とする請求項1〜のいずれかに記載の光反射体。
  6. 絶縁基板の主面に、配線層と、発光素子を搭載する発光素子搭載部とが設けられてなる発光素子搭載用配線基板において、前記発光素子搭載部が請求項1〜のいずれかに記載の光反射体からなることを特徴とする発光素子搭載用配線基板。
  7. 請求項記載の発光素子搭載用配線基板の前記発光素子搭載部に発光素子を搭載してなることを特徴とする発光装置。
JP2010279414A 2010-12-15 2010-12-15 光反射体、発光素子搭載用配線基板、および発光装置 Active JP5383636B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279414A JP5383636B2 (ja) 2010-12-15 2010-12-15 光反射体、発光素子搭載用配線基板、および発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279414A JP5383636B2 (ja) 2010-12-15 2010-12-15 光反射体、発光素子搭載用配線基板、および発光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005312582A Division JP4688633B2 (ja) 2005-10-27 2005-10-27 光反射体、発光素子搭載用配線基板、および発光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013094032A Division JP5623587B2 (ja) 2013-04-26 2013-04-26 光反射体、発光素子搭載用配線基板、および発光装置

Publications (2)

Publication Number Publication Date
JP2011090325A JP2011090325A (ja) 2011-05-06
JP5383636B2 true JP5383636B2 (ja) 2014-01-08

Family

ID=44108569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279414A Active JP5383636B2 (ja) 2010-12-15 2010-12-15 光反射体、発光素子搭載用配線基板、および発光装置

Country Status (1)

Country Link
JP (1) JP5383636B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851418B2 (ja) * 1997-06-13 2006-11-29 シチズン電子株式会社 赤外線データ通信モジュール
JP2001342063A (ja) * 2000-05-30 2001-12-11 Kyocera Corp 低温焼成磁器組成物、低温焼成磁器とその製造方法、並びにそれを用いた配線基板とその製造方法
JP2004075770A (ja) * 2002-08-13 2004-03-11 Teijin Chem Ltd 熱可塑性樹脂組成物
JP2005175039A (ja) * 2003-12-09 2005-06-30 Kenichiro Miyahara 発光素子搭載用基板及び発光素子
EP1674894B1 (en) * 2003-10-17 2009-08-19 Mitsubishi Plastics Inc. Reflecting film
JP4587675B2 (ja) * 2004-01-23 2010-11-24 京セラ株式会社 発光素子収納パッケージおよび発光装置
JP4688633B2 (ja) * 2005-10-27 2011-05-25 京セラ株式会社 光反射体、発光素子搭載用配線基板、および発光装置

Also Published As

Publication number Publication date
JP2011090325A (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
JP4688633B2 (ja) 光反射体、発光素子搭載用配線基板、および発光装置
JP4688695B2 (ja) 光反射体、発光素子搭載用配線基板、および発光装置
JP5383747B2 (ja) 反射部材、これを用いた発光装置および照明装置
US8459840B2 (en) Semiconductor light emitting apparatus and light source apparatus using the same
JP5640632B2 (ja) 発光装置
JP4804109B2 (ja) 発光素子用配線基板および発光装置並びに発光素子用配線基板の製造方法
KR101245615B1 (ko) 발광 소자 탑재용 세라믹스 기체
JP5539658B2 (ja) 反射材およびそれを用いた反射体および発光素子搭載用基板
JP2007227868A (ja) 発光装置および照明装置
JP2006147999A (ja) 発光素子用配線基板並びに発光装置
JP2006093565A (ja) 発光素子用配線基板ならびに発光装置およびその製造方法
JP2008159791A (ja) 発光装置およびその製造方法
JP2006041230A (ja) 発光素子用配線基板ならびに発光装置
JP2006156447A (ja) 発光素子用配線基板ならびに発光装置およびその製造方法
JP2013197236A (ja) 発光装置および発光装置の製造方法
JP5623587B2 (ja) 光反射体、発光素子搭載用配線基板、および発光装置
JP2006066409A (ja) 発光素子用配線基板および発光装置ならびに発光素子用配線基板の製造方法
JP6150159B2 (ja) 発光ダイオードパッケージ用ガラスセラミック、それを用いたセラミック基板、および発光ダイオードパッケージ
JP5451451B2 (ja) 表面実装型発光素子用配線基板およびこれを備えた発光装置
JP5383636B2 (ja) 光反射体、発光素子搭載用配線基板、および発光装置
JP2011071554A (ja) 発光素子用配線基板ならびに発光装置
JP5174125B2 (ja) 発光装置および照明装置
JP2006066630A (ja) 配線基板および電気装置並びに発光装置
JP2014067965A (ja) 発光装置
JP4614679B2 (ja) 発光装置およびその製造方法ならびに照明装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150